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4
Hopf bifurcations for

localised pulses

4.1 Introduction

The study of localised patterns in systems of reaction-diffusion equations has been a

very active field of research for the last couple of decades. In canonical model systems

such as the Gray-Scott [23] or Gierer-Meinhardt [22] model, far-from-equilibrium

patterns were constructed and analysed in the presence of an asymptotically small

parameter, giving the system under consideration a singularly perturbed nature [11,

26]. This singularly perturbed structure induces a spatial scale separation, which can

be used to obtain explicit leading order expressions for the pattern under considera-

tion (e.g. [6]). These techniques were applied in full generality in chapter 3 in the

context of single pulse patterns, going beyond the existing analysis in the context of

the canonical Gray-Scott and Gierer-Meinhardt models. In chapter 2, this extended

theory was applied in the context of an explicit model, exhibiting new, previously

unobserved behaviour.

In chapters 2 and 3, the stability analysis of the pulse solutions under considera-

tion led to observation that, under certain general conditions, the most general pulse

destabilisation scenario corresponds to a Hopf bifurcation of the pulse eigenvalues,

an observation that is also known from the extensive literature on Gray-Scott/Gierer-

Meinhardt models [5, 6, 7, 14, 17, 26, 32, 47, 52, 57]. This Hopf bifurcation, and in

particular its unfolding, is the main topic of this last chapter. The aim of this chapter
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4. Hopf bifurcations for localised pulses

is to develop a mechanism for the weakly nonlinear analysis of the aforementioned

Hopf destabilisation scenario, through local analysis of the associated centre mani-

fold.

The chapter is structured as follows. In section 4.2, relevant results from chapter

3 on the existence and stability of pulse solutions are summarised, (re)introducing

notation which will be used throughout the text. In section 4.3, the Hopf centre man-

ifold is introduced. Also, the issue of the translational eigenmode is addressed. Since

the systems of reaction-diffusion equations studied in the field of pattern formation –

and in extension localised pattern solutions thereof – exhibit translational invariance,

the translational eigenmode with corresponding (central) eigenvalue λ = 0 is always

present when the stability of the pattern under consideration is assessed. However,

the centre manifold can be foliated along the direction spanned by the translational

mode (Theorem 4.8), and it follows that the dynamics along the translational direc-

tion are trivial.

Section 4.4 is dedicated to the explicit local expansion of the centre manifold es-

tablished in section 4.3, using direct expansions in the Hopf eigenmodes. The main

result is an explicit, albeit elaborate, expression for the first Lyapunov coefficient

of the (normal form of) the Hopf bifurcation (Corollary 4.12 and equation (4.58)).

Leading order expressions for the pulse and its eigenmodes as developed in chapter

3 (summarised in Theorem 4.2 resp. Theorem 4.3), combined with a specific choice

for the inner product, are then used to obtain an explicit leading order expression for

this first Lyapunov coefficient, which is used to decide whether the Hopf bifurcation

under consideration is subcritical or supercritical. Given the intricate nature of the

problem, this result is quite remarkable: the formal centre manifold expansion leads

to concrete, explicitly computable results, based on explicit leading order expressions

for the Hopf eigenfunctions.

In section 4.5, an alternative method for the calculation of the first Lyapunov coef-

ficient is presented, based on the analysis in [24]. While the algebraic manipulations

leading to the explicit expression of the first Lyapunov coefficient are less cumber-

some than those in section 4.4, this method introduces a number of new inverse prob-

lems to be solved, along with the analysis of the adjoint linear operator associated

to the linearisation of the pulse solution. It is argued that, while both methods are

in essence equivalent, either one of the two approaches can be preferable in terms

of algebraic and analytic tractability, depending on the specific choice of (nonlinear)

reaction terms in the system under consideration.
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4.2 Preliminaries

The developed theory is in section 4.6 applied to a model example, the slowly

nonlinear Gierer-Meinhardt equation (4.109), which was considered in chapter 2. The

explicit leading order expressions available for the pulse and its eigenfunctions allow

one to obtain directly computable eigenvalues, and in extension directly computable

values of the associated first Lyapunov coefficients. For this example, it is shown that

the extension of the canonical Gierer-Meinhardt model with a slowly nonlinear term

introduces a Hopf bifurcation which can change its nature from sub- to supercritical,

depending on the parameter values (Theorem 4.16). As an aside, a relatively old

observation from the literature, based on numerical simulations, is confirmed analyti-

cally [11, 57], namely that Hopf bifurcation associated with the pulse in the canonical

Gierer-Meinhardt equation is always subcritical (Corollary 4.17).

4.2 Preliminaries

In chapter 3, a general theory for establishing the existence and stability of stationary

single pulses was presented in a general setting of a singularly perturbed, two com-

ponent system of reaction-diffusion equations on the real line, with asymptotically

small parameter 0 < ε ≪ 1. It was shown that the most general context in which

these pulse solutions could be constructed led to the following system:

{

Ut = Uxx − (µU − ν1F1(U; ε)) +
ν2

ε
F2(U,V; ε)

Vt = ε2Vxx − V + G(U,V; ε)
. (4.1)

System (4.1) is considered on the unbounded domain such that U,V : R × R>0 → R;

moreover, we restrict ourselves to positive solutions. A stable homogeneous trivial

background state is assumed. The range of the model parameters µ, ν1,2 and mild

regularity assumptions on the nonlinear reaction terms F1,2 and G are specified in (A1

- A4) of Assumptions 4.1. In the following subsections 4.2.1 and 4.2.2, a very concise

overview of the results obtained in chapter 3 are given. The necessary ingredients for

establishing localised pulses and their eigenfunctions are given, in order to be able to

set up the theory for a Hopf bifurcation of such a localised pulse, which is the main

subject of this chapter. By nature, this overview is far from complete and very brief:

the reader is encouraged to consider chapter 3 for a complete exposition.
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4. Hopf bifurcations for localised pulses

4.2.1 Existence

Introducing the ’fast’ (or short scale) coordinate ξ = x
ε
, (4.1) can be transformed into

{

Ut =
1
ε2 Uξξ − (µU − ν1F1(U; ε)) +

ν2

ε
F2(U,V; ε)

Vt = Vξξ − V + G(U,V; ε)
. (4.2)

Establishing the existence of a stationary pulse solution in (4.2) (or equivalently (4.1))

which is asymptotic to the (stable) trivial background state of (4.2) is equivalent to

constructing a homoclinic orbit in the associated ODE system































uξ =
√
εp

pξ =
√
ε (−ν2F2(u, v; ε) + ε (µu − ν1F1(u; ε)))

vξ = q

qξ = v −G(u, v; ε)

. (4.3)

Since ε is taken to be asymptotically small, (4.3) can be analysed using geometric

singular perturbation (or Fenichel) theory [18, 19]. Taking the limit ε → 0 in (4.3)

yields the fast reduced system

v f ,ξξ = v f−G(u0, v f ; 0) or

{

v f ,ξ = q f

q f ,ξ = v f −G(u0, v f ; 0)
, u0 > 0 constant, (4.4)

together with the normally hyperbolic invariant manifold

M = {(u, p, v, q) | v = q = 0, u > 0} .

Note that, by Assumptions 4.1, (A4), M is also invariant for the full system (4.3);

there, its unstable and stable manifolds are denoted byWu/s(M).

OnM, the slow dynamics can be represented to leading order by the slow reduced

system

us,xx = µus − ν1F1(us; ε), or

{

us,x = ps

ps,x = µus − ν1F1(us; ε)
, u > 0. (4.5)

For this slow reduced system, the unstable and stable manifolds of the origin are de-

noted byWu/s
s ((0, 0); ε). These manifolds are by definition spanned by the solutions

(uu
s(x; ε), pu

s(x; ε)) resp. (us
s(x; ε), ps

s(x; ε)) of (4.5). Note that us
s(x) = uu

s(−x) and

ps
s(x) = −pu

s(−x) by the reversibility symmetry of (4.5).
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4.2 Preliminaries

The existence of a symmetric stationary pulse solution of (4.2) was established

in chapter 3 under certain conditions; first, Assumptions 4.1, (A5) below ensures the

existence of a homoclinic orbit in the fast reduced system (4.4). Second, introducing

Dp(u0) =

∫ ∞

−∞
F2(u0, v f ,h(ξ; u0); 0) dξ, (4.6)

it was seen that the solutions to the equation

µu2 − 2ν1

∫ u

0

F1(ũ; 0) dũ = 1
4
ν2

2 D2
p(u) = 1

4
ν2

2

[∫ ∞

−∞
F2(u, v f ,h(ξ; u); 0) dξ

]2

(4.7)

play a central role in the pulse construction process. To remove a number of sign

ambiguities, it is necessary to gauge F2 such that the function Dp obeys Assumptions

4.1, (A6). For a more detailed and extended presentation of the above, see chapter 3,

section 3.2. We restate the assumptions from chapter 3; see also Definition 2.3.

Assumptions 4.1. The following is assumed to hold:

(A1) µ, ν1,2 are real and nonsingular in ε; furthermore, µ > 0.

(A2) F1(U; ε){ U f1 as U ↓ 0 for some f1 > 1;

F1 is smooth both on its domain and as a function of ε.

(A3) Writing F2(U,V; ε) = F2,1(U; ε) V + F2,2(U,V; ε),

F2,1(U; ε){ F̃2,1(ε) Uγ1 as U ↓ 0 for some γ1 ≥ 0 and F̃2,1(ε) ∈ R;

F2,2(U,V; ε){ F̃2,2,u(V; ε) Uα1 as U ↓ 0 for some α1 ∈ R;

F2,2(U,V; ε){ F̃2,2,v(U; ε) Vβ1 as V → 0 for some β1 > 1;

F2 is smooth both on its domain and as a function of ε.

(A4) G(U,V; ε){ G̃u(V; ε) Uα2 as U ↓ 0 for some α2 ∈ R;

G(U,V; ε){ G̃v(U; ε) Vβ2 as V → 0 for some β2 > 1;

G is smooth both on its domain and as a function of ε.

(A5) For all u0 > 0 there exists a positive solution v f ,h(ξ; u0) to (4.4) which is homo-

clinic to (v f , q f ) = (0, 0).

(A6) Dp(u){ 1 · udp as u ↓ 0 for some dp ∈ R, c.f. (4.6).

The Gray-Scott and Gierer-Meinhardt models are examples of systems obeying

these assumptions. However, the full class of systems described in this way is far

more encompassing.
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4. Hopf bifurcations for localised pulses

U h Vh

x
0

Figure 4.1: A sketch of the stationary, symmetric pulse solution to (4.2), whose ex-

istence and structure is established in Theorem 4.2.

The slow-fast structure present in the ODE system (4.3) leads to a scale separation

between the U- and V-components of the pulse. Loosely speaking, one can within

the unbounded domain define an inner, ’fast’ region

I f =

[

− 1

ε
1
4

,
1

ε
1
4

]

(4.8)

where the U-component of the pulse is constant to leading order in ε, while outside I f

the V-component of the pulse is exponentially small; see Figure 4.1. The exact lead-

ing order pulse structure and existence conditions were stated in chapter 3, Theorem

3.7, reformulated here for reference purposes:

Theorem 4.2. Assume that conditions 4.1 hold and let ε > 0 be small enough. Let K

be the number of non-degenerate solutions u = u∗,k > 0 of (4.7) such that (u∗,k, p∗,k) =

(u∗,k,
1
2
ν2Dp(u∗,k)) ∈ Wu

s ((0, 0); 0).

1. If K = 0 then there are no symmetric, positive, one-circuit homoclinic solutions

to (0, 0, 0, 0) in (4.3).

2. If K , 0, there are K distinct positive, symmetric, one-circuit homoclinic orbits

Γh,k(ξ) = (uh,k(ξ), ph,k(ξ), vh,k(ξ), qh,k(ξ)) ⊂ Wu(M) ∩Ws(M), k = 1, 2, ...,K,

with internal reflection point ξ = 0, so that Γh,k(0) = (uh,k(0), 0, vh,k(0), 0) in

(4.3). In the fast field (4.8), Γh,k(ξ) is to leading order determined by the homo-

clinic solution v f ,h(ξ; u∗,k) of (4.4):

Γh,k(ξ) =
(

u∗,k, 0, v f ,h(ξ; u∗,k), d
dξ

v f ,h(ξ; u∗,k)
)

+ O(
√
ε) for ξ ∈ I f .

In the slow field, Γh,k(ξ) approachesWu
s ((0, 0); ε) ⊂ M, resp. Ws

s((0, 0); ε) ⊂
M exponentially fast for ξ → ±∞: there are O(1) constants C1,2 such that
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4.2 Preliminaries

• vh,k(ξ){ C1e−|ξ| and qh,k(ξ){ ∓C1e−|ξ| as ξ → ±∞;

• there are shifts x∗,k ∈ R and solutions uu
∗,k(x) = uu

s(x − x∗,k), pu
∗,k(x) =

pu
s(x − x∗,k) of (4.5), such that

(

uu
∗,k(−ε 3

4 ), pu
∗,k(−ε 3

4 )
)

=
(

uh,k(−ε− 1
4 ), 1√

ε
ph,k(−ε− 1

4 )

)

=
(

u∗,k, p∗,k
)

+ O(
√
ε) and

(

uh,k(ξ), 1√
ε

ph,k(ξ)

)

=
(

uu
∗,k(εξ), pu

∗,k(εξ)
)

+ O
(

eC2ξ
)

for ξ < −ε− 1
4 ;

• similarly,
(

us
∗,k(ε

3
4 ), ps

∗,k(ε
3
4 )
)

=
(

uh,k(ε−
1
4 ), 1√

ε
ph,k(ε−

1
4 )
)

=
(

u∗,k,−p∗,k
)

+

O(
√
ε) with

(

us
∗,k(x), ps

∗,k(x)
)

=
(

uu
∗,k(−x),−pu

∗,k(−x)
)

and

(

uh,k(ξ), 1√
ε

ph,k(ξ)

)

=
(

us
∗,k(εξ), ps

∗,k(εξ)
)

+ O
(

e−C2ξ
)

for ξ > ε−
1
4 .

The orbits Γh,k(ξ) correspond to the homoclinic pulse patterns
(

Uh,k(ξ),Vh,k(ξ)
)

in

(4.2) that are symmetric with respect to ξ = 0 through Uh,k(ξ) = uh,k(ξ), Vh,k(ξ) =

vh,k(ξ).

The situation described in the theorem is illustrated in chapter 3, Figure 3.2.

4.2.2 Linearisation and eigenfunctions

In order to set up an analysis of Hopf bifurcations of the localised pulses considered

in the previous section, it is necessary to highlight some aspects of the stability ana-

lysis of the pulse, as carried out in chapter 3, section 3.3. The main purpose of the

current section is to obtain a leading order expression for the eigenfunctions of such

a localised pulse.

In the following, assume that K ≥ 1 and fix k (see Theorem 4.2); the associated

homoclinic pulse pattern is denoted by Γh(ξ) = (Uh(ξ),Vh(ξ)). The stability analysis

of this pulse is closely related to the study of the linear operator

L(ξ; ε) =

(

ε−2 0

0 1

)

d2

dξ2
−A(ξ; ε), (4.9)

where

A(ξ; ε) =

(

µ − ν1
dF1

dU
− ν2

ε

∂F2

∂U
− ν2

ε

∂F2

∂V

− ∂G
∂U

1 − ∂G
∂V

)
∣

∣

∣

∣

∣

∣

(U,V)=(Uh(ξ),Vh(ξ))

. (4.10)
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4. Hopf bifurcations for localised pulses

Since limξ→±∞ Γh(ξ) = (0, 0), the matrix A(ξ; ε) is asymptotically constant as ξ →
±∞: limξ→±∞A(ξ; ε) = A∞(ε). The eigenvalues of this constant matrix determine

the essential spectrum σe of the operator L, which is given by

σe = {λ ∈ R : λ ≤ max (−µ,−1)} ⊂ C. (4.11)

The slow-fast structure of the homoclinic pulse Γh, made explicit in Theorem 4.2, is

inherited by the linear operator L; this operator is the linearisation of (4.2) around

Γh. One can therefore introduce the ’fast’ linear operator

L f (ξ) =
d2

dξ2
−

[

1 − ∂G

∂V
(u∗, v f ,h(ξ; u∗))

]

, ξ ∈ R, (4.12)

with u∗ = u∗,1 and v f ,h as in Theorem 4.2, and determine its spectrum. The associated

eigenvalue problem
(

L f − λ
)

v = 0 is of Sturm-Liouville type; relevant results from

the literature are summarised in chapter 3, Lemma 3.12. Based on those results, let

λ f , j, j ∈ Z≥0 be the eigenvalues of the linear operator L f acting on the space of

bounded integrable functions on the entire real line.

Similarly, the ’slow’ linear operator

Ls(x) =
d2

dx2
−

[

µ − ν1

∂F1

∂U
(us
∗(x), 0)

]

, x ≥ 0, (4.13)

with us
∗ = us

∗,1 as in Theorem 4.2, plays a central role in the spectral analysis of L.

The eigenvalue problem (Ls − λ) u = 0 is again of Sturm-Liouville type, albeit on the

positive halfline. Let us,−(x; λ, ε) be the solution to the eigenvalue problem Lsu = λ u

that is bounded as x→ ∞, such that us,−(x; λ, ε){ 1 · e−
√
µ+λ x as x→ ∞.

The coupling between the U- and V-components of the pulse (apparent in the

off-diagonal entries of A) manifests itself in the spectral analysis of L through the

nonhomogeneous problem

(

L f − λ
)

v = − ∂G

∂U
(u∗, v f ,h(ξ; u∗)), ξ ∈ R. (4.14)

For λ , λ f , j and λ < σe, let vin(ξ; λ, ε) be the unique bounded solution to (4.14). The

existence and uniqueness of vin follows from the analysis in chapter 3, section 3.3.3,

which is based on the Fredholm alternative. Note that it immediately follows that vin

is even as a function of ξ, i.e. vin(ξ; λ, ε) = vin(−ξ; λ, ε).
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4.2 Preliminaries

The actual spectral analysis of L (4.9) does not need to be summarised here: for

an overview of this spectral analysis, using an Evans function approach, see chapter

3, sections 3.4 and 3.5. There, a leading order expression for the Evans function was

derived (Theorem 3.21), enabling direct calculation of the pulse eigenvalues. It was

shown (as a result of Corollary 3.32) that the most general destabilisation scenario

for a localised pulse in (4.2) is through a Hopf bifurcation. That observation will be

the starting point of the analysis presented in this chapter. However, some comments

on the trivial eigenvalue are in order; they can be found in section 4.2.3.

The following theorem, which summarises results from section 3.4.2 in chapter

3, characterises the leading order behaviour of eigenfunctions of the linear operator

L (4.9). This leading order behaviour will be very instrumental in the upcoming

analysis.

Theorem 4.3. Let ε > 0 be small enough. Assume that λ < σe and λ , λ f , j. If there

is a λ ∈ C for which there is a bounded integrable function φ : R → C2 such that

L(ξ; ε) φ(ξ; λ, ε) = λ φ(ξ; λ, ε), then φ(ξ; λ, ε) is determined uniquely. Furthermore,

there are O(1) constants C1,2 such that the following holds:

• φ(ξ; λ, ε) =

(

us,−(εξ; λ, ε)

0

)

+C1e−C2ξ for ξ > ε−
1
4 ;

• φ(ξ; λ, ε) = φ(−ξ; λ, ε) for ξ < −ε− 1
4 ;

• φ(ξ; λ, ε) = us,−(0; λ, ε)

(

1

vin(ξ; λ, ε)

)

+ O(ε
3
4 ) for ξ ∈ I f .

Proof. The leading order expressions for the eigenfunction of L are based on the

proof of Theorem 3.21 in chapter 3. �

Remark 4.4. From Lemma 3.20 in chapter 3, we know that the ‘true’ fast eigenvalues

of the full linear operator L (4.9) are only to leading order in ε determined by the fast

eigenvalues λ f , j of the fast operatorL f (4.12): these ‘true’ fast eigenvalues λ j(ε) ofL
obey limε→0 λ j(ε) = λ f , j. Since the above Theorem 4.3 only determines the leading

order expression for the eigenfunction φ, it is sufficient to exclude the λ-values for

which vin, the unique bounded solution to the inhomogeneous problem (4.14), is not

defined. We therefore assume λ , λ f , j instead of λ , λ j(ε).
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4. Hopf bifurcations for localised pulses

4.2.3 Translational symmetry and the trivial eigenvalue

A general n-component reaction-diffusion equation

ũt = Dũxx + f (ũ), ũ ∈ Rn, D ∈ Mat(n,R), f : Rn → Rn (4.15)

is equivariant under the continuous one-parameter group of isometries (Tα)α∈R which

acts as

Tαũ(x) = ũ(x + α). (4.16)

Every stationary solution ũ0 to (4.15), for which

Dũ0,xx + f (ũ0) = 0, (4.17)

can therefore be thought of as representing a continuous family of stationary solutions

(Tαũ0)α∈R, obtained under the group action Tα. Since the infinitesimal generator of

this underlying translational symmetry group (4.16) is τ = ∂
∂x

, it follows from (4.17)

that τũ0 obeys the linear equation

[

D
∂2

∂x2
+

d f

dũ
(ũ0)

]

τũ0 = 0. (4.18)

The above considerations apply to the PDE system (4.1)/(4.2); in particular, for the

homoclinic pulse solution whose existence was established in Theorem 4.2. In this

context, (4.18) takes the form

L d

dξ
Γh = 0,

from which follows that λ = 0 is always an eigenvalue of the operator L (4.9), with

eigenfunction d
dξ
Γh. Note that Theorem 4.3 does not apply for this eigenvalue, since

λ f ,1 = 0 (see chapter 3; also, the above argument can be applied to (4.4) with its

linearisation (4.12) around the orbit v f ,h, Assumptions 4.1 (A5)). However, the ei-

genfunction d
dξ
Γh does have the same scale separated structure as the eigenfunctions

described by Theorem 4.3, see Theorem 4.2. Both considerations will be of impor-

tance in the next section.

4.3 The Hopf centre manifold

We will focus on the situation where the pulse Γh undergoes a Hopf bifurcation. In

other words, let (µ, ν1, ν2) = (µH , ν1,H , ν2,H) be such that there is a bounded integrable

function φH : R→ C2 as in Theorem 4.3 for which

L φH = iωHφH , (4.19)
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4.3 The Hopf centre manifold

with ωH > 0. Since the operator L is real, it immediately follows that the Hopf bifur-

cation (4.19) yields a complex conjugate pair of eigenvalues ±iωH with associated

eigenfunction pair
{

φH , φH

}

– here and henceforth, complex conjugation will be de-

noted by an overline.

Since the linear operator L (4.9) is sectorial and its continuous spectrum is com-

pletely determined by the essential spectrum σe (4.11), we can infer that its central

spectrum

σ0 =
{

λ ∈ C : λ is in the spectrum of L, Re(λ) = 0
}

consists of finitely many eigenvalues. Moreover, λ = 0 ∈ σ0 (see subsection 4.2.3);

we assume that this trivial eigenvalue is nondegenerate. As mentioned before, it was

argued in chapter 3 that this is the most general destabilisation scenario for a given

pulse whose existence is ensured by Theorem 4.2. Indeed, this destabilisation through

a Hopf bifurcation is typical for pulses in both the Gierer-Meinhardt equation [6] and

its slowly nonlinear counterpart, see chapter 2, sections 2.4 and 2.5. The associated

Hopf bifurcation has codimension 1.

Henceforth, we assume ±iωH are the only nontrivial central eigenvalues, i.e. that the

central spectrum of L is given by

σ0,H = {±iωH , 0} . (4.20)

Moreover, based our insight in the general pulse destabilisation mechanisms from

chapter 3, we assume that the Hopf bifurcation under consideration is of codimen-

sion 1, such that the Hopf eigenvalues are simple.

To carry out a centre manifold analysis for this central spectrum, one would na-

ively aim for an expansion in the three associated eigenvectors. However, the transla-

tional symmetry (4.16) of (4.1)/(4.2), being the source of the trivial central eigenvalue

λ = 0, induces a transversal structure for the centre manifold, enabling one to effec-

tively ignore the translational eigenmode in the local centre manifold expansion (see

upcoming Theorem 4.8). To set the stage, we first focus on the ambient function

space where the centre manifold will be embedded in.

4.3.1 Choosing a function space

In order to properly set up the centre manifold theory for the pulse Γh at the Hopf bi-

furcation (4.19), we need choose an appropriate function space to work in. Since both

components of the eigenfunction φH are eventually exponentially decreasing (see
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4. Hopf bifurcations for localised pulses

Theorem 4.3), bounded and thus certainly (square) integrable, the space (L2(R,C))2

seems a natural choice. The scale separation between the two eigenfunction com-

ponents forces us to make a choice for the integration variable, be it ξ or x = εξ.

However, this choice cannot be made in a uniform way, as can be seen if we try to

establish the norm of φH by integrating the sum of squares of its components. If we

would choose ξ, the integral over the square of the first component (φH)1 is

∫

R

[

(φH)1 (ξ)
]2

dξ = 2

∫ ∞

ε
− 1

4

[

(φH)1 (εξ)
]2

dξ +

∫ ε
− 1

4

−ε−
1
4

[

(φH)1 (ξ)
]2

dξ

The second term of the above expression will cause the integral to become unbounded

as ε → 0, since in particular, the value of (φH)1 at the boundaries of the fast interval

I f will not vanish.

On the other hand, if we would choose x as our integration variable, the integral over

the square of the second component of φH is

∫

R

[

(φH)1 (x)
]2

dx = 2

∫ ∞

ε
3
4

[

(φH)2 (x)
]2

dx +

∫ ε
3
4

−ε
3
4

[

(φH)2 (
x

ε
)

]2

εd
x

ε
,

which will vanish in the limit ε → 0. This would eliminate the contribution of the

second component of φH to the inner product. Therefore, one would be unable to use

this inner product to succesfully project onto the finite-dimensional subspace spanned

by φH .

To circumvent this problem, we introduce the function space

X = L2(R,C2; µε) (4.21)

with the partly scaled Lebesgue measure µε defined such that the associated inner

product 〈·, ·〉 can be defined as

〈φ, ψ〉 =
∫

R

φT S ψ dξ with S =

(

ε 0

0 1

)

(4.22)

for φ, ψ ∈ X. In other words: the product of the first components is integrated over

x = εξ, the product of the second components over ξ. Note that the norm induced

by the inner product (4.22) is for all ε > 0 equivalent to the ‘standard’ norm on

(L2(R,C))2, making X and (L2(R,C))2 isometrically isomorphic as metric spaces. A

similar norm was introduced in [12].
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4.3 The Hopf centre manifold

4.3.2 Foliation of the centre manifold along the translational

eigenmode

In this section, we show that the influence of the translational eigenmode can be

separated completely from the other eigendirections. We follow the general approach

in [24], section 2.3.3 therein. To make full use of the translational symmetry of (4.2),

we choose local tubular coordinates to separate the perturbation of the stationary

pulse solution Γh into a perturbation along resp. perpendicular to the orbits of the

translation group (Tα)α∈R, as follows:
(

U(ξ, t)

V(ξ, t)

)

= Γ(ξ, t) = Tα(t) (Γh(ξ) + ρ(ξ, t)) , (4.23)

where

〈ρ, d

dξ
Γh〉 = 0. (4.24)

In the tubular coordinates (4.23), the left-hand side of (4.2) yields
(

Ut

Vt

)

=
∂

∂t
Γ =

dα

dt
Tα(t)

(

d

dξ
Γh(ξ) +

∂

∂ξ
ρ(ξ, t)

)

+ Tα(t)

∂

∂t
ρ(ξ, t); (4.25)

multiplication with T−α(t) gives

T−α(t)

(

Ut

Vt

)

=
dα

dt

(

d

dξ
Γh(ξ) +

∂

∂ξ
ρ(ξ, t)

)

+
∂

∂t
ρ(ξ, t). (4.26)

Since the right-hand side of (4.2) is equivariant under the translation Tα(t), using the

tubular coordinates (4.23) and subsequently multiplying with the inverse translation

T−α(t) is equivalent to substitution of Γh(ξ) + ρ(ξ, t):

T−α(t)

(

Ut

Vt

)

= RHS(Γh(ξ) + ρ(ξ, t)) (4.27)

with

RHS(U,V) =

(

1
ε2 Uξξ − (µU − ν1F1(U; ε)) +

ν2

ε
F2(U,V; ε)

Vξξ − V + G(U,V; ε)

)

. (4.28)

Based on the orthogonality condition (4.24), we can project both sides of (4.27) onto

the subspace spanned by d
dξ
Γh to obtain separate dynamical equations for dα

dt
and

∂
∂t
ρ(ξ, t). Introducing the projection

Π0 =
〈·, d

dξ
Γh〉

〈 d
dξ
Γh,

d
dξ
Γh〉

d

dξ
Γh, (4.29)
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4. Hopf bifurcations for localised pulses

we see that projecting (4.26) onto the subspace spanned by d
dξ
Γh yields

Π0 T−α(t)

(

Ut

Vt

)

=
dα

dt

(

1 + 〈 ∂
∂ξ
ρ,

d

dξ
Γh〉

d

dξ
Γh

)

. (4.30)

Combining this with (4.27), we can express dα
dt

as

dα

dt
=

(

1 + 〈 ∂
∂ξ
ρ,

d

dξ
Γh〉

)−1

〈RHS(Γh(ξ) + ρ(ξ, t)),
d

dξ
Γh〉. (4.31)

Note that (4.31) does not depend explicitly on α(t): this is a direct consequence of the

equivariance of (4.2) under the translation group (Tα)α∈R.

The projection onto the orthogonal complement of the subspace spanned by d
dξ
Γh,

given by I − Π0, can be used to obtain a dynamical equation for ρ(ξ, t). Applying

I − Π0 on (4.27) and using (4.31) yields

∂

∂t
ρ(ξ, t) = (I − Π0) RHS(Γh(ξ) + ρ(ξ, t)) − dα

dt
(I − Π0)

∂

∂ξ
ρ (4.32)

= RHS(Γh(ξ) + ρ(ξ, t)) −
(

d

dξ
Γh +

∂

∂ξ
ρ

) 〈RHS(Γh(ξ) + ρ(ξ, t)), d
dξ
Γh〉

1 + 〈 ∂
∂ξ
ρ, d

dξ
Γh〉

.

Up to this point, our analysis only used the translational equivariance of (4.2). It will

become clear that the results on the (specific form of) the eigenfunctions of L (4.9)

as stated in Theorem 4.3 will enable us to drastically simplify (4.31). The following

observation will be important enough in the following to state it as a Lemma:

Lemma 4.5. Let the conditions of Theorem 4.3 be fulfilled, and let λ be an eigenvalue

of L with eigenfunction φ(ξ; λ, ε). Then

〈φ, d

dξ
Γh〉 = 0. (4.33)

Proof. Since the stationary pulse solution Γh is symmetric, it is even as a function of

ξ, see Theorem 4.2. Therefore d
dξ
Γh is odd as a function of ξ. Now, from the definition

ofL (4.9) it is clear thatL(ξ) is invariant under reflection: L(−ξ) = L(ξ). This means

that, if φ(ξ; λ, ε) is an eigenfunction ofLwith eigenvalue λ, then φ(−ξ; λ, ε) must also

be an eigenfunction of L for that same eigenvalue; furthermore, φ(−ξ; λ, ε) is also

bounded. Since the eigenfunction φ(ξ; λ, ε) is determined uniquely (see Theorem

4.3), it follows that φ(−ξ; λ, ε) = φ(ξ; λ, ε). From the observation that the product

of an even function and an odd function is odd, and that the integral of an odd func-

tion vanishes identically, the statement (4.33) follows from the definition of the inner

product (4.22). �
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4.3 The Hopf centre manifold

From Lemma 4.5, we see that every eigenfunction φ as in Theorem 4.3 fulfills the

orthogonality condition (4.24). This motivates us to use the local Ansatz

ρ(ξ, t) = A(t) φ(ξ; λ, ε), (4.34)

with A(t) ∈ C, keeping in mind that we will specify the eigenfunction φ to be the

Hopf eigenfunction φH at a later stage.

Corollary 4.6. For any perturbation of the form (4.34), equation (4.31) simplifies to
dα
dt
= 0.

Proof. Since φ is even as a function of ξ (see the proof of Lemma 4.5), ρ is even as a

function of ξ. The pulse Γh is symmetric (Theorem 4.2), so Γh(ξ)+ ρ(ξ, t) is even as a

function of ξ. That means that RHS(Γh(ξ) + ρ(ξ, t)) (4.28) is even as a function of ξ.

Subsequently, the inner product 〈RHS(Γh(ξ)+ρ(ξ, t)), d
dξ
Γh〉 vanishes identically, since

the translational eigenmode d
dξ
Γh is odd in ξ, see the proof of Lemma 4.5. Hence, the

right-hand side of (4.31) vanishes. �

Since for the Ansatz (4.34) the expression RHS(Γh(ξ) + ρ(ξ, t)) (4.28) lies in the

orthogonal complement of the span of d
dξ
Γh, equation (4.32) drastically simplifies to

∂

∂t
ρ(ξ, t) = RHS(Γh(ξ) + ρ(ξ, t)), (4.35)

or equivalently
dA

dt
φ = RHS(Γh(ξ) + A φ). (4.36)

To state the main result of this subsection, we invoke Theorem 3.19 from chapter 2 in

[24], reformulated here:

Theorem 4.7 (Centre manifolds in presence of continuous symmetry). Let X =
Π0X ⊕ X′ = span

{

d
dξ
Γh

}

⊕ X′, L′ = (I − Π0)L and let σ′
0

be the central spectrum of

L′. Assume that σ′
0

is finite, and let E′
0
⊂ X′ be the associated spectral subspace. Let

U′ ⊂ X′ be a neighbourhood of the origin inX′. Consider the tubular neighbourhood

U = {

Tα(Γh + ρ); ρ ∈ U′, α ∈ R} ⊂ X

of the line of equilibria {Tα Γh, α ∈ R}.
There exists a mapΨ which has the same degree of smoothness as the right-hand side

of (4.2), Ψ : E′
0
→ X′ − E′

0
, with Ψ(0) = 0, DΨ(0) = 0 such that the manifold

M0 =
{

Tα (Γh + ρ + Ψ(ρ)) ; ρ ∈ E′0, α ∈ R
}

⊂ X

has the following properties:
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4. Hopf bifurcations for localised pulses

1. The manifoldM0 is locally invariant under (4.2), in other words, if Γ(ξ, t) =

(U(ξ, t),V(ξ, t)) is a solution of (4.2) satisfying Γ(ξ, 0) ∈ M0 ∩U and Γ(ξ, t) ∈
U for all t ∈ [0,T ], then Γ(ξ, t) ∈ M0 for all t ∈ [0,T ].

2. M0 contains the set of solutions of (4.2) staying in U for all t > 0, in other

words, if Γ is a solution of (4.2) satisfying Γ(ξ, t) ∈ U for all t > 0, then

Γ(ξ, 0) ∈ M0.

The solutions to (4.2) which stay close to the line of equilibria for all t > 0 are of the

form (4.23), with α(t) satisfying (4.31) and ρ(ξ, t) satisfying (4.32).

Based on the above results (which in particular hold for our codimension 1 central

spectrum (4.20)), we can formulate a theorem on the local structure of the centre

manifold associated to the Hopf bifurcation (4.19) and the associated central spectrum

(4.20).

Theorem 4.8. Let the central spectrum ofL be given by (4.20). The associated centre

manifoldM0,H can be foliated along the line of equilibria {Tα Γh, α ∈ R}, and has a

locally trivial product structure:

M0,H = R ×M′0,H .

Moreover, the full dynamics onM0,H can be represented by the reduced dynamics on

M′
0,H

, given by (4.35).

Proof. We adopt the notation of Theorem 4.7. For the central spectrum (4.20), the

reduced spectral subspace E′
0

is spanned by the eigenvectors of the Hopf eigenvalues

±iωH , i.e. E′
0
= span

{

φH , φH

}

. Therefore, any ρ(ξ, t) ∈ E′
0

can be written as ρ(ξ, t) =

A(t) φH(ξ) + A(t) φH(ξ). By Corollary 4.6, we see that (4.31) reduces to dα
dt
= 0, so

α(t) = α0. That means that the full dynamics on M0,H are represented by (4.32),

which in turn can be reduced to (4.35). �

Remark 4.9. Although one would expect, based on the central spectrum (4.20), that

the translational eigenmode d
dξ
Γh in general is excitable, Theorem 4.8 shows that this

is not the case. In other words, the pulse Γh does not move when perturbed under Hopf

bifurcation conditions. Theorem 4.8 therefore enables us to ‘neglect’ the translational

eigenmode in the centre manifold expansion. Moreover, this Theorem analytically

confirms the numerical results on the ‘pinning’ of a periodically oscillating pulse in

chapter 2, section 2.5.
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4.4 Unfolding the Hopf bifurcation

4.4 Unfolding the Hopf bifurcation

In this section, we use the results of the previous section, to perform a direct centre

manifold expansion around the Hopf bifurcation (4.19). Based on Theorem 4.8, we

can choose local coordinates such that a perturbation of the pulse Γh can be written

as
(

U(ξ, t)

V(ξ, t)

)

=

(

Uh(ξ)

Vh(ξ)

)

+ A(t) φH(ξ) + A(t) φH(ξ) (4.37)

with A(t) ∈ C acting as a (small) order parameter, and where φH is the Hopf ei-

genfunction as in Theorem 4.3, obeying (4.19). It is worthwhile to emphasise that,

choosing local coordinates as in (4.37), we indeed not take the ‘irrelevant’ d
dξ
Γh dir-

ection into account in the upcoming weakly nonlinear analysis. Substitution of (4.37)

in (4.2) yields

dA

dt
φH +

dA

dt
φH = L

(

A φH + A φH

)

+ R (Γh|A, φH)

= iωH

(

A φH − A φH

)

+ R (Γh|A, φH) (4.38)

where the remainder terms R (Γh|A, φH) are specified as

R (Γh|A, φH) =

(

ν1NF1 (Uh|A, φH; ε) + ν2

ε
NF2 (Uh,Vh|A, φH; ε)

NG (Uh,Vh|A, φH; ε)

)

. (4.39)

Here, N selects the nonlinear part of the function it is acting on, as follows:

NF1 (Uh|A, φH; ε) = F1

(

Uh + A (φH)1 + A
(

φH

)

1
; ε

)

− F1 (Uh; ε)

− dF1

dU
(Uh; ε)

(

A (φH)1 + A
(

φH

)

1

)

; (4.40a)

NF2 (Uh,Vh|A, φH; ε) = F2

(

Uh + A (φH)1 + A
(

φH

)

1
,Vh + A (φH)2 + A

(

φH

)

2
; ε

)

− F2 (Uh,Vh; ε) − ∂F2

∂U
(Uh,Vh; ε)

(

A (φH)1 + A
(

φH

)

1

)

− ∂F2

∂V
(Uh,Vh; ε)

(

A (φH)2 + A
(

φH

)

2

)

; (4.40b)

NG (Uh,Vh|A, φH; ε) = G
(

Uh + A (φH)1 + A
(

φH

)

1
,Vh + A (φH)2 + A

(

φH

)

2
; ε

)

−G (Uh,Vh; ε) − ∂G

∂U
(Uh,Vh; ε)

(

A (φH)1 + A
(

φH

)

1

)

− ∂G

∂V
(Uh,Vh; ε)

(

A (φH)2 + A
(

φH

)

2

)

. (4.40c)
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The next step is to introduce a projection onto the linear subspace spanned by the

eigenfunction φH , using the inner product (4.22). This projection, or rather the com-

ponent along the span of φH , is given by

ΠH =
〈φH , φH〉〈·, φH〉 − 〈φH , φH〉〈·, φH〉
〈φH , φH〉2 − |〈φH , φH〉|2

, (4.41)

and is chosen such that ΠHφH = 1 and ΠHφH = 0. Applying ΠH on (4.38) yields a

first order ODE for the order parameter A(t):

dA

dt
= iωH A + ΠHR (Γh, A, φH) . (4.42)

To study the nonlinear behaviour of A(t) in detail, we need to expand the nonlin-

ear component of (4.42), ΠHR (Γh|A, φH), in the order parameter A. This –quite

elaborate– enterprise will be carried out in the following subsection.

4.4.1 Normal form reduction

For ease of notation, we specify the (two component) Hopf eigenfunction φH as

φH =

(

(φH)1

(φH)2

)

=

(

uH

vH

)

. (4.43)

By Assumptions 4.1 (A2 - A4), the nonlinear functions F1,2 and G are smooth as a

function of positive U, V . We can therefore use a regular Taylor expansion in the

order parameter A. For the single variable function F1, this yields

F1(Uh + AuH + AuH) =

N
∑

j=0

d jF1

dU j
(Uh)

(

AuH + AuH

) j

=
∑

k+l≥0

1

k!l!
f1,klA

kA
l

(4.44)

with

f1,kl =
dk+lF1

dUk+l
(Uh) (uH)k(uH)l. (4.45)

Using this expansion, the nonlinear component NF1 (Uh|A, φH; ε) (4.40a) can now

readily be expressed as

NF1 (Uh|A, φH; ε) =
∑

k+l≥2

1

k!l!
f1,klA

kA
l
. (4.46)
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For the multivariate functions F2 and G, we would like to obtain a similar expression

(here applied to F2):

F2(Uh + AuH + AuH ,Vh + AvH + AvH) =

N
∑

j=1

j
∑

k=0

∂ jF2

∂Uk∂V j−k
(Uh,Vh)(AuH + AuH)k

×(AvH + AvH) j−k

=
∑

k+l≥0

1

k!l!
f2,klA

kA
l
. (4.47)

In order to express the expansion coefficients f2,kl in terms of the components of Γh

and φH , we introduce the following tensor definition:

Definition 4.10. Given a two component function F(U,V), consider the total deriv-

ative of F of order k, DkF, as a linear mapping from
(

C
2
)k

to C. For every pair

of nonnegative integers (m, n) for which m + n = k, we can define the (m, n)-tensor

(Dm+nF) :
(

C
2
)m ×

((

C
2
)n)∗ → C as

(

Dm+nF
) j1··· jm
i1···in =

∂m+nF

∂Xi1 · · · ∂Xim∂X j1∂X jn

(Uh,Vh),

where X = (U,V) and i1 . . . im, j1 . . . jn ∈ {1, 2}. We have

(

Dm+nF
)

: (z1, . . . , zm,w
1, . . . ,wn) 7→ (

Dm+nF
) j1··· jm
i1···in (z1)i1 . . . (zm)im (w1) j1 . . . (w

m) jm ;

where the repeated indices are summed over.

Using Definition 4.10, we can express the coefficients f2,kl in (4.47) as

f2,kl =
(

Dk+lF2

) j1··· jl
i1···ik

(φH)i1 · · · (φH)ik (φH) j1 · · · (φH) jl (4.48)

where (φH)1 = uH , (φH)2 = vH , see (4.43). Analogously, we can expand G as

G(Uh + AuH + AuH ,Vh + AvH + AvH) =

N
∑

j=1

j
∑

k=0

∂ jG

∂Uk∂V j−k
(Uh,Vh)(AuH + AuH)k

×(AvH + AvH) j−k

=
∑

k+l≥0

1

k!l!
gklA

kA
l
, (4.49)

where

gkl =
(

Dk+lG
) j1··· jl

i1···ik
(φH)i1 · · · (φH)ik (φH) j1 · · · (φH) jl . (4.50)

157



4. Hopf bifurcations for localised pulses

Now, the remaining (multivariate) nonlinear components NF2 (Uh,Vh|A, φH; ε) and

NG (Uh,Vh|A, φH; ε) ((4.40b) resp. (4.40c)) can be expressed as

NF2 (Uh,Vh|A, φH; ε) =
∑

k+l≥2

1

k!l!
f2,klA

kA
l

(4.51)

NG (Uh,Vh|A, φH; ε) =
∑

k+l≥2

1

k!l!
gklA

kA
l

(4.52)

with the coefficients f2,kl and gkl specified in (4.48) resp. (4.50). The remainder terms

R (Γh|A, φH) (4.39) can now be expanded in A as

R (Γh|A, φH) =
∑

k+l≥2

1

k!l!
RklA

kA
l
, (4.53)

with

Rkl =

(

ν1 f1,kl +
ν2

ε
f2,kl

gkl

)

. (4.54)

Finally, we can expand (4.42) as

dA

dt
= iωH A +

∑

k+l≥2

1

k!l!
ΠHRkl AkA

l
. (4.55)

Equation (4.55) can be brought into normal form via a series of locally invertible

complex coordinate changes. We follow [36] and use Lemma 3.6 therein, restated

here:

Lemma 4.11 (Poincaré normal form for the Hopf bifurcation). The equation

ż = iω z +
∑

2≤k+l≤3

g′klz
kz

l
+ O

(

|z|4
)

,

can be transformed into an equation with only the resonant cubic term:

ẇ = iωw + c1w2w + O
(

|w|4
)

where

c1 =
i

2ω

(

g′20g′11 − 2
∣

∣

∣g′11

∣

∣

∣

2 − 1

3

∣

∣

∣g′02

∣

∣

∣

2

)

+
1

2
g′21. (4.56)

Corollary 4.12. The nonlinear behaviour of z resp. w is determined by the sign of

the first Lyapunov, or Landau, coefficient

ℓ1 =
1

ω
Re c1 =

1

2ω2
Re

(

i g′20g′11 + ω g′21

)

. (4.57)

The Hopf bifurcation is supercritical if ℓ1 < 0 and subcritical if ℓ1 > 0.
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Using Lemma 4.11 and Corollary 4.12, we see that the nonlinear behaviour of

A(t) determined by (4.55) can be characterised by the sign of the associated (first)

Lyapunov coefficient

ℓ1 =
1

2ω2
Re

(

i (ΠHR20) (ΠHR11) + ωΠHR21

)

(4.58)

with Rkl as in (4.54).

4.4.2 Calculating the first Lyapunov coefficient to leading or-

der

The scale separated structure of the eigenfunctions φH as given in Theorem 4.3, com-

bined with the inner product adapted to this scale separation (4.22), can be used to

obtain leading order expressions for ΠHRkl, yielding an explicit leading order expres-

sion for the first Lyapunov coefficient ℓ1 (4.58). This is the key to making the pre-

ceding general approach work in the context of the localised pulse solution of (4.2),

for which we have a leading order expression (see Theorem 4.2). More importantly,

having a leading order expression for the (Hopf) eigenfunctions (see Theorem 4.3),

we are able to come to concrete conclusions about the nature of the Hopf bifurcation.

The way the leading order eigenfunction expressions can be used to obtain explicit

results on the coefficients of the centre manifold expansion is demonstrated below.

Recalling the definition of ΠH (4.41), the first step is to obtain leading order ex-

pressions for the inner products 〈φH , φH〉 and 〈φH , φH〉. Using (4.22), we see that

〈φ, ψ〉 =
∫

R

φT S ψ dξ =

∫

R

(φ)1(ψ)1 d(εξ) +

∫

R

(φ)2(ψ)2 dξ (4.59)

so that, see (4.43),

〈φH , φH〉 =
∫

R

|uH |2 d(εξ) +

∫

R

|vH |2 dξ. (4.60)

Using the leading order expression for φH from Theorem 4.3, we can specify the
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4. Hopf bifurcations for localised pulses

above as

∫

R

|uH |2 d(εξ) =

−ε−
1
4

∫

−∞

|us,−(−εξ; iωH , ε)|2d(εξ) +

ε
− 1

4
∫

−ε−
1
4

|us,−(0; iωH , ε)|2 + O(ε
3
4 ) d(εξ)

+

∞
∫

ε
− 1

4

|us,−(εξ; iωH , ε)|2d(εξ)

=

−ε
3
4

∫

−∞

|us,−(−x; iωH , ε)|2dx +

ε
3
4

∫

−ε
3
4

|us,−(0; iωH , ε)|2 + O(ε
3
4 ) dx

+

∞
∫

ε
3
4

|us,−(x; iωH , ε)|2dx

= 2

∫ ∞

0

|us,−(x; iωH , ε)|2dx + O(ε
3
4 ), (4.61)

while

∫

R

|vH |2 dξ =

−ε−
1
4

∫

−∞

∣

∣

∣C1eC1ξ
∣

∣

∣

2
dξ +

ε
− 1

4
∫

−ε−
1
4

|us,−(0; iωH , ε)vin(ξ; iωH , ε)|2 + O(ε
3
4 ) dξ

+

∞
∫

ε
− 1

4

∣

∣

∣C1e−C1ξ
∣

∣

∣

2
dξ

= |us,−(0; iωH , ε)|2
∫ ∞

−∞
|vin(ξ; iωH , ε)|2 dξ + O(ε

1
2 ), (4.62)

so that

〈φH , φH〉 = 2

∫ ∞

0

|us,−(x; iωH , ε)|2dx + |us,−(0; iωH , ε)|2
∫ ∞

−∞
|vin(ξ; iωH , ε)|2 dξ + O(ε

1
2 ).

(4.63)

Similarly,

〈φH , φH〉 = 2

∫ ∞

0

us,−(x; iωH , ε)2dx + us,−(0; iωH , ε)2

∫ ∞

−∞
vin(ξ; iωH , ε)2 dξ + O(ε

1
2 ).

(4.64)
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The inner product of Rkl with φH resp. φH can be made explicit as well. Using (4.54),

we see that

〈Rkl, φH〉 =
∫

R

ν1 f1,kl uH d(εξ) +

∫

R

ν2

ε
f2,kl uH d(εξ) +

∫

R

gkl vH dξ, (4.65)

〈Rkl, φH〉 =
∫

R

ν1 f1,kl uH d(εξ) +

∫

R

ν2

ε
f2,kl uH d(εξ) +

∫

R

gkl vH dξ. (4.66)

Now, using (4.45), Theorem 4.2 and Theorem 4.3,

∫

R

f1,kl uH d(εξ) =

∫

R

dk+lF1

dUk+l
(Uh) (uH)k(uH)l+1 d(εξ)

= 2

∞
∫

0

dk+lF1

dUk+l
(u∗s(x))

(

us,−(x; iωH , ε)
)k (

us,−(x; iωH , ε)
)l+1

dx

+O(ε
1
2 ). (4.67)

Similarly,

∫

R

f1,kl uH d(εξ) = 2

∞
∫

0

dk+lF1

dUk+l
(u∗s(x))

(

us,−(x; iωH , ε)
)k+1(

us,−(x; iωH , ε)
)l
dx (4.68)

up to O(ε
1
2 ).

The expressions for f2,kl (4.48) and gkl (4.50) are substantially more involved than

that for f1,kl (4.45). However, based on their initial definition as expansion coefficients

(4.47) resp. (4.49), we can determine their behaviour inside and outside the fast

region I f (4.8).

Lemma 4.13. For ξ < I f , both f2,kl and gkl are exponentially small in ξ, i.e. for all

k, l ≥ 0 there are C1,2 > 0 such that

max
{∣

∣

∣ f2,kl

∣

∣

∣ , |gkl|
}

≤ C1 e−C2 ξ for all ξ < I f . (4.69)

Proof. Based on Theorem 4.2 and Theorem 4.3, we see that outside I f , Vh + A vH +

A vH is exponentially small in ξ. By Assumptions 4.1, (A3) resp. (A4), we can infer

that both F2(Uh+AuH+AuH ,Vh+AvH+AvH) and G(Uh+AuH+AuH ,Vh+AvH+AvH)

must be exponentially small as well for ξ < I f . By (4.47) and (4.49), it follows that

both f2,kl and gkl are exponentially small in ξ. �
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4. Hopf bifurcations for localised pulses

From Lemma 4.13, it follows that an integral of the form
∫

R

1
ε

f2,kl uH d(εξ) =
∫

R
f2,kl uH dξ converges, even though both Uh and uH decay asymptotically slowly

outside I f . Therefore, we can conclude that

1

ε

∫

R

f2,kl uH d(εξ)=

∫

R

f2,kl uH dξ (4.70)

=

∞
∫

−∞

(

Dk+lF2, f

) j1··· jl
i1···ik

(φH, f )i1 · · · (φH, f )ik (φH, f ) j1 · · · (φH, f ) jl · (φH, f )1 dξ

up to O(ε
1
2 ), where φH, f = φH |ξ∈I f

, i.e. (see Theorem 4.3)

φH, f =

(

uH, f

vH, f

)

= us,−(0; iωH , ε)

(

1

vin(ξ; iωH , ε)

)

(4.71)

and Dk+lF2, f is the equal to the tensor defined in 4.10 applied to F2, evaluated in

(Uh,Vh) =
(

u∗, v f ,h(ξ, u∗)
)

, see Theorem 4.2. For the same reason,

∫

R

gkl vH dξ =

∞
∫

−∞

(

Dk+lG f

) j1··· jl
i1···ik

(φH, f )i1 · · · (φH, f )ik (φH, f ) j1 · · · (φH, f ) jl · (φH, f )2 dξ,

(4.72)

where φH, f is as in (4.71) and again Dk+lG f is the equal to the tensor defined in 4.10

applied to G, evaluated in (Uh,Vh) =
(

u∗, v f ,h(ξ, u∗)
)

. For completeness, we state

1

ε

∫

R

f2,kl uH d(εξ) =

∞
∫

−∞

(

Dk+lF2, f

) j1··· jl
i1···ik

(φH, f )i1 · · · (φH, f )ik (4.73)

×(φH, f ) j1 · · · (φH, f ) jl · (φH, f )1 dξ + O(ε
1
2 ),

∫

R

gkl vH dξ =

∞
∫

−∞

(

Dk+lG f

) j1··· jl
i1···ik

(φH, f )i1 · · · (φH, f )ik (4.74)

×(φH, f ) j1 · · · (φH, f ) jl · (φH, f )2 dξ + O(ε
1
2 ).

The expressions derived above can be used to calculate the first Lyapunov coefficient

ℓ1 (4.58) explicitly. A systematic approach to obtain all the necessary terms yields
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4.4 Unfolding the Hopf bifurcation

expressions such as

∫

R

g20 vH dξ =

∞
∫

−∞

(

D2+0G f

)

i1 i2
(φH, f )i1 (φH, f )i2 · (φH, f )2 dξ

=

∞
∫

−∞

[

∂2G

∂U2
(U,V) u2

H, f + 2
∂2G

∂U∂V
(U,V) uH, f vH, f

+
∂2G

∂V2
(U,V)v2

H, f

]

(U,V)=(u∗,v f ,h(ξ,u∗))
× vH, f dξ (4.75)

and

∫

R

f2,11 uH dξ =

∞
∫

−∞

(

D1+1F2, f

) j

i
(φH, f )i(φH, f ) j · (φH, f )1 dξ

=

∞
∫

−∞

[

∂2F2

∂U2
(U,V) |uH, f |2 +

∂2F2

∂U∂V
(U,V)

(

uH, f vH, f + uH, f vH, f

)

+
∂2F2

∂V2
(U,V)|vH, f |2

]

(U,V)=(u∗,v f ,h(ξ,u∗))
× uH, f dξ. (4.76)

The above concretisations of the formal expressions from the first part of section

4.4 are summarised in the following key Lemma.

Lemma 4.14. The leading order expression for the first Lyapunov coefficient ℓ1 asso-

ciated to the normal form of Hopf bifurcation (4.19), as given in (4.58), is obtained by

combining (4.67), (4.70) and (4.72) with (4.65), resp. (4.68), (4.73) and (4.74) with

(4.66), and subsequently using the resulting expression combined with (4.63) and

(4.64) in the projection ΠHRkl (4.41) for the integer pairs (k, l) = (2, 0), (k, l) = (1, 1)

and (k, l) = (2, 1).

Although the expressions thus obtained may not be quite insightful in their full

generality, for specific choices of the model functions F1,2 and G, the above approach

yields explicit quantities which can be evaluated directly for a specific Hopf bifurca-

tion. This will the subject of section 4.6, where the explicit eigenfunction expressions

derived in chapter 2, section 2.3 for the slowly nonlinear Gierer-Meinhardt equation

will enable us to obtain (parameter dependent) values for the first Lyapunov coeffi-

cient.
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4. Hopf bifurcations for localised pulses

4.5 An alternative approach

In the ‘direct’ approach followed in section 4.4, which was based on the normal form

transformation referred to in Lemma 4.11, we used the fact that the local coordinates

(4.37) could be used to describe the associated centre manifold. The actual ‘shape’

of the manifold however was never made explicit: the information contained in Ψ

(Theorem 4.7) was hidden in the transformation z 7→ w(z) indicated in Lemma 4.11.

In this section, we again derive an expression for c1 (for its definition, see Lemma

4.11). We follow a less explicit approach compared to that of the previous section:

this upcoming, alternative approach is based on [24], section 3.4.2 therein. The rel-

ative elegance of the obtained expressions (see upcoming Lemma 4.15) comes with

a cost, however: we will need extra information on the adjoint of L. Depending on

the specific choice of the model functions F1,2 and G (4.1), this alternative approach

might be less or more cumbersome to carry out, compared with the previous, direct

approach presented in section 4.4.

4.5.1 Expanding the centre manifold

Based on Theorem 4.7 and Theorem 4.8, we restrict ourselves without loss of gen-

erality to X′ = X − span
{

d
dξ
Γh

}

, i.e. we focus on a single leaf of the foliation of

the entire centre manifold. Dropping the tildes, we see that solutions on the centre

manifoldM0,H can be expressed as

(

U(ξ, t)

V(ξ, t)

)

= Γ(ξ, t) = Γh(ξ) + A(t) φH(ξ) + A(t) φH(ξ) + Ψ(A, A, φH , φH). (4.77)

Also, since we analyse a Hopf bifurcation, we know that the dynamics of A(t) should

obey the normal form equation

dA

dt
= iωH A + c1 A |A|2 + O(|A|4). (4.78)

Adapting the notation from section 4.4, we apply (4.2) on a perturbation of the pulse

Γh. Substitution of (U,V) = Γh + ρ in (4.2) yields

∂ρ

∂t
= Lρ + R(Γh; ρ) (4.79)
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with L as in (4.9), and

R(Γh; ρ) =

(

ν1 F1(Uh + (ρ)1; ε) + ν2

ε
F2(Uh + (ρ)1,Vh + (ρ)2; ε)

G(Uh + (ρ)1,Vh + (ρ)2; ε)

)

−
(

ν1 F1(Uh; ε) + ν2

ε
F2(Uh,Vh; ε)

G(Uh,Vh; ε)

)

+A ρ (4.80)

withA as in (4.10). Substituting

ρ = A φH + A φH + Ψ(A, A, φH , φH) (4.81)

in (4.79), we obtain for its left-hand side

dA

dt

(

φH +
∂

∂A
Ψ(A, A, φH , φH)

)

+
dA

dt

(

φH +
∂

∂A
Ψ(A, A, φH , φH)

)

(4.82)

and for its right-hand side

iωH A φH − iωH A φH +LΨ(A, A, φH , φH)

+ R
(

Γh; A φH + A φH + Ψ(A, A, φH , φH)
)

. (4.83)

Since (U,V) (4.77) are real, Ψ(0) = 0 and DΨ(0) = 0, see Theorem 4.7, we can

expand Ψ(A, A, φH , φH) in powers of A and A as

Ψ(A, A, φH , φH) = h20A2 + h11A A + h20A
2

+h30A3 + h21A2A + h21A A
2
+ h30A

3
+ O(|A|4). (4.84)

Note that h11 is real sinceΨ(A, A, φH , φH) is invariant under complex conjugation, see

(4.77). Moreover, from (4.80) we see that R(Γh; 0) = 0 and DρR(Γh; 0) = 0, so we

can expand R(Γh; ρ) in powers of ρ in a similar way as Ψ was expanded in powers of

A and A, yielding

R(Γh; ρ) = R̂(2)(ρ, ρ) + R̂(3)(ρ, ρ, ρ) + O(|ρ|4), (4.85)

where R̂(2)(·, ·) and R̂(3)(·, ·, ·) are fully symmetric 2- and 3-tensors.
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4. Hopf bifurcations for localised pulses

Using (4.81) and (4.84), we can expand R in powers of A and A as

R
(

Γh; A φH + A φH + Ψ(A, A, φH , φH)
)

=

R̂(2)(φH , φH) A2 + 2 R̂(2)(φH , φH) A A + R̂(2)(φH , φH) A
2

+
[

2 R̂(2)(φH , h20) + R̂(3)(φH , φH , φH)
]

A3

+
[

2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH)
]

A2A

+
[

2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH)
]

A A
2

+
[

2 R̂(2)(φH , h20) + R̂(3)(φH , φH , φH)
]

A
3
+ O(|A|4). (4.86)

Using (4.84) and (4.78) in (4.82) yields

(

iωH A + c1 A2A
)

(

φH + 2h20A + h11A + 3h30A2 + 2h21A A + h21A
2
)

+ c.c.+O(|A|4)

= iωH A φH + 2iωH h20A2 + iωH h11A A + 3iωH h30A3 +
[

2iωH h21 + c1φH

]

A2A

+ iωH h21A A
2
+ c.c. + O(|A|4)

= iωH A φH + 2iωH h20A2 + 3iωH h30A3 +
[

iωH h21 + c1φH

]

A2A + c.c. +O(|A|4).

(4.87)

Similarly, using (4.84) and (4.86) in (4.83) yields

iωH A φH +L
(

h20A2 +
1

2
h11A A + h30A3 + h21A2A

)

+ R̂(2)(φH , φH) A2

+ R̂(2)(φH , φH) A A +
[

2 R̂(2)(φH , h20) + R̂(3)(φH , φH , φH)
]

A3

+
[

2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH)
]

A2A

+ c.c + O(|A|4)

= iωH A φH +
[

Lh20 + R̂(2)(φH , φH)
]

A2 +

[

1

2
Lh11 + R̂(2)(φH , φH)

]

A A

+
[

Lh30 + 2 R̂(2)(φH , h20) + R̂(3)(φH , φH , φH)
]

A3

+
[

Lh21 + 2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH)
]

A2A

+ c.c + O(|A|4). (4.88)

Since (4.87) and (4.88) are the expansions of the left-hand side resp. the right-hand

side of (4.79) in powers of A and A, we can compare their expansion coefficients. The
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first order terms (for A and A) coincide; for the second order terms (in A2, AA and

A
2
), equating the coefficients yields

(L − 2 iωH) h20 = −R̂(2)(φH , φH), (4.89)

L h11 = −2R̂(2)(φH , φH). (4.90)

The central spectrum of L on the foliation leaf under consideration is {± iωH}, so

2 iωH nor 0 is an eigenvalue of L. Therefore, the operators L and L − 2 iωH are

invertible, yielding unique solutions for h20 and h11.

To obtain an equation for c1, the only third order expansion coefficient we need

to consider is that of A2A. Equating the respective coefficients in (4.87) resp. (4.88)

yields

(L − iωH) h21 = c1φH −2 R̂(2)(φH , h11)−2 R̂(2)(φH , h20)−3 R̂(3)(φH , φH , φH). (4.91)

This allows us to formulate the following Lemma:

Lemma 4.15. Let φ∗
H

be the unique bounded solution for which L∗φ∗
H
= iωH φ

∗
H

.

Then c1 (4.78) is given by

c1 =
1

〈φH , φ
∗
H
〉
〈2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH), φ∗

H
〉. (4.92)

Proof. By the Fredholm alternative, (4.91) has a unique solution for h21 if and only if

the right-hand side is orthogonal to the kernel of the adjoint operator (L − iωH)∗. The

spectra ofL andL∗ are each others complex conjugates. SinceL is real, its spectrum

is invariant under complex conjugation. Therefore, if λ is an eigenvalue of L, then λ

is also an eigenvalue of L∗. That means in particular that the central spectrum of L∗
coincides with the central spectrum of L, which is given by the pair ± iωH . Let the

associated adjoint eigenfunctions be denoted as φ∗
H

, φ∗
H

. Since the (one-dimensional)

kernel of (L − iωH)∗ = (L∗ + iωH) is spanned by φ∗
H

, the solvability condition ob-

tained from the Fredholm alternative yields (4.92). �

While this expression for c1 is a lot less involved than the expression derived

in Lemma 4.11, it cannot be calculated directly using the eigenfunction expressions

stated in Theorem 4.3. The expressions for h20 (4.89) and h11 (4.90) are still implicit;

moreover, we have not yet analysed the adjoint operator L∗. Both are the subject of

the next section.
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4.5.2 The coefficient c1 (4.92)

First, we study the adjoint operator L∗. Combining the definition of L (4.9) with that

of the scaling matrix S used in the definition of the inner product (4.22), we see that

L can be written as

L = S −2 d2

dξ2
−A. (4.93)

Now,

〈φ,L∗ψ〉 = 〈Lφ, ψ〉 =
∫

R

(Lφ)T Sψ dξ

=

∫

R

(

S −2 d2

dξ2
φ −Aφ

)T

Sψ dξ

=

∫

R

(

S −2 d2

dξ2
φ

)T

Sψ − (Aφ)T Sψ dξ

=

∫

R

(

d2

dξ2
φ

)T

S −2Sψ − φTAT Sψ dξ

=

∫

R

φT S −2S
d2

dξ2
ψ − φT S S −1AT Sψ dξ

=

∫

R

φT S

















S −2 d2

dξ2
ψ − S −1AT Sψ

















dξ

=

∫

R

φT S

[

S −2
d2

dξ2
− S −1AT S

]

ψ dξ

so

L∗ = S −2 d2

dξ2
− S −1AT S . (4.94)

Using (4.10),

S −1AT S =

(

µ − ν1
dF1

dU
− ν2

ε

∂F2

∂U
− 1
ε
∂G
∂U

−ν2
∂F2

∂V
1 − ∂G

∂V

)
∣

∣

∣

∣

∣

∣

(U,V)=(Uh(ξ),Vh(ξ))

. (4.95)

We see that L∗ has the same scale separated structure as L, with only the roles of

ν2
∂F2

∂V
and ∂G

∂U
reversed. Therefore, we can treat L∗ in a similar way as L, see sub-

section 4.2.2. Since the diagonal entries of A are the same as those of S −1AT S , the

leading order slow and fast linear operators associated to L∗ coincide with those of
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L, i.e. (L∗)s (x) = Ls(x) and (L∗) f (ξ) = L f (ξ), as given in (4.13) resp. (4.12). The

leading order fast nonhomogeneous Sturm-Liouville problem for L∗ is

(

L∗f − λ
)

v = −ν2

∂F2

∂V
(u∗, v f ,h(ξ; u∗)), ξ ∈ R. (4.96)

compare (4.14). Since F2 and G obey equivalent conditions, see Assumptions 4.1,

(A3) and (A4), the theory developed in chapter 3, section 3.3 can be directly ap-

plied to L∗, yielding Hopf eigenfunctions φ∗
H

, φ∗
H

with the scale separated structure

as described in Theorem 4.3. Note that outside I f , the leading order behaviour of φ∗
H

coincides with that of φH , since (L∗)s (x) = Ls(x).

Solving (4.89) and (4.90) for h20 resp. h11 is a lot more cumbersome. In general,

one would approach the problem as follows. First, consider (4.89). Since the oper-

ator L − 2 iωH is invertible, we know there is no nontrivial bounded solution to the

homogeneous problem

(L − 2 iωH) φ = 0. (4.97)

The two-component linear second order differential equation (4.97) can be rewritten

as a four-dimensional first order differential equation

d

dξ
φ̂ = B φ̂, (4.98)

the solution space of which is spanned by four linearly independent solutions
{

φ̂i

}

,

i = 1, . . . , 4. To solve (4.89), which can be written in first order form as

d

dξ
ĥ20 − B ĥ20 =



































0

−ε2
(

R̂(2)(φH , φH)
)

1

0

−
(

R̂(2)(φH , φH)
)

2



































(4.99)

with

B =































0 1 0 0

ε2A11 + 2 iωH 0 ε2A12 0

0 0 0 1

A21 0 A22 + 2 iωH 0































, (4.100)

we use the method of variation of constants and write

h20 =

4
∑

i=1

ci(ξ) φ̂i, (4.101)
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such that (4.99) is transformed into

4
∑

i=1

dci

dξ
φ̂i =



































0

−ε2
(

R̂(2)(φH , φH)
)

1

0

−
(

R̂(2)(φH , φH)
)

2



































(4.102)

or equivalently

Φ̂
dc

dξ
=



































0

−ε2
(

R̂(2)(φH , φH)
)

1

0

−
(

R̂(2)(φH , φH)
)

2



































, (4.103)

where c = (c1, c2, c3, c4)T and Φ̂ is the matrix whose columns are given by the eigen-

vectors φ̂i, i.e.

Φ̂ =
{

φ̂1, φ̂2, φ̂3, φ̂4

}

. (4.104)

Since the trace of B (4.100) vanishes, the determinant of Φ̂ is constant; moreover,

since L − 2 iωH is invertible, we know that det Φ̂ , 0. Therefore, (4.103) can be

solved by inverting Φ̂, yielding

dc

dξ
=

1

det Φ̂
adj Φ̂



































0

−ε2
(

R̂(2)(φH , φH)
)

1

0

−
(

R̂(2)(φH , φH)
)

2



































, (4.105)

where adj Φ̂ is the adjugate matrix of Φ̂. Since h20 = Φ̂ c (4.101), we can integrate

(4.105) to obtain for h20:

h20(ξ) = Φ̂(ξ)

∫ ξ 1

det Φ̂
adj Φ̂(ξ′)



































0

−ε2
(

R̂(2)(φH(ξ′), φH(ξ′))
)

1

0

−
(

R̂(2)(φH(ξ′), φH(ξ′))
)

2



































dξ′. (4.106)

Solving (4.90) for h11 can be done analogously. Solving the four-dimensional first

order differential equation associated to L ĥ11 = −2R̂(2)(φH , φH), the same variation

of constants approach ultimately yields

ĥ11(ξ) = Φ̂0(ξ)

∫ ξ 1

det Φ̂0

adj Φ̂0(ξ′)



































0

−2ε2
(

R̂(2)(φH(ξ′), φH(ξ′))
)

1

0

−2
(

R̂(2)(φH(ξ′), φH(ξ′))
)

2



































dξ′, (4.107)
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where Φ̂0 is the matrix whose columns are given by the four independent solutions

to Lφ0 = 0, when written in its four-dimensional first order form – this would be

equivalent to (4.98), with associated B0 as in (4.99), with ωH = 0. To obtain a result

for the operator L on the reduced space X′ = X − span
{

d
dξ
Γh

}

, we project ĥ11 onto

the orthogonal complement of span
{

d
dξ
Γh

}

(c.f. (4.29)), yielding

h11 = (I − Π0) ĥ11. (4.108)

The expressions for h20 (4.106) and h11 (4.108), together with an encompassing ana-

lysis of the adjoint operatorL (4.94), can now be combined with the result of Lemma

4.15 to obtain an explicit expression for c1 (4.92).

Comparing the approach advocated in this section with the more direct approach

of section 4.4, we see that the (relatively) short expressions culminating in Lemma

4.15 come with a cost of having to analyse three additional equations: one eigenvalue

problem for the adjoint operator L∗φ∗
H
= iωHφ

∗
H

and two inverse problems (4.89)

and (4.90). Depending on model under consideration, i.e. for a specific choice of

F1,2 and G, either approach might be preferable over the other. In the next section,

we apply the theory developed above to such a specific model, the slowly nonlinear

Gierer-Meinhardt equation.

4.6 Application: the slowly nonlinear Gierer-Meinhardt

equation

In chapter 2, the existence and stability of pulse solutions as considered in section 4.2

was established for the slowly nonlinear Gierer-Meinhardt equation (2.7), restated

here:














Ut = Uxx −
(

µU − ν1Ud
)

+
ν2

ε
V2

Vt = ε2Vxx − V + V2

U

. (4.109)

The original Gierer-Meinhardt equation, a canonical model for morphogenesis which

is studied extensively in the context of pattern formation [6, 12, 22, 26, 48, 51], can

be recovered from (4.109) by setting ν1 = 0. The system (4.109) is of the form (4.1)

with

FnGM
1 (U; ε) = Ud, d > 1, FGM

2 (U,V; ε) = V2, GGM(U,V; ε) =
V2

U
. (4.110)

The nonlinearities F2 and G are chosen according to the ‘classical’ Gierer-Meinhardt

model, and are therefore denoted as FGM
2

and GGM. The ‘slow’ nonlinearty F1 is
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4. Hopf bifurcations for localised pulses

absent in the Gierer-Meinhardt model, but was introduced in chapter 2 as Ud, to

study the influence of such a slow nonlinearity on the pulse construction and stability.

The slowly nonlinear term F1 is therefore denoted as FnGM
1

.

4.6.1 Analytical preliminaries

This section summarises the analysis on the slowly nonlinear Gierer-Meinhardt model

(4.109), as derived in chapter 2, sections 2.2 and 2.3.

It can easily be verified that the above choice for F1,2 and G (4.110) satisfies

Assumptions 4.1 (A1 - A4). The reduced fast system (4.4) is realised as

v f ,ξξ = v − 1

u0

v2, (4.111)

which has a homoclinic solution

vGM
f ,h (ξ; u0) =

3u0

2
sech2 1

2
ξ, (4.112)

satisfying Assumptions 4.1, (A5). Using this homoclinic solution, Dp(u0) (4.6) can

be calculated as

DGM
p (u0) =

∫ ∞

∞

(

vnGM
f ,h (ξ; u0)

)2
dξ = 6u2

0, (4.113)

which means that Assumptions 4.1, (A6) is satisfied once the factor 6 is scaled out by

rescaling ν2 → ν̂2 = 6ν2. The choice of F1 realises the reduced slow system (4.5) as

uxx = µ u − ν1ud, (4.114)

which also has an orbit homoclinic to the origin. Therefore, the slow unstable and

stable manifolds of the origin Wu/s
s ((0, 0; ε) coincide and are both described by the

same function

unGM
s (x) =

(

µ(d + 1)

2ν1

sech2 1

2
(d − 1)

√
µ x

)
1

d−1

. (4.115)

The pulse existence condition (4.7) becomes

2ν1

d + 1
ud−1 = µ − 3

2
ν̂2u2, (4.116)

which always has precisely one positive solution for u = u∗, so Theorem 4.2 is valid

for K = 1. From Theorem 4.2, it follows that there exists a pulse solution ΓnGM
h

(ξ),
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4.6 Application: the slowly nonlinear Gierer-Meinhardt equation

which is to leading order given by

ΓnGM
h (ξ) =











































































(

unGM
s (εξ − x∗)

0

)

for ξ < ε−
1
4 ,

(

u∗
vGM

f ,h
(ξ; u∗)

)

for ξ ∈ I f ,

(

unGM
s (εξ + x∗)

0

)

for ξ > ε−
1
4 .

(4.117)

The stability analysis of the pulse ΓnGM
h

yields the fast linear operator (cf. (4.12))

LGM
f (ξ) =

d2

dξ2
−

[

1 − 3 sech2 1

2
ξ

]

, ξ ∈ R, (4.118)

which has eigenvalues λGM
f ,0
= 5

4
, λGM

f ,1
= 0 and λGM

f ,2
= − 3

4
. The slow linear operator

(4.13) is realised as

LnGM
s (x) =

d2

dx2
− µ

[

1 − d(d + 1)

2
sech2 1

2
(d − 1)

√
µ x

]

, x ≥ 0. (4.119)

The solutions of its eigenvalue problem (LnGM
s −λ)u = 0 can be determined explicitly

using associated Legendre functions, see chapter 2, section 2.3. For the nonhomogen-

eous fast problem (4.14), realised as

d2

dξ2
v −

[

1 + λ − 3 sech2 1

2
ξ

]

v =
9

4
sech4 1

2
ξ, (4.120)

the unique bounded solution vin can also be explicitly represented using associated

Legendre functions. These explicit expressions manifest themselves in the leading

order eigenfunction behaviour described in Theorem 4.3.

4.6.2 Hopf bifurcations

As in the general case chapter 3, the eigenvalues for the pulse (4.117) can be deter-

mined using Evans function techniques. In chapter 2, an explicit leading order ex-

pression for the Evans function was found in terms of the leading order eigenfunction

expressions from Theorem 4.3, see Theorem 2.12. This leading order Evans func-

tion can be directly numerically evaluated for different parameter values. In Figure
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Figure 4.2: The pulse eigenvalues to leading order in ε as a function of increasing µ,

indicated by the arrow. Here, ν1 = 2 and ν2 =
1
2

(ν̂2 = 3) are fixed. For d = 2 (left

figure), the pulse undergoes one stabilising Hopf bifurcation for µ = µH = 1.47986 . . .

at λ = iωH = 1.47638 . . . i. For d = 5 (right figure), a second, destabilising Hopf

bifurcation takes place for µ = µH,2 = 5.134 . . . at λ = iωH,1 = 3.78646 . . . i, while

the first Hopf bifurcation is at µ = µH,1 = 0.4173 . . . with λ = iωH,1 = 0.958684 . . . i

for these parameter values.

4.2, the pulse eigenvalues are plotted in the complex plane for fixed ν1,2 and d, while

varying µ. Here, the influence of the slow nonlinear term FnGM
1

(U; ε) = Ud (4.110)

can be clearly seen. For d = 2, the eigenvalue orbit crosses the imaginary axis for

µ = µH = 1.47986 . . . at λ = iωH = 1.47638 . . . i, and it becomes clear that the pulse

is stable for all µ > µH (see chapter 2, Theorem 2.18). However, for d = 5, the eigen-

value orbit exhibits a different behaviour. After a first stabilising Hopf bifurcation for

µ = µH,1 = 0.4173 . . . at λ = iωH,1 = 0.958684 . . . i, the eigenvalue orbit turns around

and undergoes a second, destabilising Hopf bifurcation for µ = µH,2 = 5.134 . . . at

λ = iωH,1 = 3.78646 . . . i.

This turning behaviour is general for d > 3, see chapter 2, Theorem 2.19. That

means that for all d > 1, there is an neighbourhood of (ν1, ν2) = (2, 1
2
) in parameter

space such that there is a (possibly bounded) interval in µ for which the pulse ΓnGM
h

is

stable. At the boundary of this interval, the pulse destabilises through a Hopf bifurca-

tion. Since our parameter space {(µ, ν1, ν2, d)} is four-dimensional, we can determine

the (boundaries of the) stability region by intersecting it with two-dimensional hy-
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4.6 Application: the slowly nonlinear Gierer-Meinhardt equation

perplanes, i.e. by fixing two parameters. In Figure 4.3, the boundary of this stability

region is determined for different values of d and ν1, with µ and ν2 as free parameters.

The two Hopf bifurcation values for d = 5, ν1 = 2, ν2 =
1
2

are indicated on the blue

curve in both figures. The Hopf bifurcations merge into a singular Hopf bifurcation

where the bifurcation curves fold.

In Figure 4.4, left, the Hopf frequencies for d = 5 and ν1 = 2 are plotted as a func-

tion of the parameter ν2. The merging of Hopf bifurcations can again be observed.

For these Hopf eigenvalues, the associated first Lyapunov coefficients ℓ1 (4.58) were

calculated according to Corollary 4.12. It can be seen that the Hopf bifurcations of the

lower branch have a positive –even large– first Lyapunov coefficient, and are there-

fore subcritical (Corollary 4.12). However, for the upper branch of Hopf bifurcations,

it is seen that the sign of the first Lyapunov coefficients can change. Note that this

upper branch corresponds with the destabilising Hopf bifurcation λ = iωH,2 which

is present for all d > 3, see Figure 4.2 (right). A collection of such curves of first

Lyapunov coefficients is shown in Figure 4.5, based on the associated Hopf curves

from Figure 4.3. It is clear that this crossing from sub- to supercriticality is a general

phenomenon, and is therefore not restricted to the specific choice of parameters used

to produce these Figures.

The direct numerical evaluation of the first Lyapunov coefficient, made possible

by the results from Lemma 4.14 and Lemma 4.15, enables us to draw conclusions

about the sub- or supercriticality of the Hopf bifurcations of pulses in the slowly

nonlinear Gierer-Meinhard model (4.109). Based on the curves shown in Figure 4.5,

we can take a well-chosen point in parameter space, e.g. (ν1, ν2, d) = (2, 5
2
, 5), such

that one of the two Hopf bifurcations for this parameter triplet is subcritical, and the

other supercritical. By continuous dependence on parameters, we can then state the

following Theorem:

Theorem 4.16. Let ε > 0 be sufficiently small. There exists an open nonempty neigh-

bourhood V in (µ, ν1, ν2)-parameter space such that the following holds. For any

(ν1, ν2, d) ∈ V, there are two Hopf bifurcation values µH,1(ν1, ν2, d) and µH,2(ν1, ν2, d)

with µH,1 < µH,2 for which the associated pulse eigenvalues are given by λH,1 = iωH,1

resp. λH,2 = iωH,2 with ωH,1, ωH,2 ∈ R. The Hopf bifurcation λH,1 = iωH,1 is subcrit-

ical; the Hopf bifurcation λH,1 = iωH,1 is supercritical.

With these results in mind, it is quite straightforward to obtain a result which

was suggested, but not confirmed, in previous literature on the ‘canonical’ Gierer-

Meinhardt system, i.e. (4.109) with ν1 = 0. In [6], the existence and stability of
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Figure 4.3: Curves of Hopf bifurcation parameter values in the (ν2, µ)-plane. Left,

ν1 = 2; bifurcation curves are plotted for d = 4, 5, 6. Right, d = 5; bifurcation curves

are plotted for ν1 = 1, 2, 3. In both figures, the bifurcation values µH,1 = 0.4173 . . .

and µH,2 = 5.134 . . . for d = 5, ν2 = 2 are indicated. These curves form the boundary

of the region in parameter space for which the pulse ΓnGM
h

is stable.

pulse solutions in Gierer-Meinhardt type systems was established using ideas similar

to those used in chapters 2 and 3. There, it was shown that for µ = µH = 0.36 . . .,

the pulse undergoes a Hopf bifurcation. Numerical simulations [11, 57] suggested

that this Hopf bifurcation is subcritical. This observation is confirmed by direct nu-
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Figure 4.4: In the left figure, the Hopf frequencies are plotted as a function of ν2,

for d = 5 and ν1 = 2. The lower branch, representing ωH,1, is indicated in blue;

the upper branch, representing ωH,2, is indicated in red. In the right figure, the as-

sociated first Lyapunov coefficients ℓ1 are plotted, using corresponding colors. It

can be seen that the first Lyapunov coefficient corresponding to ωH,2 changes sign at

ν2 = ν
∗
2
= 2.2955 . . .; there, the nature of this upper branch Hopf bifurcation changes

from subcritical to supercritical.

merical evaluation of the associated first Lyapunov coefficient, which has the value

ℓ1 = 2900.91 > 0. As a consequence, the following Corollary is a direct result from

numerical evaluations equivalent to those underlying Theorem 4.16:

Corollary 4.17. Let ε > 0 be sufficiently small. The Hopf bifurcation associated to

the classical Gierer-Meinhardt pulse is subcritical.

4.7 Discussion

The research presented in this chapter was inspired by the observation of stable oscil-

lating pulses in the slowly nonlinear Gierer-Meinhardt model, see chapter 2, section

2.5. There, it was shown that numerical simulations of the full PDE system suggested

the existence of breathing pulses (possibly with a dynamically modulated amplitude)

near parameter values for which the stationary pulse undergoes a Hopf bifurcation.

The hypothesis that such a Hopf bifurcation could be the ‘birthplace’ of these breath-

ing pulses is confirmed in the current chapter. A consequence of the supercriticality

of the Hopf bifurcation, established in Theorem 4.16, is that stable periodically mod-

ulated pulse amplitudes (i.e. breathing pulses) can and do indeed exist.
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Figure 4.5: An overview of several Lyapunov curves, corresponding to the Hopf

bifurcation curves shown in Figure 4.3. The color coding coincides. It can be seen

that the transition from sub- to supercriticality is a general phenomenon. However,

for d = 6, this seems not to occur, at least for values up to ν2 = 6 (full range not

shown).
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However, this is not the end of the story. The centre manifold associated to the

Hopf bifurcation has only been expanded up to third order. A fifth order expansion,

near the generalised Bautin point where the Hopf bifurcation transgresses from sub-

to supercriticality (i.e. where the first Lyapunov coefficient ℓ1 vanishes), can in prin-

ciple be done. This would entail performing an analysis analogous to that presented

in section 4.4 or 4.5, to the extended fifth order normal form

dA

dt
= iωH A + c1 A |A|2 + c2 A |A|4 + O(|A|6), (4.121)

compare (4.78) / Lemma 4.11. This way, the first steps towards a more encompassing

description of the dynamically modulated pulse amplitude near Hopf bifurcations can

be taken. Numerical results from chapter 2, section 2.5 suggest that this amplitude

can be quasiperiodically or even chaotically modulated.

It is worthwhile to note that the procedure to obtain explicit expressions for the

Hopf normal form, as presented in this chapter, is not restricted to the stationary

pulse solution, which was analysed in chapters 2 and 3. The procedure is in principle

valid for (multi)pulses and fronts in singularly perturbed reaction-diffusion systems:

as long as one is able to obtain an explicit expression for the stationary pattern (and,

more importantly, for its eigenfunctions), the techniques presented in this chapter can

be used to obtain an explicit expression for the normal form expansion coefficients,

which can be directly numerically evaluated, allowing one to gain more insight in the

dynamical properties of the pattern under consideration.
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