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2
Pulses in a slowly nonlinear

Gierer-Meinhardt equation

The content of this chapter was published as [54].

2.1 Introduction

The study of localised pulses in a two-component system of singularly perturbed

reaction-diffusion equations has been a very active field of research since the nineties

of the previous century. In its most general form, a system that may exhibit such a

pulse reads – in one, unbounded, spatial dimension –















Ut = Uxx + F(U,V)

Vt = ε
2Vxx +G(U,V)

(2.1a)

(2.1b)

with U,V : R × R+ → R, and 0 < ε ≪ 1 asymptotically small. The nonlinear

reaction terms F,G : R2 → R are assumed to satisfy F(Ū, V̄) = G(Ū, V̄) = 0 for cer-

tain (Ū, V̄), such that the trivial background state (U,V) ≡ (Ū, V̄) is spectrally stable.

However, research on pulses in equations of the type (2.1) has been restricted mostly

to model equations. In particular two of these models have played a central role in

the development of the theory: the (irreversible) Gray-Scott (GS) equation for a class

of autocatalytic reactions [23] – that became the centre of research attention by the

intriguing observations in [38, 43] – and the Gierer-Meinhardt (GM) equation [22]

for (biological) morphogenesis – for which the existence problem has already been
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

considered in the mathematical literature for a somewhat longer time [48]. For both

the GS and the GM model, quite precise insight has been obtained in the existence,

stability and dynamics of localised (multi-) pulses, also in more than one spatial di-

mension – although one certainly cannot claim that the models are fully understood;

see [5, 6, 7, 12, 13, 26, 32, 33, 34, 41, 42, 51, 58] and the references therein for the

literature on one spatial dimension.

The ‘fast’ V-component of a localised (multi)pulse solution of a singularly per-

turbed model (2.1) is asymptotically localised: it decays exponentially to the V-

component V̄ of the background state on a spatial scale that is asymptotically shorter

than the spatial scale associated to the ‘slow’ U-component. As a consequence, the

two-component (U,V)-flow generated by (2.1) is governed by a scalar equation in the

slow component U:

Ut = Uxx + F(U, V̄) (2.2)

except for the asymptotically small spatial regions in which the V-component is not

exponentially close to V̄ . Clearly, this is in general a nonlinear equation. However,

for the GS and GM models, this slow reduced scalar equation is linear:

(GS) Ut = Uxx + A(1 − U), A > 0 parameter, (Ū, V̄) = (1, 0)

(GM) Ut = Uxx − αU, α > 0 parameter, (Ū, V̄) = (0, 0)
(2.3)

In fact, as far as we are aware, this – the fact that the counterpart of (2.2) is linear

– is the case for all singularly perturbed two-component reaction-diffusion equations

with exponentially localised pulse solutions considered in the literature (including

the Schnakenberg model [46, 56]). There are a number of papers in the literature in

which more general classes of equations than the GS or GM models are considered

– see [4, 6, 10]. In these papers the background state (Ū, V̄) is translated to (0, 0)

so that F(Ū, V̄) = F(0, 0) = 0 in (2.1). Moreover, the nonlinear part of F(U,V) is

assumed to be separable, i.e. F(U,V) is written as −αU + F1(U)F2(V). Therefore

F2(V̄) = F2(0) = 0, and these more general systems also reduce to linear slow scalar

equations like (2.3) outside the asymptotically small regions where V is not close to

V̄ .

In this chapter, and in the subsequent chapter 3, we consider the potential impact

of the nonlinearity of F(U, V̄) as function of U in comparison with the literature on

‘slowly linear’ model systems such as GS and GM. Here, we consider a very expli-

cit model problem, a Gierer-Meinhardt equation with a ‘slow nonlinearity’ (see (2.7)

below), in full analytical detail; in chapter 3, we consider the existence and stability

50



2.1 Introduction

of pulses in a general setting, i.e. as solutions of (2.1). We refer to Remark 2.1 for

a more specific motivation of our choice to study equations with ‘slow nonlinearities’.

In the standard form (2.1), the classical Gierer-Meinhardt equation [22] is given by























Ut = Uxx − αU + σV2

Vt = ε
2Vxx − V +

V2

U

(2.4a)

(2.4b)

in which α > 0 is the main bifurcation parameter and σ > 0 is most often scaled to 1.

The pulse type solutions of (2.4) have an amplitude of O
(

1
ε

)

[6, 26]. Therefore, we

scale U and V and subsequently x and ε,

U → U

ε
, V → V

ε
, x→

√
ε x, ε→ ε2 (2.5)

to bring (2.4) in its ‘normal form’ [6]























ε2Ut = Uxx − ε2αU + σV2

Vt = ε
2Vxx − V +

V2

U
.

(2.6a)

(2.6b)

In this chapter, we study a ‘slowly nonlinearised’ version of (2.6), that is obtained

from (2.6) by adding a very simple nonlinear term to its ‘slow’ U-equation (2.6a):



























ε2Ut = Uxx − ε2
(

αU − γUd
)

+ σV2

Vt = ε
2Vxx − V +

V2

U

(2.7a)

(2.7b)

with new parameters γ ≥ 0, d > 1. Moreover, we now allow σ ∈ R\{0}. Systems

incorporating such a slow nonlinearity were already encountered in [37] (although no

pulse type solutions were considered in this paper). This equation indeed reduces to

a nonlinear slow reduced scalar U-equation away from the regions in which V is not

exponentially close to V̄ = 0:

Ut = Uχχ − αU + γUd (2.8)

in which χ = εx is a ‘super-slow’ spatial coordinate – see section 2.2. Note that

scaling back the additional ‘slowly nonlinear’ term γUd through (2.5) introduces an

O
(

εd−1
)

, i.e an asymptotically small, additional term to the Gierer-Meinhardt equa-

tion in its classical form (2.4). We will see in the upcoming analysis that this term has
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

U h Vh

x

Σ > 0

0

(a)

U h Vh

x

Σ < 0

0

(b)

Figure 2.1: The stationary homoclinic pulse (Uh(x),Vh(x)) of (2.7); (a) σ > 0, (b)

σ < 0.

a significant impact on the dynamics generated by (2.4). Thus, in a way, our work can

also be interpreted as a study of the ‘vulnerability’ of the classical Gierer-Meinhardt

model (2.4) to asymptotically small ‘slowly nonlinear’ changes to the model.

In recent years, the analysis of localised pulses in one-dimensional singularly per-

turbed reaction-diffusion equations has been focused mostly on pulse dynamics and

interactions – see [5, 10, 12, 34] and the references therein. However – like the work

on multi-pulse patterns [26, 32, 33, 51, 52, 56] – this analysis is based on fundamental

insights on the existence and stability of stationary, solitary, pulses [6, 7, 13, 48, 58].

On the unbounded domain, i.e. for x ∈ R, these pulses correspond to homoclinic

solutions of the four-dimensional spatial dynamical system reduction of the partial

differential equation. Here, we restrict our analysis to the existence and stability of

homoclinic stationary pulse solutions (Uh(x),Vh(x)) to (2.7) that are bi-asymptotic to

the background state (0, 0), i.e. limx→±∞ (Uh(x),Vh(x)) = (0, 0). Especially the issue

of stability requires a significant extension of the methods developed in the literature

for ‘slowly linear’ GS/GM-type models. The present results form the foundation for

a subsequent analysis of the multi-pulse patterns – see remark 2.1 – and pulse interac-

tions. Moreover, already at the level of these most basic pulse solutions, we encounter

novel phenomena in the dynamics generated by (2.7) that have not yet been observed

in the literature on ‘slowly linear’ models.

The existence problem – see section 2.2 – can be studied directly along the lines

developed in [6] for ‘slowly linear’ normal form models of GM type with a separable
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2.1 Introduction

nonlinearity. Our main result on the existence of homoclinic pulses (Uh(x),Vh(x)),

Theorem 2.2, can be established by a direct application of the methods of geometric

singular perturbation theory [18, 19]. In other words, at the existence level the ‘slow

nonlinearity’ in (2.7) does not require the development of novel theory. However, it

is established by Theorem 2.2 that (2.7) does exhibit homoclinic pulse patterns that

differ significantly from those found in ‘slowly linear’ GS/GM-type models. Un-

like linear slow reductions such as (2.3), the planar stationary problem associated to

reduction (2.8) has orbits homoclinic to its saddle point (that corresponds to the back-

ground state of (2.7)). As a consequence, unlike the classical GM model (2.4), system

(2.7) has homoclinic pulse solutions (Uh(x),Vh(x)) for σ < 0. At leading order in ε,

the slow U-component Uh(x) follows a large part of the homoclinic orbit of (2.8), so

that for σ < 0 the slow component of the solitary homoclinic 1-pulse solution has the

leading order structure of two combined slow scalar pulses – see Figure 2.1b.

The spectral stability of (Uh(x),Vh(x)) is studied in section 2.3 by the Evans func-

tionD(λ) associated to the linearised stability problem, following the ideas developed

in [6, 7]. As is to be expected from the general theory [3], D(λ) can be decomposed

into a slow and a fast component, and all nontrivial eigenvalues are determined by

the slow component. In [6, 7], i.e. for the GM and GS models, the zeroes of this

slow component are determined analytically by ‘the NLEP method’. The linearity

of the slow scalar reduction (2.3) plays a central role in this approach – as it does in

all analytical studies of the spectral stability of pulses in GS/GM-type models (see

[5, 26, 32, 33, 34, 51, 58] and the references therein). More explicitly, the fact that

the spectral stability problem is exponentially close to a constant coefficients eigen-

value problem outside the asymptotically small regions in which V is not close to V̄

is a crucial ingredient of the stability analysis of GS/GM-type models. Due to the

nonlinearity in the slow scalar reduction (2.8) this is not the case for (2.7): away from

the fast V-pulse, the linear operator associated to the stability problem still has coef-

ficients that depend explicitly (and slowly) on x (on χ – see (2.8)). Its solution space

is therefore not governed by simple, pure exponentials (as for GS/GM-type models).

The key to the NLEP approach as developed in [6, 7] is constructing a set of basis

functions for the linear operator/system associated to the stability of the pulse for

which the Evans function D(λ) – the determinant of this set – can be evaluated, or

better: approximated, explicitly. In chapter, and in the subsequent chapter 3, we show

that the NLEP approach can be based on a set of basis functions that is determined

by the slowly varying problem outside the fast V-pulse region, in such a way that

it is still possible to determine an analytical approximation for the zeroes of D(λ).
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Here, a central role is played by the χ-dependent Sturm-Liouville problem associated

to the linearisation of (2.8) about its (stationary) homoclinic orbit, defined on a half-

line. This problem has a two-dimensional set of slowly varying solutions. We show

that these solutions can take over the role of the slow exponentials coming from the

(slow) stability problem about the trivial state U = 0 of the linear constant coeffi-

cient GS/GM-type reductions (2.3). In the context of this chapter, these solutions can

be expressed in terms of Legendre functions, due to the special/simple nature of the

nonlinearity in (2.8). In the general setting of chapter 3, the construction of the Evans

functions cannot be this explicit. The main novel analytical result of this chapter is

given by Theorem 2.12, in which indeed an explicit expression is given for the ze-

roes ofD(λ), which is a generalisation of the corresponding ‘slowly linear’ results in

[6, 7].

In section 2.4, we analyse and interpret the expression obtained in Theorem 2.12.

One of our first – and quite straightforward – results is Corollary 2.15: the σ < 0

‘double hump’ pulses of Figure 2.1b cannot be stable. The σ > 0 pulses of Figure

2.1a, however, can very well be stable. In Figure 2.3, a graphical description is given

of our two main stability results, Theorems 2.18 and 2.19. The stability of the pulse

(Uh(x),Vh(x)) depends strongly on the character of the ‘slow nonlinearity’ in (2.7).

As long as the exponent of the nonlinearity d is smaller than 3, the stability scenario

is exactly like that of the ‘slowly linear’ GS/GM-type models: (Uh(x),Vh(x)) stabili-

ses by a Hopf bifurcation for increasing α – even the shape of the orbit of the critical

eigenvalues λ(α) through C is very similar to its counterparts in [6, 7]. However, this

orbit changes drastically when d becomes larger than 3 – see Figure 2.3: for d > 3

there is a second Hopf bifurcation (as function of α) that destabilises (Uh(x),Vh(x)).

Different from the results on GS/GM-type models, for d > 3, there is only a bounded

α-region for which (Uh(x),Vh(x)) can be stable. In Theorem 2.20 this is established

rigorously for d > 3 large enough.

Finally, in section 2.5, we present some simulations of (2.7). We have not at-

tempted to perform a systematic (numerical bifurcation) analysis of the dynamics of

(2.7). Apart from checking (and confirming) the outcome of our asymptotic stability

analysis, our goal has been to obtain an indication of whether or not the ‘slow non-

linearity’ of (2.7) generates behaviour that is not known from the (vast) literature on

GS/GM-type models.

We are not aware of any examples in the literature on GS/GM-type models of

stable non-moving solitary pulses that are not completely stationary. A priori, one
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Figure 2.2: The dynamics of the maximum of the U-pulse as function of time in

a simulation of (2.7) with γ = 2, σ = 1, ε = 0.002, d = 5 and α = 90.6 for

x ∈ [−5000, 5000] with homogeneous Neumann boundary conditions – (b) zooms

in on a small part (in time) of (a). The position of the maximum does not vary in

time. The value of α is close to the second Hopf bifurcation at which (Uh(x),Vh(x))

destabilises – see Figure 2.3.

would expect that if a pulse is destabilised (for instance by decreasing α in the GM

model (2.4)), it may bifurcate into a stable standing pulse with a periodically vary-

ing amplitude. However, this requires a supercritical Hopf bifurcation, and all Hopf

bifurcations of stationary pulses in GS/GM-type models reported on in the literature

seem to be subcritical: as α decreases through its critical Hopf bifurcation value, the

standing pulse starts to oscillate up and down, but the amplitude of this oscillation

grows and after a certain time the pulse is extinguished – see for instance Figure

2.11 (a) in section 2.5. It should be noted that this statement is based on numer-

ical observations, the nature of the Hopf bifurcation of solitary, standing pulses in

GS/GM-type models has not been analysed in the literature (for instance by a centre

manifold reduction). Moreover, it should also be remarked that – for instance – the

GS model does exhibit periodic and even chaotic pulse dynamics – see for instance

[5, 42]. However, this richer type of behaviour occurs only in the context of pulse in-

teractions, it is governed by the interactions between travelling pulses, and/or between

pulses and the boundary of the domain. We have not considered this type of dynamics

here, as we have completely focused on the behaviour of standing, solitary spatially

homoclinic pulses. Nevertheless, we have observed very rich dynamics, much richer
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

than that exhibited by linear GS/GM-type models. In section 2.5 examples are given

of periodically oscillating pulses, i.e. standing pulses with an amplitude that varies

periodically in time; quasi-periodically oscillating pulses – the amplitude of the pulse

oscillation is modulated periodically – and oscillating pulses of which the amplitude

is modulated in an even more complex fashion. A simulation of such a ‘chaotically

oscillating pulse’ is shown in Figure 2.2.

In this chapter, it is not investigated whether the pulse dynamics of Figure 2.2 is

‘chaotic’ or –for instance– is quasi-periodic with three or more independent frequen-

cies. In other words, we do not study the details of the associated bifurcation scenario

and do not compute any measure by which the (possible) chaotic nature of the pulse

dynamics can be quantified. The analytic core of this chapter, the analysis of the spec-

trum associated to the stability of (Uh(x),Vh(x)), serves as an ideal starting point for

a centre manifold analysis of the nature of the Hopf (and subsequent) bifurcations for

pulses and/or multi-pulses occurring in this model (and/or generalisations of (2.7)).

This will be the subject of chapter 4, where analytic insight in (the possible route

leading to) the complex/chaotic behaviour observed in Figure 2.2 will be obtained.

Remark 2.1. Our research is strongly motivated by recent findings on the character of

the destabilisation of spatially periodic multi-pulse patterns with long wavelength L.

In [52] it is established for GM-type models that these patterns can only be destabi-

lised by two distinct types of Hopf bifurcations as L → ∞, one in which the linearly

growing mode also has wavelength L – the most commonly encountered destabilisa-

tion in the literature – and another in which this mode has wavelength 2L. Moreover,

these destabilisations alternate countably many times as L → ∞. This is called the

‘Hopf dance’ in [52]. This Hopf dance also occurs in the GS model, as indicated by

the AUTO-simulations in [52]. The GM analysis in [52] shows that this ‘dance’ is

completely driven by the exponential expression E(L) = e−L
√
α+λh associated to the

slow reduced eigenvalue equation uxx − αu = λhu originating from (2.3), in which

λh ∈ C is the (complex) eigenvalue of the homoclinic (L → ∞) limit pattern. The

rotation of E(L) ∈ C as L → ∞ is the mechanism underpinning the Hopf dance.

From a generic point of view, it is not at all clear why this ‘linear’ Hopf dance should

take place (this is even more obvious for the subsequent ‘belly dance’ [52]). Hence,

to really understand the subtleties involved in the destabilisation of long wavelength

spatially periodic patterns, one needs to go beyond ‘slowly linear’ models for which

the associated ‘slow reduced’ eigenvalue problems are not governed by expressions

as E(L). In other words, one needs to study systems of the type (2.1) with F(U, V̄)

not linear as a function of U.
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Figure 2.3: The orbits through C of the critical eigenvalue λ associated to the spectral

stability of (Uh(x),Vh(x)) as function of increasing α (γ = 2, σ = 1), to leading

order in ε. (a) d = 2 < 3: The same scenario as in the GS and the GM models

[6, 7]. Two real positive eigenvalues merge and become a pair of complex conjugate

eigenvalues that travels through the imaginary axis: the pulse is stabilised by a Hopf

bifurcation at a critical value of α. (b) d = 5 > 3: A significantly different scenario.

The eigenvalues initially display the same behaviour as in the case d < 3: the pulse is

again stabilised by a Hopf bifurcation. However, for α increasing further, the orbits

sharply turn around and follow the imaginary axis closely in the negative direction –

see (c), a zoom of (b). Eventually, the orbits branch off, head back to the imaginary

axis, and again cross the imaginary axis at a second critical – Hopf – value of α.

Finally, the pair meets again at the positive real axis and splits up into two positive

real valued eigenvalues.
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

2.2 Pulse construction

Our goal is to construct a stationary pulse solution which is homoclinic to the trivial

background state (U,V) = (0, 0). To achieve this goal, we use the singularly perturbed

nature of the system. The spatial dynamics of the stationary pulse are given by the

four-dimensional system



















































ux = p

px = −σ v2 + ε2
(

α u − γ ud
)

ε vx = q

ε qx = v − v2

u

(2.9a)

(2.9b)

(2.9c)

(2.9d)

Along the lines of Fenichel theory, we can perform a slow-fast decomposition in the

spatial variable x: recognising system (2.9) as the slow system, we can define the fast

variable ξ = x
ε

to obtain the associated fast system



















































uξ = ε p

pξ = −εσ v2 + ε3
(

α u − γ ud
)

vξ = q

qξ = v − v2

u

(2.10a)

(2.10b)

(2.10c)

(2.10d)

The trivial background state is in these systems represented by the origin (u, p, v, q) =

(0, 0, 0, 0). While the vector field which generates the flow of the system is not defined

at the origin due to the singular v2

u
term in the v-equation, the ratio v2

u
will be well-

defined for the constructed pulse.

2.2.1 Geometric analysis

When ε → 0, the slow and fast systems (2.9) and (2.10) reduce to the reduced slow

system

uxx = −σ v2 (2.11a)

q = v − v2

u
= 0 (2.11b)
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2.2 Pulse construction

and the reduced fast system

uξ = pξ = 0 (2.12a)

vξξ = v − v2

u
(2.12b)

We see that in this limit, the slow and fast dynamics decouple completely. We define

M0 = {(u, p, v, q) | u > 0, v = q = 0} as the two-dimensional normally hyperbolic in-

variant manifold that consists of hyperbolic equilibria of the reduced fast system

(2.12); it has three-dimensional stable and unstable manifoldsWs,u(M0) which are

the unions of the two-parameter families of one-dimensional stable and unstable man-

ifolds (fibres) at the saddle points (u0, p0, 0, 0) ∈ M0. The reduced fast dynamics

(2.12) allow a two-parameter family of homoclinic solutions v0,h:

vh,0(ξ; u0, p0) =
3 u0

2
sech2

(

1
2
ξ
)

(2.13)

The union over this family as a bundle over M0 forms the intersection Ws(M0) ∪
Wu(M0), see Figure 2.4a.

Fenichel persistence theory [18, 19, 29, 30] states that, for ε sufficiently small,

the full system (2.10) has a locally invariant slow manifoldMε which is O(ε) close to

M0. SinceM0 is also invariant under the non-reduced (fast) flow of (2.10), we have

already found Mε = M0. Moreover, Fenichel theory states the existence of three-

dimensional stable and unstable manifolds Ws,u(Mε) which are O(ε) close to their

unperturbed counterpartsWs,u(M0). The intersectionWs(Mε)∩Wu(Mε) exists, is

transversal and therefore determines a two-dimensional manifold. This existence and

transversality is based on a Melnikov-type calculation in [6], which can be applied

directly to system (2.10). Since the original model equations (2.7) are invariant under

reflection in the spatial variable x → −x, this reflection is in the four-dimensional

system (2.9) equivalent to the momentum reflection (p, q) → (−p,−q). Because the

coordinate reflection ξ → −ξ mapsWs(Mε) toWu(Mε) and vice versa, it follows

that the intersection of these two manifolds is symmetric in the invariant subset of

the momentum reflection, the two-dimensional hyperplane {(u, p, v, q) | p = q = 0}.
The transversality of this hyperplane to Mε excludes the possibility that it has the

intersection Ws(Mε) ∩ Wu(Mε) as a subset, from which we can conclude that

Ws(Mε) ∩Wu(Mε) intersects the hyperplane {(u, p, v, q) | p = q = 0} transversally.

This determines a one-parameter family of orbits bi-asymptotic to Mε. Since both

Ws(Mε) andWu(Mε) are O(ε) close toWs,u(M0) where the two-parameter family

of homoclinic orbits was parametrised by u0 and p0 (see (2.13)), it is convenient to
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

M0
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(a)

MΕ

W
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W
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q
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Figure 2.4: Transversal intersection of the stable and unstable manifolds. (a): The

family of homoclinic orbits vh,0(ξ; u0, p0), viewed as a bundle overM0. Both u- and

p-directions are along the vertical axis;M0 is indicated in blue. (b): For the perturbed

system (ε > 0),Ws(Mε) andWu(Mε) intersect transversally: γh (indicated in red)

representsWs(Mε) ∩Wu(Mε), a one-parameter family of orbits homoclinic toMε

– recall that dim (Mε) = 2, dim (Ws,u(Mε)) = 3 so dim (γh) = 2.

use u0 to parametrise the one-parameter family of orbits bi-asymptotic toMε determ-

ined byWs(Mε) ∩Wu(Mε). For a sketch of the situation, see Figure 2.4b.
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2.2 Pulse construction

The next step is to use this structure to construct an orbit homoclinic to (0, 0, 0, 0)

in the full, perturbed system (2.9) / (2.10). For that purpose, it is necessary to consider

the dynamics onMε. The flow onMε can be determined by substituting v = q = 0

in (2.9) and yields

uxx = ε
2
(

α u − γ ud
)

(2.14)

Introducing a super-slow coordinate χ = εx, this can be written as

uχχ = α u − γ ud (2.15)

This equation allows a solution (bi)asymptotic to the trivial background state: since

γ > 0, it is homoclinic to (0, 0, 0, 0) ∈ Mε and explicitly given by

uh,0(χ) =

[

α(d + 1)

2γ
sech2

(

1
2
(d − 1)

√
αχ

)

]
1

d−1

(2.16)

The super-slow dynamics onMε allows us to get a grip on picking exactly that orbit

bi-asymptotic toMε from the intersectionWs(Mε) ∩Wu(Mε) which is also homo-

clinic to (0, 0, 0, 0) ∈ Mε, that is, which is -mostly- asymptotically close to uh,0 ∈ Mε.

This orbit will make a fast excursion through the V-field, since this is where the fast

dynamics take place (see (2.10), (2.12)). Since our goal is to construct a symmet-

ric pulse, we can choose an interval symmetric around the origin in which the fast

jump occurs. The interval needs to be asymptotically small with respect to the slow

variable x, but asymptotically large with respect to the fast variable ξ: to be asymp-

totically close toMε, the V-component of the pulse needs to be exponentially small.

A standard [6] choice for this fast spatial region is

I f =

{

ξ ∈ R
∣

∣

∣

∣

∣

∣

|ξ| < 1
√
ε

}

(2.17)

Indeed, x ≪ 1 and ξ ≫ 1 on ∂I f . For a sketch of the orbit, see Figure 2.5.

Now, we define the take-off and touchdown sets To,d ⊂ Mε to be the collection

of base points of all Fenichel fibres in Wu(Mε) resp. Ws(Mε) that have points in

the transverse intersectionWs(Mε)∩Wu(Mε). Detailed information on To,d can be

obtained by studying the fast system (2.10) onMε. First, we observe that pξ = O(ε3)

onMε so the p-coordinate onMε remains constant to leading order during the fast

excursion through the V-field. Therefore, the change in the p-coordinate of the pulse

is completely determined by its accumulated change during its excursion through the
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

uh ,0

u*

vh ,0

M Ε u

p,q

v

Figure 2.5: An asymptotic construction of the orbit γh(ξ) of Theorem 2.2 drawn in

three dimensions. The p- and q-directions are combined, since there is no direct in-

teraction between them. The blue surface represents the persistent slow manifoldMε

while the fast dynamics take place on the red surface, which is spanned by the v and

q directions. The slow homoclinic orbit uh,0(χ) is drawn in blue, the fast homoclinic

orbit vh,0(ξ; u∗, 0) is drawn in red. The jump through the fast field projected onMε is

indicated by the purple line.

fast field, and is given by

∆ξp =

∫

I f

pξ dξ =

∫

I f

−εσ v2 + O(ε3) dξ =

∫ ∞

−∞
−εσ vh,0(ξ; u0, p0)2 dξ + O(ε2)

= −6 εσ u2
0 + O(ε2) (2.18)

where we have used (2.10) and (2.13). Moreover, since uξ = ε p and p = O(ε) on I f ,

we see that ∆ξu = O(ε2). This means that during the jump through the fast field, the

u-coordinate of the pulse does not change to leading order.

Since Ws(Mε) ∩ Wu(Mε) intersects the hyperplane {(u, p, v, q) | p = q = 0} trans-

versally, we can define the take-off and touchdown sets as curves

To =
{

(u, p, 0, 0) ∈ Mε

∣

∣

∣ p = 3 εσu2
}

, Td =
{

(u, p, 0, 0) ∈ Mε

∣

∣

∣ p = −3 εσu2
}

(2.19)

at leading order. Note that if σ changes sign, the take-off and touchdown curves are
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2.2 Pulse construction

Td

u h ,0
To

u * u

p

(a) For σ > 0 the jump is downwards, the resulting

pulse is shown in Figure 2.1a.

Td

u h ,0
To

u * u

p

(b) For σ < 0 the jump is upwards, the resulting

pulse is shown in Figure 2.1b.

Figure 2.6: The homoclinic orbit uh,0(χ) is drawn in blue in the (u, p)-plane. The take-

off and touchdown curves To =
{

(u, p)
∣

∣

∣ p = 3 εσu2
}

and Td =
{

(u, p)
∣

∣

∣ p = −3 εσu2
}

are drawn in green. The jump through the fast field at u = u∗ is indicated by the

dashed purple line.

interchanged: for σ > 0 the take-off curve has positive p-values, while for σ < 0 the

take-off curve has negative p-values. This also means the direction of the fast jump

is reversed when σ changes sign, see (2.18) and Figure 2.6a.

An orbit of the system (2.9) / (2.10) is homoclinic to (0, 0, 0, 0) if its Fenichel fibre

basepoints in To,d intersect the super-slow homoclinic orbit uh,0 ∈ Mε, see Figure

2.6a. This intersection can be determined by integrating (2.14) once,

1
2

p2 = ε2
(

1
2
α u2 − γ

d + 1
ud+1

)

(2.20)

and substituting p = ±3 εσu2 from (2.19) to obtain

2γ

d + 1
ud−1 = α − 9σ2u2 (2.21)

which for α, γ, |σ| > 0 and d > 1 always has a unique real positive solution, de-

noted by u∗. Furthermore, we define χ∗ as the (unique) positive χ-value for which

uh,0(χ∗) = u∗, the u-coordinate of the intersection. When σ < 0, we obtain a slightly

different pulse since part of the slow homoclinic orbit uh,0 is covered twice, see Figure

2.6b. This has its consequences for the formulation of our main existence result:
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Theorem 2.2. Let ε > 0 be sufficiently small. Then, for all values of the para-

meters α > 0, γ > 0, |σ| > 0 and d > 1, there exists a unique orbit γh(ξ) =

(uh(ξ), ph(ξ), vh(ξ), qh(ξ)) as a solution of system (2.10) which is homoclinic to

(0, 0, 0, 0) and lies in the intersectionWs(Mε) ∩Wu(Mε). Moreover,

‖vh(ξ) − vh,0(ξ; u∗, 0)‖∞ = O(ε) ,

‖qh(ξ) − d
dξ

vh,0(ξ; u∗, 0)‖∞ = O(ε) (2.22)

for all ξ ∈ R and

‖uh(χ) − uh,0(χ − sgn(σ) χ∗)‖∞ = O(ε) ,

‖ph(χ) − ε d
dχ

uh,0(χ − sgn(σ) χ∗)‖∞ = O(ε) (2.23)

for all χ < 0, while

‖uh(χ) − uh,0(χ + sgn(σ) χ∗)‖∞ = O(ε) ,

‖ph(χ) − ε d
dχ

uh,0(χ + sgn(σ) χ∗)‖∞ = O(ε) (2.24)

for all χ > 0.

The orbit γh corresponds to a homoclinic pulse solution (Uh,Vh) of system (2.7).

Proof. The missing details in the above geometric construction, especially in the pre-

cise estimates of (2.22), (2.23) and (2.24), can be obtained in a manner identical to

the corresponding result on ‘slowly linear’ systems in [6]. �

2.3 Pulse stability: analysis

The linear stability of the stationary pulse solution (Uh,Vh) of (2.7) found in the

previous section is determined by adding a perturbation of the form (ū(x), v̄(x)) eλt

and linearising equation (2.7) around the stationary solution, obtaining in the fast

variable ξ,






















































ūξ = ε p̄

p̄ξ = −2 εσVh(ξ) v̄ + ε3
(

α + λ − γ d Uh(ξ)d−1
)

ū

v̄ξ = q̄

q̄ξ =

(

1 + λ − 2
Vh(ξ)

Uh(ξ)

)

v̄ +
Vh(ξ)2

Uh(ξ)2
ū

(2.25a)

(2.25b)

(2.25c)

(2.25d)
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2.3 Pulse stability: analysis

We write the fast system (2.25) in vector form

d
dξ
φ = A(ξ; λ, ε)φ (2.26)

where φ(ξ) = ((ū(ξ), p̄(ξ), v̄(ξ), q̄(ξ))T and

A(ξ; λ, ε) =





































0 ε 0 0

ε3
(

α + λ − γ d Uh(ξ)d−1
)

0 2 εσVh(ξ) 0

0 0 0 1
Vh(ξ)2

Uh(ξ)2 0 1 + λ − 2
Vh(ξ)

Uh(ξ)
0





































(2.27)

Since the V-component of the stationary pulse decays much faster than its U-compo-

nent, the ratio Vh

Uh
is well-defined and converges to zero as ξ → ±∞. This results in

the constant coefficient matrix

A∞(λ, ε) = lim
|ξ|→∞

A(ξ; λ, ε) =































0 ε 0 0

ε3 (α + λ) 0 0 0

0 0 0 1

0 0 1 + λ 0































(2.28)

which has eigenvalues

± Λ f = ±
√

1 + λ and ± ε2Λs = ±ε2
√
α + λ (2.29)

and associated eigenvectors

E f ,± =
(

0, 0, 1,±
√

1 + λ
)T

and Es,± =
(

1,±ε
√
α + λ, 0, 0

)T
. (2.30)

The essential spectrum of the linear eigenvalue problem (2.25) therefore is

σess = {λ ∈ R | λ ≤ max(−α,−1)} , (2.31)

see [45]. Since α > 0, we can conclude that the stability of the pulse (Uh,Vh) is

determined by its discrete spectrum.

2.3.1 The Evans function and its decomposition

The Evans function, which is complex analytic outside the essential spectrum – see

[3, 45] and the references therein – associated to system (2.25) can be defined by

D(λ, ε) = det
[

φi(ξ; λ, ε)
]

(2.32)

where the functions φi, i = 1, 2, 3, 4 satisfy boundary conditions at ±∞ (see below)

and span the solution space of (2.25). The eigenvalues of (2.26) outside σess coincide

with the roots ofD(λ, ε), including multiplicities.
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Definition 2.3. A statement of the form ‘ f (x) { c g(x) as x → ∞’ is true whenever

the limit limx→∞
1

g(x)
f (x) = c exists and is well-defined.

Lemma 2.4. For all λ ∈ C \ σess, there are solutions φ f ,L/R(ξ; λ, ε) and φs,L/R(ξ; λ, ε)

to (2.25) such that the set
{

φ f ,L/R(ξ; λ, ε), φs,L/R(ξ; λ, ε)
}

spans the solution space of

(2.25) and

φ f ,L(ξ; λ, ε){ E f ,+ eΛ f ξ as ξ → −∞ (2.33a)

φ f ,R(ξ; λ, ε){ E f ,− e−Λ f ξ as ξ → ∞ (2.33b)

φs,L(ξ; λ, ε){ Es,+ eε
2Λsξ as ξ → −∞ (2.33c)

φs,R(ξ; λ, ε){ Es,− e−ε
2Λsξ as ξ → ∞ (2.33d)

Moreover, there exist analytic transmission functions t f ,+(λ, ε) and ts,+(λ, ε) such that

φ f ,L(ξ; λ, ε){ t f ,+(λ, ε) E f ,+ eΛ f ξ as ξ → ∞ (2.34a)

φs,L(ξ; λ, ε){ ts,+(λ, ε) Es,+ eε
2Λsξ as ξ → ∞ (2.34b)

where ts,+(λ, ε) is only defined if t f ,+(λ, ε) , 0. These choices, when possible, determ-

ine φ f ,L/R and φs,L uniquely.

Proof. Although the linearised system 2.26 is not identical to its counterpart in [6],

exactly the same arguments as in [6] can be applied here. Therefore, we refer to [6]

for the details of the proof. �

The Evans function can be determined by taking the limit ξ → ∞ of the determi-

nant of the functions defined in Lemma 2.4, since the Evans function itself does not

depend on ξ since the trace of A(ξ; λ, ε) vanishes (Abel’s theorem). This yields (see

[6])

D(λ, ε) = 4ε t f ,+(λ, ε) ts,+(λ, ε)
√

1 + λ
√
α + λ (2.35)

Corollary 2.5. The set of eigenvalues of (2.26) is contained in the union of the sets

of roots of t f ,+(λ, ε) and ts,+(λ, ε).

Note that, due to the fact that ts,+(λ, ε) only defined when t f ,+(λ, ε) , 0, the Evans

function D(λ, ε) does not necessarily vanish when t f ,+(λ, ε) = 0. This is called the

‘resolution to the NLEP paradox’ in [6, 7]. The roots of t f ,+ will be discussed later,

in section 2.3.3.
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2.3 Pulse stability: analysis

2.3.2 The slow solution φs,L outside I f

To obtain more information about the roots of ts,+(λ, ε), it is necessary to determine

the leading order behaviour of φs,L(ξ; λ, ε) in the different coordinate regimes. From

Lemma 2.4 we know that φs,L is slowly growing in ξ, since its leading order beha-

viour for both ξ → ±∞ is determined by the exponential growth factor ε2Λs = O(ε2).

However, the dynamics governing φs,L differ significantly inside and outside the fast

spatial region I f . Based on our knowledge of the homoclinic solution stated in The-

orem 2.2, we can infer the form of the matrix A(ξ; λ, ε) both inside and outside I f :

A f (ξ; λ, ε) =





































0 ε 0 0

ε3
(

α + λ − γ d ud−1
∗

)

0 2 εσ vh,0(ξ; u∗, 0) 0

0 0 0 1
vh,0(ξ;u∗,0)2

u2
∗

0 1 + λ − 2
vh,0(ξ;u∗,0)

u∗
0





































(2.36)

to leading order for ξ ∈ I f and

As(ξ; λ, ε) =

































0 ε 0 0

ε3
(

α + λ − γ d uh,0(|ε2ξ| + sgn(σ) χ∗)
d−1

)

0 0 0

0 0 0 1

0 0 1 + λ 0

































(2.37)

for ξ < I f to leading order.

Note that it is the fact that this ‘intermediate’ slow matrix exists, or better: that it

is not identical to A∞(λ, ε) (2.28), that distinguishes the ‘slowly nonlinear Gierer-

Meinhardt problem’ from ‘slowly linear’ problems as the classical Gierer-Meinhardt

or Gray-Scott systems. Note also that a intermediate matrix as As(ξ; λ, ε) was already

encountered in [8], in the study of a system with non-exponential (algebraic) decay.

Lemma 2.6. Consider the system

d
dξ
ψ = As(ξ; λ, ε)ψ (2.38)

with As(ξ; λ, ε) as given in (2.37). There exist solutions ψ f ,±(ξ; λ, ε) and ψs,±(ξ; λ, ε)

which span the solution space of (2.38) for ξ < − 1√
ε

and

ψ f ,+(ξ; λ, ε){ E f ,+ eΛ f ξ, ψs,+(ξ; λ, ε){ Es,+ eε
2Λsξ, (2.39a)

ψ f ,−(ξ; λ, ε){ E f ,− e−Λ f ξ, ψs,−(ξ; λ, ε){ Es,− e−ε
2Λsξ (2.39b)

as ξ → −∞.
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Proof. The same arguments as in the proof of Lemma 2.4 can be used, because

limξ→−∞ As(ξ; λ, ε) = A∞(λ, ε). �

Since A(ξ; λ, ε) is to leading order equal to As(ξ; λ, ε) for ξ < − 1√
ε

and both φs,L

and ψs,+ { Es,+ eε
2Λsξ as ξ → −∞, combining Lemma 2.4 and Lemma 2.6 yields the

following Corollary:

Corollary 2.7. For ξ < − 1√
ε
, we can write

φs,L(ξ; λ, ε) = ψs,+(ξ; λ, ε)

to leading order.

The slow evolution of the ū-component of ψs,± can be written, again using χ =

ε2ξ, as

ūχχ −
(

α + λ − γ d uh(|χ| + sgn(σ) χ∗)
d−1

)

ū = 0 (2.40)

We can introduce the coordinate transformation

z = − 1
√
α

d
dχ

uh,0(χ − sgn(σ) χ∗)

uh,0(χ − sgn(σ) χ∗)

=
1
√
α

d

dχ
log

1

uh,0(χ − sgn(σ) χ∗)

= tanh
(

1
2
(d − 1)

√
α (χ − sgn(σ) χ∗)

)

(2.41)

(by (2.16)) for the region χ < 0 to obtain

(1 − z2) ūzz − 2 z ūz +

(

ν(ν + 1) − µ2

1 − z2

)

ū = 0 (2.42)

where

ν =
d + 1

d − 1
(2.43a)

µ = +
2

d − 1

√

1 +
λ

α
(2.43b)

where we have chosen the branch cut associated to σess such that Re µ > 0; note that

ν > 1. Equation (2.42) is the Legendre differential equation: its solutions are the

associated Legendre functions P
µ
ν (z) and Q

µ
ν (z) [1, 2]. Given the symmetry z → −z

of the equation, we choose the basis of the solution space to be P
µ
ν (±z). The limit
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2.3 Pulse stability: analysis

χ → −∞ corresponds to the limit z → −1. Taking into account the normalisation of

ψs,+ from Lemma 2.6, the correct expression for the ū-component of ψs,+ is

ū(χ) = Γ(1 + µ) eΛssgn(σ) χ∗P
−µ
ν (−z(χ)) (2.44)

such that

lim
χ↑0

ū(χ) = Γ(1 + µ) eΛssgn(σ) χ∗P
−µ
ν (z∗) (2.45)

where we define

z∗ = sgn(σ) tanh
(

1
2
(d − 1)

√
αχ∗

)

(2.46)

We can express z∗ in terms of u∗ using equation (2.15): integrating once yields

u2
χ = α u2 − 2 γ

d + 1
ud+1 (2.47)

so, by equation (2.41)

z2 =
1

α

u2
χ

u2
= 1 − 2γ

α(d + 1)
ud−1 (2.48)

hence

α
(

1 − z2
∗
)

=
2γ

d + 1
ud−1
∗ = α − 9σ2u2

∗ (2.49)

by equation (2.21); from this, we conclude that

z∗ =
3σ
√
α

u∗. (2.50)

Note that z∗ inherits the sign of σ since χ∗ is chosen to be positive, see section 2.2.1.

Lemma 2.8. Let ūs(ξ; λ, ε) be the ū-component of φs,L(ξ; λ, ε) as defined in Lemma

2.4. Then

ūs(ξ) = Γ(1 + µ) eΛssgn(σ) χ∗P
−µ
ν (z∗) + O(ε

√
ε) for ξ ∈ I f . (2.51)

Moreover, there are two transmission functions ts,+(λ, ε) and ts,−(λ, ε) such that

φs,L(ξ; λ, ε) = ts,+(λ, ε)ψs,−(−ξ; λ, ε)+ ts,−(λ, ε)ψs,+(−ξ; λ, ε) for ξ >
1
√
ε

(2.52)

up to exponentially small terms in ξ, where ts,+ was already introduced in Lemma 2.4.
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Proof. The ū-component of φs,L is constant on I f , since both d
dξ

ūs and d
dξ

p̄s,+ are

asymptotically small on I f . Therefore, we can determine its leading order value using

Corollary 2.7 and (2.45). The matrix As as defined in (2.37) is symmetric in ξ. For the

region ξ > 1√
ε

we can therefore use the same ψ f ,± and ψs,± from Lemma 2.6 as a basis

for the solution space in this region, under the reflection ξ → −ξ. The role of ψs,+

and ψs,− is reversed compared to the interval ξ < − 1√
ε
: we see that ψs,−(−ξ) grows

(slowly) exponentially as ξ → ∞, whereas ψs,+(−ξ) has an exponential (slow) decay

under the same limit. The normalisation of φs,L for ξ → ∞, which by Lemma 2.4

introduces ts,+(λ, ε) in (2.52), does not exclude the possibility that for ξ > 1√
ε
, φs,L has

components which decay (slowly) as ξ → ∞. Therefore, we write the leading order

expression of φs,L in this region as a linear combination of a slowly increasing and

a slowly decreasing component, and introduce ts,−(λ, ε) to measure the decreasing

component. A term containing the fast decreasing component is omitted, since for

ξ > 1√
ε

this would only give an exponentially small correction to the result in (2.52).

�

Based on the results of Lemma 2.8, we have

lim
χ↓0

ūs(χ) = Γ(1 + µ)
[

ts,+(λ, ε) P
−µ
ν (−z∗) + ts,−(λ, ε) P

−µ
ν (z∗)

]

(2.53)

to leading order.

Corollary 2.9. Combining equations (2.51) and (2.53) yields

ts,+(λ, ε) P
−µ
ν (−z∗) + ts,−(λ, ε) P

−µ
ν (z∗) = P

−µ
ν (z∗) + O(ε

√
ε) (2.54)

to leading order.

This gives a (first) relation between ts,+(λ, ε) and ts,−(λ, ε).

2.3.3 The fast components of φs,L inside I f

Since ūs(ξ; λ, ε) is constant to leading order for ξ ∈ I f (see Lemma 2.8), we can

represent it by its value at 0 ∈ I f . Moreover, the equation for the v̄-component in

(2.25) decouples and yields an inhomogeneous Sturm-Liouville problem,

v̄ξξ −
(

(1 + λ) − 2

u∗
vh,0(ξ; u∗, 0)

)

v̄ =
1

u2
∗

vh,0(ξ; u∗, 0)2 ūs(0) (2.55)

where we used that uh(ξ) = u∗ and vh(ξ) = vh,0(ξ; u∗, 0) for ξ ∈ I f to leading order

(see Theorem 2.2). Based on the slow behaviour of φs,L determined in Lemmas 2.4
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2.3 Pulse stability: analysis

and 2.8, we observe that the solution v̄ of (2.55) must extinguish as ξ → ∂I f , which

implies that v̄ must decay exponentially fast in ξ.

By the nature of the Gierer-Meinhardt equation (2.4) and its ‘slow nonlinearity’

the problem can be solved exactly along the same lines as done in section 2.3.2 for

the slow problem. First, we introduce a coordinate transformation similar to (2.41),

ζ = −
d
dξ

vh,0(ξ; u∗, 0)

vh,0(ξ; u∗, 0)
=

d

dξ
log

1

vh,0(ξ; u∗, 0)
= tanh

(

1
2
ξ
)

(2.56)

using (2.13). In this coordinate, vh can be written as

vh(ζ; u∗, 0) =
3 u∗

2

(

1 − ζ2
)

(2.57)

and equation (2.55) is transformed to

(1 − ζ2) v̄ζζ − 2 ζ v̄ζ +

(

12 − 4(1 + λ)

1 − ζ2

)

v̄ = 9 ūs(0) (1 − ζ2) (2.58)

and I f = {ζ ∈ R | |ζ | < 1 } up to exponentially small terms, compare (2.17).

Its homogeneous reduction

(1 − ζ2) v̄ζζ − 2 ζ v̄ζ +

(

12 − 4(1 + λ)

1 − ζ2

)

v̄ = 0 (2.59)

can again be solved using associated Legendre functions; it is a special case (α = 1,

d = 2) of the slow eigenvalue problem (2.42).

It should be noted that there is a crucial difference between (2.42) and (2.58).

The slow equation (2.42) is only defined on part of the ‘full’ domain: z ∈ (−1, z∗) ⊂
(−1, 1). Therefore, the eigenvalues of (2.42) do not yield direct implications for the

stability of the pulse (Uh,Vh). This is very different from the fast system (2.58). It

has three eigenvalues; its corresponding eigenfunctions are

λ
(0)

f
=

5

4
, v̄

(0)

f
(ζ) =

(

1 − ζ2
)

3
2

(2.60a)

λ
(1)

f
= 0, v̄

(1)

f
(ζ) = ζ

(

1 − ζ2
)

= − 2

3u∗

dζ

dξ

d

dζ
vh(ζ; u∗, 0) (2.60b)

λ
(2)

f
= −3

4
, v̄

(2)

f
(ζ) =

(

ζ2 − 1
5

)

√

1 − ζ2 (2.60c)

Referring to [6], we recall that the roots of t f ,+(λ, ε) are to leading order given by the

eigenvalues of (2.59), so we have the following Lemma:
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Lemma 2.10. There are unique λ(i)(ε) ∈ R such that limε→0 λ
(i)(ε) = λ

(i)

f
and

t f ,+(λ(i)(ε), ε) = 0 with multiplicity 1 for i = 0, 1, 2.

Proof. See [6]. �

Hence, the eigenvalues of (2.59) are to leading order zeroes of the fast component

of the Evans function D(λ, ε) given in (2.35) and thus in principle candidates for be-

ing zeroes of the full Evans function.

For all λ ∈ C \ σess, the solution space of (2.59) is spanned by the associated

Legendre functions

v̄±(ζ; λ) = c±(λ)P−2
√

1+λ
3

(±ζ); lim
ζ→±1

v̄±(ζ; λ) = 0 (2.61)

where we normalise v̄± (i.e. choose c±) such that their Wronskian is given by

W(v̄−, v̄+)(ζ; λ) =
1

1 − ζ2
(2.62)

which implies that

c+(λ) c−(λ) = −1

2
Γ
(

4 + 2
√

1 + λ
)

Γ
(

−3 + 2
√

1 + λ
)

(2.63)

Indeed, the expression in (2.63) has poles at λ = λ
(i)

f
, i = 0, 1, 2. This is due to the

fact that v̄±(ζ; λ) cannot span the two-dimensional solution space for λ = λ
(i)

f
. Since

we have normalised the Wronskian (2.62), this is now encoded in the values of c±(λ).

We know that the inhomogeneous equation (2.58) has a unique bounded solution

v̄in(ξ; λ) for all λ ∈ C \ σess and λ , λ
(0,1,2)

f
. It can be determined using the Green’s

function

G(ζ, s; λ) =



























v̄−(s; λ) v̄+(ζ; λ)

W(v̄−, v̄+)(s; λ) (1 − s2)
s < ζ

v̄−(ζ; λ) v̄+(s; λ)

W(v̄−, v̄+)(s; λ) (1 − s2)
s > ζ

(2.64)

so that

v̄in(ζ; λ) =

∫ 1

−1

9 ūs(0) (1 − s2) G(ζ, s; λ) ds (2.65)

= 9 ūs(0)

[

v̄+(ζ; λ)

∫ ζ

−1

(1 − s2) v̄−(s; λ) ds + v̄−(ζ; λ)

∫ 1

ζ

(1 − s2) v̄+(s; λ) ds

]
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2.3 Pulse stability: analysis

Note that the inhomogeneous term in (2.58) is only orthogonal to the eigenfunc-

tion corresponding to λ
(1)

f
= 0; for the other two eigenvalues the solvability condition

∫ 1

−1

9 ūs(0) (1 − ζ2) v̄
(i)

f
(ζ) dζ = 0 i = 0, 1, 2 (2.66)

is not satisfied since both v̄
(0,2)

f
(ζ) and 9(1 − ζ2) are even functions in ζ. This means

that v̄in as a function of λ has a simple pole at λ
(0)

f
and λ

(2)

f
, and is smooth at λ

(1)

f
= 0.

To summarise this section, the resulting expression of v̄in is restated in the follow-

ing Lemma:

Lemma 2.11. The unique solution v̄in(ζ; λ) to equation (2.58) is given by

v̄in(ζ; λ) = 9 ūs(0)

[

v̄+(ζ; λ)

∫ ζ

−1

(1 − s2) v̄−(s; λ) ds + v̄−(ζ; λ)

∫ 1

ζ

(1 − s2) v̄+(s; λ) ds

]

(2.67)

with v±(ζ; λ) as defined in (2.61) and subject to condition (2.63).

2.3.4 The slow transmission function ts,+(λ, ε)

In section 2.3.2 we studied φs,L outside I f and in section 2.3.3 we considered its fast

dynamics inside I f . However, we did not yet combine these results.

Using (2.25), we see that

ūξξ = −2 ε2σVh(ξ) v̄ + O(ε4)

= −2 ε2σ vh,0(ξ; u∗, 0) v̄in (ζ(ξ); λ) (2.68)

to leading order in I f . Thus, the total change of ūξ over I f is given by

∆ξūξ =

∫

I f

uξξ dξ

= −2 ε2σ

∫ ∞

−∞
vh,0(ξ; u∗, 0) v̄in (ζ(ξ); λ) dξ

= −2 ε2σ

∫ 1

−1

vh,0 (ξ(ζ); u∗, 0) v̄in (ζ; λ)
2 dζ

1 − ζ2

= −2 ε2σ

∫ 1

−1

3 u∗
2

(1 − ζ2) v̄in (ζ; λ)
2 dζ

1 − ζ2

= −6 ε2σ u∗

∫ 1

−1

v̄in (ζ; λ) dζ := ∆ f (2.69)
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

all to leading order. Using the expression for v̄in(ζ; λ) from Lemma 2.11 and the

symmetry in ζ between v̄+ and v̄−, this can be rewritten as

∆ f = −108 ε2σ u∗ ūs(0)

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ (2.70)

The desired coupling between the slow and fast dynamics can now be obtained by

realising that this change in ūξ should match with the slow behaviour of φs,L outside

I f . Using Corollary 2.7 and Lemma 2.8,

∆ f = ∆ξūξ = ūξ

(

1√
ε

)

− ūξ

(

− 1√
ε

)

= ε2 Γ(1 + µ)
dz

dχ

d

dz

[

ts,+ P
−µ
ν (−z) + ts,− P

−µ
ν (z)

]

z=z∗

− ε2Γ(1 + µ)
dz

dχ

d

dz

[

P
−µ
ν (−z)

]

z=−z∗

= ε2 Γ(1 + µ)
dz

dχ

d

dz

[

ts,+ P
−µ
ν (−z) +

(

ts,− + 1
)

P
−µ
ν (z)

]

z=z∗
(2.71)

to leading order. Together, expressions (2.69) and (2.71) can be used to obtain a

second relation between the two transmission functions ts,±(λ, ε), see Corollary 2.9.

Thus, we can eliminate ts,− and obtain a leading order expression for ts,+:

ts,+ ε
2 dz

dχ

d

dz

[

P
−µ
ν (−z) − P

−µ
ν (−z∗)

P
−µ
ν (z∗)

P
−µ
ν (z)

]

z=z∗

=
∆ f

Γ(1 + µ)
− 2 ε2 dz

dχ

d

dz

[

P
−µ
ν (z)

]

z=z∗

so that, using the Wronskian W
(

P
−µ
ν (z), P

−µ
ν (−z)

)

(z∗),

ts,+ = P
−µ
ν (z∗)

∆ f

Γ(1+µ)
− 2 ε2 dz

dχ
d
dz

[

P
−µ
ν (z)

]

z=z∗

ε2 dz
dχ

W
(

P
−µ
ν (z), P

−µ
ν (−z)

)

(z∗)
(2.72)

which, using (2.69) and (2.50), leads to the following Theorem:

Theorem 2.12. Let ε > 0 be sufficiently small. The function ts,+(λ, ε) is meromorphic

as a function of λ outside σess. It has simple poles at λ(0)(ε) and λ(2)(ε) and is analytic

elsewhere. The leading order behaviour of ts,+ is given by

ts,+(λ, 0) = P
−µ
ν (z∗)

√
α z∗

Γ(1+µ)

∫ 1

−1
v̄in (ζ; λ) dζ + dz

dχ
d
dz

[

P
−µ
ν (z)

]

z=z∗

− 1
2

dz
dχ

W
(

P
−µ
ν (z), P

−µ
ν (−z)

)

(z∗)
(2.73)

The nontrivial roots of the Evans functionD(λ, ε) coincide with the roots of ts,+(λ, ε).

These roots determine the stability of the pulse (Uh(ξ),Vh(ξ)).
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2.4 Pulse stability: results

Note that it is clear from (2.73) that ts,+ inherits the poles of v̄in at λ = λ
(0,2)

f
.

The roots of the Evans function D(λ, ε) outside σess are given by the roots of the

product t f ,+(λ, ε) ts,+(λ, ε). Based on orthogonality arguments, we have established

that ts,+(λ, 0) has simple poles at λ = λ
(0,2)

f
, see the solvability condition (2.66). These

coincide with the (simple) roots of t f ,+(λ, 0) (see Lemma 2.10), so the Evans function

will not necessarily be zero at these values of λ. Moreover, since the Evans function

is analytic, this statement continues to hold for ε > 0. Note that λ = 0 is always a

trivial eigenvalue for system (2.25), with eigenfunction d
dξ

(Uh(ξ),Vh(ξ)); it does not

appear as a zero of ts,+(λ, 0).

2.4 Pulse stability: results

The purpose of this section is to analyse the roots of ts,+(λ, 0) as given in Theorem

2.12. The Wronskian in the denominator is always finite for −1 < z∗ < 1 because the

underlying differential equation (2.42) is only singular at z = −1, 1. We can therefore

focus at the numerator, which is zero whenever P
−µ
ν (z∗) = 0 or

√
α z∗

Γ(1 + µ)

∫ 1

−1

v̄in (ζ; λ) dζ +
dz

dχ

d

dz

[

P
−µ
ν (z)

]

z=z∗
= 0 (2.74)

Using
[

dz

dχ

]

z=z∗

=
1

2
(d − 1)

√
α(1 − z2

∗) (2.75)

and
d

dz

[

P
−µ
ν (z)

]

z=z∗
=

1

1 − z2
∗

(

(ν − µ)P
−µ
ν−1

(z∗) − z∗νP
−µ
ν (z∗)

)

(2.76)

equation (2.74) can be rewritten into

18 z∗ P
−µ
ν (z∗)

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ

+
1

2
(d − 1)

(

(ν − µ)P
−µ
ν−1

(z∗) − z∗νP
−µ
ν (z∗)

)

= 0, (2.77)

using (2.70) and recalling that ūs(0) = Γ(1 + µ) P
−µ
ν (z∗) to leading order by Lemma

2.8. Since this equation is only relevant if P
−µ
ν (z∗) , 0, we divide by z∗ P

−µ
ν (z∗) (note

that z∗ , 0 since u∗ , 0, see (2.50)) to obtain the following:
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Figure 2.7: Here, LHS(λ) is plotted in blue for λ ∈ (−1, 2); the red line is the graph of

RHS( λ
α

; ν, z∗). In the left plot α = 0.05, ν = 2 and z∗ = 0.75. In the right plot α = 1.5,

ν = 2 and z∗ = −0.60; the right plot is a illustration of the statement in Theorem 2.14.

Corollary 2.13. If P
−µ
ν (z∗) , 0, the nontrivial roots of the Evans function D(λ, ε) as

defined in (2.35) are given to leading order by the solutions of the equation

18

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ =
1

ν − 1













ν − (ν − µ)
P
−µ
ν−1

(z∗)

z∗ P
−µ
ν (z∗)













, (2.78)

with µ, ν, z∗ as given in (2.43) and (2.50).

The left-hand side of this equation is a function of λ only; all parameters are

contained in the right-hand side. Moreover, we have restricted our parameter space

(α, γ, σ, d) ∈ R>0 ×R>0 ×R \ {0} × (1,∞), a union of two orthants in R4 to (α, ν, z∗) ∈
R>0 × (1,∞) × (−1, 0) ∪ (0, 1), the union of two (semi-compact) slabs in R3.

It is useful to define the left- and right-hand sides of equation (2.78) separately:

LHS(λ) = 18

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ (2.79)

RHS( λ
α

; ν, z∗) =
1

ν − 1

























ν − (ν − µ( λ
α

; ν))
P
−µ(

λ
α

;ν)

ν−1
(z∗)

z∗ P
−µ(

λ
α

;ν)

ν (z∗)

























(2.80)

In Figure 2.7, the graphs of LHS(λ) and RHS( λ
α

; ν, z∗) are plotted for real values of λ.

It is worthwhile to note that LHS(λ) = 288R(P =
√

1 + λ; 2, 2) as used in [6].

2.4.1 Immediate results: σ < 0 and γ ↓ 0

In this subsection we present the first ‘immediate’ implications of the developed the-

ory for the stability of the pulse (Uh,Vh).
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Theorem 2.14. Let ε > 0 be sufficiently small. For all σ < 0, there is a real zero

λpos > λ
(0)

f
> 0 of the Evans function associated with the stability problem (2.25).

Proof. As λ → ∞, from (2.43) we infer that µ ≫ ν such that the ratio
P
−µ
ν−1

(z∗)

P
−µ
ν (z∗)

→ 1.

Therefore, RHS( λ
α

; ν, z∗) {
µ

ν−1
1
z∗
{

1
3σu∗

√
λ as λ → ∞. Using an equivalent argu-

ment to that in [15], Lemma 4.1 (ii), one can show that LHS(λ) increases monotonic-

ally (from −∞) to zero for λ > λ
(0)

f
. Therefore, there is a λ > 5

4
for which LHS and

RHS intersect and which therefore solves (2.78) for all parameter values when σ < 0,

see Figure 2.7. �

Corollary 2.15. A pulse with a double hump in the U-component, as shown in Figure

2.1b, is always unstable.

A direct consequence of the above Corollary is that in order to obtain any stability

result, we have to confine ourselves to the interval 0 < z∗ < 1 since sgn(z∗) = sgn(σ),

see (2.50). It would be beneficial to a complete understanding of the linear stability of

the constructed pulse if more would be known about the zeroes of P
−µ
ν (z∗). However,

while some information can be obtained regarding the number of zeroes of P
−µ
ν (z∗) for

real values of µ (see [1], the general case will be treated in chapter 3, section 3.5.1),

the authors are not aware of any general analytic expressions concerning zeroes of

P
−µ
ν (z∗) for complex µ. Notwithstanding, direct numerical evaluation of P

−µ
ν (z∗) for a

broad parameter range has led to the following Conjecture:

Conjecture 2.16. For all λ ∈ C for which Re λ > 0, P
−µ
ν (z∗) , 0 for all 0 < z∗ < 1.

Moreover, for Im λ , 0, P
−µ
ν (z∗) , 0 for all 0 < |z∗| < 1.

Based on this observation, the study of linear stability of the pulse can be confined

to the study of solutions of (2.78). Moreover, any additional eigenvalues originating

from zeroes of P
−µ
ν (z∗) would occur on the real line and be negative. Note that in the

following results, this Conjecture is not needed.

Equation (2.80) can be studied for different parameter values (and limits thereof)

to obtain information about the pulse spectrum. Another direct result can be obtained

by taking the limit γ ↓ 0 to remove the influence of the slow nonlinearity in (2.7)

and obtain the classical Gierer-Meinhardt equations. As γ ↓ 0, u∗ →
√
α

3|σ| (see (2.21))

so z∗ → sgn(σ) using (2.50). Note that, while the limit γ ↓ 0 reduces equation

(2.7) to the ‘classical’ Gierer-Meinhardt equation –where the slow evolution in U is

linear, yielding a ‘simple’ exponential instead of an associated Legendre function–

the coordinate z is ill-defined for γ = 0, see (2.41) in relation to (2.40). Therefore,
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

some of the expressions in the following will still depend on ν, while ν disappears

from (2.7) as γ ↓ 0. Since

P
−µ
ν (z∗){

1

Γ(1 + µ)

(

1 − z

2

)
µ

2

as z∗ → 1 (2.81a)

P
−µ
ν (z∗){

Γ(µ)

Γ(µ − ν)Γ(1 + µ + ν)

(

1 + z

2

)− µ

2

as z∗ → −1 (2.81b)

(see [1, 2]), this means that

lim
γ↓0

RHS( λ
α

; ν, z∗(α, γ, σ, d)) = lim
z∗→sgn(σ)

RHS( λ
α

; ν, z∗) = sgn(σ)
µ

ν − 1

= sgn(σ)

√

1 +
λ

α
(2.82)

Moreover, P
−µ
ν (z∗) can be written as P

−µ
ν (z∗) =

(

1−z∗
2

)
µ

2
F(z∗) where F(z) has a regular

expansion (see [1, 2]). Near z = 1, F(z) can be expanded as F(z) =
∑∞

k=0 ak

(

1−z
2

)k
,

with

ak =

∞
∑

j=0

(

µ

2

)

k− j
(−ν) j(ν + 1) j

Γ(1 + j + µ)(k − j)! j!
(2.83)

Since a0 =
1

Γ(1+µ)
, 0 for all µ considered since Re µ > 0 and the limit γ ↓ 0 only

influences the value of z∗, it follows that P
−µ
ν (z∗) does not have any zeroes asymptot-

ically close to, but different from z∗ = 1. The same reasoning applies for z∗ → −1.

Therefore, in this particular limit, we do not need to appeal to Conjecture 2.16. This

yields the following Lemma:

Lemma 2.17. For γ ↓ 0, the nontrivial pulse spectrum is to leading order given by

the roots of the equation

18

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ = sgn(σ)

√

1 +
λ

α
(2.84)

which, for σ > 0, coincides with the corresponding expression found in [6] for the

classical Gierer-Meinhardt equations.

2.4.2 Varying α and investigating the role of d

As the parameter α occurs in both the expression for µ and z∗ (see (2.43) and (2.50)), it

is worthwhile to study the behaviour of RHS(λ) as α changes to obtain α-parametrised
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eigenvalue orbits. Moreover, the parameter α is the classical parameter to be varied,

as α plays the role of µ in the classical Gierer-Meinhardt equations. In Figure 2.3,

left, the (complex) solutions to equation (2.78) are plotted as a function of increas-

ing α for d = 2, γ = 2 and σ = 1. The eigenvalues cross the imaginary axis for

α ≈ 0.83083 and converge to λ ≈ −0.990268± 0.147318 i as α→ ∞. The same plot,

now for d = 5, is given in Figure 2.3, middle and right. The eigenvalues initially dis-

play the same behaviour as in the case d = 2; here, the imaginary axis is crossed for

α ≈ 0.36654. A clear change of behaviour can be seen for increasing α; whereas the

orbit seems to converge to a complex conjugate pair of stable limit points for d = 2,

for d = 5 the orbits crosses the imaginary axis again for α ≈ 90.634 and yields a pair

of unstable eigenvalues as α → ∞. Note that this behaviour is essentially different

from the equivalent analysis found in [6], Figure 5.3 therein.

The behaviour for α→ ∞ can be determined explicitly: since only the right-hand

side of (2.78) is parameter dependent, it suffices to calculate limα→∞ RHS( λ
α

; ν, z∗).

Since

lim
α→∞

µ(λ;α, d) =
2

d − 1
= ν − 1 (2.85)

by (2.43) and

lim
α→∞

z∗(α, γ, σ, d) =

{

0 if d > 3⇔ ν < 2

sgn(σ) if d < 3⇔ ν > 2
(2.86)

by (2.21) and (2.50), we see that a dichotomy occurs at d = 3 or equivalently ν = 2.

For ν > 2, the right-hand side of (2.78) converges as α→ ∞ to

lim
α→∞

RHS
(

λ
α

; ν > 2, z∗(α)
)

= lim
µ→ν−1

lim
z∗→sgn(σ)

RHS (λ; µ, ν > 2, z∗) = sgn(σ) (2.87)

using (2.81).

Following the same reasoning preceding Lemma 2.17, there are no additional ze-

roes of P
−µ
ν (z∗) to be taken into account since the same limit behaviour z∗ → ±1 takes

place here. The fact that a simultaneous limit is taken for µ(λ;α, d) does not change

this, since the coefficients of the expansion of F(z), given in (2.83), have a regular

expansion in orders of 1
α

. Again, a0 =
1

Γ(1+µ)
= 1
Γ(ν)
+ O

(

1
α

)

is not equal to zero since

ν > 1. Therefore, it is not necessary to appeal to Conjecture 2.16 in this limit, since

again it follows that P
−µ
ν (z∗) does not have any zeroes asymptotically close to, but

different from z∗ = ±1.
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{ Re LHS(Λ) = 1 }

{ Im  LHS(Λ) = 0 }
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Figure 2.8: The equation LHS(λ) = sgn(σ) is solved graphically for σ > 0. Plotted

in blue is the level curve {Re LHS(λ) = 1}, which intersects the purple level curve

{Im LHS(λ) = 0} in the left half-plane for σ > 0 at λ ≈ −0.990268 ± 0.147318 i.

Since the level curves are symmetric, only the upper half-plane is shown.

The solution to LHS(λ) = sgn(σ) is determined by direct evaluation of the inte-

gral (2.79), see Figure 2.8 for a graphic illustration. For σ > 0, this equation has a

conjugate pair of complex solutions in the left half-plane; for σ < 0, there is a real

positive solution, see Theorem 2.14. Of course the existence of these isolated solu-

tions can be confirmed by a rigorous numerical winding number calculation (see [7]).

Note that this both corroborates and extends the corresponding result in [6], giving a

method to calculate the ‘endpoints’ of the eigenvalue orbits. The above leads to the

following Theorem:

Theorem 2.18. Let ε > 0 be sufficiently small. For all 1 < d < 3, there is an

α∗(γ, σ, d) > 0 such that for all α > α∗, the nontrivial zeroes of the Evans function

associated with the stability problem (2.25) are to the left of, and bounded away from

the imaginary axis.

When ν < 2, we need to investigate limz∗→0 limµ→ν−1 RHS( λ
α

; ν < 2, z∗). Since

P
−(ν−1)
ν (z) = z P

−(ν−1)

ν−1
(z) [1, 2], we see that RHS( λ

α
; ν < 2, z∗(α)) { 1

z2
∗

while z∗ → 0

as α → ∞. This means that the solutions of equation (2.78) will either converge to

the poles of LHS(λ), which lie at λ = λ
(2)

f
= − 3

4
and λ = λ

(0)

f
= 5

4
, or take off to

infinity – see Figure 2.7, right. From this, it is clear that the pulse becomes unstable

for ν < 2⇔ d > 3 when α is large enough; see again Figure 2.3 for an example.
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Theorem 2.19. Let ε > 0 be sufficiently small. For all d > 3, there are α∗,1(γ, σ, d) >

0 and α∗,2(γ, σ, d) > 0 such that for all α < α∗,1 and all α > α∗,2, the nontrivial zeroes

of the Evans function associated with the stability problem (2.25) are to the right of

the imaginary axis.

Proof. The above arguments show that the pulse becomes unstable when α is large

enough. For 0 < α ≪ 1, we see that the same approximations apply as for the case

λ → ∞, see the proof of Theorem 2.14. Moreover, combining (2.21) and (2.50) we

see that z∗ → sgn(σ) as α ↓ 0. Therefore, RHS { sgn(σ)
√
λ√
α

as α ↓ 0. As for the

case α → ∞, RHS thus has to blow up, which yields the existence of a positive real

solution close to λ
(0)

f
for (2.78). �

However, the eigenvalue orbit for d > 3 traverses the left half plane for a partic-

ular α-interval, as shown in Figure 2.3. That is, direct evaluation of (2.78) indicates

that there also is a non-empty region α ∈ (α∗,1, α∗,2) for which the pulse is stable. To

investigate this behaviour analytically, we focus on the parameter d.

Consider the limit d ≫ 1. This is equivalent with the limit ν − 1 ≪ 1. Therefore,

we introduce an asymptotically small parameter δ and set ν = 1 + δ, so that µ =

δ

√

1 + λ
α

(see (2.43)). The equation for z∗, combining (2.21) and (2.50), is

γ(ν − 1)

ν

(

α

9σ2

)
1
ν−1 (

z2
∗
)

1
ν−1
= α(1 − z2

∗) (2.88)

which, when ν = 1 + δ, yields

γ δ

1 + δ

(

α

9σ2

)
1
δ (

z2
∗
)

1
δ
= α(1 − z2

∗) (2.89)

Substituting z2
∗ = e−y, y > 0, we obtain

γ δ

1 + δ

(

α

9σ2

)
1
δ

e−
y

δ = α(1 − e−y); (2.90)

writing
α

9σ2
= eβ (2.91)

this becomes

γ δ

α(1 + δ)

ey

ey − 1
= e

y−β
δ (2.92)
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

When β > 0, we can rewrite this as

y = β + δ log

[

γ δ

α(1 + δ)

ey

ey − 1

]

(2.93)

yielding y = β + δ log

(

δ
γeβ

α(eβ−1)

)

+ h.o.t.. When β < 0 and not asymptotically small,

equation (2.92) is solved by y = − log
(

1 − δ γ
α

e
β

δ

)

+ h.o.t.. This means that when

α
9σ2 > 1, then z2

∗ =
9σ2

α

(

α−9σ2

δγ

)δ
+h.o.t, while z2

∗ = 1−δ γ
α

(

α
9σ2

)δ
+h.o.t. when α

9σ2 < 1.

Thus, for d ≫ 1 a sharp transition in the value of z∗ occurs as α passes through

α = 9σ2.

We will now show that at this ‘transition’, all zeroes of the Evans function, i.e. all

solutions of (2.78) (Corollary 2.5), must have negative real part. Using the same de-

composition P
−µ
ν (z∗) =

(

1−z∗
2

)
µ

2
F(z∗) as before, with F(z) having a regular expansion

near z∗ = 1 with coefficients given by (2.83), we see that for µ = δµ0, ν = 1 + δ and

z∗ = 1 − 1
2
y1δ to leading order, both the term

(

1−z∗
2

)
µ

2
and the coefficients in (2.83)

can be expanded in δ, yielding P
−δµ0

1+δ
(1 − 1

2
y1δ) = 1 + 1

2
µ0δ log(δ) + O(δ). From this,

we can conclude that it is not possible to choose y1 such that P
−δµ0

1+δ
(1 − 1

2
y1δ) = 0 for

asymptotically small δ, so Conjecture 2.16 is not needed.

First we set ν = 1 + δ in RHS (2.80):

RHS( λ
α

; 1 + δ, z∗) =
1

δ























1 + δ − (1 + δ − δ
√

1 +
λ

α
)

P
−δ
√

1+ λ
α

δ
(z∗)

z∗ P
−δ
√

1+ λ
α

1+δ
(z∗)























(2.94)

The above approximations yield, with the same asymptotically small parameter δ as

introduced above,

RHS( λ
α

; 1 + δ, z∗) =























− γ
α
+

√

1 + λ
α
+ O(δ) if α < 9σ2

1
δ

(

1 − α
9σ2

)

+ 1 +
−1+
√

1+ λ
α

z3
∗

+ O(δ) if α > 9σ2
(2.95)

From this result, we see that for α < 9σ2, the behaviour of RHS is similar to the

behaviour treated in Theorem 2.18. Moreover, for γ ↓ 0, we obtain the same result as

in Lemma 2.17.
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2.4 Pulse stability: results

However, when α crosses the threshold α ≈ 9σ2, the behaviour of RHS radically

changes. This accounts for the sharp ‘turning’ behaviour observed in Figure 2.3b.

The expression for α > 9σ2 only accounts for the limiting behaviour yielding un-

stable eigenvalues as described in Theorem 2.19, since RHS blows up: to study the

intermediate regime, we must zoom in on the situation when α ≈ 9σ2. By (2.91), we

thus set β = δB + h.o.t., we see that equation (2.92) can be solved by y = δy1 + h.o.t.,

with y1 determined by
γ

α
eB = y1ey1 (2.96)

so y1 = W(
γ

α
eB), where W(z) is the Lambert W-function. Since z2

∗ = e−y = 1 − δy1 at

leading order, the same approximation as for α < 9σ2 can be used, yielding

RHS( λ
α

; 1 + δ, z∗) = −B +

√

1 +
λ

α
+ h.o.t. if

α

9σ2
= 1 + δB + O(δ2) (2.97)

Using the previous analysis, we can go beyond the previous instability result for d > 3

and find an interval for α where the pulse is stable, and state the following:

Theorem 2.20. Let ε > 0 be sufficiently small. There is a d∗ > 3 such that for

all d > d∗, there is an open set Ω∗ in (α, γ, σ)-parameter space such that for all

(α, γ, σ) ∈ Ω∗, the nontrivial zeroes of the Evans function associated with the stability

problem (2.25) are to the left of, and bounded away from the imaginary axis.

Proof. For d ≫ 1, the above analysis can be applied. Taking α = 9σ2, we obtain

from (2.97) RHS( λ
α

) =

√

1 + λ
α

as a leading order expression for RHS. Taking σ = 1,

solving LHS(λ) =

√

1 + λ
α

numerically yields Re λ = −1.2 < 0 for these parameter

values. Note that in this asymptotic approximation, the value of γ does not play a role.

Therefore, for fixed γ = γ∗, there is a d ≫ 1 such that there is an open neighbourhood

of (α, γ, σ) = (9, γ∗, 1) where the statement of the Theorem holds. As observed above,

since this only concerns the numerical evaluation of a meromorphic, coefficient free

expression, this result can be confirmed rigorously by a winding number calculation.

�

For fixed values of the parameter d, accurate numerical simulations and rigor-

ous numerical winding number calculations similar to those used in the proof of the

main stability theorem in [7] can be used. For (α, γ, σ) = ( 1
2
, 2, 1), such numerical

calculations show that for d between 3 and 21, there is a pair of complex conjugate ei-

genvalues with real part < −0.02, where the real part decreases as d increases. Based

on these numerical calculations, we believe Theorem 2.20 holds for all d > 3.
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Figure 2.9: The stabilising (a) and destabilising (b) Hopf bifurcation values αHopf as

a function of d.
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Figure 2.10: The stabilising (a) and destabilising (b) Hopf frequencies ωHopf as a

function of d.

2.5 Numerical simulations

A Hopf bifurcation occurs when the eigenvalues cross the imaginary axis; this hap-

pens once for d < 3 (see Figure 2.3a) and twice for d > 3 (see Figure 2.3b). A plot

of the bifurcation value αHopf as a function of d for both stabilising and destabilising

Hopf bifurcations is given in Figure 2.9 for γ = 2 and σ = 1. The Hopf frequency

ωHopf = Im λHopf for both Hopf bifurcations as a function of d is given in Figure 2.10;

again, γ = 2 and σ = 1. As the destabilising Hopf bifurcation only occurs for d > 3,

a vertical asymptote at d = 3 can be found at both Figures 2.9b and 2.10b. For large
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values of d, the functions seem to converge to the indicated horizontal asymptotes.

Based on the asymptotic d ≫ 1 analysis of the previous subsection, the asymptote

limd→∞ αHopf = 9 of Figure 2.9b can be understood by looking at the asymptotic

expansion of RHS for ν = 1 + δ, see (2.95). If α crosses the threshold α = 9σ2,

RHS blows up yielding unstable eigenvalues, in a manner equivalent to the situation

described in Theorem 2.14. Since RHS blows up for asymptotically small δ, the un-

stable regime lies asymptotically close to α = 9σ2, which explains the horizontal

asymptote αHopf = 9 in Figure 2.9b.

The super- or subcriticality of both stabilising and destabilising Hopf bifurcations

has been checked by direct numerical simulation of the constructed pulse. The pulse

was simulated on the domain x ∈ [−10 ε−1, 10 ε−1] with homogeneous Neumann

boundary conditions. Note that in all these direct numerical pulse simulations, the

position of the pulse was seen to remain completely fixed. This phenomenon will be

treated in detail in chapter 4, section 4.3.2.

In Figure 2.11, the tip of the U-component of the simulated pulse is plotted as a func-

tion of time for d = 2. Here, γ = 2, σ = 1 and ε = 0.02. For these parameter values,

the Hopf bifurcations occurs at αHopf = 0.83 +O(ε). Figure 2.11 shows that for these

parameter values, the Hopf bifurcation is subcritical. For d = 5, the equivalent stabi-

lising Hopf bifurcation occurs at αHopf = 0.37+O(ε) for the same values of the other

parameters. As can be seen in Figure 2.12, this Hopf bifurcation is subcritical as well.

The destabilising Hopf bifurcation occurs for d = 5 at αHopf = 90.634 + O(ε).

In this simulation, ε = 0.002 while still γ = 2 and σ = 1. In Figure 2.13 it can

be seen that upon destabilisation, the pulse tip initially exhibits typical ‘subcritical’

growth behaviour. However, for longer times, a bounded temporally oscillating pulse

is observed. Nearby the other Hopf bifurcations, such ‘breathing’ pulses can also be

observed. For d = 2 and stable values of α, i.e. for α within the region in which the

pulse is stable (here, α = 0.9 > αHopf), Figure 2.14 shows an oscillating pulse.

In Figures 2.15, 2.16 and 2.2, the oscillating behaviour of the pulse near the

destabilising Hopf bifurcation for d = 5 is studied in more detail. For parameter

values relatively far in the stable regime (here, α = 85 < αHopf = 90.634 + O(ε)),

simulations reveal bounded temporally periodic behaviour with a slowly periodically

modulated amplitude, see Figure 2.15. When α is increased towards αHopf, the fre-

quency of the modulation increases; see Figure 2.16 for the pulse behaviour when

α = 90.5. For parameter values even closer to αHopf, the irregular behaviour as shown

in Figure 2.2 is observed.
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Figure 2.11: The tip of the U-pulse as a function of time for α = 0.827 (a) and

α = 0.829 (b). Here, d = 2.
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Figure 2.12: The tip of the U-pulse as a function of time for α = 0.352 (a) and

α = 0.353 (b). Here, d = 5.

This pulse behaviour has not been observed in the literature on GS/GM-type mod-

els. In the fourth chapter of this thesis, the nature of the Hopf bifurcation of pulses

in system (2.7) is studied. It is established that this Hopf bifurcation can be both sub-

and supercritical, see chapter 4, Theorem 4.16.
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Figure 2.13: The tip of the U-pulse as a function of time for α = 90.61 (a) and

α = 90.69 (b).
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Figure 2.14: The tip of the U-pulse as a function of time for α = 0.9, d = 2. Figure

(a) shows the entire simulated time domain, while (b) zooms in on a part of the time

domain, showing the regularity of the pulse tip movement.
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Figure 2.15: The tip of the U-pulse as a function of time for α = 85, d = 5. Figure

(a) shows the entire simulated time domain, while (b) zooms in on a part of the time

domain.
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Figure 2.16: The tip of the U-pulse as a function of time for α = 90.5, d = 5. Figure

(a) shows the entire simulated time domain, while (b) zooms in on a part of the time

domain.
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