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1
Introduction and Summary

This introduction is written for non-scientists; its aim is to present the subject and

research in this thesis in a way which is understandable for a broad audience. If you

are a scientist, or even a mathematician, you might find this introduction lacking a

certain depth. In that case, I recommend reading the introductory sections of the

subsequent chapters – their content is specifically aimed at scientists, mathematicians

in particular.

1.1 How should I read this?

There are a couple of reasons why a thesis in mathematics is hard to read for non-

mathematicians. First, of course, there are the formulas. A mathematician conveys a

large part of his message using symbols, and the connections between them by formu-

las. If you haven’t got that much experience in using symbols and reading formulas,

texts which heavily rely on them are notoriously hard, or even impossible, to read.

Having said this, the use of symbols to convey mathematics is not only convenient,

but also necessary. It allows the researcher to represent certain ideas (which might be

quite abstract) using a few symbols, thereby keeping his or her reasoning accessible

and clear to follow – for the fellow mathematician, of course. If you would try to

reconvert all the symbols in this thesis into words, the text would very quickly spiral

into incomprehensibility: the sentences would span several pages, it would be im-

possible to structure them in a clear way, giving up any hope for conveying the ideas

you want your reader to understand. The conciseness and clarity of symbols, and

their use in mathematics, have proved beneficial for many, many centuries. Symbols
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1. Introduction and Summary

and formulas allow you to discover new connections and relations, which opens the

door to abstract thinking and deeper understanding of the subject you’re considering

– and that’s not only true for mathematicians, but also for other scientists who use the

‘language of mathematics’ to summarise their findings.

When you start to work with symbols and formulas, and thereby gain some experi-

ence in reading them, you’ll notice that these symbols (and the ideas they represent)

become more tangible. More and more, you get an idea of what that symbol stands

for. You get a feeling of how a symbol behaves, how it reacts to other symbols, what

it does. Then, you can start to shove them around, manipulate them, and introduce

new symbols because that’s the best way to explain what you found – and suddenly,

you’re doing mathematics.

The second reason why mathematics is hard to read, is the language that is being

used. Your goal as a mathematician is to convey objective truths, to tell a coherent

and logically sound story. That means the language becomes objective as well: there

is no ‘I’ or ‘you’ in mathematics, you can hope for a ‘we’ at best. In a mathematical

text, you’re taken along a route towards understanding a mathematical topic, guided

by the author. Anything which might reek like subjectivity is to be avoided at all

costs, is the opinion of many. Mathematical truth does (or should) after all not de-

pend on who’s presenting it. Phrasing your sentences in subjective form also makes

you more vulnerable to criticism: you might say it is so, but that doesn’t mean I have

to believe it.

Although often deemed necessary, this practice doesn’t do the readability of the math-

ematical text any good. As you might have already noticed, I’ve chosen a different

style for this introduction. At a risk of being ‘not scientific enough’, i.e. not objective

enough, I think it is necessary, if you want your ideas to be understood by a wider

audience, to present ideas through a text which is accessible to the non-mathematical,

non-scientific reader. That is exactly what I try to accomplish with this introduction.

Sometimes the nature of the subject I’m describing is such that using an objective

style is unavoidable; however, I’ll try to refrain from doing so. Once the ‘real’ con-

tent starts in chapter 2, you’ll notice a change in style from the somewhat direct,

subjective style wielded in this introductory chapter, to the objective and somewhat

indirect ‘mathematical’ style. As argued above, this is a necessary feature of mathe-

matical research texts.

Text isn’t everything. As a mathematician, I’ve noticed that deeper understanding of a

phenomenon through symbol manipulation goes hand in hand with the development

of a certain mental picture. Since the objects you’re working with are often of an

abstract nature, this mental picture cannot be more than approximately accurate.
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1.2 Concepts

In that respect, I consider myself lucky that I’m an applied mathematician. More

often than in other, more pure branches of mathematics, I’ve got the possibility to

accurately visualise the objects I’m analysing. Since the excessive use of symbols

holds the danger of obscuring the analysis, the use of pictures can be beneficiary to

understanding the topic at hand. One of my goals is therefore to give the reader some

idea what the pictures in this thesis mean. If you’re browsing through the mathemat-

ical chapters, you encounter a figure and think ‘Ah! I’ve seen something like that

before, could this be related?’, that goal is achieved.

This introduction is structured as follows. Based on the consideration ‘if you’ve

got a thesis in your hand, you should at least be able to understand its title’, I will

first explain some concepts which are central to the research area in which the topic

of this thesis falls (section 1.2). Along the way, all the words which make up the

title will be introduced. This part is specifically written for non-mathematicians, even

for non-scientists. As you can see while skimming through the introduction, there

aren’t as many formulas as you would expect from a mathematics thesis – especially

in comparison with the next chapters, where the ‘real’ content can be found.

Once I’ve told enough to explain the title, it’s time to dive a little more into the re-

search itself. If you’ve become interested at that point – and I hope you are –, I’ll

explain what the research presented in this thesis entails, since that is, purely based

on the title, not at all clear. I’ll explain in general the research methods and ideas used

in this thesis (section 1.3). Also, I’ll shed light on some research results, and tell you

why they are important and why they are new. Although this part will unavoidably

be a little bit more technical, it’s still possible to get the message across without go-

ing into too much detail. In the end (section 1.4), I’ll summarize the content of each

chapter, giving you an overview of the content of this thesis.

1.2 Concepts

1.2.1 Patterns

What is a pattern? In the broadest sense, you could characterise a pattern as an ‘ob-

servable regularity’. In nature, patterns are all over the place. The most obvious ones

are stripes or spots on animal skins as found on zebras, leopards, cats, boar piglets;

more elaborate spiral patterns occur as fingerprints, sea shells or snail shells. Once

you start looking for patterns, ‘there’s something, then there’s nothing, then there’s
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1. Introduction and Summary

Figure 1.1: Some examples of patterns in nature: a leopard, a finger print, and veget-

ation patterns at the edge of the desert.

something again, etc.’, you’ll discover they are all around you. Think of a tree: its

branches, twigs on the branches, leaves on those twigs are all roughly equally spaced

– even the transport canals visible in the leaves exhibit a tree-like structure. On larger

scales, examples of patterns are ubiquitous, even at arid places like the desert: think

of wave patterns on sand dunes, or even the more or less equally spaced dunes them-

selves. At the edge of the desert, you can find vegetation patterns as spots and stripes.

Similar spots and stripes can in turn be observed in the sky as cloud patterns.

All these patterns have an element of repetition; they can be characterised by

the recurrence of a certain element. Nature is full of repeating processes: the daily

cycle of the sun, the tides, the phases of the moon, the changing of the seasons.

While you might be tempted to call these phenomena ‘patterns’ as well (which in

a sense, of course, they are), the repetition in these phenomena is temporal rather

than spatial. This distinguishes them from the patterns considered above: indeed,

what mathematicians call a ‘pattern’, and we’ll stick to that from now on, is a spatial

pattern. Of course, this does not mean that (temporal) change will not play a role –

far from it. We’ll come to speak about ‘the dynamics of patterns’ later.
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1.2 Concepts

Figure 1.2: An example of a pulse and a pulse pattern.

As mentioned earlier, patterns can be characterised as the recurrence of a certain

structural element, be it a spot, a stripe, a twig, a ripple, a leaf, or something else.

In this thesis, the object of study is precisely such a structural element, a so-called

‘pulse’. This pulse can be viewed as a building block for more complicated patterns,

see Figure 1.2. It is a natural idea to start the analysis of a pattern at its foundation,

that is, by analysing its elementary building block. Once you know something (or,

hopefully, a lot) about this building block, you can start to answer questions about

the pattern as a whole, by looking at the ways this structural element can repeat itself.

The latter, though being the obvious next step, is beyond the scope of this thesis.

Natural questions to answer when studying a pattern are: What is the repeating

structural element? And how does it repeat? You can use both questions to approach

the more encompassing problem of how a certain pattern is formed. The research

presented in this thesis therefore falls naturally within the mathematical research area

of ‘pattern formation’ – and in that area, within the analysis of ‘localised structures’.

The aforementioned pulse is an example of such a localised structure.

Depending on the pattern in question, the structural element, or localised structure,

can be of more or less interest. Concerning the fingerprint, the spiral pattern itself

is far more important than the narrow skin ridges of which it consists, especially in

forensic analysis. In plant growth, on the other hand, the structural elements (leaves,

twigs) are much more interesting. A related example is the process of embryonic

limb development, which can be studied in the context of pattern formation: here,

the localised structures (the arm, the fingers) are the key elements of interest. The

process which causes a growing organism to develop its shape, morphogenesis, can

therefore be studied in the mathematical context of pattern formation – and this is just

one example of its many uses.
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1.2.2 Dynamical systems

The mathematical techniques employed in this thesis are rooted in the field of dy-

namical systems, in particular that of differential equations. Without diving into the

mathematics straight away, it is possible to give a flavour of how dynamical systems

work, and which ideas can be used in the study of pattern formation.

A dynamical system describes the change of some quantity based on a certain

system of rules. You can think of the changing position of the earth as it orbits around

the sun, the concentration of chemicals when you put them together and let them

react, the mass of a growing bacterial colony. There, rules governing the changes

are the laws of gravity, the chemical reactions between the chemicals, and the way in

which the bacterias use food and/or oxygen to reproduce. In particular, these rules can

be given as a number of evolution equations. Given an initial state (a starting position,

an initial concentration), an evolution equation describes how this initial state evolves

in time; you might envision it like shown in Figure 1.3. Such an evolution equation is,

mathematically speaking, a differential equation. An evolution equation for a quantity

φ will therefore be an equation for its time derivative d
dt
φ, i.e. the change of φ in time

at a certain moment:

d

dt
φ = something (involving φ and/or t).

Here, φ plays the role of whatever your evolution equation is describing, be it tem-

perature, an animal population, the concentration of a certain chemical, etcetera.

Of course, the ‘something’ part is where the fun begins. Once you make a choice for

the ‘something’-terms on the righthand side of the equation, you prescribe a certain

behaviour, fixing the evolution of φ. Different choices for the righthand side terms

will lead to different dynamical behaviour of the quantity φ – even small changes can

have large consequences, as we will see in section 1.2.4.

Evolution equations are used as a model for phenomena in nature where the time

evolution of certain quantities play a role, for instance the growth and decay of pop-

ulations. Often, it is needed to describe in the model how the quantity in question is

spread out – in space, that is. If the evolution of a quantity also depends on the way

it is spread out, the space variable x plays an important role in the evolution equation

describing such a process. The time evolution of a quantity φ will depend on x, and

on spatial derivatives like d
dx
φ and d2

dx2 φ. Therefore, such a model looks like

∂

∂t
φ = something involving φ,

∂

∂x
φ,

∂2

∂x2
φ, x and/or t.
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Figure 1.3: A visualisation of a dynamical system: a certain initial state evolves in

time.

You may have noticed that the notation of the derivatives has slightly changed: we

use ‘∂’ instead of ‘d’. This notation is commonly used to emphasise that the quantity

φ depends on two variables, in this case x and t: in other words, φ is a function of both

x and t. Also, for simplicity, we stick to just one spatial variable x; for phenomena

occurring in more than one dimension, where it is for instance useful to distinguish

length, width and height, more spatial variables are needed. However, the approach

is often completely analogous to the one-variable case.

An important class of evolution equations where spatial spreading influences the

evolution of a quantity is the class of reaction-diffusion equations. These reaction-

diffusion equations clearly distinguish the role of the spatial derivatives of φ ( ∂
∂x
φ,

∂2

∂x2 φ, etc.) from other terms. That is, reaction-diffusion equations are structured as

∂

∂t
φ =

∂2

∂x2
φ + something involving φ.

7



1. Introduction and Summary

This structure can be used to explain where the name ‘reaction-diffusion’ originates.

The term ‘diffusion’ means the process of spreading in space: think of a drop of milk

spreading in a cup of coffee. Another everyday example is heat conduction: if you

heat a pan on the stove, the heat spreads to the pan (and, more importantly, the food)

due to diffusion. Mathematically, you can model diffusion most straightforwardly by

a second order spatial derivative, in this case ∂2

∂x2 φ. This term in the reaction-diffusion

equation dictates how the quantity φ spreads into space as it evolves over time.

The other terms, ‘something involving φ’, are called the reaction terms. The reason

for using this terminology is most clear if you consider not one, but two reaction-

diffusion equations, i.e. a ’reaction-diffusion system’ (or, equivalently, you can con-

sider a quantity φ which has two separate components). An example is the Gierer-

Meinhardt system [22], describing the evolution of the quantities U and V:

∂
∂t

U = ∂2

∂x2 U + V2 − U

∂
∂t

V = ∂2

∂x2 V + V2

U
− V

You can clearly see that the evolution of U, prescribed by the first equation, is influ-

enced by the value of V through the term V2. The second equation, describing the

evolution of V , has in turn a term V2

U
which depends on U. This mutual influence can

be interpreted as a reaction between U and V , which clarifies calling these terms in

the evolution equation ‘reaction terms’.

Reaction-diffusion equations can therefore be characterised as evolution equations

describing the spatial spreading and mutual interaction of certain quantities.

1.2.3 Patterns in reaction-diffusion systems

In phenomena described by reaction-diffusion models, all kinds of patterns frequently

occur. This is no coincidence: the appearance of some kind of pattern in a natural

phenomenon is often the incentive for researchers to try to model this phenomenon

using a reaction-diffusion model. Alan Turing –the very same Alan Turing who’s

famous for his groundbreaking work in computer science and for deciphering the

Enigma code– was the first to postulate that (and explain why) systems of reaction-

diffusion equations naturally allow the formation of patterns [50]. Patterns formed in

this way are often called Turing patterns.

The most common description of the Turing patterning principle uses a so-called
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1.2 Concepts

Figure 1.4: Examples of diffusion: a splash of milk in coffee, a pan on the stove.

activator-inhibitor pair. Given two species (say, chemicals), we call one the ‘activa-

tor’ and the other one the ‘inhibitor’: the activator makes both species grow, while

the inhibitor tries to decrease the growth of both species. This activation/inhibition

description can be modelled by the reaction terms of a reaction-diffusion equation.

Turing found out that if the inhibitor spreads (diffuses) much easier than the activa-

tor, a certain feedback mechanism occurs. Because of this feedback mechanism, the

activator and inhibitor are not evenly spread out. Their concentration fluctuates in a

very regular way, creating a pattern.

This activator-inhibitor mechanism, modelled by a system of reaction-diffusion equa-

tions, is widely believed to be the cause of a broad range of patterns in nature, such

as spots and stripes on animal skins, or vegetation patterns at the edge of the desert.

In Figure 1.6, you can see some examples of patterns found in a specific reaction-

diffusion system (the Gray-Scott model).

What is a pattern? In the context of reaction-diffusion equations, you could say

that a pattern has a clear spatial structure, so it depends on the spatial variable x in

some specific way. Moreover, as in the many examples of patterns seen in section

1.2.1, you could argue that something like a pattern should not, or not really, change

in time. This last condition, although it seems natural, is quite restrictive. There are

clear examples of things which you undoubtedly would call a ‘pattern’, but which do

move. Travelling waves (such as water waves or radio waves, or light) are examples

of this: they have a periodic (spatial) structure, but move as well. Of course, you

could say that when you move along with the wave, it seems to be standing still –and

that’s exactly how these travelling waves are analysed in general– but that doesn’t

change the fact that these waves are moving.
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1. Introduction and Summary

Figure 1.5: Alan Turing (1912-1954), pattern formation pioneer.

However, focusing on stationary patterns has some major advantages: since the pat-

tern you’re looking for is independent of time, you can imagine that its analysis in the

context of reaction-diffusion equations becomes somewhat easier: there is no inter-

play between space and time, the pattern won’t evolve. Also, this can be considered

as a starting point for the analysis of patterns which do change in time. You can start

to phrase questions like ‘If I change some conditions, will the pattern I established

start to change? Will it start to move? Will it change its shape?’ In section 1.3.3,

some of these questions will be addressed.

Summing up, the search for a pattern in a reaction-diffusion model may start with

finding a stationary, i.e. time independent solution with a specific spatial structure

to the associated system of reaction-diffusion equations. Indeed, that’s exactly what

part of this thesis is about: to find patterns (in particular, pulses) in reaction-diffusion

systems.
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1.2 Concepts

Figure 1.6: Several types of patterns in the Gray Scott model [43].

1.2.4 Perturbations

Let’s do a little experiment. We want to study what happens to a ball when we let it

drop from a certain height, say 2 metres. We can, for instance, measure how long it

takes before the ball hits the ground. You can imagine that, when you perform this

experiment multiple times, you won’t always get the same answer. This variation in

measurements can be caused by a lot of things: maybe you didn’t drop the ball each

time from exactly the same height, maybe you weren’t always on time with your stop-

watch. Those things have to do with the fallibility of the experimentalist: of course,

the actual phenomenon you’re investigating, the falling of a ball, isn’t influenced by

your incapability of measuring things exactly. Since this is a thought experiment,

let’s assume you are able to measure the falling time of the ball exactly.
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1. Introduction and Summary

Still, you won’t get exactly the same measurement results. Maybe the ball was

a little bit blown to the side by the wind, maybe the ground was somewhat uneven,

maybe the atmospheric pressure changed a little, as well as the air humidity, changing

the air resistance; maybe a dust speck stuck to the ball and changed its total weight,

maybe the ball collided mid-air with an unsuspecting little fly, slowing it down. These

are things you can’t control, but which might influence the measurement results. You

could argue that if you do a lot of experiments, under tightly controlled conditions,

you can minimise and average out the influence of these disturbances. In the end, to

explain the phenomenon of the falling ball (since we know that’s just due to gravity),

it shouldn’t matter who’s doing the experiment, or what time of day it is, or whether

it’s raining or not, or whether I perform the experiment in Oslo or Jakarta – but wait.

That last condition actually does matter, although a little. We know, since the days

of Newton, that the ball falls due to the mutual gravitational attraction between the

ball and the Earth. When you start to measure the gravitational acceleration at differ-

ent places on Earth (for instance, by performing our falling ball experiment), you’ll

find out that this gravitational acceleration g differs a little bit from place to place.

Approximately, g = 9.8 m/s2; in Oslo, we have gOslo = 9.825 m/s2, while in Jakarta,

we have gJakarta = 9.777 m/s2. While the other small influences on the falling ball

were random, and didn’t have anything to do with the physics underlying the phe-

nomenon of the falling ball, the location on Earth introduces a systematic, though

small, change.

When a researcher studies a natural phenomenon, he or she tries to establish

which processes or laws are really instrumental to understanding the phenomenon,

and which processes are just noise, disturbances. If you would write down a model,

i.e. an equation for the falling ball, you wouldn’t incorporate the time of day or the

color of your eyes, since you know those don’t matter. Also, you wouldn’t incor-

porate the wind or the air humidity, since you know those aspects of nature are not

underlying the phenomenon of the falling ball. Although they might influence its

movement a little, that’s not what you want to study in the end. In other words, you

want your equations (your model, your physical laws) to be as clean, as simple, as

possible. This is one of the reasons why it’s hard to write down a good model as a

scientist: you need a lot of knowledge and experience to single out the processes that

really matter for the phenomenon you’re studying.

As for the falling ball, we can write down a formula for its falling time using

Newton’s second law, incorporating only gravity. If we call the falling time t and the

gravitational acceleration g, this gives (for a falling height of 2 metres, and forgetting
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1.2 Concepts

about units)

t =
2
√

g

Since the value of gravitational acceleration g differs from place to place, the falling

time differs from place to place. Of course, if we would just want an approximate

result for the falling time, we could always use the approximate value for g – even

though it’s not exact, the ‘real’ value of g (and therefore the real value of t) is not far

from it. Using the average value gaverage = 9.81 m/s2, we obtain taverage = 0.64 s. Now

we can compare the actual values of the gravitational constant at Oslo and Jakarta

with the average value: gOslo = gaverage+0.015 m/s2 and gJakarta = gaverage−0.033 m/s2.

In this way, we can write the gravitational acceleration anywhere on Earth as g =

gaverage + ε, where the value of ε depends on where you are. Also, as we’ve already

seen, ε is quite small compared to gaverage. If we incorporate this in our equation for

the falling time, we get

t =
2

√
gaverage + ε

This formula, giving the falling time of a ball dropped from a height of 2 metres

anywhere on Earth, is an example of a model with a perturbation. In this way, you

can immediately read off a number of aspects characteristic to the falling ball phe-

nomenon. For instance, if you ignore the small variations in g, setting ε = 0, you

can immediately see how to calculate the approximate, average falling time taverage,

namely as

taverage =
2

√
gaverage

Moreover, you can see that, as long as the perturbation ε is small, the falling time

won’t differ very much from the average falling time, see Figure 1.7. This last char-

acteristic, that small changes in the model have small effects on its outcomes, is the

defining property of so-called regular perturbations.

The opposite is true for singular perturbations, where small perturbations in the

model can have large effects on the quantities described by the model. This sounds

somewhat counterintuitive, but there are everyday examples where singular perturba-

tions play an important role.

Singular perturbations are almost always associated with sudden changes, or fast

transitions. A good example is heat conduction, which we’ve encountered before

in section 1.2.2, where it was intimately connected to the term ‘diffusion’.

If you put a pan on the stove, the heat from the stove spreads very quickly through the

13
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Figure 1.7: The value of the falling time t for small perturbations ε. As you can see

from the axis scaling, the falling time doesn’t change that much when ε is small.

metal of the pan: this metal conducts heat very well. If the pan would be ceramic, this

would be completely different: since ceramic materials are quite good at insulating

heat, the pan would heat up very slowly, since the heat from the stove would hardly

spread through the ceramic material. The difference between metal and a ceramic ma-

terial such as porcelain in terms of heat conduction can be seen clearly by comparing

Figures 1.8 and 1.9. In the ceramic material, the heated spot in the middle does not

spread out like in the metal. Therefore, there is a sharp transition between the heated

region and its surroundings: at the edge of the heated region, there is a sudden drop

in temperature. That this phenomenon is intimately related to singular perturbations,

becomes clear once you consider the model underlying the phenomenon of heat flow

through materials.

Heat spreads through materials due to diffusion. Indeed, the spread of heat through

a material can be modelled by a very simple evolution equation known as the ‘heat

equation’:

∂

∂t
φ = α

∂2

∂x2
φ

where, in this case, φ is the temperature at a given place in the material at a certain

time. This is a very basic reaction-diffusion equation, or rather just a diffusion equa-

tion since there are no reaction terms present (see section 1.2.2). Here, α is called the

thermal diffusivity: it is a constant, and its value depends on the material considered.

A material which doesn’t transfer heat very well has a very small thermal diffusivity.

To make a connection with the previous example, let’s call this small thermal diffu-
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1.2 Concepts

Temperature

Figure 1.8: A heated spot on a metal pan: you can clearly see that the heat diffuses

very well.

Temperature

Figure 1.9: A heated spot on a porcelain pan: the heat hardly diffuses, and there is a

sharp temperature transition from the heated spot to the outside.

sivity constant ‘ε’, such that the heat equation for such a highly insulating material

becomes
∂

∂t
φ = ε

∂2

∂x2
φ

Like in the falling ball example, you can ask yourself what happens when we neglect

the small ε term, i.e. set ε = 0. In this case, something very drastic happens: the heat

equation simplifies to
∂

∂t
φ = 0

In other words, the temperature φ does not change. This means that the transition
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1. Introduction and Summary

between the heated spot and the surrounding areas really is a sharp transition: the

heated spot stays heated, since it’s insulated by the surrounding material, and the

surrounding material stays cold. Of course, this doesn’t give a completely realistic

description of the situation: in reality, the heat will slowly spread and the heated spot

will cool down slowly. However, this so-called ‘singular limit’ gives a quite conveni-

ent approximation of the real phenomenon, as long as you’re willing to overlook the

fact that a perfectly insulating material can hardly be expected to exist.

The limit ε = 0 is called ‘singular’, because it throws away a term in the model

which is crucial to the description of the phenomenon, in this case heat diffusion.

This tendency of singular limits to dispose of instrumental terms is a recurring theme

in the study of singular perturbations, and can often be used to the advantage of the

researcher, since it leads to a vast simplification of a possibly complicated model.

You can think of it as a trade-off: by setting ε = 0 in a singular limit, it suddenly

becomes possible to solve some equations, since the complicated system is severely

reduced. On the other hand, you’ve thrown away quite a lot: it is often unclear how

the analysis in the singular limit can tell you something about the case when ε is not

equal to zero (but still very small). In the above example of heat diffusion, we already

understood the phenomenon which was being modelled by the ‘full’ heat equation,

so we could interpret the singular limit. In other applications, this is often not so easy.

We’ve seen that, in the case of very slow heat diffusion, there is a sharp transition

between the heated spot and the surrounding areas. In reality, this transition is not

discrete as in the singular limit, but occurs very fast. To obtain a better understanding

of what’s happening at the transition, it’s a good idea to zoom in on that transition

zone. If you do that, you’ll see a gradual change from high to low temperature, but

now gradual on a very small spatial scale. The best way to describe the temperature

distribution in the porcelain pan is as follows:

1. Start far away from the heated spot. There, the temperature is low. If you

start to ‘walk’ towards the heated spot, nothing much happens: the temperature

stays the same.

2. Suddenly, there is a huge jump in temperature. You’re now at the edge of the

heated spot. To obtain a better view of what’s happening here, you will have

to slow down and zoom in at the transition zone: you’ll see that, on this small

scale, the temperature steadily rises.

3. After the jump, you’re in the heated zone. Again, nothing much happens: the

high temperature is everywhere more or less the same.
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This phenomenon of scale separation, where the best way to describe a situation

is to analyse different parts of it at different scales, occurs naturally when singular

perturbations are present. The general approach in such situations is therefore to

separate the problem into different scales, analyse each scale separately, and then try

to paste these descriptions together to obtain a consistent global picture. This idea of

separating scales, analysing reduced problems and trying to combine the results will

be explained in more detail in section 1.3.1.

1.2.5 What is this thesis about?

We’ve come to a point in this introduction where it’s possible to understand the title

of this thesis: ‘Pulses in singularly perturbed reaction-diffusion systems’. This thesis

is about the analysis of a certain pattern, namely a single pulse, in the context a cer-

tain class of models, namely reaction-diffusion systems. Moreover, these reaction-

diffusion systems possess a certain very useful quality: they are singularly perturbed.

In section 1.2.1, we’ve seen what patterns are and how mathematicians think of them;

in section 1.2.2, it was explained what we mean by ‘reaction-diffusion systems’, and

in section 1.2.3, it was indicated why patterns can occur in these reaction-diffusion

systems, and how they are characterised mathematically. The concept of ‘perturba-

tions’, and in particular ‘singular perturbations’, has been introduced in section 1.2.4.

The concepts introduced in the previous sections will be used to clarify the re-

search methods presented in the upcoming sections. I’ll give an overview of the

methods used in my research, and present the general approach to analysing patterns

in reaction-diffusion systems.

1.3 Methods

When you start to analyse pulses (or any pattern, for that matter) in reaction-diffusion

systems, you start by asking the question ‘Does a pulse exist at all?’. In other words,

you start to investigate whether the reaction-diffusion system you’re considering ad-

mits something like a pulse solution. This is the question of existence, which will be

addressed in section 1.3.1. If the system doesn’t admit a pulse solution, there’s not

much to investigate. On the other hand, if the system does admit the pulse solution

you’re looking for, you’re not done yet. The next obvious question is (and I’ll explain

why this question is obvious) ‘Is this pulse stable?’. The notion of stability has not

been introduced, but will be explained in detail in section 1.3.2. The short answer to
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the question why stability is important, is that if a pulse exists but is unstable, you

often won’t observe it in ‘real life’ applications. Therefore, a priori, the stable pulses

are the ones you’re looking for.

However, that’s not the whole story. Disregarding unstable pulse solutions as

wholly uninteresting doesn’t do them justice in all cases. There are numerous ex-

amples of exciting phenomena which can unfold when you look at an unstable pulse.

Therefore, you should ask the question ‘If the pulse is unstable, what will happen?’.

This will open the gateway to a vast realm of possibilities in the field of pulse dynam-

ics, i.e. the motion of a pulse. I’ll explain how you could go about analysing one of

those many possibilities in section 1.3.3. This is also the subject of the last chapter of

this thesis, chapter 4.

In Figure 1.10, you can find an overview of this research approach.

Can there be
 a pulse?

Is the pulse
 stable?

What will 
happen?

Yes

Yes

No

No

ok, nothing to do

ok, there exists a 
stable pulse

Existence Stability Dynamics

Figure 1.10: General research approach.

Parameters

In most cases, the answer to both the existence and stability question is a lot more

subtle than just yes or no. This is the case when the reaction-diffusion system you’re

looking at depends on parameters. Parameters are constants, which in other words

don’t change in time or in space, which you can therefore choose freely. Parameters

often tell you something about the environment in which the phenomenon you’re

modelling takes place, about the conditions you’re dealing with. A good example is

the heat equation from section 1.2.4,

∂

∂t
φ = α

∂2

∂x2
φ
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The thermal diffusivity constant α, which depends on the material you’re looking at,

is an example of a parameter. The advantage of using parameters is that you don’t

have to redo your entire analysis if you decide to switch from analysing one material

to analysing another. Since the parameter α is fixed from the model point of view

(although its precise value may not be specified), you can do your analysis for all

values of α in one go. You’ll obtain an answer (for instance, to the question whether

a pulse exists) which still depends on α, of course; then, you can see how that answer

changes when you pick different values of the parameter α.

In general, a reaction-diffusion system always has some parameters, whose value

you can pick at your own leisure, depending on the context you’re working in. There-

fore, the existence question then is not really if but when there exists a pulse, or ‘For

which parameter values does a pulse exist?’. Exactly the same situation occurs for

the stability question. Say you’ve chosen suitable parameter values such that a pulse

exists (you can still have a large number of ways to do that), then the question arises

when your pulse is stable, i.e. for which parameter values. Within the set of para-

meter values for which your pulse exists, you can make a division between parameter

values for which the pulse is stable, and for which it is unstable; see Figure 1.11 for

a visualisation.

Pulse exists

Pulse is 

stable

Figure 1.11: The existence and stability regions in parameter space.
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The parameter ε

In this thesis, you’ll come across a large number of parameters. There’s one parameter

that is the most important of them all, and that’s ε. Everywhere in this thesis, ε

is a very small parameter. It acts as a perturbation, just as in section 1.2.4, and is

instrumental in obtaining virtually all results in this thesis. Without the help of the

small parameter ε, the research presented in this thesis couldn’t have been carried

out. The reason why ε is so helpful in the analysis of the existence and stability of

pulses was already revealed a little bit in the context of singular perturbations. In the

following sections, the fact that ε is very small is used extensively.

Of course, how small ‘small’ actually is, depends on the situation. In the example

of the falling ball, the deviation of the gravitational acceleration in Oslo and Jakarta

from its global average value was very small – that is, very small when compared to

that average value: the deviations were something like ±0.03 m/s2, while the global

average gravitational acceleration was gaverage = 9.81 m/s2.

Since we’re dealing in this thesis with quite general reaction-diffusion equations and,

more importantly, with parameters whose value is not specified, the question how

small ε needs to be to obtain sensible results is a hard one. However, once you’ve

chosen your parameter values, you can often answer this question. Therefore, the

most important results in this thesis, which are presented as Theorems, start with the

phrase ‘Let ε be small enough’.

The general idea is that, when ε is small enough, you can use the information

obtained for the case ε = 0 to prove results about the case when ε is not zero, but

small. This often works very well because the analysis for case ε = 0 is most of the

time much simpler than for nonzero ε. Again, you can prove several results when ε is

small enough. Although this can sound restrictive, experience tells us that in practice,

these results continue to hold for surprisingly large values of ε.

In the following sections, you’ll see how ε is being used to obtain results about the

existence, stability and dynamics of pulses in singularly perturbed reaction-diffusion

equations.

1.3.1 Existence and construction

As we already noted, the first question you ask yourself when analysing pulse solu-

tions is ‘Do these pulses exist at all?’. Questions about existence of certain things

are not uncommon in mathematics. However, when you’re working in a very abstract

context, it’s often not possible to go very much beyond that. You might be able to

prove that something (in our case, a pulse) has to exist, but where you can find it and
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what it looks like is often not known, or even not knowable.

In the case of pulses in reaction-diffusion systems, that’s very different. The way the

existence of pulses in these models is proved is constructive. That means that we start

looking for a pulse, and once we find it, we know what it looks like. In other words,

we obtain an explicit expression which describes our pulse in an approximate way,

and that’s often more than you could hope for. If you’ve got an explicit expression,

you can make plots, investigate the specific shape of the pulse and draw several con-

clusions. That’s the clear advantage of a so-called constructive proof of existence.

You not only know if (and when) a pulse exists, you have it at your fingertips at the

same time.

Pulse shape

What is a pulse? The shortest answer is that it’s a function whose graph looks like

the one in Figure 1.2. It has a single hump, and gradually decreases to the left and to

the right to a constant value, most often to zero. That last property shall be the key to

identify pulses. You can see that, if you’re far away from the hump, that the graph of

the function is very flat and very close to zero. In other words, when you get further

and further away from the hump, the function and its slope (its derivative) should get

closer and closer to zero.

Let’s draw the function in another way. In Figure 1.12, the function is graphed in such

a way that you can see its function value and the value of its slope. The horizontal axis

gives the function value, the vertical axis the slope of the function. In this picture, you

can’t really see the spatial variable x anymore. Therefore, at some points, I indicated

what the corresponding x-value is.

There are some things to notice in this picture. First, the pulse is now a kind of loop

which starts and ends where the axes meet, at the origin. Here, both the function value

and the value of the derivative are zero. Also, you can see that the loop doesn’t ‘really’

close: as x becomes larger and larger (or more and more negative), the function

value and its derivative come closer and closer to zero, but they never really reach it.

However, you can get as close to the origin as you want, by going to large enough

values of x. Moreover, you can argue why a pulse should be equivalent to such a

loop: when you start far to the left, the function value will increase, so its slope will

be positive. As you come close to the top of the hump, the pulse becomes flatter

and flatter, until you’re at the top, where the derivative is zero. Then you start going

down, i.e. the slope is negative, while the function value decreases towards zero.

The function becomes increasingly flat, so the derivative, while still negative, also

becomes very small.
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x

u

x  = -2

x  = 0

x  = 5

x  = -15

x  = 34

u  

d u

d x
 

Figure 1.12: An example of a pulse: left, as a function of x; right, as a loop in the

phase plane. The pulse height is given by u, its slope by du
dx

.

A plot such as shown in Figure 1.12 is called a phase plane plot, and is often

used to clarify the behaviour of two-dimensional dynamical systems. The loop is an

example of a so-called ‘orbit’ in such a dynamical system. If you pick a point on this

loop as an initial value and let the dynamical system run, you’ll start to move along

this loop, thereby tracing out an orbit. This also holds when you move backwards,

then you would trace the loop the other way around. In Figure 1.12, the direction

you’ll move in if you let x increase, is indicated by an arrow.

Four-dimensional problem

Back to our original problem, the construction of a pulse in a reaction-diffusion sys-

tem. In this thesis, I look at reaction-diffusion systems which have two components,

so which can be written as two reaction-diffusion equations. The components will

influence each other through the reaction terms. An example of such a system is the

Gierer-Meinhardt model, as mentioned in section 1.2.2. I’ll also call these compo-

nents U and V . Also, I’ll introduce a small parameter ε in the evolution equation for

V , which will come in handy at a later stage. A general reaction-diffusion system

having these properties looks like

∂

∂t
U =

∂2

∂x2
U + F(U,V)

∂

∂t
V = ε2 ∂

2

∂x2
V +G(U,V)

It doesn’t really matter what the reaction terms F(U,V) and G(U,V) are; all that’s

important, is that they make sure that U influences the evolution of V and V influences
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the evolution of U. In other words, these equations are coupled. You cannot solve

one without the other, you’ll have to analyse them simultaneously.

If we start looking for a pulse in this system, we’re looking for a stationary solution

of a particular form, i.e. something which does not change in time. That means that

our equations simplify somewhat:

0 =
d2

dx2
u + F(u, v)

0 = ε2 d2

dx2
v +G(u, v)

You’ll notice that I use lower case letters u and v instead of upper case ones: this is

to emphasise that we’re looking for something which does not depend on time, only

on the spatial variable x. In other words, both u and v are functions of just x. For that

reason, the notation of the derivative also changed a little: instead of ‘∂’, there’s now

a ‘d’. This indicates that the only variable we’re need to worry about is x.

If we want to obtain a pulse solution for this system, we want both components

u and v to look like Figure 1.2. If we draw them in one picture, this would look like

Figure 1.13. Here, the u-component is indicated in blue and the v-component in red.

We can try and draw this in terms of the ‘loop’ picture introduced earlier. However,

that’s a little problematic: since we’ve got two components, and for each component

we need two axes (one for the component itself, one for its derivative), we’ll need

2 × 2 = 4 axes in total. That means we’ll have to work in a four-dimensional space.

Mathematically, that’s absolutely no problem: you just start to work with four differ-

ent components. Visualisation-wise, this introduces large difficulties: how can you

picture something in four dimensions? Well, in this case, I don’t think you really can.

However, I’ll try to convey some ideas using three-dimensional plots, which should

help you get the complete picture of what’s happening.

In any case, we want to do something similar to the phase plane plot as shown

in Figure 1.12. Our pulse in both components is now such a loop, but hanging in

four-dimensional space instead of lying in the two-dimensional phase plane. Because

the equations are still coupled to each other, we cannot analyse the equations for u

and v separately: it’s no use to draw to separate phase planes (one for u, one for v)

and combine the results – at least, that’s what you would think! It will turn out that,

in our case, it is possible to separate the u- and v-components. The reasons why this

wholly unexpected possibility arises will become clear in a moment.
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x

U V 

Figure 1.13: A pulse in both the u- and the v-component.

We’re looking for a pulse in two components, u and v; for both components, it

is true that their function values and their slope come close to zero when you’re far

away from their humps. That means that our loop hanging in four-dimensional space

is connected with its tip to the place where all the four axes meet, i.e. where u, its de-

rivative, v and its derivative are zero. Figure 1.14 gives an idea of what’s happening.

I omitted the axis for the derivative of v – when plotting a four-dimensional picture

in three dimensions, you have to make some choices. Remember: we’re still not sure

if and when such a loop exists, that’s exactly what we’re trying to find out.

What are the defining characteristics of this loop? It starts at the origin of the

axes, makes some excursion through the four-dimensional space, and then returns to

the origin. This view is going to help us establishing the existence of such a loop.

We’re going to adapt a dynamical-systems point of view, and start looking for an

orbit which:

a) goes towards the origin as x becomes very large, and

b) goes towards the origin as x becomes very negative.

We proceed as follows: let’s look at all the orbits which a) go towards the origin as x

becomes very large, and bundle them together. This bundle is an example of a man-

ifold. For the purpose of this introduction, you can think of something resembling a

sheet of paper. We do the same with all the orbits which b) go towards the origin as x

become very negative; in this way, we obtain another bundle. Now, because the loop

orbit we’re looking for goes towards the origin both as x becomes very large and as

x becomes very negative, we see that this orbit must belong to both bundles. If you
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u

v

d

d x
u

Figure 1.14: An impression of a loop hanging in four-dimensional space. The axis

for the derivative of v is omitted.

picture these bundles as sheets, that means that such a loop must be in both sheets.

This is only possible if these sheets intersect in some way. This situation is depicted

in Figure 1.15.

We’ve now reformulated the question ‘Does there exist a pulse solution?’ as ‘Do

these two sheets intersect?’. Indeed, these two questions are equivalent: if there is a

pulse, then the two sheets should intersect. Vice versa, if the two sheets intersect, then

there must be a pulse. The problem of the existence of the pulse is now phrased in

geometric terms. Apart from visualisation purposes, this approach has its advantages

in other aspects of the problem. Combined with the fact that our problem is singularly

perturbed, this will lead to a complete understanding of the pulse existence problem,

and ultimately to its solution.

Scale separation

We now turn to the important property our reaction-diffusion system has: it is sin-

gularly perturbed. A small parameter ε can be found in the evolution equation for

V:

∂

∂t
V = ε2 ∂

2

∂x2
V +G(U,V)
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Figure 1.15: Intersecting sheets.

Just as in the example of the heat equation, this means that there will be a steep

transition, in this case in the V-component. For the pulse we’re looking for, this

means that the pulse in the v-component will become very narrow and very steep, as

you can see in Figure 1.16. In other words, the v-component of the pulse is practically

everywhere just flat, almost equal to zero, except in a very small zone, where it’s

sharply peaked. That means that, apart from that very thin peak, we can just treat v

as if it were zero. That means that everywhere except for that very small zone, the

u-component can be described with

0 =
d2

dx2
u + F(u, 0)

This is much easier than before: the u-equation does not depend on v anymore, be-

cause v vanishes almost everywhere. In other words, the system decouples. We can

analyse this system using the phase plane, where the horizontal axis gives the value

of u and the vertical axis gives the value of its derivative d
dx

u. Remember, we want to

have a pulse in both components, so in particular in the u-component: that means that

we’re looking for orbits that go towards the origin as x becomes very large or very

negative. Since v is already practically flat and close to zero except for a very small

zone, we just need to focus on u and find orbits in the phase plane belonging to the
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x

U V 

Ξ

V 

U

Figure 1.16: The u- and v-components of the pulse when ε is very small. The pulse

in the v-component is very narrow and very steep. To the right, a zoom of the left

picture near the narrow and steep v-pulse. Here, the u-component hardly changes at

all.

d

d x
u

u

Figure 1.17: A possible phase plane, with orbits going towards and moving away

from the origin.

u-equation which go towards the origin in that phase plane. A possible phase plane

situation where this happens is sketched in Figure 1.17.

This reduction, where we can treat v as if it were zero, holds almost everywhere,

except in a very small zone where the narrow v-peak is. Just as in the example of the

heat equation, we’ll try to zoom in on that small zone, to find out what’s happening.

That means we will try to use a very small spatial scale to rewrite our system. If
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we were measuring space in metres, now we’re going to millimetre scale, or even

smaller. We can do that by rescaling our spatial variable x. We’ll use our favourite

small parameter ε for this, and introduce the new spatial variable ξ. This new spatial

variable is just a rescaling of the old variable x, namely εξ = x. If ε = 0.001, this

would indeed mean that if x is measured in metres, then ξ would be measured in

millimetres.

Using this small scale variable to zoom in to the v-peak, we see that on this small

spatial scale, the u-component hardly changes at all, see Figure 1.16. Just as we

treated v as if it were zero outside this small zone, we can treat u as if it were constant

inside this small zone. Then, the equation for v becomes

0 =
d2

dξ2
v +G(u = some constant, v)

You’ll immediately notice that the small parameter ε is gone, this is incorporated in

the fact that we’re looking at a small ξ-scale now. Also, the v-equation does not really

depend on u anymore – well, of course it still does, but not in a very complicated way,

since we decided to treat u as if it were constant on this very small interval. In other

words, we can treat the value of u as a parameter on this small interval. For whatever

constant value of u is appropriate (we’ll see how to choose that appropriate value

later), we can now perform our phase plane trick on this v-equation. In our small

spatial scale ξ, the sharp narrow v-peak looks like a ‘regular’ pulse, just like the one

in Figure 1.2. Therefore, its phase plane, drawn in Figure 1.18, looks very much like

that in Figure 1.12.

Geometric theory

It is clear that the small parameter ε has been very instrumental in pulling apart the

u-equation and the v-equation, allowing us to analyse them separately. Now the ques-

tion is: how do we combine these two pictures? How do we use our insight on the

reduced system outside the very small area, where only u is interesting, and the other

reduced system inside the very small area, where only v is interesting, to build up a

complete picture for the complete system?

Here, the previously developed picture of the intersecting sheets returns. Without

going into details, it turns out that you can use your knowledge about the reduced

systems on the two different spatial scales to describe what these sheets look like.

Since the extreme situation, where ε = 0, can be very well understood using both

reduced equations (one for u on the ‘normal’ x-scale, one for v on the small ξ-scale),

the sheets are also very well understood in this singular limit. Now it’s time to in-
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Figure 1.18: The v-peak, as depicted in the phase plane.

voke something called ‘geometric singular perturbation theory’, which was devised

by Neil Fenichel in the 1970s [18, 19], to conclude something about the situation

where ε is not zero, but very small.

Fenichel tells us that geometric objects like those sheets we introduced, change very

little in shape when you go from the situation when ε = 0 to the situation where ε

is not zero but small. In other words, when you ‘turn on’ the small parameter ε, the

sheets will be a little bit perturbed, but not much. That means that if the sheets inter-

sected properly (in technical terms: ‘transversally’) when ε = 0, they still intersect

when ε is small but not zero. In other words, you can use the reduced equations for

u and v to obtain a picture like Figure 1.15, which still holds when ε is small but not

zero. You can imagine why ε must be small: if it becomes too large, the sheets will

deform too much and therefore maybe not intersect anymore, see Figure 1.19.

By combining the information from the phase plane of the u-equation with informa-

tion from the phase plane of the v-equation, it is possible to determine when the two

sheets intersect. Since in the v-equation, the value of u was treated as a constant and

therefore acted as a parameter, this ‘intersection criterion’ determines which values

this u-value can take such that the sheets intersect. This determines the height of the

tip of the u-pulse. Once you’ve chosen this (almost) constant value of u, the phase

plane of the v-equation (see Figure 1.18) is fixed, and therefore the loop orbit in that

phase plane (which represents the v-pulse) is also fixed.
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Figure 1.19: Non-intersecting sheets.

This way, a geometric approach can be used to construct a pulse in a singularly

perturbed reaction-diffusion system, thereby establishing its existence. Moreover, we

know approximately what it looks like: the u-pulse looks very much like the orbits

in the phase plane for the u-equation, Figure 1.17, which go towards the origin as x

becomes very large or very negative. In turn, the v-pulse looks very much like the

loop orbit in the phase plane for the v-equation, Figure 1.18.

1.3.2 Stability

To introduce the concept of stability, let’s return to our example of the falling ball.

When you start to think about the experiment in practical terms, you’ll find out that

there are a large number of unwelcome circumstances which might, and often will in-

fluence your measurement of the falling time. Environmental disturbances like wind,

changing air humidity and atmospheric pressure, and the occasional intervening fly

will certainly influence the path of the ball by nudging it a little bit off course, slowing

it down or speeding it up. Even though you can try to eliminate these disturbances

by executing your experiment under tightly controlled conditions, you know these

conditions will play a role once you start to consider falling balls or falling objects in

nature.
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Figure 1.20: Stability visualised.

Evolution equations like reaction-diffusion systems are widely used in natural sci-

ences like biology, chemistry, physics, geology and ecology to model natural phe-

nomena. These models try to capture the ‘essence’ of the driving forces behind these

phenomena, disregarding environmental noise. However, in the real world, such noise

will always be present. Therefore, if you’re looking for a pattern in your model of

which you hope you’ll observe that same pattern in nature, it’s important to know

whether this pattern is robust under such naturally occurring disturbances. If even the

smallest nudge will cause the pattern to change into something else, you’ll never have

the chance to observe that pattern in nature.

The concept of stability is maybe best illustrated by a ball on top of a hill: if you

give the ball a small nudge, it will start rolling down the hill. Therefore, the situation

where the ball rests on top of the hill is unstable. On the other hand, if your ball lies

at the bottom of a pit, giving the ball a small nudge won’t change much: the ball will

roll around a little bit, and after a while come to rest at the bottom of the pit again.

Therefore, the situation where the ball rests at the bottom of a pit is stable. For an

illustration, see Figure 1.20.

Both situations describe a certain equilibrium. The equilibrium of the ball on top

of the hill is an unstable one, while the equilibrium of the ball at the bottom of the pit

is stable. You can determine the stability of these equilibria by considering a situation

where the ball has been given a small displacement. If that small displacement starts

to grow (in the case of the ball rolling down the hill), the equilibrium is unstable;

if the small displacement diminishes and eventually disappears, the equilibrium is

stable. When you want to determine the stability of an equilibrium, you therefore

always start by considering a situation ‘nearby’, and see what will happen.

How can we translate this to the stability of patterns, or in particular, the stability

of our pulse? How can we take something to be ‘nearby’ our pulse, and how will

we discover what will happen for such a ‘nearby’ configuration? To give you an idea

how to approach this, I’ll first have to say something about linearity.
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Figure 1.21: The graph of x2, zoomed in near x = 1. As you can see, the dashed

tangent line at x = 1 approximates the function very well near x = 1.

Linearity

Let’s consider a simple function, like x2. As you probably know, the graph of this

function is curved; it’s a parabola, see Figure 1.21. Suppose you want to know how

the function behaves in the neighbourhood of a certain point, say at x = 1. If you

zoom in at the graph of x2 around that point, you’ll notice that the graph near x = 1

looks remarkably like a line, see also Figure 1.21. Of course, the graph still curves a

little bit, but you don’t notice that when you’re zoomed in that much. Therefore, if

you stay close enough to x = 1, you can approximate the graph of x2 very well by

a line. This line is called the tangent line, and its slope is exactly equal to the slope

of the graph of x2 at x = 1. Because you can calculate the slope of a graph of a

function by calculating its derivative at that point, you see that taking the derivative

of a function has everything to do with obtaining ‘local’ information of that function,

near a certain point. Of course, in our example, the choice of x = 1 as a point around

which we wanted to obtain local information was completely arbitrary, we could have

chosen any other point and taken a close look at the graph around that point. For that

matter, we could have chosen a different function to investigate: the principle of ob-

taining local information by using the derivative stays the same.

How exactly do you use the derivative to obtain local information about a function

around a certain point? Let’s look at the example again, and let’s zoom in again at

x = 1. The slope of the graph at that point is 2: if you start at x = 1 and move a tiny

bit to the right, the function value will increase twice that tiny bit, see Figure 1.22. If

we call that tiny increment δ, we see that the tangent line around x = 1 is given by
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Figure 1.22: The linear approximation of x2 near x = 1.

1 + 2δ. Therefore, if δ is small, the real function value (1 + δ)2 is approximated very

well by the value at the tangent line, 1 + 2δ. In other words,

(1 + δ)2 ≈ 1 + 2δ if δ is small.

This is called a linear approximation of the function x2 near x = 1. You can approx-

imate any function at a certain point in this way, by using the slope of the function

at that point. So, in general, if you have a certain function f (x) which you want to

approximate at a certain point, say x = 1, the linear approximation gives

f (1 + δ) ≈ f (1) +
d f

dx

∣

∣

∣

∣

∣

x=1

× δ

where
d f

dx

∣

∣

∣

∣

x=1
denotes the derivative of the function f , calculated at the point x = 1, i.e.

the slope of the graph of the function f at x = 1.

Now it’s time to make a conceptual jump. Imagine that the point x = 1 repre-

sents the pulse, and the function f (x) represents the reaction-diffusion system. The

idea is to use this principle of linear approximation to find out information about the

behaviour of the reaction-diffusion system ‘near’ our pulse. Of course, it will not be

possible to draw this anymore, or to visualise it properly in another way. However,

the approach is exactly the same as in the previous example.

We take our pulse, and add a little disturbance to it. Since the pulse is a stationary
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solution to the reaction-diffusion system, it will not change in time. However, the

pulse with a little added disturbance will in general change in time if we look how it

evolves according to our reaction-diffusion system. As explained above, we want to

know if the little disturbance ‘dies out’, i.e. diminishes in time, or if it will grow in

time. The behaviour of the little disturbance characterises the stability of our pulse.

This disturbance has to be rather general, since we don’t want the stability of our

pulse to depend on the random choice of our disturbance. Maybe if you disturb the

pulse a certain way, the disturbance will diminish, while if you disturb the pulse in

a slightly different way, that disturbance will grow in time. If your pulse is to be

stable, you want all disturbances to diminish in time, since in practice, you don’t

have control over the way your pulse is disturbed. Even if there’s just one specific

way to nudge the pulse such that that disturbance grows in time, you cannot say that

the pulse is stable, so then the pulse is unstable.

Back to the pulse and its disturbance. The pulse is a stationary solution to our

reaction-diffusion system, so it has a U-component and a V-component which are

both independent of time but still depend on the spatial variable x. Let’s call these

pulse components Upulse(x) and Vpulse(x). If we disturb the pulse, we disturb both

components, maybe in different ways. Let’s call the disturbance in the U-component

‘u’ and the disturbance in the V-component ‘v’. Note that these lower case u and v

have nothing to do with the same symbols which were introduced in section 1.3.1,

in the context of the existence question. Although it can be a little bit confusing to

re-use symbols in this way, it’s often more convenient than introducing yet another

symbol.

If we want to see whether the disturbances u and v grow or diminish in time under the

evolution described by the reaction-diffusion system, we’ll have to put them in there

and see what happens. In other words, we make the substitution

U → Upulse + u, V → Vpulse + v

Here, the pair (Upulse + u,Vpulse + v) plays the role of ‘1 + δ’ in the previous example.

By the principle of linear approximation, we can use the ‘derivative’ of the reaction-

diffusion system calculated ‘at the pulse (Upulse,Vpulse)’. It’s too technical to go into

details at this point, but the result is that we obtain two linear equations: one for u,

one for v. Although they are still intertwined (the equation for u depends on v and

vice versa), they are intertwined in a simple, linear way.

For such systems of linear equations, it’s possible to isolate the growth rate of u and

v. Remember, u and v were still very general disturbances, which are functions of

the spatial variable x (since they deform the pulse) and the temporal variable t (since
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they evolve in time). This growth rate is called λ, and its value determines the fate

of the disturbances – both disturbances have the same growth rate, that’s one of the

advantages of having a set of linear equations. The way the growth rate determines

the stability is very straightforward: if λ is negative (or, more specifically, if its real

part is negative, but that’s not really important here), the disturbances u and v will

decay, so then the pulse is stable. If λ is positive, the disturbances will grow, so the

pulse is then unstable.

If you introduce this growth rate λ and you start to shove terms around a little bit, you

end up with a system of four linear equations, in this case a four-dimensional linear

dynamical system. It’s rather similar to the way we obtained a four-dimensional

dynamical system in section 1.3.1: the four components are given by u, the derivative

of u, v, and the derivative of v. That’s just like in section 1.3.1: even the symbols are

the same, even though they represent something else. Also, this dynamical system is

linear, whereas the dynamical system in section 1.3.1 was not linear. Does that make

things easier? Yes and no. Although our newly obtained linear dynamical system

is linear, it has a peculiarity which makes it in principle hard to analyse: it depends

explicitly on x. We can write the system down in a concise way as

d

dx
φ = A(x; λ) φ

where we put all four components u, d
dx

u, v and d
dx

v into one four-component vector

φ. As you can clearly see, this is an example of a dynamical system, only in terms of

x instead of t (see section 1.2.2). From a mathematicians’ point of view, this makes

absolutely no difference: it’s just a symbol. This is an example of a situation where

it’s useful to ‘forget’ for a moment what x stands for, allowing you to recognise the

system of equations for u, v and their derivatives as a dynamical system. This allows

you to use techniques from the field of dynamical systems in a situation where you

initially wouldn’t have thought they could come in handy. The symbolic language of

mathematics shows an unforeseen connection between this analysis of small disturb-

ances and dynamical systems.

I mentioned that this dynamical system we’ve cooked up is hard to analyse since

the system depends on x – in particular, the matrix A(x; λ) (since that’s what it is, a

matrix) depends on x. Don’t worry about matrices and vectors: the important thing

is that this dynamical system looks different for different values of x. Why is this a

problem? Well, remember that the variable x has taken over the role of ‘time’ in this

dynamical system. A dynamical system which depends actively on time is constantly

changing the evolution rules as you let an initial state evolve in time. It’s like rolling
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a ball over a table top, while constantly wiggling and moving the table itself. You can

imagine that the path of the ball becomes very erratic, and will be highly influenced

by the movements of the table.

Luckily, in our case, we have some knowledge of how A depends on x, in other words,

we know something about the ‘movements of the table’. The reason A depends on

x is that we consider small disturbances u and v of our pulse solution, i.e. we’ve

started to look ‘nearby’ our pulse. Therefore, we had to calculate the ‘derivative’

of the reaction-diffusion system ‘at the pulse’. Regardless of its exact meaning, this

‘derivative’ of the reaction-diffusion system evaluated ‘at the pulse’ is exactly what

defines A. Therefore, the spatial dependence of A is very closely related to the spatial

structure of the pulse.

Remember, our pulse solution looks like the one in Figure 1.16. It has three

important features:

a) The V-component of the pulse is very sharp and very narrow: except for a very

small region in the middle, the V-component is practically flat and almost zero.

b) The U-component of the pulse is, except for the very small region in the middle,

not really influenced by the V-component, since the V-component vanishes almost

everywhere.

c) Both components decrease and become very flat and almost zero as you move

further and further away from the pulse peak, i.e. if x becomes very large or very

negative.

This spatial structure of the pulse has a direct influence on the way A depends on x.

In the small central region, it is predominantly determined by the V-component of

the pulse, whereas outside that region, the U-component of the pulse takes its role

in determining the spatial dependence of A. Since both components become flat and

almost zero when you are far away from the pulse peak, A loses its x-dependence and

becomes very simple in that far-away limit. In Figure 1.23, the x-dependence of A is

visualised based on the spatial structure of the pulse.

With all this talk about the dynamical system and A, it seems that we’ve drifted

away from our original goal, which was to determine the growth rate λ of our disturb-

ances u and v. How do we combine these two things?

First, it’s good to notice that our dynamical system is an equation for u and v, and the

dynamical system uses the variable x. Therefore, the dynamical system determines

the spatial dependence of u and v, in other words, the way they deform the pulse. So,
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Figure 1.23: The x-dependence of A, based on the spatial structure of the pulse.

we’re looking for small disturbances u and v which are at the same time solutions to

the dynamical system d
dx
φ = A(x; λ) φ. Are all possible solutions of this dynamical

systems then disturbances? Certainly not. The reason for this is that disturbances are,

by nature, small – that means, they are small everywhere, for all values of x. How-

ever, not every solution of the dynamical system stays small for all x. It’s even worse:

in general, a solution to such a dynamical system is ‘unbounded’. That means that

such a solution will increase as x increases, and it can become as large as you want

if you go to higher and higher values of x. Analogously, things can go wrong at the

other side: a solution can become as large as you want if you go to more and more

negative values of x. A good example is the function x2, see Figure 1.21: although

it’s fairly small near x = 0, it increases as x becomes larger or more negative, and

this never stops. You can obtain arbitrarily high values if you just go far away enough

from x = 0. Therefore, x2 is unbounded, and that’s the reason that it is not admissible

as a small disturbance.

You can wonder if it’s even possible at all to find bounded solutions for the dy-

namical systems, which are then admissible as small disturbances. The answer is

yes, well, sometimes: it depends on A(x; λ). Now we remember that A also depends

on the growth parameter λ. Here, λ plays the role of a parameter: for different val-

ues of λ, the matrix A(x; λ) will be different, and therefore the associated dynamical

system will be different, and the possible solutions to that dynamical system will be

different for different values of λ. You can imagine that for some values of λ, the dy-
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namical system doesn’t have any bounded solutions, while for other values of λ there

are bounded solutions possible. Finding bounded solutions, and therefore obtaining

admissible disturbances, is now a question of choosing the right values of λ.

Those ‘right’ values of λ are called ‘eigenvalues’, and since they were originally in-

troduced as growth rates, they determine the stability of the pulse. The strategy to

determine the stability of the pulse is therefore as follows: first, we determine for

which values of λ the associated dynamical system admits bounded solutions. Then,

we take a look at those eigenvalues: if all of them are negative, then the pulse must

be stable. This is because every admissible disturbance is, since it is a solution to

the dynamical system, associated to some eigenvalue. This eigenvalue is the growth

rate of that disturbance. If you know all eigenvalues, you know the growth rates of

all admissible disturbances. If all disturbances have a negative growth rate, then they

will all diminish, and therefore the pulse is stable. However, if there is just one pos-

itive eigenvalue, the disturbance (or disturbances) associated to that eigenvalue will

grow. Therefore, not every disturbance will diminish in time, and therefore the pulse

is unstable.

In general, it’s very hard to obtain such eigenvalues, let alone obtain them all.

If we want to know whether a pulse is stable, we need to know all eigenvalues: we

want to make sure that each and every one of them is negative, or else the pulse is

not stable. On the other hand, once we found just one positive eigenvalue, we can

immediately conclude that the pulse is unstable. Therefore, it’s often much easier

to prove statements like ‘Under these and these circumstances, the pulse is unstable’

than statements like ‘Under these and these circumstances, the pulse is stable’. In

chapters 2 and 3, you will therefore find more instability results than stability results.

However, in some cases, it is possible to prove stability, especially in chapter 2 (sec-

tion 2.4.2).

Our knowledge of the x-dependence of A can help us to obtain these eigenvalues.

What’s really helpful, is that we know that A becomes very simple in the far-away

limit, if we take x to be very large or very negative. From this very simple ‘limit’-

version of A, which doesn’t depend on x anymore, we can infer some properties of the

solutions of the entire dynamical system. Since A becomes very simple as x becomes

very large (or very negative), we know that the solutions of the dynamical systems

should behave accordingly. From this ‘limit’-version of A, there are just two possi-

bilities: a solution either grows in an unbounded way as x becomes larger and larger,

or it decays to zero as x becomes larger and larger. Therefore, we reason as follows.

Whatever a solution to the dynamical system looks like ‘in the middle’, where A de-

pends on some complicated way on x, if we want that solution to be bounded, i.e. to
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Figure 1.24: Matching solutions which decay to the left and to the right.

be an admissible disturbance, it has to decay to zero as x becomes very large or very

negative. Because an admissible disturbance, i.e. a bounded solution has to decay

to zero both as x becomes very large and as x becomes very negative, we try some-

thing similar as in section 1.3.1, where we tried to construct a pulse: we approach it

from both sides. That is, we take a solution which decays as x becomes very negative

(which behaves nicely at ‘the left’); we take a solution which decays as x becomes

very large (which behaves nicely at ‘the right’), and we try to let them match. In

Figure 1.24, this idea is illustrated.

In section 1.3.1, we tried to let two sheets intersect, see Figure 1.15. This ‘in-

tersection criterion’ could be calculated, and it gave the value which the ‘constant’

component u should have in the very small zone where the sharp v-spike was. In

other words, it gave the value of that parameter, such that the sheets would intersect.

While matching these decaying solutions from both sides, something equivalent is

going on. When trying to tune the value of λ such that these solutions can indeed

be matched, you obtain a ‘matching criterion’, which gives you the ‘right’ values of

λ, in other words, the eigenvalues. This ‘matching criterion’ can be reformulated in

terms of a function, which is called the Evans function. This Evans function is par-

ticularly useful since the values for which the Evans function is zero are precisely the

eigenvalues you’re looking for. In short: if you know the Evans function, you know

the eigenvalues, and therefore you know whether the pulse is stable or not. It turns

out that the scale separation which is present in our pulse, and which had a direct

influence on the x-dependence of A (see Figure 1.23), can be used to separate the

equations for the disturbance u and the disturbance v, just as in the existence section

1.3.1. Analysing those equations separately, it is possible to obtain the Evans func-

tion explicitly in the end. It’s too much to go into details, but the similarities between

the approach of the existence problem and the stability problem are striking. In the
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end, the process of ‘matching’ solutions to obtain admissible disturbances is just the

problem of letting two sheets of properly chosen solutions intersect. Behind it all,

there’s the singularly perturbed nature of the reaction-diffusion system which causes

the scale separation, which in turn allows us break up the large problem into smal-

ler sub-problems. Then, you analyse these sub-problems separately and combine the

results of these analyses at the end. Without the singular perturbation, none of this

would be possible.

1.3.3 Dynamics

In the previous section, I’ve explained how you can analyse the stability of the pulse

whose existence was established in section 1.3.1. It was already mentioned in section

1.3 that reaction-diffusion systems often depend on a number of parameters, which

you can choose freely. Depending on the value of these parameters, a pulse might ex-

ist, and if it exists, it can be stable; see Figure 1.11. The ‘existence zone’ in parameter

space can be found by the methods explained in section 1.3.1; the ‘stability zone’ in-

side the existence zone can be found by the methods explained in section 1.3.2.

In this section, I’ll elaborate some more on the fate of the pulse when it is disturbed.

If the pulse is stable, it’s easy to see what will happen: the disturbance will fade away,

and the pulse will stay where it is, in its original shape. However, if the pulse is un-

stable, it’s not clear at all what will happen. Yes, the disturbance will grow, but how

does that affect the pulse? Will the pulse grow as well? Will it deform? Will it start

to move? In general, these questions are very hard to answer.

The easiest way to get an idea about what’s going to happen with an unstable

pulse is to do numerical simulations. You put your reaction-diffusion system in en-

coded form in a simulation program, you prescribe your pulse, disturb it a little, push

the button, and see what happens. Since the computer does all the work, this seems

like a very good approach – although the actual setup of such a simulation can be a lot

harder than you might imagine. However, this approach has its limitations. You have

to choose a value for each of your parameters, including ε; since the computer calcu-

lates things step by step, you have to tell the computer to take very small time steps

– but not too small, otherwise the simulation takes too much time. Also, you have to

divide the space into small parts, because the computer can only handle numbers, and

not smooth things like functions. In the case of our pulse, where the V-component is

very narrow and very sharp, you’ll have to divide the space in that region into a large

number of very, very small segments.

All these things introduce a certain aspect of trial and error. You have to make sure
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that ε is ‘small enough’, whatever that may mean, and you will have to be lucky

in picking the values of your parameters such that something interesting happens.

If you’ve got a lot of parameters, this becomes increasingly difficult. Moreover, if

something exciting happens, you often don’t really know why this happens. There-

fore, numerical simulations can act as a guide to interesting phenomena, but the real

insight often has to come from ‘proper’ mathematical analysis.

There are situations where you can analytically investigate the fate of an unstable

pulse. This is when a pulse becomes unstable: by that, I mean the following. Sup-

pose you know that for a certain parameter choice, your pulse is stable, i.e. you’re

in the ‘stable region’ in parameter space, see Figure 1.11. Then, you start to change

the value of one of the parameters, and see what will happen to the growth rates, the

eigenvalues. At some point, one of your eigenvalues (which were all negative) will

become positive. In other words, you’ll cross the boundary of the ‘stable region’ in

Figure 1.11. At the boundary of that region, where the pulse becomes unstable, it’s

possible to see what’s happening in more detail, i.e. to analyse how the pulse becomes

unstable.

Such a crossing of the boundary of a region in parameter space is an example of a

‘bifurcation’. A ‘bifurcation’ is a rather general term to describe a situation where

something genuinely changes. That’s what happening at the boundary of the stable

region: within that region, you can change your parameters around a little, but that

doesn’t have large effects: the pulse will change its shape a little, but it will still be

stable. However, if you cross the stability boundary, this really makes a difference. If

you pick two parameter values which are very close together but on opposite sides of

the stability boundary, the two associated pulses will look very much alike; however,

one pulse will be stable, while the other pulse is unstable. Something similar happens

when you cross the boundary of the existence region: suddenly, the pulse that you

had can no longer exist.

Our pulse can become unstable in a number of ways. For each way of becoming

unstable, there is an associated bifurcation, where a parameter crosses the boundary

of the stability region. It really depends where you cross the boundary: if you’re

unlucky, you’ll be not only out of the stability region, but immediately out of the ex-

istence region as well – see Figure 1.11. Other parts of the stability boundary are a

lot less dangerous. For our kind of pulses, it turns out that there is a certain general

way in which such a pulse loses its stability, and that’s through a so-called oscillatory

instability. It’s not to say that this will always happen when you start playing with

parameters and push the pulse out of the stability region, but it will happen most of
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Figure 1.25: The movement of the tip of the pulse just before a Hopf bifurcation.

the time. It’s even stronger: you’ll have to choose your parameters very carefully to

avoid this oscillatory instability while pushing the pulse out of the stability region.

This oscillatory instability bifurcation is also called a Hopf bifurcation, and it mani-

fests itself as follows. If you’ve got a stable pulse and you’re near the boundary of

the stable region, and you give your pulse a little nudge, then it will start to oscillate,

i.e. to wobble up and down. This oscillation will die out after some time, because

the pulse is stable. In Figure 1.25, you can see the results of a numerical simulation

of such a pulse near the stability boundary, i.e. near a Hopf bifurcation. Once you

change your parameters such that you cross the stability boundary and then give your

pulse again a little nudge, you’ll see that the pulse will start oscillating again. Only

now, because the pulse is unstable, the amplitude of the oscillation will grow, and the

pulse will go up and down in an increasing way. This oscillation can become so wild

that the pulse can slap itself flat, and disappear. This is indeed what you observe in

simulations, see Figure 1.26.

However, when playing around with parameter values and simulating the result-

ing pulse, you will stumble upon something quite exciting. In Figure 1.27, you can

see the result of such a simulation. What you see is a pulse which is disturbed and

starts to oscillate. The amplitude of the oscillation starts to grow – nothing new so

far, it means that we’re outside the stability region. But then, after a while, you ob-
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Figure 1.26: The movement of the tip of the pulse just after a Hopf bifurcation.

serve that the amplitude of the oscillating pulse stabilises, and that you’re looking at

a steadily oscillating, or ‘breathing’ pulse. This is quite something: we’ve discovered

a pulse which moves up and down in time, a first step beyond the realm of stationary

patterns. Moreover, the pulse seems to stay where it is: it wants to move up and down,

but it apparently doesn’t want to move to the side.

Those observations are a reason for further analysis, and a few questions arise: ‘How

can we go beyond the Hopf instability bifurcation and find a breathing pulse?’ ‘Can

we predict when we will see a breathing pulse, and when we will just see an increas-

ingly wild oscillation?’

These questions were the driving force behind the last, fourth chapter of this

thesis. This chapter is also rather technical; however, it certainly is possible to give

you an idea about the approach you can take to answer these questions.

In order to do that, we’ll revisit the example concerning the linear approximation,

section 1.3.2. There, I argued that when you zoomed in on the graph of a function,

you could approximate that graph very well by its tangent line. That was called a

linear approximation, see Figure 1.22. If you zoom out a little, you’ll see that this

linear approximation starts to differ from the ‘real’ graph of the function. Therefore,

if you want to approximate this graph a little better, you will have to go beyond this

linear approximation. This means you’ll have to make a quadratic approximation.
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Figure 1.27: A breathing pulse. After a period of initial amplitude growth, the oscil-

lation of the tip of the pulse settles down to a steady breathing motion, with constant

amplitude. The right figure is a zoom of the left figure; here you can clearly see the

periodic motion.

Formula-wise, this means that you approximate the function at a certain point (say,

again, x = 1) as follows:

f (1 + δ) ≈ f (1) +
d f

dx

∣

∣

∣

∣

∣

x=1

× δ + 1

2

d2 f

dx2

∣

∣

∣

∣

∣

∣

x=1

× δ2

If you compare this with the linear approximation in section 1.3.2, you’ll see that

there’s just an extra term. In that extra term,
d2 f

dx2

∣

∣

∣

∣

x=1
denotes the second derivative of

f , calculated at x = 1.

Such a higher order approximation is also possible in the case of the pulse and the

reaction-diffusion system. Just like in section 1.3.2, you have to make the conceptual

jump where you imagine that the point x = 1 represents the pulse, while the function

f (x) represents the reaction-diffusion system. Just as it is possible to take the ‘deriva-

tive’ of this reaction-diffusion system, you can also take its ‘second derivative’. It’s all

quite analogous, really. The only disadvantage of this higher order approximation is

that your formulas become a lot, lot longer; you can see that when browsing through

chapter 4. Therefore, it also becomes harder and harder to say something definite

about the fate of the pulse, because your equations become increasingly complicated.

Once again, the singular perturbation helps you out. Based on the results of the exist-

ence and stability of the pulse, it turns out that it is possible to obtain explicit formulas

which tell you something about whether such a breathing pulse will or will not appear.
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Figure 1.28: An example of a ‘landscape’.

The reason why this higher order approximation can shed light on the appearance

of a breathing pulse can be made clear by an example. In section 1.3.2, the concept

of stability was illustrated by a ball on top of a hill versus a ball at the bottom of a pit.

The first situation was unstable, the second was stable; see also Figure 1.20. In this

case, the linear approximation only tells you if you’re on top of a hill, or at the bottom

of a pit. It doesn’t tell you anything of what the rest of your surroundings look like.

There might be other hills nearby, or other pits: see Figure 1.28. The higher order

approximation lets you take a better look at the surrounding landscape.

In the case of a breathing pulse, the following situation occurs. Since you’re in an

unstable situation, you know that your ball (which represents the pulse) is on top of a

hill. If the ball is given a little nudge, it will roll down. However, in some situations,

your starting hill lies in between to larger hills. You might be able to roll down the

hill, but you’ll never escape the larger valley: see Figure 1.29. That means that, while

the ball rolls around in the larger valley, it will never escape. The associated periodic

motion of the ball is therefore bounded: its amplitude doesn’t grow indefinitely.

Therefore, if you use higher order approximations and find out that the local ‘land-

scape’ is such as in Figure 1.29, then you know there has to exist a steadily oscillating,

breathing pulse. Moreover, you can find that particular breathing pulse by giving an

unstable stationary pulse nearby a little nudge, such that it starts to oscillate (see for

example Figure 3.1). In chapter 4, the analysis tells us that such a situation can in-

deed arise, if you choose your parameters correctly. In more technical terms, that

means that the Hopf bifurcation is called ‘supercritical’. If there is no surrounding

valley, and your ball keeps rolling down the hill with increasing speed, then the Hopf

bifurcation is called ‘subcritical’. Using these concepts, it is possible to prove the

existence of a breathing pulse.
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Figure 1.29: A hill in a valley: bounded periodic motion.

1.4 Thesis structure and main results

Now that you’ve encountered some central concepts and methods used in this thesis,

it is time to explain how this thesis is structured, and which results have been obtained

during the research leading to this thesis.

Let’s focus first on chapters 2 and 3. I’ll introduce them together, since they are

rather similar in structure and content.

Chapter 2 treats pulse solutions in the ‘slowly nonlinear Gierer-Meinhardt model’.

The Gierer-Meinhardt model, mentioned in section 1.2.2, is one among many canon-

ical models which have been studied in the last few decades in the context of pattern

formation in reaction-diffusion systems. While the origin of the Gierer-Meinhardt

model lies in developmental biology (it was developed in the context of morpho-

genesis), other sciences have contributed to the class of canonical reaction-diffusion

models as well. The Gray-Scott model [23] has its basis in chemistry, while the

Fitzhugh-Nagumo model [20, 40] describes the transmission of a electrical signal in

a nerve.

The study of patterns in reaction-diffusion equations has largely been centered

around the models just mentioned. One of the distinguishing features of the research

presented in this thesis is the step beyond these canonical, quite specific models.

Once you know how to find a pattern in a reaction-diffusion system, it doesn’t matter

that much what the system looks like. Of course, there are some mild restrictions

on the reaction terms in the reaction-diffusion system under consideration, but those

aren’t really ‘restrictive’; still, a wide range of systems falls into this admissible class.
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The slowly nonlinear Gierer-Meinhardt model is such a step beyond the canonical

models, in this case beyond the Gierer-Meinhardt model. In chapter 2, the existence

and stability (in that order) of a pulse in this extended version of the Gierer-Meinhardt

model is treated. It turns out that the extension of the Gierer-Meinhardt model with

a slowly nonlinear term introduces a lot of new things: not only is it possible to

construct a new, different type of pulse in comparison with the ‘canonical’ Gierer-

Meinhardt model, the stability analysis of the constructed pulse shows that it can

become unstable in a previously unobserved way. Another feature of this model is

that, even though it is a nonlinear extension of the canonical model, you can still

calculate everything you want in an explicit way: there is an explicit formula for the

pulse, the stability analysis can be carried out explicitly, and even the Evans function

can be determined in an explicit way. This is very useful for the stability analysis, in

finding all the eigenvalues. For this model, it is possible to prove some results about

the stability of the pulse.

Chapter 3 has the same structure as chapter 2. The main difference is that here we

treat a wide range of possible reaction-diffusion systems instead of just one specific

example. Since we showed in chapter 2 that such an extended system can give new

results, it’s interesting to see how far you can go with this. During the entire analysis

in chapter 3, the reaction-diffusion system is kept at a very general form, almost like

‘something involving φ’ as in section 1.2.2 – well, it’s a little more exact than that,

but the main idea still is that it doesn’t really matter that much what your reaction-

diffusion system looks like. Once it obeys some very general conditions, it is possible

to construct a pulse solution for it. Even the stability analysis can be carried out in the

same way as for the explicit example of the slowly nonlinear Gierer-Meinhardt sys-

tem of chapter 2. What’s even more surprising, is that for such a very general system,

you can still write down the Evans function explicitly. This is a really strong result,

because it allows you to prove a number of (in)stability results for this very general

class of systems. It even becomes clear that already during the construction process

of the pulse, you can predict which pulse will certainly be unstable, and which pulse

has a chance to be stable. The previous sentence already suggests that there’s more

than one possibility to construct a pulse (just like in chapter 2), which is indeed true

in general. Chapter 3 shows you how to approach such a general system, and gives

you the tools to construct and analyse a pulse yourself.

In this sense, chapters 2 and 3 are each other’s mirror image. They follow exactly the

same approach: chapter 2 for an explicit system, chapter 3 for a very wide class of

systems of which the slowly nonlinear Gierer-Meinhardt system of chapter 2 is just

an example.
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While both chapters 2 and 3 treat existence and stability, the first two steps of

the general research approach (Figure 1.10), the last chapter takes a first step into the

largely unexplored world of pulse dynamics. Here, the higher order approximation of

a destabilising Hopf bifurcation (which was found to exist in general in chapter 3, and

was explicitly established in chapter 2) leads to the discovery of so-called breathing

pulses, see section 1.3.3. In this fourth chapter, I present two equivalent methods

to calculate these higher order approximations. These higher order approximations

are applied to the slowly nonlinear Gierer-Meinhardt system, using the results of

chapter 2. The numerical simulations which were presented at the end of chapter 2,

section 2.5 already hinted at the existence of breathing pulses (see also Figure 1.27):

in chapter 4, it is shown that these solutions can indeed exist, and when this is the

case.
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