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1
Introduction

Knots are meant to securely and stably fasten and connect. This is true in the literal
sense, where knots secure boats to piers and shoes to feet, as well as in the �gurative
sense where ’to tie a knot’ signi�es the creation of a near unbreakable bond, linking two
people into a stable and inseparable unity. Their remarkable stability led Lord Kelvin
to speculate that atoms themselves consisted of vortex knots in the æther [1]. In recent
years the application of knot theory to physical phenomena has experienced a true
revival with knotted structures being described in �eld theories [2,3], liquid crystals [4,5]
superconductors and super�uids [6,7], Bose-Einstein condensates [8,9] and molecular
biology [10].

In plasma physics the connection between knots and stability has been established
since 1969 when Mo�att discovered that the conserved quantity identi�ed by Woltjer [11]
was in fact a measure of the linking and knotting of magnetic �eld lines [12]. The
conservation of this quantity in �uid dynamics was discovered independently in 1966 by
Steenbeck Krause and Rädler [13] and named ’Schraubensinn’, but due to the linguistic
and geopolitical barriers of the time this quantity is now known by the name given to it
by Mo�att: helicity. Magnetic helicity is a measure of the average linking of �eld lines
in a con�guration and reduces to the Gauss linking integral calculated over every pair of
�eld lines [14]. This was made mathematically rigorous by the concept of the asymptotic
Hopf invariant introduced by Arnold [15].

Because of the importance of linking and knottedness to plasma dynamics a large
body of research is devoted to topological aspects of magnetic �elds in plasma. The
topology of the linked or knotted �eld can be used to de�ne a unique knot energy in
ideal, incompressible MHD [16]. Kamchatnov used the knotted structure of the Hopf map
to construct analytical solutions to the ideal MHD equations [17], later expanded on by
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1. INTRODUCTION

Sagdeev [18]. This same structure was used to generate knotted solutions to Maxwell’s
equations [19,20]. Based on this, solutions of Maxwell’s equations were constructed
where all �eld lines are torus knots [21], and where the �eld lines lie on linked torus-
knotted surfaces [22]. The torus knotted �elds have again been used to construct ideal
MHD solitons [23]. Recently a new analytical technique has been described by Kedia
with which a magnetic �eld of arbitrary helicity and well-de�ned knotting of �eld lines
can be constructed [24].

This thesis addresses the question how helicity in a localized magnetic �eld provides
stability to a plasma. We show, using di�erent numerical schemes and di�erent initial
conditions that the initial helicity is translated to a self-organized localized magnetic
equilibrium where �eld lines lie on nested toroidal surfaces. The tendency of the localized
magnetic �eld to expand is countered by an external pressure, and a toroidal depression
in pressure is realized with a minimum in pressure on the magnetic axis of the structure.

We found this solution by explicitly looking for a structure like this: when several
Hopf-linked rings resistively reconnect they give rise to a magnetic �eld which is topo-
logically similar to the full Hopf structure. What turned out to be remarkable is that
these dynamics are more universal: not only linked �ux rings recon�gure to such an
equilibrium, but also trefoil knotted tubes, single twisted tubes and any other magnetic
�eld containing helicity. With hindsight these structures are also seen in numerical
simulations that predate this research. The nonhelical con�guration of Borromean linked
�ux tubes presented in [25] gives rise to two such equilibria of opposite helicity, and the
radio bubbles described by Braithwaite [26] carry a similar magnetic topology.

These structures are intrinsically stable, and in essence the opposite of the con�gu-
ration achieved in a tokamak. To �rst order the design of a tokamak should give rise to
an equilibrium. However it turns out that this equilibrium is unstable, leading to chaotic
plasma dynamics. Fighting these chaotic dynamics is the main challenge in fusion reactor
designs. Our results indicate that instead of trying to balance the unstable equilibrium, a
con�guration with a lowered pressure on the magnetic axis can be intrinsically stable.

The magnetic topology considered in chapters 2, 3 and 5 of this thesis is similar to the
�elds in novel fusion reactor designs such as the self-organized �elds in the Tri Alpha
experiment [27] and the General Fusion reactor. The results of this thesis can be used to
better understand instabilities plasma experiments as well as guide the design of new
plasma experiments where this magnetic equilibrium is achieved. The near universality
of the appearance of this structure in numerical simulations would also suggest that such
an equilibrium could occur in an astrophysical context. Numerical studies by Braithwaite
on radio bubbles ejected from active galactic nuclei show similar structures on a galactic
scale [26]. Coronal mass ejections throw large amounts of plasma with linked �eld lines
into the interplanetary medium where it subsequently relaxes. Structures referred to as
magnetic clouds could consist of a similar magnetic equilibrium, but more research is
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needed to con�rm this.
This introduction chapter will give a brief overview of plasma physics in section 1.1.

The mathematical models used do describe the plasma dynamics are given in section
1.2. Section 1.3 describes the equations solved by the numerical scheme used in most of
this thesis, and section 1.4 gives more detail on the concept of magnetic helicity and its
topological interpretation. In section 1.5 we describe the Hopf map, and how to construct
a magnetic �eld from it.

1.1 The plasma universe

We live in a plasma �lled universe. This might not seem obvious at �rst sight, since most
objects we interact with on a daily basis are all either liquid, solid or gaseous. It is for
this reason that our understanding of plasma as a state of matter is a relatively recent
development. But if we take a step back and look at our entire universe, then we see that
our planet is one of only a sparse collection of rocks �oating around in which matter has
been able to organize into the familiar states. In fact, only about 5 percent of the baryonic
(ordinary) matter in the universe∗ exists in one of these three well-understood states. Of
the rest of the baryonic matter in the universe, much is contained in stars, large spheres
of plasma where hydrogen is fused releasing energy. In the space between the stars
there is also matter to be found. Most of this sparsely distributed matter is ionized, and
on a large enough scale the interplanetary, interstellar, and even intergalactic medium
behaves as a plasma.

Plasma as a state of matter has many interesting properties. It behaves as a �uid,
free to �ow and swirl in complicated patterns described by hydrodynamics. But there
is an additional property of plasma that makes its description even more complicated
than the already signi�cantly complex laws governing �uids. Plasmas are ionized, the
ordered structure of electrons bound to atoms has been broken up, and the state consists
of freely moving charged particles. The moving charged particles are able to create large
magnetic �elds, resulting in long-range interactions within the �uid. Because of the
importance of these magnetic �elds, the study of the dynamics of magnetized plasma is
called magnetohydrodynamics (MHD).†

In this thesis we are concerned with the class of plasma where the magnetic �eld
signi�cantly a�ects the plasma structure and behaviour. This regime is found throughout
the universe, in the centers of fusing stars, and in coronal loops, the beautiful wisps of

∗ Here we are discounting dark matter and dark energy, which is estimated to compose about 95 percent
of all mass in the universe. No sensible statement can be made as to in what state dark matter exists.

† The name plasma originally comes from medicine, where it is used to signify the clear �uid that remains
when the cells have been removed from blood. It was Irving Langmuir, one of the �rst plasma physicists,
who proposed that an ionized gas could similarly be seen as a �uid which entrained the charged ions
and electrons, and named that medium plasma. This turned out to be false. However the name stuck,
and ever since plasma physicists have had to explain that their work has noting to do with blood.
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1. INTRODUCTION

Figure 1.1: Vincent van Gogh beautifully captured the turbulent dynamics present in
interstellar plasma long before their mathematical description could be elucidated.

plasma that reach out from the surface into the thin, hot plasma just outside stars. On
galactic scales, spread out magnetic �elds subtly in�uence the motion of galaxies.

The importance of magnetic �elds on the behaviour of plasma allows us to approach
it from a very interesting perspective: knot theory. Magnetic �eld lines (integral curves
of the magnetic �eld) are curves in the three-dimensional volume of a plasma. Since
these curves cannot start or end in free space∗, they often close on themselves, and thus
are a physical manifestation of the embedding of a circle in three-dimensional space,
i.e. they form a knot. Looking at the magnetic �eld in a plasma from this perspective
is given more credence by a beautiful discovery made by Mo�att [12] (see also section
1.4): The linking and knotting of magnetic �eld lines in an ideal plasma is conserved! If
a magnetic �eld line starts out knotted, the plasma dynamics will not be able to undo
that knot.

Here on earth the promise of unlimited clean energy has driven much of plasma
research. Almost all of the energy used here on earth comes from the sun in one form or
another, where it is produced by the thermonuclear fusion of ions in the solar core. This
reaction happens extremely slow, and only at extreme temperatures where the thermal
motion of the ions is high enough to force the nuclei together to fuse into more stable
con�gurations. Since there is an abundance of light elements here on earth, the goal is
to develop a fusion reactor where a plasma can be kept in place whilst it is heated to a
su�ciently high temperature to undergo these reactions, in other words, to put the sun
in a bottle.

∗ Except for a zero measure subset of the �eld lines.
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1.2. THE MATHEMATICAL DESCRIPTION OF PLASMA

1.2 The mathematical description of plasma

In this thesis we limit ourselves to two of the simplest mathematical descriptions of
plasma: Ideal magnetohydrodynamics (MHD) and resistive magnetohydrodynamics.
There are many more complex descriptions of a plasma, such as two-�uid, gyrokinetics,
or the fully-kinetic Vlasov equation [28]. These models are used to describe with high
accuracy the e�ects going on in modern fusion reactors, but they are all re�nements,
and they reduce to the MHD equations.

In order to simplify the notation, in this thesis we will always use natural units such
that �0 = �0 = c = 1.

1.2.1 Ideal MHD

Ideal magnetohydrodynamics (IMHD) describes plasma as a perfectly conducting �uid.
In the systems we consider the �uid is either incompressible, or density and pressure
are linearly related. In order to fully describe the state of this �uid, we then need three
or four variables; the �uid velocity v, the magnetic �eld B, a density � (compressible
IMHD), and pressure p (incompressible IMHD).

Let us �rst consider the evolution of the �uid velocity. This is directly inferred from
Newtons equation F = ma, where the �uid acceleration is caused by the forces acting
on the plasma. These forces are the Lorentz force, j × B, and the force resultant from a
gradient in pressure ∇p such that we have:

� (
)v
)t

+ v ⋅ ∇v) = −∇p + j × B. (1.1)

For astrophysical applications it is often important to also include a gravitational
term in equation (1.1). In this thesis we will neglect gravitational e�ects.

This equation uses the current density j, but the current density is not an independent
variable. It can be written in terms of the magnetic �eld, using the fourth Maxwell
equation: ∇ × B = j + )E

)t . Since we are considering a perfectly conducting �uid, the
displacement current )E

)t is zero. This gives us the Ampère law:

∇ × B = j. (1.2)

Additionally we need to take into account how the magnetic �eld changes in an ideal
�uid. This can be inferred from the third Maxwell equation )B

)t = −∇ × E . Consider what
the electric �eld would be in a perfectly conducting �uid. If that �uid is not in motion,
there can be no electric �eld at all, as all charge imbalance would equilibrate. But if the
�uid is moving through a magnetic �eld the Lorentz force will push positive charges to
one side, and negative charges to the other side of the conductor, giving rise to an electric
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1. INTRODUCTION

�eld. This is mathematically expressed as Gallilean transform on the electric �eld. This
gives rise to an electric �eld perpendicular to both the �uid velocity and magnetic �eld,
E = −v × B. The equation for the time evolution of the magnetic �eld then becomes

)B
)t

= ∇ × (v × B). (1.3)

Another way of describing the above equation is "�eld lines go with the �ow", and it
is this equation that we shall see is responsible for the conservation of magnetic topology
and helicity discussed in the next section.

There is one additional constraint to consider when describing a magnetic �eld,
which is the solenoidal condition

∇ ⋅ B = 0. (1.4)

If this condition is true at any time t , equation (1.3) guarantees it will hold true at any
later time.

In incompressible ideal MHD, the �uid velocity �eld also follows the solenoidal
condition, ∇ ⋅ v = 0.

When considering compressible MHD, we will assume an isothermal plasma. The
density is then given by the continuity equation.

)�
)t

= −∇ ⋅ �v. (1.5)

This equation implies that any change in mass must be caused by a corresponding �ow
through the boundary.

The pressure for a isothermal plasma is given by p = c2s � where the proportionality
constant c2s is the isothermal sound speed.

1.2.2 Compressible, viscous, resistive and isothermal MHD

Ideal MHD is a good approximation for a plasma, but many of the most interesting e�ects
happen when a small amount of resistivity and viscosity is taken into account. The small
resistivity allows for many new phenomena to occur which cannot occur in ideal MHD.

The momentum equation needs to be modi�ed to incorporate the viscous forces, so
equation (1.1) becomes:

� (
)v
)t

+ v ⋅ ∇v) = −∇p + j × B + Fvisc (1.6)

These viscous forces Fvisc are anisotropic, but for simplicity and analytical tractability a
scalar kinematic viscosity term � can be assumed, such that the viscous force has the

6



1.2. THE MATHEMATICAL DESCRIPTION OF PLASMA

following form:
Fvisc = ��∇2v. (1.7)

The induction equation is also modi�ed by the e�ects of resistivity. This induces an
additional electric �eld in the direction of the current Eres = �j. The resistive induction
equation then becomes:

)B
)t

= ∇ × (v × B) − ∇ × �(∇ × B) = ∇ × (v × B) + �∇2B, (1.8)

where the last equality was derived assuming a spatially constant resistivity. Because of
the form in which � appears in this equation, it is also called magnetic di�usivity.

To round out this set of equations we need to prescribe how the pressure and density
change in time. In any physical system mass is conserved, thus any matter �owing
into or out of a region must result in a change in the density. This results in the same
continuity equation as in the ideal case:

)�
)t

= −∇ ⋅ �v. (1.9)

A useful approximation is to assume an isothermal gas such that pressure and density
are linearly related through the ideal gas law. Pressure then becomes linearly dependent
on density:

p = �c2s . (1.10)

Together equations (1.6) (1.8) (1.9) and (1.10) form a closed set of equations from which
the full evolution of the �elds can be calculated.

1.2.3 On the Lorentz force

The Lorentz force, FL = j × B, is an important force that shapes a plasma and in this
section we take a look at how to interpret this force. Since j = ∇ × B, we can use the
vector calculus identity ∇(a ⋅ b) = (a ⋅ ∇)b + (b ⋅ ∇)a + a × (∇ × b) + b × (∇ × a) to re-write
it to:

(∇ × B) × B = −
1
2
∇B2 + B ⋅ ∇B. (1.11)

By re-writing it in this way, we see that the Lorentz force has two components. The
�rst term, −∇B2/2, is commonly referred to as magnetic pressure. The magnetic pressure
gives rise to a force directed from a region of high magnetic �eld strength towards a
region of lower magnetic �eld strength.

The second component, B ⋅ ∇B is called the magnetic tension force. This is because
the e�ect of this force can be seen as the result of a tension in the magnetic �eld lines:
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Figure 1.2: A magnetic �ux tube whose �eld lines are in the direction of the ring will
experience magnetic forces that pull the ring together and thicken it (top). When the
magnetic �eld is around the short direction of the ring, the magnetic forces make the
magnetic ring expand and thin (bottom).

as if the �eld lines were ropes that were pulled tight. Where the �eld lines are bent, this
force gives rise to a straightening and restoring force.

Using this we can understand how simple magnetic con�gurations are shaped by
these forces. Imagine a magnetic �ux ring, where all �eld lines are directed along the
ring, and the magnetic �eld is zero outside the ring. The magnetic pressure force will be
directed outwards from the ring surface, causing the ring to fatten. At the same time
the magnetic tension is pulling along the �eld lines, and will cause the ring to contract,
to become a shorter. The net e�ect is that a ring of magnetic �eld fattens and shortens,
going from a ’bicycle tire’ to a ’truck tire’.

If the magnetic �eld is around the short direction of the ring, the opposite would
happen. The magnetic tension would squeeze the ring tight, whilst the magnetic pressure
would press it further out. The con�guration would go from a ’truck tire" to a ’bicycle
tire’. Note that such a magnetic �eld is set up by a current �owing along the ring, so
another way to phrase this is to say that magnetic rings contract, and current rings
expand. This process is illustrated in �gure 1.2.
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1.2.4 further enhancements

The work presented in this thesis is based on the above two descriptions of a plasma,
either ideal MHD or isothermal resistive and viscous MHD. However a whole host
of more elaborate and precise models of plasma dynamics exists. In this section we
quantitatively describe these models, and some of the e�ects that they lead to which are
not included in the above models.

One major limitation of MHD is that it treats the plasma as a single �uid with a given
density. The �uid velocity v thus represents the average motion of all the particles, and
the plasma remains e�ectively neutrally charged. In reality a plasma consists of positively
charged ions and negatively charged electrons, which are free to move independently
of one another. The mass of the electrons is three orders of magnitude less than the
mass of the ions, which causes them to react on a di�erent timescale. The di�erence in
electron and ion motion can lead to charge separation, setting up large electric �elds in
the plasma. In order to take these e�ects into account one can use the two-�uid model
of MHD, where the ions and electrons are modeled as two separate �uids. Two-�uid
MHD is necessary to understand e�ects present in tokamaks such as the bootstrap
current, a large current around the tokamak that is set up due to electric �elds caused by
di�erences in the distribution of the positive and negative charged species.

The two-�uid model still treats the plasma as two separate �uids, one positive and one
negatively charged. This description as a �uid is only valid if there is enough interaction
between the particles constituting the plasma that this reduction to the average motion
holds. In extremely hot plasma and in very low density plasma the electrons and ions
hardly interact with each other, and their mean free path can become large. It is then
that kinetic MHD or its slightly simpli�ed brother gyrokinetic MHD needs to be used.
These models specify at every point in space a particle distribution function fi(r, v) for
both the ions and the electrons.

Kinetic MHD models are necessary to describe how highly energetic particles pro-
duced in fusion reactions redistribute their energy through the plasma. Another phe-
nomenon that can only be described in kinetic theory and not in the simpler models
is the occurrence of banana orbits. In a plasma the ions and electrons move with a
generally high velocity along magnetic �eld lines. Up to �rst order the motion along the
�eld line is unimpeded, but the velocity perpendicular to the magnetic �eld is a�ected
by the Lorentz force, causing the particles to move in a tight spiral around the magnetic
�eld lines. When such a particle moves along the �eld towards a region of higher �eld
strength, the radius of this spiral becomes smaller, but since its angular momentum is
conserved, the perpendicular velocity must increase. This causes the parallel velocity to
decrease, and if the magnetic �eld strength increases enough, the particle is re�ected
away from the region of high �eld.

In a tokamak, or on any �eld line dense in a toroidal surface, the magnetic �eld
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1. INTRODUCTION

strength is higher on the inside of the torus than on the outside, because the same amount
of toroidal �ux needs to be distributed over a much larger area. There is therefore a subset
of particles with low kinetic energy that are stuck on the outside of the torus, re�ecting
back and forth between the region of highest �eld strength in the center, e�ectively
tracing out a banana shaped orbit. This subset of particles needs to be taken into account
to accurately predict the magnetic �eld and disturbances that a�ect a tokamak plasma.

All these e�ects could also play a role in the magnetic con�gurations discussed in
this thesis. The size of these e�ects are however small, and they do not fundamentally
alter the equilibrium achieved. Future work should however look into this, as predictions
from a kinetic model could show tell-tale signatures in particle energy distribution that
could help identify structures.

1.3 Numerical methods

The coupled set of di�erential equations describing a plasma are rather hard to solve
analytically. In fact, only in very simpli�ed geometries, or by making use of reduced
dimensionality or exploiting a symmetry, can analytical solutions be found.

With the advent of modern computing, and ever more powerful hardware, it has
recently become more and more feasible to solve ever more complex sets of equations
using computers.

There exist many numerical codes that are specialized in solving the MHD equations,
each with their own set of bene�ts and drawbacks. A few examples include the STAGGER-
code [29], LARE3d [30], RAMSES-MHD [31], and the code used for the numerical work
in this thesis; the PENCIL-code [32].

The PENCIL-code contains several features that make it a very suitable for this speci�c
problem. First of all, the code solves the equations in terms of the Vector potential A,
given by ∇ × A = B. In this way the solenoidal condition ∇ ⋅ B = 0 is maintained. If
the magnetic �eld B is used, numerical errors can accumulate leading to a loss of this
condition, and an unphysical magnetic �eld.

Additionally the PENCIL-code uses sixth-order spatial derivatives, leading to higher
precision on even moderately sized computational grids. The di�erential equations
are solved using third order in time with an adaptive time step to keep the error low.
Additionally the density is � is replaced by the logarithm of the density ln(�).

The equation of motion (equation (1.6) ) that is solved by the code is the following:

Dv
Dt

= −c2s∇ ln � + j × B/� + Fvisc/� (1.12)

where v is the �uid velocity, D
Dt ≡

)
)t + v ⋅ ∇ is the convective derivative. The magnetic
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�eld and current are calculated from the vector potential A through B = ∇ × A and
j = ∇ × B.

In the previous section we simpli�ed the viscous term by using the following equation
��∇2v . This makes the equation analytically more tractable, but in actuality the viscous
force is anisotropic, and should be calculated from the divergence of the stress tensor.

This is indeed what the PENCIL-code does, the viscous force is calculated from:

Fvisc = ∇ ⋅ 2��S, (1.13)

where � is the kinematic viscosity and S is the traceless rate of strain tensor Sij =
1
2 (
)ui
)xj +

)uj
)xi ) −

1
3�ij∇ ⋅ v.

The continuity equation (1.9) needs to be written in terms of the logarithmic density,
and gets the following form:

D ln �
Dt

= −∇ ⋅ v. (1.14)

The last equation to be solved is the induction equation (1.8). By taking the inverse
curl on both sides we get the equation in terms of the vector potential, which becomes:

)A
)t

= v × B + �∇2A (1.15)

where � is the magnetic di�usivity. This particular evolution of A corresponds to using
the Weyl gauge, such that ∇� = 0 where � is the scalar potential.

These are the equations that are solved using the PENCIL-code. The code contains
many more modules, including an entropy to include temperature e�ects, hyperviscosity,
radiation, and gravity, making it an extremely versatile solver, often used for problems
in the astrophysical context.

1.4 Helicity

A readers �rst encounter with the title of this thesis, ’Knots in plasma’ might elicit
a reaction of surprise; What could these two topics possibly have in common? The
answer, quite simply, is the concept of magnetic helicity. In this section we give a
historical account, from discovery of a conserved quantity by Woltjer to its topological
interpretation and naming by Mo�att and Arnold. We also describe a curious analogy
between magnetic helicity and �uid helicity.

In 1958 Woltjer made a curious discovery, namely that in ideal MHD the following
integral was a constant of motion [11]:

Hm = ∫ B ⋅ Ad3x. (1.16)

11



1. INTRODUCTION

An ideal plasma is governed by the equations (1.3) (1.1) and (1.5).
If we calculate the time derivative of the magnetic helicity in a volume V (following

the derivation in [33]), we can write it as:

)Hm
)t

= ∫
V

)A
)t

⋅ B + A ⋅
)B
)t
d3x (1.17)

= ∫
V
A ⋅ ∇ × (v × B)d3x (1.18)

= ∫
V
−∇ ⋅ (A × (v × B)) + (v × B ⋅ ∇ × A) d3x (1.19)

= ∮
)V
((A ⋅ v)B − (A ⋅ B)v) ⋅ dn (1.20)

For equation (1.18) we have used the fact that )A
)t ⋅ B = 0, which is seen when the

induction equation (1.3) is written in terms of the vector potential (equation (1.15) with
� = 0). The second term in equation (1.19) vanishes because v × B ⋅ ∇ × A = v × B ⋅ B = 0.
For the �nal equation we have used Gauss’ theorem to write the volume integral over V
into the integral over its surface )V , and integrate over the surface normal n.

From this we can see that the time derivative vanishes for any volume on which
B ⋅ n = 0 and v ⋅ n = 0. An example of a surface where B ⋅ n = 0 is a �ux tube. If we
choose a surface that moves with the plasma �uid, the helicity in this �ux tube will
remain unchanged. In some situations we can also choose a surface su�ciently far away
such that B = 0 and v = 0 on that surface, and the helicity in this volume must remain
constant.

In 1969 H. K. Mo�att named this quantity magnetic helicity. The name helicity was
chosen in analogy to the concept of helicity in particle physics, the dot product of the
spin of a particle with the direction of motion. Since spin is the rotational motion of a
particle, its generalization to an extended �eld is the curl, or rotation of that �eld.

Mo�att also gave a neat topological interpretation of the concept of helicity: it
measures the self- and interlinking of magnetic �eld lines in the con�guration. That
helicity measures linking, can be seen by calculating the helicity of a simple con�guration
of two linked �ux tubes, shown in �gure 1.3. The con�guration consists of two untwisted
tubes, carrying magnetic �ux Φ1 and Φ2 respectively, and the magnetic �eld is zero
outside of the two tubes. The helicity integral (1.16) can then be calculated analytically.
Since B = 0 outside of the rings, the integral needs only to be carried out over the two
separate rings. Since we integrate in the direction of the B-�eld, the integral over a
cross-sectional area si of the ring ∫si B ⋅ da = Φi , and what is left is only the integral in
the direction of the ring:

Hm = Φ1∮
1

A ⋅ dl + Φ2∮
2

A ⋅ dl. (1.21)
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Φ2

Φ1

Figure 1.3: Con�guration consisting of two linked magnetic rings carrying �ux Φ1 and
Φ2.

Note that this can only be done for a �ux tube with no twist.
Since B = ∇×A, and using Stokes theorem to relate the integral of the vector potential

along the boundary with its curl through the surface, we get:

Hm = Φ1 ∫
1

B ⋅ da + Φ2 ∫
2

B ⋅ da. (1.22)

where i is the surface enclosed by the curve i . But what is the �ux passing through
the curve i? This is exactly the �ux of carried by the other magnetic ring! The total
helicity of the con�guration thus becomes:

Hm = Φ1Φ2 + Φ2Φ1 = 2Φ1Φ2. (1.23)

The above example consists of the mathematically simplest linking, rings that are
linked once, but from the derivation we can also deduce what would happen if the curves
are non-trivially linked. The integral in equation (1.22) resolves to the amount of �ux
that passes through the surface enclosed by the curve. If the two curves are linked n
times with each other, the �ux tube passes through the surface enclosed exactly n times
as well, and thus the helicity is proportional to the linking number of the two curves.

This interpretation of Helicity as the linking number of the curves goes deeper than
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just the toy model presented above. In fact, as we will show in the next section, the
helicity integral (1.16) is equivalent to the gauss linking integral calculated over all pairs
of �eld lines in the con�guration [12,14].

In the above derivation the assumption was made that the �eld could be decomposed
into distinct �ux tubes, all closed curves. In reality this is almost never the case. The
solenoidal condition ∇ ⋅ B = 0 does imply that a �eld line cannot start or end∗, but �eld
lines can be chaotic, �lling an entire region of space, or lie on the surface of a torus
and �ll it ergodically. It was Arnold who introduced the asymptotic Hopf invariant, a
measure for the linking of such unclosed �eld lines, and made the connection between
the linking integral and the helicity integral mathematically exact [15].

Magnetic helicity thus has a topological interpretation, namely it measures the linking
of the �eld lines in the plasma. There is also another way to intuitively understand the
conservation of helicity. The ideal induction equation (1.3) implies that �eld lines ’go
with the �ow’. If there is magnetic �ux passing through a perfectly conducting �uid
element, any change of this �ux will set up a current in the conductor to counteract
this change. In the limit of perfect conductivity, the �ux through a �uid element cannot
change, and the magnetic �ux is ’frozen in’ to the plasma. If the �uid moves, it drags the
magnetic �eld lines with it. Any �uid �ow is thus a deformation of the initial magnetic
�eld, deformed by the �uid displacement. Since this displacement is continuous, all that
can happen is that the �eld lines change shape, but topological invariants such as linking
and knotting are not a�ected. Therefore, since magnetic helicity quanti�es this linking
and knotting, it will remain unchanged.

1.4.1 Helicity as linking, writhe and twist

Here we will show how the helicity integral (1.16) can be reduced to the gauss linking
integral over all pairs of �eld lines. The Gauss linking integral was �rst de�ned by
Gauss in the 1833 to calculate the linking number of two closed curves, with his original
motivation presumably being to calculate the linking of orbital trajectories [34]. The
linking of two closed curves 1 = r(x) and 2 = r′(x′) is given by:

L12 = −
1
4� ∮

1
∮
2

dr
dx

⋅
r
|r|3 ×

dr′

dx′
dxdx′. (1.24)

Here r = r′ − r is a vector from one curve to the other.
To reduce the helicity integral (1.16) to this form, we �rst need to choose a vector

potential. Since the vector potential is given by B = ∇ × A, we can uncurl it using a

∗ Also this is an imprecise statement, more correct would be to state that only a zero-measure subset of
�eld lines can start or end, at null points in the �eld.
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1.4. HELICITY

Biot-Savart type integral:

A(r) = −
1
4� ∫

r
|r|3 × B(r

′)d3r ′. (1.25)

the helicity integral then becomes:

HM = −
1
4� ∫ ∫ B(x) ⋅

r
|r|3 × B(x

′)d3xd3x′. (1.26)

The last step is to split up the magnetic �eld intoN distinct �ux tubes, each carrying a
�ux Φi and parametrized by curve i = r(x). Integration over the entire volume can then
be written as sum of the integration over each of these curves individually multiplied by
the �ux. The helicity then becomes:

HM = −
N
∑
i=1

N
∑
j=1

1
4�
ΦiΦj ∮

i
∮
j
r(x) ⋅

r
|r|3 × r

′(x′)dxdx′ =
N
∑
i=1

N
∑
j=1

LijΦiΦj . (1.27)

The magnetic helicity is thus equal to the �ux-weighted sum of all linking numbers.
This derivation hinges on the premise that the �eld can indeed be split up into N distinct
closed tubes. This is rarely the case. Field lines can for example be chaotic, ergodically
�lling an entire region of space, or lying on the surface of of a torus, but still never
closing on themselves. For this Arnold introduced the asymptotic Hopf invariant, the
result of this linking integral in the asymptotic limit of unclosed �eld lines [15].

When i ≠ j the linking integral just reduces to the integer number of times that curve
i is linked with curve j , but it is especially interesting to look at what this integral
evaluates to when i = j.

It was shown by Mo�att and Ricca that in this situation the self-helicity of such a
tube is equal to the writhe  and twist Tw of the tube. The writhe corresponds to the
curved motion of the centerline of the tube, and twist corresponds to the rotation of the
tube itself around its centerline. It was shown by Călugăreanu that the twist and writhe
of a curve are two sides of the same coin [35]: the twist and writhe can be translated
into each other, but their sum remains constant:

Lii = Tw + (1.28)

This conserved quantity is also sometimes attributed to White [36].
The interplay between helicity as linking, twist and writhe can be demonstrated just

using your hands, as shown in �gure 1.4. First, form two linked rings using thumb and
index �nger. These two curves are de�nitely linked. Now connect your index �nger to
your index �nger, and your thumb to your thumb, to create a single curve. The linking
is now gone, but the �ngers form a kinked path, writhing in space. The value of the
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Figure 1.4: The interplay between linking, writhe and twist can easily be seen through
a simple experiment: make two linked rings from your �ngers. When you ’reconnect’
them by touching thumb to thumb, the global con�guration has not changed much, but
the linking has. Instead, your �ngers now form a writhing curve. As you slide your
�ngers to a circle, you can feel them twist against each other, thus translating writhe
into twist.

self-integral evaluated over this single curve is the same as the linking integral over the
two curves. Now when you straighten the curve, you will feel the tips of your thumb and
index �nger twisting against each other. This is the writhe of the curve being translated
into twist.

1.4.2 Fluid and magnetic helicity, a comparison

There exists a very interesting parallel between magnetic helicity as de�ned in equation
(1.16), and what is called �uid helicity, which is calculated by the following integral:

Hfl = ∫ v ⋅ !d3x. (1.29)

Here ! = ∇ × v is called the vorticity �eld of the �uid. This equation is mathematically
identical to the magnetic helicity integral, with ! taking the place of B and v taking the
place of A.

Our interpretation of magnetic helicity as linking of �eld lines is directly translated
to �uid helicity, which is now a measure of linking of vorticity lines.

Fluid helicity behaves somewhat di�erently from magnetic helicity. In fact, the
equation governing a �uid �ow is mathematically simpler than the coupled di�erential
equations governing MHD. The time evolution of an ideal, incompressible �uid is given
by the Navier-Stokes equation:

�(
)v
)t

+ v ⋅ ∇v) = �∇2v − ∇p. (1.30)

This equation is equivalent to the momentum equation (1.6), but without the Lorentz
force.

16



1.4. HELICITY

Taking the curl of this equation, we can derive the time evolution of vorticity:

)!
)t

= ∇ × (v × !) + �∇2!. (1.31)

Here we have used the fact that v ⋅ ∇v = ∇v2/2 − v × (∇ × v) (using the same vector
identities as in 1.2.3), and the identity ∇ × ∇f = 0 for any scalar �eld f , as well as the
vector identity ∇ × (∇2a) = ∇2(∇ × a).

In the limit of � → 0 this condition is identical to the condition on the time evolution
of the magnetic �eld, therefore, vortex lines in an ideal �uid are also ’frozen in’, and the
vorticity �eld ’goes with the �ow’.

A key di�erence however is that the magnetic �eld and the �ow �eld are decoupled
in MHD equations. Since the vorticity is directly calculated from the �uid �ow through
! = ∇ × v , any �nite vorticity implies a �uid �ow around the vortex lines. Consider the
simplest case of a single vortex ring parametrized by the curve . Because the vorticity
is zero everywhere outside the vortex ring, the �uid �eld can be calculated using the
Biot-Savart integral:

v(r) = −
1
4� ∮



r′

|r′|3
× !dl. (1.32)

As we know from the analogous problem of the magnetic �eld of a current carrying
ring, the �uid velocity at any point on the curve  is nonzero. Since we have seen
that vorticity ’goes with the �ow" any con�guration of vortex lines must necessarily
be in motion. This is very often seen in nature, as the simple model is actually a very
appropriate description of a smoke ring. Smoke rings are therefore always in motion,
propelled by the �uid velocity that generates the vorticity �eld and held together by the
conservation of �uid helicity.

In a recent and beautiful experiment Kleckner et al. were able to generate vortex
�laments in a laboratory setup with a non-trivial vortex topology [37]. These knotted
vortex �laments at �rst glance seemed to break helicity conservation, as for example a
self-linked trefoil �lament is immediately seen to fall apart into unlinked simple loops.
Upon closer inspection this was not true, because, identical to what we show in section
1.4.1 also �uid helicity can be decomposed into its kinking, writhe and twist components.
The initial vortex knot, starting out with only self-linking of vortex �laments, translates
this helicity through localized reconnections, which are isolated only to regions where
vortex �laments come very close. After a reconnection event, the vortex line is strongly
kinked, i.e. it traces a helical path through space, and eventually the helicity is translated
to only twist in the vortex lines themselves [38].
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di�erent steady states

The analogy between �uid helicity and magnetic helicity is a very interesting one,
and both research �elds experience a large degree of cross-fertilization because of the
mathematical connections between the two concepts. The correspondence however is
far from perfect, and especially breaks down when equilibria or steady-state solutions
are concerned. Even though both helicities are conserved∗ under the dynamics of the
equations that govern their time evolution, the nature of this evolution is very di�erent.

In section 1.2.3 we described how the Lorentz force can be decomposed into magnetic
pressure and magnetic tension. These forces determine the stationary equilibrium that
can be obtained.

There are no analogous forces acting on a vortex line, as we can see from equation
(1.31), there is merely a term which convects the vorticity with the �uid velocity and a
term that acts as a di�usion, causing localized vorticity to di�use outwards.

1.5 Mathematics of linking: The Hopf map and knot theory

In the previous section we saw how magnetic helicity, or linking of magnetic �eld
lines, is conserved in ideal magnetohydrodynamics. This is a good reason to look at he
mathematics of linking, and look at structures that exhibit a high degree of linking, the
Hopf �bration.

1.5.1 The Hopf map

In 1931 German mathematician Heinz Hopf published a paper that shook the mathematical
�eld of Topology: He presented a non-null homotopic map from the hypersphere S3 to
the normal sphere S2. The rest of the world barely took notice, and went on with their
daily life. Now, nearly a century later, the structure he described is becoming a avidly
used tool in theoretical physics.

So what was it that Hopf discovered? Let us �rst discuss the mathematical concepts
used above. The sphere S2 is just that, a spherical shell. One mathematical way to
describe it is the collection of points in space that are all equidistant from the origin;
S2 ≃ (x, y, z) ∈ ℝ3|x2 + y2 + z2 = 1. Here the symbol ≃ denotes that S2 is homeomorphic
to that collection of points in three-space. In Topology the exact shape of the object is not
important, Hopf’s statement works for any sphere, no matter what shape it has. When
one wants derive anything from this, it does help to choose a simple parametrization
like the one given above.

∗ Approximately in the resistive case.
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The Hypersphere S3 is a one dimension higher generalization of the sphere, its
surface is three-dimensional∗. There are several ways of representing S3, and a simple
one is to consider it embedded in the four-dimensional space ℂ2

S3 ≃
{
(z1, z2) ∈ ℂ2 | |z1|2 + |z2|2 = 1

}
. (1.33)

A map g ∶ X → Y is called null-homotopic if it is homotopic to a constant map,
that is to say, that it can be deformed (continuously) to a map that sends all the points
in topological space X to a single point in space Y . That the map Hopf described is not
null-homotopic means that there is additional structure in the map such that it can not
be deformed to this simple form. Let us illustrate this by looking at the Hopf map.

We need to construct a map ℎ ∶ S3 → S2, using the above description of S3. Every
element (z1, z2) should go to to an element of S2. One thing we can do is divide the two
complex numbers, (z1, z2) → z1

z2 , which gives us an element in ℂ. There is then a simple
method of sending every element of ℂ to an element of S2, which is inverse stereographic
projection, denoted as � (2)−1 ∶ ℂ ∪ ∞ → S2. It can be given by the following operation

� (2)
−1
∶ (a + ib) → (

2a
r2 + 1 ,

2b
r2 + 1 ,

r2 − 1
r2 + 1) (1.34)

where r2 = a2 + b2.
Regardless of the form we write the stereographic projection in, it is a continuous

function, and since the combination of two continuous functions also yields a continuous
function, we can write the Hopf map as follows:

ℎ ∶ S3 → S2 ∶ (z1, z2) → � (2)
−1

(
z1
z2)

. (1.35)

This has all the properties necessary, it is a map from S3 to S2. So what is so special
about it? Lets look at how the map sends elements of S3 to elements of S2. If we choose
an element (z1, z2) on S3, this point goes to a point p on S2, but that is not the only
element of S3 to go to p. It is easy to see that the point (z1ei� , z2ei� ) also goes to the same
point p! It is simple to see that (z1ei� , z2ei� ) ∈ S3. There is thus a whole set of points
in S3 that all map to the same point on S2, which we call the �ber f over the point p:
f (p) = {(w1, w2) ∈ S3|w1 = z1ei� , w2 = z2ei� , 0 < � ≤ 2�}. From this we can already see
one beautiful result, every �ber of the Hopf map is a circle! Additionally, every single
�ber of the map is linked with every other one. It is this property that makes the map
non-null homotopic.

We can construct a vector �eld in ℝ3 by extending the Hopf map to a map from ℝ3

∗ In fact Sn describes a topological object that is homeomorphic to the set of points inℝn+1 that is equidistant
to the origin, for example S1 is a circle, the set of points in 2d space all distance 1 from the origin.
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Figure 1.5: Graphical representation of the construction of the function � used to generate
a vector �eld everywhere tangent to �bers of the Hopf map.

to ℂ. This construction is illustrated in �gure 1.5 and consists of using the Hopf map to
construct a function from ℝ3 to ℂ in the following way:

� ∶ ℝ3 → ℂ, � = � (2)◦ℎ◦� (3)
−1
, (1.36)

with � (3)
−1
∶ ℝ3 → S3 inverse stereographic projection (from the north pole of S3) to

the three-sphere. When we �ll in the correct functions for stereographic projection this
map has the following explicit form:

�(x, y, z) =
(2(x + iy))

(2z + i(r2 − 1))
, (1.37)

where r2 = x2 + y2 + z2. We get a vector �eld in ℝ3, which we will preemptively call B
and give correct dimensions, by calculating

B =
√
a

2�i
∇� × ∇�∗

(1 + ��∗)2
. (1.38)

Here √
a is the constant such that the magnetic �eld has correct dimensions. The cross

product between ∇� and ∇�∗ is a vector in the direction that � remains constant, i.e. a
vector in the direction of the circles of the Hopf map.
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The result of the calculation is the following simple analytical expression:

B =
4
√
a

�(1 + r2)3

⎛
⎜
⎜
⎜
⎝

2(y − xz)
−2(x + yz)

(−1 + x2 + y2 − z2)

⎞
⎟
⎟
⎟
⎠

. (1.39)

Since, by construction the magnetic �eld is always in the direction of the �bers of
the Hopf map, and stereographic projection maps circles to circles, the magnetic �eld
direction is at any point in space tangent to one of the �bers of the map. In other words,
every single �eld line of this �eld is a perfect circle, and every single �eld line is linked
with every other one.

We can adapt the Hopf map such that the �bers are not just circles but any torus
knot. This was done by Arrayás and Trueba in their recent paper [21] in the following
way:

ℎ(!1,!2) ∶= � (2)
−1

(
z(!2)1

z(!1)2 )
. (1.40)

Here z(w) indicates the operation on a complex number such that only its argument
is multiplied by the real number w. From this de�nition follows that ℎ(!1,!2)(z1, z2) =
ℎ(!1,!2)(ei!1�z1, ei!2�z2) for all values of � . Consequently the pre-image of a point on S2
is a continuous curve in S3. If !1 = !2 each curve is again a circle in S3, and the map
is identical to the Hopf map up to a pre-factor. For !1 ≠ !2 the pre-image of a point
in S2 is a curve in S3 that oscillates in the z1-direction with frequency !1 and in the
z2-direction with frequency !2.

The construction of a vector �eld is done in the same way as equation (1.37). The
function � becomes:

�(x, y, z) =
(2(x + iy))(!2)

(2z + i(r2 − 1))
(!1)

, (1.41)

The curves of constant � are continuous, oscillating and closed (or, for incommensurate
!1 and !2, dense in a compact subspace of S3) curves in S3, and will thus be so too in
ℝ3 ∪ ∞.

In order to scale the �eld to any desired size r0 we use the substitution (x, y, z) →

(
x
r0 ,

y
r0 ,

z
r0) to obtain the expression for a magnetic �eld:

B =
4r40

√
a

�(r20 + r2)3

⎛
⎜
⎜
⎜
⎝

2(!2r0y − !1xz)
−2(!2r0x + !1yz)

!1(−r20 + x
2 + y2 − z2)

⎞
⎟
⎟
⎟
⎠

. (1.42)

This �eld is cylindrically symmetric as can be seen by the absence of a �-dependence
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when equation (1.42) is put in cylindrical coordinates:

B(r, �, z) =
4r20

√
a

� (r20 + r2 + z2)
3 (−2!2r0r �̂ − 2!1zr r̂ + !1(−r

2
0 + r

2 − z2)ẑ). (1.43)

Every �eld line lies on the surface of a member of a set of nested tori. The smallest
reduces to a circle with radius of r0 (magnetic axis), and the largest is a line along the
z-axis. The �eld lines wind around the poloidal direction with frequency !1, and toroidal
direction with frequency !2. If !1

!2 is rational, !1!2 =
n
m , and every �eld line is a (n, m)

torus knot. We stress that every integral curve of this �eld is itself a knot (or circle, or
ergodically spanning the toroidal surface), but the global �eld is smooth and continuous.
The ratio !1

!2 gives the ratio of toroidal to poloidal winding of the curves also called the
rotational transform {.

helicity and magnetic energy of these �elds

The vector potential corresponding with the �eld in equation (1.42) is given by

A =
r30
√
a

�(r20 + r2)2

⎛
⎜
⎜
⎜
⎝

2(r0!1y − !2xz)
−2(r0!1x + !2yz)

!2(−r20 + x
2 + y2 − z2)

⎞
⎟
⎟
⎟
⎠

. (1.44)

The inner product A ⋅ B is given by

A ⋅ B =
4ar70!1!2
�2(r20 + r2)3

. (1.45)

The helicity is then

Hm = ∫
4ar70!1!2
�2(r20 + r2)3

d3x = ar40!1!2. (1.46)

The value of B2 is given by

B ⋅ B =
16ar80

�2(r20 + r2)6
(4r20 (!

2
2 − !

2
1)(x

2 + y2) + !21(r
2
0 + r

2)2) , (1.47)

which allows us to calculate the integral of B2 over all space

∫ B2 d3x = ar30 (!
2
1 + !

2
2). (1.48)
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1.5.2 The Kamchatnov-Hopf soliton

The remarkable structure of the Hopf map was used by Kamchatnov to de�ne an Ideal
MHD soliton [17]. A soliton in this sense is an exact and stationary (in time) solution of the
ideal incompressible MHD equations∗. In a paper titled "On the stability of the simplest
solution of the equations of hydromagnetics" Chandrasekhar showed that equations (1.3)
and (1.1) can be solved by the following choices of velocity and pressure [39]:

v = ±
B
√�

, p = p∞ −
B2

2
. (1.49)

This solution of the equations is also stable against linear perturbations.
Kamchatnov analyzed this solution for the speci�c case where the velocity �eld and

the magnetic �eld are given by the Hopf �bration, equation (1.39). In his derivation
Kamchatnov used a di�erent mathematical method than we presented above. He used
the pull-back via the Hopf map of the two-form on S2 to S3, and stereographic projection
to ℝ3 to calculate the magnetic �eld, but the analytical expression he derived is identical.

1.6 This thesis

In this thesis we study magnetic topology, the linking and knotting, and the structures
formed by and of magnetic �eld lines in plasma employing numerical and analytical
methods. Of central importance is the self-organization of plasma into these structures
when numerical dissipation is included. Speci�cally, this thesis is organized into the
following sections:

• Chapter 2 (Self-organizing Knotted Magnetic Structures in Plasma) shows that
linking in a magnetic con�guration gives rise to self-organizing toroidal magnetic
structures when the �eld is allowed to relax with a �nite resistivity. The initial
helicity is provided by a con�guration consisting of a �nite number of linked
and/or twisted rings. The attained structure is in a MHD equilibrium, such that the
Lorentz force is balanced by the gradient in pressure force. An essential feature of
this con�guration is a lowered pressure on the magnetic axis of the con�guration.
In these structures the rotational transform is almost constant, such that the �elds
have similar magnetic topology to the (adapted) Hopf map.

• Chapter 3 (Ideal relaxation of the Hopf �bration) looks into the equilibrium at-
tained by a topologically nontrivial �eld using an ideal (zero-resistance) relaxation

∗ The term soliton is more often used to describe waves in a nonlinear dispersive medium with a constant
shape in time. Except for the solutions both being constant in time, these two concepts have little to do
with one another.
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technique. The initial �elds are derived from the Hopf map, and thus have similar
magnetic topology to those described in chapter 1. The Lagrangian relaxation
method, which evolves the �eld by distorting the grid, gives a visual representation
of how the �eld needs to be distorted from the initial con�guration to attain an
MHD equilibrium. Using the virial theorem we show how a �nite pressure is
necessary for any localized equilibrium to be attainable.

• Chapter 4 (On the topology of Magnetic Surfaces in Decaying Plasma Torus Knots)
considers the resistive evolution of plasma torus knots, plasma con�gurations
that are stable topological solitons in ideal magnetohydrodynamics. These �nite
energy, localized con�gurations consist of linked and knotted magnetic �eld lines
and toroidal magnetic surfaces, and depending on the poloidal and toroidal integer,
speci�c lines where the magnetic �eld vanishes. The resistive dynamics give
rise to localized reconnections that change the magnetic topology and allow new
magnetic surfaces to arise. The intersection of the zero line (present when the
poloidal integer is larger than one, and which is stable in time) with the new
surfaces gives rise to zero points of the magnetic �eld on these surfaces, such that
through the Hopf-Poincaré index theorem the surface is topologically distinct
from a torus.

• Chapter 5 (Universal Growth Rate and Helical Reorganization in Self-organizing
Knots) investigates the time evolution of the self-organized equilibrium described
in chapter 1. A di�erent initial condition, consisting of a single toroidal �ux tube
contains the initial helicity. The created structures grow in time due to resistive
�eld line slip against a quasi-static equilibrium. When the ratio of plasma to
magnetic pressure exceeds a threshold, the con�guration becomes susceptible
to a kinking of the magnetic axis, which destroys the initial axisymmetry. The
mode numbers of this external kink instability do not have to be equal to any
magnetic mode numbers present in the �eld. Magnetic reconnections in this
external kink mode lead to nonaxisymmetric perturbations of the magnetic �eld.
These perturbations give rise to magnetic islands at rational surfaces. At even
higher magnetic �eld strength these perturbations lead to the creation of regions
of magnetic chaos.
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