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1
Introduction and Summary

This introduction is written for non-scientists; its aim is to present the subject and

research in this thesis in a way which is understandable for a broad audience. If you

are a scientist, or even a mathematician, you might find this introduction lacking a

certain depth. In that case, I recommend reading the introductory sections of the

subsequent chapters – their content is specifically aimed at scientists, mathematicians

in particular.

1.1 How should I read this?

There are a couple of reasons why a thesis in mathematics is hard to read for non-

mathematicians. First, of course, there are the formulas. A mathematician conveys a

large part of his message using symbols, and the connections between them by formu-

las. If you haven’t got that much experience in using symbols and reading formulas,

texts which heavily rely on them are notoriously hard, or even impossible, to read.

Having said this, the use of symbols to convey mathematics is not only convenient,

but also necessary. It allows the researcher to represent certain ideas (which might be

quite abstract) using a few symbols, thereby keeping his or her reasoning accessible

and clear to follow – for the fellow mathematician, of course. If you would try to

reconvert all the symbols in this thesis into words, the text would very quickly spiral

into incomprehensibility: the sentences would span several pages, it would be im-

possible to structure them in a clear way, giving up any hope for conveying the ideas

you want your reader to understand. The conciseness and clarity of symbols, and

their use in mathematics, have proved beneficial for many, many centuries. Symbols

1



1. Introduction and Summary

and formulas allow you to discover new connections and relations, which opens the

door to abstract thinking and deeper understanding of the subject you’re considering

– and that’s not only true for mathematicians, but also for other scientists who use the

‘language of mathematics’ to summarise their findings.

When you start to work with symbols and formulas, and thereby gain some experi-

ence in reading them, you’ll notice that these symbols (and the ideas they represent)

become more tangible. More and more, you get an idea of what that symbol stands

for. You get a feeling of how a symbol behaves, how it reacts to other symbols, what

it does. Then, you can start to shove them around, manipulate them, and introduce

new symbols because that’s the best way to explain what you found – and suddenly,

you’re doing mathematics.

The second reason why mathematics is hard to read, is the language that is being

used. Your goal as a mathematician is to convey objective truths, to tell a coherent

and logically sound story. That means the language becomes objective as well: there

is no ‘I’ or ‘you’ in mathematics, you can hope for a ‘we’ at best. In a mathematical

text, you’re taken along a route towards understanding a mathematical topic, guided

by the author. Anything which might reek like subjectivity is to be avoided at all

costs, is the opinion of many. Mathematical truth does (or should) after all not de-

pend on who’s presenting it. Phrasing your sentences in subjective form also makes

you more vulnerable to criticism: you might say it is so, but that doesn’t mean I have

to believe it.

Although often deemed necessary, this practice doesn’t do the readability of the math-

ematical text any good. As you might have already noticed, I’ve chosen a different

style for this introduction. At a risk of being ‘not scientific enough’, i.e. not objective

enough, I think it is necessary, if you want your ideas to be understood by a wider

audience, to present ideas through a text which is accessible to the non-mathematical,

non-scientific reader. That is exactly what I try to accomplish with this introduction.

Sometimes the nature of the subject I’m describing is such that using an objective

style is unavoidable; however, I’ll try to refrain from doing so. Once the ‘real’ con-

tent starts in chapter 2, you’ll notice a change in style from the somewhat direct,

subjective style wielded in this introductory chapter, to the objective and somewhat

indirect ‘mathematical’ style. As argued above, this is a necessary feature of mathe-

matical research texts.

Text isn’t everything. As a mathematician, I’ve noticed that deeper understanding of a

phenomenon through symbol manipulation goes hand in hand with the development

of a certain mental picture. Since the objects you’re working with are often of an

abstract nature, this mental picture cannot be more than approximately accurate.

2



1.2 Concepts

In that respect, I consider myself lucky that I’m an applied mathematician. More

often than in other, more pure branches of mathematics, I’ve got the possibility to

accurately visualise the objects I’m analysing. Since the excessive use of symbols

holds the danger of obscuring the analysis, the use of pictures can be beneficiary to

understanding the topic at hand. One of my goals is therefore to give the reader some

idea what the pictures in this thesis mean. If you’re browsing through the mathemat-

ical chapters, you encounter a figure and think ‘Ah! I’ve seen something like that

before, could this be related?’, that goal is achieved.

This introduction is structured as follows. Based on the consideration ‘if you’ve

got a thesis in your hand, you should at least be able to understand its title’, I will

first explain some concepts which are central to the research area in which the topic

of this thesis falls (section 1.2). Along the way, all the words which make up the

title will be introduced. This part is specifically written for non-mathematicians, even

for non-scientists. As you can see while skimming through the introduction, there

aren’t as many formulas as you would expect from a mathematics thesis – especially

in comparison with the next chapters, where the ‘real’ content can be found.

Once I’ve told enough to explain the title, it’s time to dive a little more into the re-

search itself. If you’ve become interested at that point – and I hope you are –, I’ll

explain what the research presented in this thesis entails, since that is, purely based

on the title, not at all clear. I’ll explain in general the research methods and ideas used

in this thesis (section 1.3). Also, I’ll shed light on some research results, and tell you

why they are important and why they are new. Although this part will unavoidably

be a little bit more technical, it’s still possible to get the message across without go-

ing into too much detail. In the end (section 1.4), I’ll summarize the content of each

chapter, giving you an overview of the content of this thesis.

1.2 Concepts

1.2.1 Patterns

What is a pattern? In the broadest sense, you could characterise a pattern as an ‘ob-

servable regularity’. In nature, patterns are all over the place. The most obvious ones

are stripes or spots on animal skins as found on zebras, leopards, cats, boar piglets;

more elaborate spiral patterns occur as fingerprints, sea shells or snail shells. Once

you start looking for patterns, ‘there’s something, then there’s nothing, then there’s

3



1. Introduction and Summary

Figure 1.1: Some examples of patterns in nature: a leopard, a finger print, and veget-

ation patterns at the edge of the desert.

something again, etc.’, you’ll discover they are all around you. Think of a tree: its

branches, twigs on the branches, leaves on those twigs are all roughly equally spaced

– even the transport canals visible in the leaves exhibit a tree-like structure. On larger

scales, examples of patterns are ubiquitous, even at arid places like the desert: think

of wave patterns on sand dunes, or even the more or less equally spaced dunes them-

selves. At the edge of the desert, you can find vegetation patterns as spots and stripes.

Similar spots and stripes can in turn be observed in the sky as cloud patterns.

All these patterns have an element of repetition; they can be characterised by

the recurrence of a certain element. Nature is full of repeating processes: the daily

cycle of the sun, the tides, the phases of the moon, the changing of the seasons.

While you might be tempted to call these phenomena ‘patterns’ as well (which in

a sense, of course, they are), the repetition in these phenomena is temporal rather

than spatial. This distinguishes them from the patterns considered above: indeed,

what mathematicians call a ‘pattern’, and we’ll stick to that from now on, is a spatial

pattern. Of course, this does not mean that (temporal) change will not play a role –

far from it. We’ll come to speak about ‘the dynamics of patterns’ later.

4



1.2 Concepts

Figure 1.2: An example of a pulse and a pulse pattern.

As mentioned earlier, patterns can be characterised as the recurrence of a certain

structural element, be it a spot, a stripe, a twig, a ripple, a leaf, or something else.

In this thesis, the object of study is precisely such a structural element, a so-called

‘pulse’. This pulse can be viewed as a building block for more complicated patterns,

see Figure 1.2. It is a natural idea to start the analysis of a pattern at its foundation,

that is, by analysing its elementary building block. Once you know something (or,

hopefully, a lot) about this building block, you can start to answer questions about

the pattern as a whole, by looking at the ways this structural element can repeat itself.

The latter, though being the obvious next step, is beyond the scope of this thesis.

Natural questions to answer when studying a pattern are: What is the repeating

structural element? And how does it repeat? You can use both questions to approach

the more encompassing problem of how a certain pattern is formed. The research

presented in this thesis therefore falls naturally within the mathematical research area

of ‘pattern formation’ – and in that area, within the analysis of ‘localised structures’.

The aforementioned pulse is an example of such a localised structure.

Depending on the pattern in question, the structural element, or localised structure,

can be of more or less interest. Concerning the fingerprint, the spiral pattern itself

is far more important than the narrow skin ridges of which it consists, especially in

forensic analysis. In plant growth, on the other hand, the structural elements (leaves,

twigs) are much more interesting. A related example is the process of embryonic

limb development, which can be studied in the context of pattern formation: here,

the localised structures (the arm, the fingers) are the key elements of interest. The

process which causes a growing organism to develop its shape, morphogenesis, can

therefore be studied in the mathematical context of pattern formation – and this is just

one example of its many uses.

5



1. Introduction and Summary

1.2.2 Dynamical systems

The mathematical techniques employed in this thesis are rooted in the field of dy-

namical systems, in particular that of differential equations. Without diving into the

mathematics straight away, it is possible to give a flavour of how dynamical systems

work, and which ideas can be used in the study of pattern formation.

A dynamical system describes the change of some quantity based on a certain

system of rules. You can think of the changing position of the earth as it orbits around

the sun, the concentration of chemicals when you put them together and let them

react, the mass of a growing bacterial colony. There, rules governing the changes

are the laws of gravity, the chemical reactions between the chemicals, and the way in

which the bacterias use food and/or oxygen to reproduce. In particular, these rules can

be given as a number of evolution equations. Given an initial state (a starting position,

an initial concentration), an evolution equation describes how this initial state evolves

in time; you might envision it like shown in Figure 1.3. Such an evolution equation is,

mathematically speaking, a differential equation. An evolution equation for a quantity

φ will therefore be an equation for its time derivative d
dt
φ, i.e. the change of φ in time

at a certain moment:

d

dt
φ = something (involving φ and/or t).

Here, φ plays the role of whatever your evolution equation is describing, be it tem-

perature, an animal population, the concentration of a certain chemical, etcetera.

Of course, the ‘something’ part is where the fun begins. Once you make a choice for

the ‘something’-terms on the righthand side of the equation, you prescribe a certain

behaviour, fixing the evolution of φ. Different choices for the righthand side terms

will lead to different dynamical behaviour of the quantity φ – even small changes can

have large consequences, as we will see in section 1.2.4.

Evolution equations are used as a model for phenomena in nature where the time

evolution of certain quantities play a role, for instance the growth and decay of pop-

ulations. Often, it is needed to describe in the model how the quantity in question is

spread out – in space, that is. If the evolution of a quantity also depends on the way

it is spread out, the space variable x plays an important role in the evolution equation

describing such a process. The time evolution of a quantity φ will depend on x, and

on spatial derivatives like d
dx
φ and d2

dx2 φ. Therefore, such a model looks like

∂

∂t
φ = something involving φ,

∂

∂x
φ,

∂2

∂x2
φ, x and/or t.

6



1.2 Concepts

Figure 1.3: A visualisation of a dynamical system: a certain initial state evolves in

time.

You may have noticed that the notation of the derivatives has slightly changed: we

use ‘∂’ instead of ‘d’. This notation is commonly used to emphasise that the quantity

φ depends on two variables, in this case x and t: in other words, φ is a function of both

x and t. Also, for simplicity, we stick to just one spatial variable x; for phenomena

occurring in more than one dimension, where it is for instance useful to distinguish

length, width and height, more spatial variables are needed. However, the approach

is often completely analogous to the one-variable case.

An important class of evolution equations where spatial spreading influences the

evolution of a quantity is the class of reaction-diffusion equations. These reaction-

diffusion equations clearly distinguish the role of the spatial derivatives of φ ( ∂
∂x
φ,

∂2

∂x2 φ, etc.) from other terms. That is, reaction-diffusion equations are structured as

∂

∂t
φ =

∂2

∂x2
φ + something involving φ.

7



1. Introduction and Summary

This structure can be used to explain where the name ‘reaction-diffusion’ originates.

The term ‘diffusion’ means the process of spreading in space: think of a drop of milk

spreading in a cup of coffee. Another everyday example is heat conduction: if you

heat a pan on the stove, the heat spreads to the pan (and, more importantly, the food)

due to diffusion. Mathematically, you can model diffusion most straightforwardly by

a second order spatial derivative, in this case ∂2

∂x2 φ. This term in the reaction-diffusion

equation dictates how the quantity φ spreads into space as it evolves over time.

The other terms, ‘something involving φ’, are called the reaction terms. The reason

for using this terminology is most clear if you consider not one, but two reaction-

diffusion equations, i.e. a ’reaction-diffusion system’ (or, equivalently, you can con-

sider a quantity φ which has two separate components). An example is the Gierer-

Meinhardt system [22], describing the evolution of the quantities U and V:

∂
∂t

U = ∂2

∂x2 U + V2 − U

∂
∂t

V = ∂2

∂x2 V + V2

U
− V

You can clearly see that the evolution of U, prescribed by the first equation, is influ-

enced by the value of V through the term V2. The second equation, describing the

evolution of V , has in turn a term V2

U
which depends on U. This mutual influence can

be interpreted as a reaction between U and V , which clarifies calling these terms in

the evolution equation ‘reaction terms’.

Reaction-diffusion equations can therefore be characterised as evolution equations

describing the spatial spreading and mutual interaction of certain quantities.

1.2.3 Patterns in reaction-diffusion systems

In phenomena described by reaction-diffusion models, all kinds of patterns frequently

occur. This is no coincidence: the appearance of some kind of pattern in a natural

phenomenon is often the incentive for researchers to try to model this phenomenon

using a reaction-diffusion model. Alan Turing –the very same Alan Turing who’s

famous for his groundbreaking work in computer science and for deciphering the

Enigma code– was the first to postulate that (and explain why) systems of reaction-

diffusion equations naturally allow the formation of patterns [50]. Patterns formed in

this way are often called Turing patterns.

The most common description of the Turing patterning principle uses a so-called

8



1.2 Concepts

Figure 1.4: Examples of diffusion: a splash of milk in coffee, a pan on the stove.

activator-inhibitor pair. Given two species (say, chemicals), we call one the ‘activa-

tor’ and the other one the ‘inhibitor’: the activator makes both species grow, while

the inhibitor tries to decrease the growth of both species. This activation/inhibition

description can be modelled by the reaction terms of a reaction-diffusion equation.

Turing found out that if the inhibitor spreads (diffuses) much easier than the activa-

tor, a certain feedback mechanism occurs. Because of this feedback mechanism, the

activator and inhibitor are not evenly spread out. Their concentration fluctuates in a

very regular way, creating a pattern.

This activator-inhibitor mechanism, modelled by a system of reaction-diffusion equa-

tions, is widely believed to be the cause of a broad range of patterns in nature, such

as spots and stripes on animal skins, or vegetation patterns at the edge of the desert.

In Figure 1.6, you can see some examples of patterns found in a specific reaction-

diffusion system (the Gray-Scott model).

What is a pattern? In the context of reaction-diffusion equations, you could say

that a pattern has a clear spatial structure, so it depends on the spatial variable x in

some specific way. Moreover, as in the many examples of patterns seen in section

1.2.1, you could argue that something like a pattern should not, or not really, change

in time. This last condition, although it seems natural, is quite restrictive. There are

clear examples of things which you undoubtedly would call a ‘pattern’, but which do

move. Travelling waves (such as water waves or radio waves, or light) are examples

of this: they have a periodic (spatial) structure, but move as well. Of course, you

could say that when you move along with the wave, it seems to be standing still –and

that’s exactly how these travelling waves are analysed in general– but that doesn’t

change the fact that these waves are moving.

9



1. Introduction and Summary

Figure 1.5: Alan Turing (1912-1954), pattern formation pioneer.

However, focusing on stationary patterns has some major advantages: since the pat-

tern you’re looking for is independent of time, you can imagine that its analysis in the

context of reaction-diffusion equations becomes somewhat easier: there is no inter-

play between space and time, the pattern won’t evolve. Also, this can be considered

as a starting point for the analysis of patterns which do change in time. You can start

to phrase questions like ‘If I change some conditions, will the pattern I established

start to change? Will it start to move? Will it change its shape?’ In section 1.3.3,

some of these questions will be addressed.

Summing up, the search for a pattern in a reaction-diffusion model may start with

finding a stationary, i.e. time independent solution with a specific spatial structure

to the associated system of reaction-diffusion equations. Indeed, that’s exactly what

part of this thesis is about: to find patterns (in particular, pulses) in reaction-diffusion

systems.

10



1.2 Concepts

Figure 1.6: Several types of patterns in the Gray Scott model [43].

1.2.4 Perturbations

Let’s do a little experiment. We want to study what happens to a ball when we let it

drop from a certain height, say 2 metres. We can, for instance, measure how long it

takes before the ball hits the ground. You can imagine that, when you perform this

experiment multiple times, you won’t always get the same answer. This variation in

measurements can be caused by a lot of things: maybe you didn’t drop the ball each

time from exactly the same height, maybe you weren’t always on time with your stop-

watch. Those things have to do with the fallibility of the experimentalist: of course,

the actual phenomenon you’re investigating, the falling of a ball, isn’t influenced by

your incapability of measuring things exactly. Since this is a thought experiment,

let’s assume you are able to measure the falling time of the ball exactly.

11



1. Introduction and Summary

Still, you won’t get exactly the same measurement results. Maybe the ball was

a little bit blown to the side by the wind, maybe the ground was somewhat uneven,

maybe the atmospheric pressure changed a little, as well as the air humidity, changing

the air resistance; maybe a dust speck stuck to the ball and changed its total weight,

maybe the ball collided mid-air with an unsuspecting little fly, slowing it down. These

are things you can’t control, but which might influence the measurement results. You

could argue that if you do a lot of experiments, under tightly controlled conditions,

you can minimise and average out the influence of these disturbances. In the end, to

explain the phenomenon of the falling ball (since we know that’s just due to gravity),

it shouldn’t matter who’s doing the experiment, or what time of day it is, or whether

it’s raining or not, or whether I perform the experiment in Oslo or Jakarta – but wait.

That last condition actually does matter, although a little. We know, since the days

of Newton, that the ball falls due to the mutual gravitational attraction between the

ball and the Earth. When you start to measure the gravitational acceleration at differ-

ent places on Earth (for instance, by performing our falling ball experiment), you’ll

find out that this gravitational acceleration g differs a little bit from place to place.

Approximately, g = 9.8 m/s2; in Oslo, we have gOslo = 9.825 m/s2, while in Jakarta,

we have gJakarta = 9.777 m/s2. While the other small influences on the falling ball

were random, and didn’t have anything to do with the physics underlying the phe-

nomenon of the falling ball, the location on Earth introduces a systematic, though

small, change.

When a researcher studies a natural phenomenon, he or she tries to establish

which processes or laws are really instrumental to understanding the phenomenon,

and which processes are just noise, disturbances. If you would write down a model,

i.e. an equation for the falling ball, you wouldn’t incorporate the time of day or the

color of your eyes, since you know those don’t matter. Also, you wouldn’t incor-

porate the wind or the air humidity, since you know those aspects of nature are not

underlying the phenomenon of the falling ball. Although they might influence its

movement a little, that’s not what you want to study in the end. In other words, you

want your equations (your model, your physical laws) to be as clean, as simple, as

possible. This is one of the reasons why it’s hard to write down a good model as a

scientist: you need a lot of knowledge and experience to single out the processes that

really matter for the phenomenon you’re studying.

As for the falling ball, we can write down a formula for its falling time using

Newton’s second law, incorporating only gravity. If we call the falling time t and the

gravitational acceleration g, this gives (for a falling height of 2 metres, and forgetting

12
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about units)

t =
2
√

g

Since the value of gravitational acceleration g differs from place to place, the falling

time differs from place to place. Of course, if we would just want an approximate

result for the falling time, we could always use the approximate value for g – even

though it’s not exact, the ‘real’ value of g (and therefore the real value of t) is not far

from it. Using the average value gaverage = 9.81 m/s2, we obtain taverage = 0.64 s. Now

we can compare the actual values of the gravitational constant at Oslo and Jakarta

with the average value: gOslo = gaverage+0.015 m/s2 and gJakarta = gaverage−0.033 m/s2.

In this way, we can write the gravitational acceleration anywhere on Earth as g =

gaverage + ε, where the value of ε depends on where you are. Also, as we’ve already

seen, ε is quite small compared to gaverage. If we incorporate this in our equation for

the falling time, we get

t =
2

√
gaverage + ε

This formula, giving the falling time of a ball dropped from a height of 2 metres

anywhere on Earth, is an example of a model with a perturbation. In this way, you

can immediately read off a number of aspects characteristic to the falling ball phe-

nomenon. For instance, if you ignore the small variations in g, setting ε = 0, you

can immediately see how to calculate the approximate, average falling time taverage,

namely as

taverage =
2

√
gaverage

Moreover, you can see that, as long as the perturbation ε is small, the falling time

won’t differ very much from the average falling time, see Figure 1.7. This last char-

acteristic, that small changes in the model have small effects on its outcomes, is the

defining property of so-called regular perturbations.

The opposite is true for singular perturbations, where small perturbations in the

model can have large effects on the quantities described by the model. This sounds

somewhat counterintuitive, but there are everyday examples where singular perturba-

tions play an important role.

Singular perturbations are almost always associated with sudden changes, or fast

transitions. A good example is heat conduction, which we’ve encountered before

in section 1.2.2, where it was intimately connected to the term ‘diffusion’.

If you put a pan on the stove, the heat from the stove spreads very quickly through the
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Figure 1.7: The value of the falling time t for small perturbations ε. As you can see

from the axis scaling, the falling time doesn’t change that much when ε is small.

metal of the pan: this metal conducts heat very well. If the pan would be ceramic, this

would be completely different: since ceramic materials are quite good at insulating

heat, the pan would heat up very slowly, since the heat from the stove would hardly

spread through the ceramic material. The difference between metal and a ceramic ma-

terial such as porcelain in terms of heat conduction can be seen clearly by comparing

Figures 1.8 and 1.9. In the ceramic material, the heated spot in the middle does not

spread out like in the metal. Therefore, there is a sharp transition between the heated

region and its surroundings: at the edge of the heated region, there is a sudden drop

in temperature. That this phenomenon is intimately related to singular perturbations,

becomes clear once you consider the model underlying the phenomenon of heat flow

through materials.

Heat spreads through materials due to diffusion. Indeed, the spread of heat through

a material can be modelled by a very simple evolution equation known as the ‘heat

equation’:

∂

∂t
φ = α

∂2

∂x2
φ

where, in this case, φ is the temperature at a given place in the material at a certain

time. This is a very basic reaction-diffusion equation, or rather just a diffusion equa-

tion since there are no reaction terms present (see section 1.2.2). Here, α is called the

thermal diffusivity: it is a constant, and its value depends on the material considered.

A material which doesn’t transfer heat very well has a very small thermal diffusivity.

To make a connection with the previous example, let’s call this small thermal diffu-
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Temperature

Figure 1.8: A heated spot on a metal pan: you can clearly see that the heat diffuses

very well.

Temperature

Figure 1.9: A heated spot on a porcelain pan: the heat hardly diffuses, and there is a

sharp temperature transition from the heated spot to the outside.

sivity constant ‘ε’, such that the heat equation for such a highly insulating material

becomes
∂

∂t
φ = ε

∂2

∂x2
φ

Like in the falling ball example, you can ask yourself what happens when we neglect

the small ε term, i.e. set ε = 0. In this case, something very drastic happens: the heat

equation simplifies to
∂

∂t
φ = 0

In other words, the temperature φ does not change. This means that the transition
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between the heated spot and the surrounding areas really is a sharp transition: the

heated spot stays heated, since it’s insulated by the surrounding material, and the

surrounding material stays cold. Of course, this doesn’t give a completely realistic

description of the situation: in reality, the heat will slowly spread and the heated spot

will cool down slowly. However, this so-called ‘singular limit’ gives a quite conveni-

ent approximation of the real phenomenon, as long as you’re willing to overlook the

fact that a perfectly insulating material can hardly be expected to exist.

The limit ε = 0 is called ‘singular’, because it throws away a term in the model

which is crucial to the description of the phenomenon, in this case heat diffusion.

This tendency of singular limits to dispose of instrumental terms is a recurring theme

in the study of singular perturbations, and can often be used to the advantage of the

researcher, since it leads to a vast simplification of a possibly complicated model.

You can think of it as a trade-off: by setting ε = 0 in a singular limit, it suddenly

becomes possible to solve some equations, since the complicated system is severely

reduced. On the other hand, you’ve thrown away quite a lot: it is often unclear how

the analysis in the singular limit can tell you something about the case when ε is not

equal to zero (but still very small). In the above example of heat diffusion, we already

understood the phenomenon which was being modelled by the ‘full’ heat equation,

so we could interpret the singular limit. In other applications, this is often not so easy.

We’ve seen that, in the case of very slow heat diffusion, there is a sharp transition

between the heated spot and the surrounding areas. In reality, this transition is not

discrete as in the singular limit, but occurs very fast. To obtain a better understanding

of what’s happening at the transition, it’s a good idea to zoom in on that transition

zone. If you do that, you’ll see a gradual change from high to low temperature, but

now gradual on a very small spatial scale. The best way to describe the temperature

distribution in the porcelain pan is as follows:

1. Start far away from the heated spot. There, the temperature is low. If you

start to ‘walk’ towards the heated spot, nothing much happens: the temperature

stays the same.

2. Suddenly, there is a huge jump in temperature. You’re now at the edge of the

heated spot. To obtain a better view of what’s happening here, you will have

to slow down and zoom in at the transition zone: you’ll see that, on this small

scale, the temperature steadily rises.

3. After the jump, you’re in the heated zone. Again, nothing much happens: the

high temperature is everywhere more or less the same.
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This phenomenon of scale separation, where the best way to describe a situation

is to analyse different parts of it at different scales, occurs naturally when singular

perturbations are present. The general approach in such situations is therefore to

separate the problem into different scales, analyse each scale separately, and then try

to paste these descriptions together to obtain a consistent global picture. This idea of

separating scales, analysing reduced problems and trying to combine the results will

be explained in more detail in section 1.3.1.

1.2.5 What is this thesis about?

We’ve come to a point in this introduction where it’s possible to understand the title

of this thesis: ‘Pulses in singularly perturbed reaction-diffusion systems’. This thesis

is about the analysis of a certain pattern, namely a single pulse, in the context a cer-

tain class of models, namely reaction-diffusion systems. Moreover, these reaction-

diffusion systems possess a certain very useful quality: they are singularly perturbed.

In section 1.2.1, we’ve seen what patterns are and how mathematicians think of them;

in section 1.2.2, it was explained what we mean by ‘reaction-diffusion systems’, and

in section 1.2.3, it was indicated why patterns can occur in these reaction-diffusion

systems, and how they are characterised mathematically. The concept of ‘perturba-

tions’, and in particular ‘singular perturbations’, has been introduced in section 1.2.4.

The concepts introduced in the previous sections will be used to clarify the re-

search methods presented in the upcoming sections. I’ll give an overview of the

methods used in my research, and present the general approach to analysing patterns

in reaction-diffusion systems.

1.3 Methods

When you start to analyse pulses (or any pattern, for that matter) in reaction-diffusion

systems, you start by asking the question ‘Does a pulse exist at all?’. In other words,

you start to investigate whether the reaction-diffusion system you’re considering ad-

mits something like a pulse solution. This is the question of existence, which will be

addressed in section 1.3.1. If the system doesn’t admit a pulse solution, there’s not

much to investigate. On the other hand, if the system does admit the pulse solution

you’re looking for, you’re not done yet. The next obvious question is (and I’ll explain

why this question is obvious) ‘Is this pulse stable?’. The notion of stability has not

been introduced, but will be explained in detail in section 1.3.2. The short answer to
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the question why stability is important, is that if a pulse exists but is unstable, you

often won’t observe it in ‘real life’ applications. Therefore, a priori, the stable pulses

are the ones you’re looking for.

However, that’s not the whole story. Disregarding unstable pulse solutions as

wholly uninteresting doesn’t do them justice in all cases. There are numerous ex-

amples of exciting phenomena which can unfold when you look at an unstable pulse.

Therefore, you should ask the question ‘If the pulse is unstable, what will happen?’.

This will open the gateway to a vast realm of possibilities in the field of pulse dynam-

ics, i.e. the motion of a pulse. I’ll explain how you could go about analysing one of

those many possibilities in section 1.3.3. This is also the subject of the last chapter of

this thesis, chapter 4.

In Figure 1.10, you can find an overview of this research approach.

Can there be
 a pulse?

Is the pulse
 stable?

What will 
happen?

Yes

Yes

No

No

ok, nothing to do

ok, there exists a 
stable pulse

Existence Stability Dynamics

Figure 1.10: General research approach.

Parameters

In most cases, the answer to both the existence and stability question is a lot more

subtle than just yes or no. This is the case when the reaction-diffusion system you’re

looking at depends on parameters. Parameters are constants, which in other words

don’t change in time or in space, which you can therefore choose freely. Parameters

often tell you something about the environment in which the phenomenon you’re

modelling takes place, about the conditions you’re dealing with. A good example is

the heat equation from section 1.2.4,

∂

∂t
φ = α

∂2

∂x2
φ
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The thermal diffusivity constant α, which depends on the material you’re looking at,

is an example of a parameter. The advantage of using parameters is that you don’t

have to redo your entire analysis if you decide to switch from analysing one material

to analysing another. Since the parameter α is fixed from the model point of view

(although its precise value may not be specified), you can do your analysis for all

values of α in one go. You’ll obtain an answer (for instance, to the question whether

a pulse exists) which still depends on α, of course; then, you can see how that answer

changes when you pick different values of the parameter α.

In general, a reaction-diffusion system always has some parameters, whose value

you can pick at your own leisure, depending on the context you’re working in. There-

fore, the existence question then is not really if but when there exists a pulse, or ‘For

which parameter values does a pulse exist?’. Exactly the same situation occurs for

the stability question. Say you’ve chosen suitable parameter values such that a pulse

exists (you can still have a large number of ways to do that), then the question arises

when your pulse is stable, i.e. for which parameter values. Within the set of para-

meter values for which your pulse exists, you can make a division between parameter

values for which the pulse is stable, and for which it is unstable; see Figure 1.11 for

a visualisation.

Pulse exists

Pulse is 

stable

Figure 1.11: The existence and stability regions in parameter space.
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The parameter ε

In this thesis, you’ll come across a large number of parameters. There’s one parameter

that is the most important of them all, and that’s ε. Everywhere in this thesis, ε

is a very small parameter. It acts as a perturbation, just as in section 1.2.4, and is

instrumental in obtaining virtually all results in this thesis. Without the help of the

small parameter ε, the research presented in this thesis couldn’t have been carried

out. The reason why ε is so helpful in the analysis of the existence and stability of

pulses was already revealed a little bit in the context of singular perturbations. In the

following sections, the fact that ε is very small is used extensively.

Of course, how small ‘small’ actually is, depends on the situation. In the example

of the falling ball, the deviation of the gravitational acceleration in Oslo and Jakarta

from its global average value was very small – that is, very small when compared to

that average value: the deviations were something like ±0.03 m/s2, while the global

average gravitational acceleration was gaverage = 9.81 m/s2.

Since we’re dealing in this thesis with quite general reaction-diffusion equations and,

more importantly, with parameters whose value is not specified, the question how

small ε needs to be to obtain sensible results is a hard one. However, once you’ve

chosen your parameter values, you can often answer this question. Therefore, the

most important results in this thesis, which are presented as Theorems, start with the

phrase ‘Let ε be small enough’.

The general idea is that, when ε is small enough, you can use the information

obtained for the case ε = 0 to prove results about the case when ε is not zero, but

small. This often works very well because the analysis for case ε = 0 is most of the

time much simpler than for nonzero ε. Again, you can prove several results when ε is

small enough. Although this can sound restrictive, experience tells us that in practice,

these results continue to hold for surprisingly large values of ε.

In the following sections, you’ll see how ε is being used to obtain results about the

existence, stability and dynamics of pulses in singularly perturbed reaction-diffusion

equations.

1.3.1 Existence and construction

As we already noted, the first question you ask yourself when analysing pulse solu-

tions is ‘Do these pulses exist at all?’. Questions about existence of certain things

are not uncommon in mathematics. However, when you’re working in a very abstract

context, it’s often not possible to go very much beyond that. You might be able to

prove that something (in our case, a pulse) has to exist, but where you can find it and
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what it looks like is often not known, or even not knowable.

In the case of pulses in reaction-diffusion systems, that’s very different. The way the

existence of pulses in these models is proved is constructive. That means that we start

looking for a pulse, and once we find it, we know what it looks like. In other words,

we obtain an explicit expression which describes our pulse in an approximate way,

and that’s often more than you could hope for. If you’ve got an explicit expression,

you can make plots, investigate the specific shape of the pulse and draw several con-

clusions. That’s the clear advantage of a so-called constructive proof of existence.

You not only know if (and when) a pulse exists, you have it at your fingertips at the

same time.

Pulse shape

What is a pulse? The shortest answer is that it’s a function whose graph looks like

the one in Figure 1.2. It has a single hump, and gradually decreases to the left and to

the right to a constant value, most often to zero. That last property shall be the key to

identify pulses. You can see that, if you’re far away from the hump, that the graph of

the function is very flat and very close to zero. In other words, when you get further

and further away from the hump, the function and its slope (its derivative) should get

closer and closer to zero.

Let’s draw the function in another way. In Figure 1.12, the function is graphed in such

a way that you can see its function value and the value of its slope. The horizontal axis

gives the function value, the vertical axis the slope of the function. In this picture, you

can’t really see the spatial variable x anymore. Therefore, at some points, I indicated

what the corresponding x-value is.

There are some things to notice in this picture. First, the pulse is now a kind of loop

which starts and ends where the axes meet, at the origin. Here, both the function value

and the value of the derivative are zero. Also, you can see that the loop doesn’t ‘really’

close: as x becomes larger and larger (or more and more negative), the function

value and its derivative come closer and closer to zero, but they never really reach it.

However, you can get as close to the origin as you want, by going to large enough

values of x. Moreover, you can argue why a pulse should be equivalent to such a

loop: when you start far to the left, the function value will increase, so its slope will

be positive. As you come close to the top of the hump, the pulse becomes flatter

and flatter, until you’re at the top, where the derivative is zero. Then you start going

down, i.e. the slope is negative, while the function value decreases towards zero.

The function becomes increasingly flat, so the derivative, while still negative, also

becomes very small.
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Figure 1.12: An example of a pulse: left, as a function of x; right, as a loop in the

phase plane. The pulse height is given by u, its slope by du
dx

.

A plot such as shown in Figure 1.12 is called a phase plane plot, and is often

used to clarify the behaviour of two-dimensional dynamical systems. The loop is an

example of a so-called ‘orbit’ in such a dynamical system. If you pick a point on this

loop as an initial value and let the dynamical system run, you’ll start to move along

this loop, thereby tracing out an orbit. This also holds when you move backwards,

then you would trace the loop the other way around. In Figure 1.12, the direction

you’ll move in if you let x increase, is indicated by an arrow.

Four-dimensional problem

Back to our original problem, the construction of a pulse in a reaction-diffusion sys-

tem. In this thesis, I look at reaction-diffusion systems which have two components,

so which can be written as two reaction-diffusion equations. The components will

influence each other through the reaction terms. An example of such a system is the

Gierer-Meinhardt model, as mentioned in section 1.2.2. I’ll also call these compo-

nents U and V . Also, I’ll introduce a small parameter ε in the evolution equation for

V , which will come in handy at a later stage. A general reaction-diffusion system

having these properties looks like

∂

∂t
U =

∂2

∂x2
U + F(U,V)

∂

∂t
V = ε2 ∂

2

∂x2
V +G(U,V)

It doesn’t really matter what the reaction terms F(U,V) and G(U,V) are; all that’s

important, is that they make sure that U influences the evolution of V and V influences
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the evolution of U. In other words, these equations are coupled. You cannot solve

one without the other, you’ll have to analyse them simultaneously.

If we start looking for a pulse in this system, we’re looking for a stationary solution

of a particular form, i.e. something which does not change in time. That means that

our equations simplify somewhat:

0 =
d2

dx2
u + F(u, v)

0 = ε2 d2

dx2
v +G(u, v)

You’ll notice that I use lower case letters u and v instead of upper case ones: this is

to emphasise that we’re looking for something which does not depend on time, only

on the spatial variable x. In other words, both u and v are functions of just x. For that

reason, the notation of the derivative also changed a little: instead of ‘∂’, there’s now

a ‘d’. This indicates that the only variable we’re need to worry about is x.

If we want to obtain a pulse solution for this system, we want both components

u and v to look like Figure 1.2. If we draw them in one picture, this would look like

Figure 1.13. Here, the u-component is indicated in blue and the v-component in red.

We can try and draw this in terms of the ‘loop’ picture introduced earlier. However,

that’s a little problematic: since we’ve got two components, and for each component

we need two axes (one for the component itself, one for its derivative), we’ll need

2 × 2 = 4 axes in total. That means we’ll have to work in a four-dimensional space.

Mathematically, that’s absolutely no problem: you just start to work with four differ-

ent components. Visualisation-wise, this introduces large difficulties: how can you

picture something in four dimensions? Well, in this case, I don’t think you really can.

However, I’ll try to convey some ideas using three-dimensional plots, which should

help you get the complete picture of what’s happening.

In any case, we want to do something similar to the phase plane plot as shown

in Figure 1.12. Our pulse in both components is now such a loop, but hanging in

four-dimensional space instead of lying in the two-dimensional phase plane. Because

the equations are still coupled to each other, we cannot analyse the equations for u

and v separately: it’s no use to draw to separate phase planes (one for u, one for v)

and combine the results – at least, that’s what you would think! It will turn out that,

in our case, it is possible to separate the u- and v-components. The reasons why this

wholly unexpected possibility arises will become clear in a moment.
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x

U V 

Figure 1.13: A pulse in both the u- and the v-component.

We’re looking for a pulse in two components, u and v; for both components, it

is true that their function values and their slope come close to zero when you’re far

away from their humps. That means that our loop hanging in four-dimensional space

is connected with its tip to the place where all the four axes meet, i.e. where u, its de-

rivative, v and its derivative are zero. Figure 1.14 gives an idea of what’s happening.

I omitted the axis for the derivative of v – when plotting a four-dimensional picture

in three dimensions, you have to make some choices. Remember: we’re still not sure

if and when such a loop exists, that’s exactly what we’re trying to find out.

What are the defining characteristics of this loop? It starts at the origin of the

axes, makes some excursion through the four-dimensional space, and then returns to

the origin. This view is going to help us establishing the existence of such a loop.

We’re going to adapt a dynamical-systems point of view, and start looking for an

orbit which:

a) goes towards the origin as x becomes very large, and

b) goes towards the origin as x becomes very negative.

We proceed as follows: let’s look at all the orbits which a) go towards the origin as x

becomes very large, and bundle them together. This bundle is an example of a man-

ifold. For the purpose of this introduction, you can think of something resembling a

sheet of paper. We do the same with all the orbits which b) go towards the origin as x

become very negative; in this way, we obtain another bundle. Now, because the loop

orbit we’re looking for goes towards the origin both as x becomes very large and as

x becomes very negative, we see that this orbit must belong to both bundles. If you
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Figure 1.14: An impression of a loop hanging in four-dimensional space. The axis

for the derivative of v is omitted.

picture these bundles as sheets, that means that such a loop must be in both sheets.

This is only possible if these sheets intersect in some way. This situation is depicted

in Figure 1.15.

We’ve now reformulated the question ‘Does there exist a pulse solution?’ as ‘Do

these two sheets intersect?’. Indeed, these two questions are equivalent: if there is a

pulse, then the two sheets should intersect. Vice versa, if the two sheets intersect, then

there must be a pulse. The problem of the existence of the pulse is now phrased in

geometric terms. Apart from visualisation purposes, this approach has its advantages

in other aspects of the problem. Combined with the fact that our problem is singularly

perturbed, this will lead to a complete understanding of the pulse existence problem,

and ultimately to its solution.

Scale separation

We now turn to the important property our reaction-diffusion system has: it is sin-

gularly perturbed. A small parameter ε can be found in the evolution equation for

V:

∂

∂t
V = ε2 ∂

2

∂x2
V +G(U,V)
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Figure 1.15: Intersecting sheets.

Just as in the example of the heat equation, this means that there will be a steep

transition, in this case in the V-component. For the pulse we’re looking for, this

means that the pulse in the v-component will become very narrow and very steep, as

you can see in Figure 1.16. In other words, the v-component of the pulse is practically

everywhere just flat, almost equal to zero, except in a very small zone, where it’s

sharply peaked. That means that, apart from that very thin peak, we can just treat v

as if it were zero. That means that everywhere except for that very small zone, the

u-component can be described with

0 =
d2

dx2
u + F(u, 0)

This is much easier than before: the u-equation does not depend on v anymore, be-

cause v vanishes almost everywhere. In other words, the system decouples. We can

analyse this system using the phase plane, where the horizontal axis gives the value

of u and the vertical axis gives the value of its derivative d
dx

u. Remember, we want to

have a pulse in both components, so in particular in the u-component: that means that

we’re looking for orbits that go towards the origin as x becomes very large or very

negative. Since v is already practically flat and close to zero except for a very small

zone, we just need to focus on u and find orbits in the phase plane belonging to the
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Figure 1.16: The u- and v-components of the pulse when ε is very small. The pulse

in the v-component is very narrow and very steep. To the right, a zoom of the left

picture near the narrow and steep v-pulse. Here, the u-component hardly changes at

all.
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Figure 1.17: A possible phase plane, with orbits going towards and moving away

from the origin.

u-equation which go towards the origin in that phase plane. A possible phase plane

situation where this happens is sketched in Figure 1.17.

This reduction, where we can treat v as if it were zero, holds almost everywhere,

except in a very small zone where the narrow v-peak is. Just as in the example of the

heat equation, we’ll try to zoom in on that small zone, to find out what’s happening.

That means we will try to use a very small spatial scale to rewrite our system. If
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we were measuring space in metres, now we’re going to millimetre scale, or even

smaller. We can do that by rescaling our spatial variable x. We’ll use our favourite

small parameter ε for this, and introduce the new spatial variable ξ. This new spatial

variable is just a rescaling of the old variable x, namely εξ = x. If ε = 0.001, this

would indeed mean that if x is measured in metres, then ξ would be measured in

millimetres.

Using this small scale variable to zoom in to the v-peak, we see that on this small

spatial scale, the u-component hardly changes at all, see Figure 1.16. Just as we

treated v as if it were zero outside this small zone, we can treat u as if it were constant

inside this small zone. Then, the equation for v becomes

0 =
d2

dξ2
v +G(u = some constant, v)

You’ll immediately notice that the small parameter ε is gone, this is incorporated in

the fact that we’re looking at a small ξ-scale now. Also, the v-equation does not really

depend on u anymore – well, of course it still does, but not in a very complicated way,

since we decided to treat u as if it were constant on this very small interval. In other

words, we can treat the value of u as a parameter on this small interval. For whatever

constant value of u is appropriate (we’ll see how to choose that appropriate value

later), we can now perform our phase plane trick on this v-equation. In our small

spatial scale ξ, the sharp narrow v-peak looks like a ‘regular’ pulse, just like the one

in Figure 1.2. Therefore, its phase plane, drawn in Figure 1.18, looks very much like

that in Figure 1.12.

Geometric theory

It is clear that the small parameter ε has been very instrumental in pulling apart the

u-equation and the v-equation, allowing us to analyse them separately. Now the ques-

tion is: how do we combine these two pictures? How do we use our insight on the

reduced system outside the very small area, where only u is interesting, and the other

reduced system inside the very small area, where only v is interesting, to build up a

complete picture for the complete system?

Here, the previously developed picture of the intersecting sheets returns. Without

going into details, it turns out that you can use your knowledge about the reduced

systems on the two different spatial scales to describe what these sheets look like.

Since the extreme situation, where ε = 0, can be very well understood using both

reduced equations (one for u on the ‘normal’ x-scale, one for v on the small ξ-scale),

the sheets are also very well understood in this singular limit. Now it’s time to in-
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Figure 1.18: The v-peak, as depicted in the phase plane.

voke something called ‘geometric singular perturbation theory’, which was devised

by Neil Fenichel in the 1970s [18, 19], to conclude something about the situation

where ε is not zero, but very small.

Fenichel tells us that geometric objects like those sheets we introduced, change very

little in shape when you go from the situation when ε = 0 to the situation where ε

is not zero but small. In other words, when you ‘turn on’ the small parameter ε, the

sheets will be a little bit perturbed, but not much. That means that if the sheets inter-

sected properly (in technical terms: ‘transversally’) when ε = 0, they still intersect

when ε is small but not zero. In other words, you can use the reduced equations for

u and v to obtain a picture like Figure 1.15, which still holds when ε is small but not

zero. You can imagine why ε must be small: if it becomes too large, the sheets will

deform too much and therefore maybe not intersect anymore, see Figure 1.19.

By combining the information from the phase plane of the u-equation with informa-

tion from the phase plane of the v-equation, it is possible to determine when the two

sheets intersect. Since in the v-equation, the value of u was treated as a constant and

therefore acted as a parameter, this ‘intersection criterion’ determines which values

this u-value can take such that the sheets intersect. This determines the height of the

tip of the u-pulse. Once you’ve chosen this (almost) constant value of u, the phase

plane of the v-equation (see Figure 1.18) is fixed, and therefore the loop orbit in that

phase plane (which represents the v-pulse) is also fixed.
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Figure 1.19: Non-intersecting sheets.

This way, a geometric approach can be used to construct a pulse in a singularly

perturbed reaction-diffusion system, thereby establishing its existence. Moreover, we

know approximately what it looks like: the u-pulse looks very much like the orbits

in the phase plane for the u-equation, Figure 1.17, which go towards the origin as x

becomes very large or very negative. In turn, the v-pulse looks very much like the

loop orbit in the phase plane for the v-equation, Figure 1.18.

1.3.2 Stability

To introduce the concept of stability, let’s return to our example of the falling ball.

When you start to think about the experiment in practical terms, you’ll find out that

there are a large number of unwelcome circumstances which might, and often will in-

fluence your measurement of the falling time. Environmental disturbances like wind,

changing air humidity and atmospheric pressure, and the occasional intervening fly

will certainly influence the path of the ball by nudging it a little bit off course, slowing

it down or speeding it up. Even though you can try to eliminate these disturbances

by executing your experiment under tightly controlled conditions, you know these

conditions will play a role once you start to consider falling balls or falling objects in

nature.
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Figure 1.20: Stability visualised.

Evolution equations like reaction-diffusion systems are widely used in natural sci-

ences like biology, chemistry, physics, geology and ecology to model natural phe-

nomena. These models try to capture the ‘essence’ of the driving forces behind these

phenomena, disregarding environmental noise. However, in the real world, such noise

will always be present. Therefore, if you’re looking for a pattern in your model of

which you hope you’ll observe that same pattern in nature, it’s important to know

whether this pattern is robust under such naturally occurring disturbances. If even the

smallest nudge will cause the pattern to change into something else, you’ll never have

the chance to observe that pattern in nature.

The concept of stability is maybe best illustrated by a ball on top of a hill: if you

give the ball a small nudge, it will start rolling down the hill. Therefore, the situation

where the ball rests on top of the hill is unstable. On the other hand, if your ball lies

at the bottom of a pit, giving the ball a small nudge won’t change much: the ball will

roll around a little bit, and after a while come to rest at the bottom of the pit again.

Therefore, the situation where the ball rests at the bottom of a pit is stable. For an

illustration, see Figure 1.20.

Both situations describe a certain equilibrium. The equilibrium of the ball on top

of the hill is an unstable one, while the equilibrium of the ball at the bottom of the pit

is stable. You can determine the stability of these equilibria by considering a situation

where the ball has been given a small displacement. If that small displacement starts

to grow (in the case of the ball rolling down the hill), the equilibrium is unstable;

if the small displacement diminishes and eventually disappears, the equilibrium is

stable. When you want to determine the stability of an equilibrium, you therefore

always start by considering a situation ‘nearby’, and see what will happen.

How can we translate this to the stability of patterns, or in particular, the stability

of our pulse? How can we take something to be ‘nearby’ our pulse, and how will

we discover what will happen for such a ‘nearby’ configuration? To give you an idea

how to approach this, I’ll first have to say something about linearity.
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Figure 1.21: The graph of x2, zoomed in near x = 1. As you can see, the dashed

tangent line at x = 1 approximates the function very well near x = 1.

Linearity

Let’s consider a simple function, like x2. As you probably know, the graph of this

function is curved; it’s a parabola, see Figure 1.21. Suppose you want to know how

the function behaves in the neighbourhood of a certain point, say at x = 1. If you

zoom in at the graph of x2 around that point, you’ll notice that the graph near x = 1

looks remarkably like a line, see also Figure 1.21. Of course, the graph still curves a

little bit, but you don’t notice that when you’re zoomed in that much. Therefore, if

you stay close enough to x = 1, you can approximate the graph of x2 very well by

a line. This line is called the tangent line, and its slope is exactly equal to the slope

of the graph of x2 at x = 1. Because you can calculate the slope of a graph of a

function by calculating its derivative at that point, you see that taking the derivative

of a function has everything to do with obtaining ‘local’ information of that function,

near a certain point. Of course, in our example, the choice of x = 1 as a point around

which we wanted to obtain local information was completely arbitrary, we could have

chosen any other point and taken a close look at the graph around that point. For that

matter, we could have chosen a different function to investigate: the principle of ob-

taining local information by using the derivative stays the same.

How exactly do you use the derivative to obtain local information about a function

around a certain point? Let’s look at the example again, and let’s zoom in again at

x = 1. The slope of the graph at that point is 2: if you start at x = 1 and move a tiny

bit to the right, the function value will increase twice that tiny bit, see Figure 1.22. If

we call that tiny increment δ, we see that the tangent line around x = 1 is given by
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Figure 1.22: The linear approximation of x2 near x = 1.

1 + 2δ. Therefore, if δ is small, the real function value (1 + δ)2 is approximated very

well by the value at the tangent line, 1 + 2δ. In other words,

(1 + δ)2 ≈ 1 + 2δ if δ is small.

This is called a linear approximation of the function x2 near x = 1. You can approx-

imate any function at a certain point in this way, by using the slope of the function

at that point. So, in general, if you have a certain function f (x) which you want to

approximate at a certain point, say x = 1, the linear approximation gives

f (1 + δ) ≈ f (1) +
d f

dx

∣

∣

∣

∣

∣

x=1

× δ

where
d f

dx

∣

∣

∣

∣

x=1
denotes the derivative of the function f , calculated at the point x = 1, i.e.

the slope of the graph of the function f at x = 1.

Now it’s time to make a conceptual jump. Imagine that the point x = 1 repre-

sents the pulse, and the function f (x) represents the reaction-diffusion system. The

idea is to use this principle of linear approximation to find out information about the

behaviour of the reaction-diffusion system ‘near’ our pulse. Of course, it will not be

possible to draw this anymore, or to visualise it properly in another way. However,

the approach is exactly the same as in the previous example.

We take our pulse, and add a little disturbance to it. Since the pulse is a stationary
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solution to the reaction-diffusion system, it will not change in time. However, the

pulse with a little added disturbance will in general change in time if we look how it

evolves according to our reaction-diffusion system. As explained above, we want to

know if the little disturbance ‘dies out’, i.e. diminishes in time, or if it will grow in

time. The behaviour of the little disturbance characterises the stability of our pulse.

This disturbance has to be rather general, since we don’t want the stability of our

pulse to depend on the random choice of our disturbance. Maybe if you disturb the

pulse a certain way, the disturbance will diminish, while if you disturb the pulse in

a slightly different way, that disturbance will grow in time. If your pulse is to be

stable, you want all disturbances to diminish in time, since in practice, you don’t

have control over the way your pulse is disturbed. Even if there’s just one specific

way to nudge the pulse such that that disturbance grows in time, you cannot say that

the pulse is stable, so then the pulse is unstable.

Back to the pulse and its disturbance. The pulse is a stationary solution to our

reaction-diffusion system, so it has a U-component and a V-component which are

both independent of time but still depend on the spatial variable x. Let’s call these

pulse components Upulse(x) and Vpulse(x). If we disturb the pulse, we disturb both

components, maybe in different ways. Let’s call the disturbance in the U-component

‘u’ and the disturbance in the V-component ‘v’. Note that these lower case u and v

have nothing to do with the same symbols which were introduced in section 1.3.1,

in the context of the existence question. Although it can be a little bit confusing to

re-use symbols in this way, it’s often more convenient than introducing yet another

symbol.

If we want to see whether the disturbances u and v grow or diminish in time under the

evolution described by the reaction-diffusion system, we’ll have to put them in there

and see what happens. In other words, we make the substitution

U → Upulse + u, V → Vpulse + v

Here, the pair (Upulse + u,Vpulse + v) plays the role of ‘1 + δ’ in the previous example.

By the principle of linear approximation, we can use the ‘derivative’ of the reaction-

diffusion system calculated ‘at the pulse (Upulse,Vpulse)’. It’s too technical to go into

details at this point, but the result is that we obtain two linear equations: one for u,

one for v. Although they are still intertwined (the equation for u depends on v and

vice versa), they are intertwined in a simple, linear way.

For such systems of linear equations, it’s possible to isolate the growth rate of u and

v. Remember, u and v were still very general disturbances, which are functions of

the spatial variable x (since they deform the pulse) and the temporal variable t (since
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they evolve in time). This growth rate is called λ, and its value determines the fate

of the disturbances – both disturbances have the same growth rate, that’s one of the

advantages of having a set of linear equations. The way the growth rate determines

the stability is very straightforward: if λ is negative (or, more specifically, if its real

part is negative, but that’s not really important here), the disturbances u and v will

decay, so then the pulse is stable. If λ is positive, the disturbances will grow, so the

pulse is then unstable.

If you introduce this growth rate λ and you start to shove terms around a little bit, you

end up with a system of four linear equations, in this case a four-dimensional linear

dynamical system. It’s rather similar to the way we obtained a four-dimensional

dynamical system in section 1.3.1: the four components are given by u, the derivative

of u, v, and the derivative of v. That’s just like in section 1.3.1: even the symbols are

the same, even though they represent something else. Also, this dynamical system is

linear, whereas the dynamical system in section 1.3.1 was not linear. Does that make

things easier? Yes and no. Although our newly obtained linear dynamical system

is linear, it has a peculiarity which makes it in principle hard to analyse: it depends

explicitly on x. We can write the system down in a concise way as

d

dx
φ = A(x; λ) φ

where we put all four components u, d
dx

u, v and d
dx

v into one four-component vector

φ. As you can clearly see, this is an example of a dynamical system, only in terms of

x instead of t (see section 1.2.2). From a mathematicians’ point of view, this makes

absolutely no difference: it’s just a symbol. This is an example of a situation where

it’s useful to ‘forget’ for a moment what x stands for, allowing you to recognise the

system of equations for u, v and their derivatives as a dynamical system. This allows

you to use techniques from the field of dynamical systems in a situation where you

initially wouldn’t have thought they could come in handy. The symbolic language of

mathematics shows an unforeseen connection between this analysis of small disturb-

ances and dynamical systems.

I mentioned that this dynamical system we’ve cooked up is hard to analyse since

the system depends on x – in particular, the matrix A(x; λ) (since that’s what it is, a

matrix) depends on x. Don’t worry about matrices and vectors: the important thing

is that this dynamical system looks different for different values of x. Why is this a

problem? Well, remember that the variable x has taken over the role of ‘time’ in this

dynamical system. A dynamical system which depends actively on time is constantly

changing the evolution rules as you let an initial state evolve in time. It’s like rolling
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a ball over a table top, while constantly wiggling and moving the table itself. You can

imagine that the path of the ball becomes very erratic, and will be highly influenced

by the movements of the table.

Luckily, in our case, we have some knowledge of how A depends on x, in other words,

we know something about the ‘movements of the table’. The reason A depends on

x is that we consider small disturbances u and v of our pulse solution, i.e. we’ve

started to look ‘nearby’ our pulse. Therefore, we had to calculate the ‘derivative’

of the reaction-diffusion system ‘at the pulse’. Regardless of its exact meaning, this

‘derivative’ of the reaction-diffusion system evaluated ‘at the pulse’ is exactly what

defines A. Therefore, the spatial dependence of A is very closely related to the spatial

structure of the pulse.

Remember, our pulse solution looks like the one in Figure 1.16. It has three

important features:

a) The V-component of the pulse is very sharp and very narrow: except for a very

small region in the middle, the V-component is practically flat and almost zero.

b) The U-component of the pulse is, except for the very small region in the middle,

not really influenced by the V-component, since the V-component vanishes almost

everywhere.

c) Both components decrease and become very flat and almost zero as you move

further and further away from the pulse peak, i.e. if x becomes very large or very

negative.

This spatial structure of the pulse has a direct influence on the way A depends on x.

In the small central region, it is predominantly determined by the V-component of

the pulse, whereas outside that region, the U-component of the pulse takes its role

in determining the spatial dependence of A. Since both components become flat and

almost zero when you are far away from the pulse peak, A loses its x-dependence and

becomes very simple in that far-away limit. In Figure 1.23, the x-dependence of A is

visualised based on the spatial structure of the pulse.

With all this talk about the dynamical system and A, it seems that we’ve drifted

away from our original goal, which was to determine the growth rate λ of our disturb-

ances u and v. How do we combine these two things?

First, it’s good to notice that our dynamical system is an equation for u and v, and the

dynamical system uses the variable x. Therefore, the dynamical system determines

the spatial dependence of u and v, in other words, the way they deform the pulse. So,
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Figure 1.23: The x-dependence of A, based on the spatial structure of the pulse.

we’re looking for small disturbances u and v which are at the same time solutions to

the dynamical system d
dx
φ = A(x; λ) φ. Are all possible solutions of this dynamical

systems then disturbances? Certainly not. The reason for this is that disturbances are,

by nature, small – that means, they are small everywhere, for all values of x. How-

ever, not every solution of the dynamical system stays small for all x. It’s even worse:

in general, a solution to such a dynamical system is ‘unbounded’. That means that

such a solution will increase as x increases, and it can become as large as you want

if you go to higher and higher values of x. Analogously, things can go wrong at the

other side: a solution can become as large as you want if you go to more and more

negative values of x. A good example is the function x2, see Figure 1.21: although

it’s fairly small near x = 0, it increases as x becomes larger or more negative, and

this never stops. You can obtain arbitrarily high values if you just go far away enough

from x = 0. Therefore, x2 is unbounded, and that’s the reason that it is not admissible

as a small disturbance.

You can wonder if it’s even possible at all to find bounded solutions for the dy-

namical systems, which are then admissible as small disturbances. The answer is

yes, well, sometimes: it depends on A(x; λ). Now we remember that A also depends

on the growth parameter λ. Here, λ plays the role of a parameter: for different val-

ues of λ, the matrix A(x; λ) will be different, and therefore the associated dynamical

system will be different, and the possible solutions to that dynamical system will be

different for different values of λ. You can imagine that for some values of λ, the dy-
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namical system doesn’t have any bounded solutions, while for other values of λ there

are bounded solutions possible. Finding bounded solutions, and therefore obtaining

admissible disturbances, is now a question of choosing the right values of λ.

Those ‘right’ values of λ are called ‘eigenvalues’, and since they were originally in-

troduced as growth rates, they determine the stability of the pulse. The strategy to

determine the stability of the pulse is therefore as follows: first, we determine for

which values of λ the associated dynamical system admits bounded solutions. Then,

we take a look at those eigenvalues: if all of them are negative, then the pulse must

be stable. This is because every admissible disturbance is, since it is a solution to

the dynamical system, associated to some eigenvalue. This eigenvalue is the growth

rate of that disturbance. If you know all eigenvalues, you know the growth rates of

all admissible disturbances. If all disturbances have a negative growth rate, then they

will all diminish, and therefore the pulse is stable. However, if there is just one pos-

itive eigenvalue, the disturbance (or disturbances) associated to that eigenvalue will

grow. Therefore, not every disturbance will diminish in time, and therefore the pulse

is unstable.

In general, it’s very hard to obtain such eigenvalues, let alone obtain them all.

If we want to know whether a pulse is stable, we need to know all eigenvalues: we

want to make sure that each and every one of them is negative, or else the pulse is

not stable. On the other hand, once we found just one positive eigenvalue, we can

immediately conclude that the pulse is unstable. Therefore, it’s often much easier

to prove statements like ‘Under these and these circumstances, the pulse is unstable’

than statements like ‘Under these and these circumstances, the pulse is stable’. In

chapters 2 and 3, you will therefore find more instability results than stability results.

However, in some cases, it is possible to prove stability, especially in chapter 2 (sec-

tion 2.4.2).

Our knowledge of the x-dependence of A can help us to obtain these eigenvalues.

What’s really helpful, is that we know that A becomes very simple in the far-away

limit, if we take x to be very large or very negative. From this very simple ‘limit’-

version of A, which doesn’t depend on x anymore, we can infer some properties of the

solutions of the entire dynamical system. Since A becomes very simple as x becomes

very large (or very negative), we know that the solutions of the dynamical systems

should behave accordingly. From this ‘limit’-version of A, there are just two possi-

bilities: a solution either grows in an unbounded way as x becomes larger and larger,

or it decays to zero as x becomes larger and larger. Therefore, we reason as follows.

Whatever a solution to the dynamical system looks like ‘in the middle’, where A de-

pends on some complicated way on x, if we want that solution to be bounded, i.e. to
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Figure 1.24: Matching solutions which decay to the left and to the right.

be an admissible disturbance, it has to decay to zero as x becomes very large or very

negative. Because an admissible disturbance, i.e. a bounded solution has to decay

to zero both as x becomes very large and as x becomes very negative, we try some-

thing similar as in section 1.3.1, where we tried to construct a pulse: we approach it

from both sides. That is, we take a solution which decays as x becomes very negative

(which behaves nicely at ‘the left’); we take a solution which decays as x becomes

very large (which behaves nicely at ‘the right’), and we try to let them match. In

Figure 1.24, this idea is illustrated.

In section 1.3.1, we tried to let two sheets intersect, see Figure 1.15. This ‘in-

tersection criterion’ could be calculated, and it gave the value which the ‘constant’

component u should have in the very small zone where the sharp v-spike was. In

other words, it gave the value of that parameter, such that the sheets would intersect.

While matching these decaying solutions from both sides, something equivalent is

going on. When trying to tune the value of λ such that these solutions can indeed

be matched, you obtain a ‘matching criterion’, which gives you the ‘right’ values of

λ, in other words, the eigenvalues. This ‘matching criterion’ can be reformulated in

terms of a function, which is called the Evans function. This Evans function is par-

ticularly useful since the values for which the Evans function is zero are precisely the

eigenvalues you’re looking for. In short: if you know the Evans function, you know

the eigenvalues, and therefore you know whether the pulse is stable or not. It turns

out that the scale separation which is present in our pulse, and which had a direct

influence on the x-dependence of A (see Figure 1.23), can be used to separate the

equations for the disturbance u and the disturbance v, just as in the existence section

1.3.1. Analysing those equations separately, it is possible to obtain the Evans func-

tion explicitly in the end. It’s too much to go into details, but the similarities between

the approach of the existence problem and the stability problem are striking. In the
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end, the process of ‘matching’ solutions to obtain admissible disturbances is just the

problem of letting two sheets of properly chosen solutions intersect. Behind it all,

there’s the singularly perturbed nature of the reaction-diffusion system which causes

the scale separation, which in turn allows us break up the large problem into smal-

ler sub-problems. Then, you analyse these sub-problems separately and combine the

results of these analyses at the end. Without the singular perturbation, none of this

would be possible.

1.3.3 Dynamics

In the previous section, I’ve explained how you can analyse the stability of the pulse

whose existence was established in section 1.3.1. It was already mentioned in section

1.3 that reaction-diffusion systems often depend on a number of parameters, which

you can choose freely. Depending on the value of these parameters, a pulse might ex-

ist, and if it exists, it can be stable; see Figure 1.11. The ‘existence zone’ in parameter

space can be found by the methods explained in section 1.3.1; the ‘stability zone’ in-

side the existence zone can be found by the methods explained in section 1.3.2.

In this section, I’ll elaborate some more on the fate of the pulse when it is disturbed.

If the pulse is stable, it’s easy to see what will happen: the disturbance will fade away,

and the pulse will stay where it is, in its original shape. However, if the pulse is un-

stable, it’s not clear at all what will happen. Yes, the disturbance will grow, but how

does that affect the pulse? Will the pulse grow as well? Will it deform? Will it start

to move? In general, these questions are very hard to answer.

The easiest way to get an idea about what’s going to happen with an unstable

pulse is to do numerical simulations. You put your reaction-diffusion system in en-

coded form in a simulation program, you prescribe your pulse, disturb it a little, push

the button, and see what happens. Since the computer does all the work, this seems

like a very good approach – although the actual setup of such a simulation can be a lot

harder than you might imagine. However, this approach has its limitations. You have

to choose a value for each of your parameters, including ε; since the computer calcu-

lates things step by step, you have to tell the computer to take very small time steps

– but not too small, otherwise the simulation takes too much time. Also, you have to

divide the space into small parts, because the computer can only handle numbers, and

not smooth things like functions. In the case of our pulse, where the V-component is

very narrow and very sharp, you’ll have to divide the space in that region into a large

number of very, very small segments.

All these things introduce a certain aspect of trial and error. You have to make sure
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that ε is ‘small enough’, whatever that may mean, and you will have to be lucky

in picking the values of your parameters such that something interesting happens.

If you’ve got a lot of parameters, this becomes increasingly difficult. Moreover, if

something exciting happens, you often don’t really know why this happens. There-

fore, numerical simulations can act as a guide to interesting phenomena, but the real

insight often has to come from ‘proper’ mathematical analysis.

There are situations where you can analytically investigate the fate of an unstable

pulse. This is when a pulse becomes unstable: by that, I mean the following. Sup-

pose you know that for a certain parameter choice, your pulse is stable, i.e. you’re

in the ‘stable region’ in parameter space, see Figure 1.11. Then, you start to change

the value of one of the parameters, and see what will happen to the growth rates, the

eigenvalues. At some point, one of your eigenvalues (which were all negative) will

become positive. In other words, you’ll cross the boundary of the ‘stable region’ in

Figure 1.11. At the boundary of that region, where the pulse becomes unstable, it’s

possible to see what’s happening in more detail, i.e. to analyse how the pulse becomes

unstable.

Such a crossing of the boundary of a region in parameter space is an example of a

‘bifurcation’. A ‘bifurcation’ is a rather general term to describe a situation where

something genuinely changes. That’s what happening at the boundary of the stable

region: within that region, you can change your parameters around a little, but that

doesn’t have large effects: the pulse will change its shape a little, but it will still be

stable. However, if you cross the stability boundary, this really makes a difference. If

you pick two parameter values which are very close together but on opposite sides of

the stability boundary, the two associated pulses will look very much alike; however,

one pulse will be stable, while the other pulse is unstable. Something similar happens

when you cross the boundary of the existence region: suddenly, the pulse that you

had can no longer exist.

Our pulse can become unstable in a number of ways. For each way of becoming

unstable, there is an associated bifurcation, where a parameter crosses the boundary

of the stability region. It really depends where you cross the boundary: if you’re

unlucky, you’ll be not only out of the stability region, but immediately out of the ex-

istence region as well – see Figure 1.11. Other parts of the stability boundary are a

lot less dangerous. For our kind of pulses, it turns out that there is a certain general

way in which such a pulse loses its stability, and that’s through a so-called oscillatory

instability. It’s not to say that this will always happen when you start playing with

parameters and push the pulse out of the stability region, but it will happen most of
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Figure 1.25: The movement of the tip of the pulse just before a Hopf bifurcation.

the time. It’s even stronger: you’ll have to choose your parameters very carefully to

avoid this oscillatory instability while pushing the pulse out of the stability region.

This oscillatory instability bifurcation is also called a Hopf bifurcation, and it mani-

fests itself as follows. If you’ve got a stable pulse and you’re near the boundary of

the stable region, and you give your pulse a little nudge, then it will start to oscillate,

i.e. to wobble up and down. This oscillation will die out after some time, because

the pulse is stable. In Figure 1.25, you can see the results of a numerical simulation

of such a pulse near the stability boundary, i.e. near a Hopf bifurcation. Once you

change your parameters such that you cross the stability boundary and then give your

pulse again a little nudge, you’ll see that the pulse will start oscillating again. Only

now, because the pulse is unstable, the amplitude of the oscillation will grow, and the

pulse will go up and down in an increasing way. This oscillation can become so wild

that the pulse can slap itself flat, and disappear. This is indeed what you observe in

simulations, see Figure 1.26.

However, when playing around with parameter values and simulating the result-

ing pulse, you will stumble upon something quite exciting. In Figure 1.27, you can

see the result of such a simulation. What you see is a pulse which is disturbed and

starts to oscillate. The amplitude of the oscillation starts to grow – nothing new so

far, it means that we’re outside the stability region. But then, after a while, you ob-
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Figure 1.26: The movement of the tip of the pulse just after a Hopf bifurcation.

serve that the amplitude of the oscillating pulse stabilises, and that you’re looking at

a steadily oscillating, or ‘breathing’ pulse. This is quite something: we’ve discovered

a pulse which moves up and down in time, a first step beyond the realm of stationary

patterns. Moreover, the pulse seems to stay where it is: it wants to move up and down,

but it apparently doesn’t want to move to the side.

Those observations are a reason for further analysis, and a few questions arise: ‘How

can we go beyond the Hopf instability bifurcation and find a breathing pulse?’ ‘Can

we predict when we will see a breathing pulse, and when we will just see an increas-

ingly wild oscillation?’

These questions were the driving force behind the last, fourth chapter of this

thesis. This chapter is also rather technical; however, it certainly is possible to give

you an idea about the approach you can take to answer these questions.

In order to do that, we’ll revisit the example concerning the linear approximation,

section 1.3.2. There, I argued that when you zoomed in on the graph of a function,

you could approximate that graph very well by its tangent line. That was called a

linear approximation, see Figure 1.22. If you zoom out a little, you’ll see that this

linear approximation starts to differ from the ‘real’ graph of the function. Therefore,

if you want to approximate this graph a little better, you will have to go beyond this

linear approximation. This means you’ll have to make a quadratic approximation.

43



1. Introduction and Summary

0 100 200 300 400 500 600 700 800 900 1000
0.235

0.24

0.245

0.25

0.255

0.26

0.265

300 310 320 330 340 350 360 370 380 390 400

0.235

0.24

0.245

0.25

0.255

0.26

0.265

Figure 1.27: A breathing pulse. After a period of initial amplitude growth, the oscil-

lation of the tip of the pulse settles down to a steady breathing motion, with constant

amplitude. The right figure is a zoom of the left figure; here you can clearly see the

periodic motion.

Formula-wise, this means that you approximate the function at a certain point (say,

again, x = 1) as follows:

f (1 + δ) ≈ f (1) +
d f

dx

∣

∣

∣

∣

∣

x=1

× δ + 1

2

d2 f

dx2

∣

∣

∣

∣

∣

∣

x=1

× δ2

If you compare this with the linear approximation in section 1.3.2, you’ll see that

there’s just an extra term. In that extra term,
d2 f

dx2

∣

∣

∣

∣

x=1
denotes the second derivative of

f , calculated at x = 1.

Such a higher order approximation is also possible in the case of the pulse and the

reaction-diffusion system. Just like in section 1.3.2, you have to make the conceptual

jump where you imagine that the point x = 1 represents the pulse, while the function

f (x) represents the reaction-diffusion system. Just as it is possible to take the ‘deriva-

tive’ of this reaction-diffusion system, you can also take its ‘second derivative’. It’s all

quite analogous, really. The only disadvantage of this higher order approximation is

that your formulas become a lot, lot longer; you can see that when browsing through

chapter 4. Therefore, it also becomes harder and harder to say something definite

about the fate of the pulse, because your equations become increasingly complicated.

Once again, the singular perturbation helps you out. Based on the results of the exist-

ence and stability of the pulse, it turns out that it is possible to obtain explicit formulas

which tell you something about whether such a breathing pulse will or will not appear.
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Figure 1.28: An example of a ‘landscape’.

The reason why this higher order approximation can shed light on the appearance

of a breathing pulse can be made clear by an example. In section 1.3.2, the concept

of stability was illustrated by a ball on top of a hill versus a ball at the bottom of a pit.

The first situation was unstable, the second was stable; see also Figure 1.20. In this

case, the linear approximation only tells you if you’re on top of a hill, or at the bottom

of a pit. It doesn’t tell you anything of what the rest of your surroundings look like.

There might be other hills nearby, or other pits: see Figure 1.28. The higher order

approximation lets you take a better look at the surrounding landscape.

In the case of a breathing pulse, the following situation occurs. Since you’re in an

unstable situation, you know that your ball (which represents the pulse) is on top of a

hill. If the ball is given a little nudge, it will roll down. However, in some situations,

your starting hill lies in between to larger hills. You might be able to roll down the

hill, but you’ll never escape the larger valley: see Figure 1.29. That means that, while

the ball rolls around in the larger valley, it will never escape. The associated periodic

motion of the ball is therefore bounded: its amplitude doesn’t grow indefinitely.

Therefore, if you use higher order approximations and find out that the local ‘land-

scape’ is such as in Figure 1.29, then you know there has to exist a steadily oscillating,

breathing pulse. Moreover, you can find that particular breathing pulse by giving an

unstable stationary pulse nearby a little nudge, such that it starts to oscillate (see for

example Figure 3.1). In chapter 4, the analysis tells us that such a situation can in-

deed arise, if you choose your parameters correctly. In more technical terms, that

means that the Hopf bifurcation is called ‘supercritical’. If there is no surrounding

valley, and your ball keeps rolling down the hill with increasing speed, then the Hopf

bifurcation is called ‘subcritical’. Using these concepts, it is possible to prove the

existence of a breathing pulse.
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Figure 1.29: A hill in a valley: bounded periodic motion.

1.4 Thesis structure and main results

Now that you’ve encountered some central concepts and methods used in this thesis,

it is time to explain how this thesis is structured, and which results have been obtained

during the research leading to this thesis.

Let’s focus first on chapters 2 and 3. I’ll introduce them together, since they are

rather similar in structure and content.

Chapter 2 treats pulse solutions in the ‘slowly nonlinear Gierer-Meinhardt model’.

The Gierer-Meinhardt model, mentioned in section 1.2.2, is one among many canon-

ical models which have been studied in the last few decades in the context of pattern

formation in reaction-diffusion systems. While the origin of the Gierer-Meinhardt

model lies in developmental biology (it was developed in the context of morpho-

genesis), other sciences have contributed to the class of canonical reaction-diffusion

models as well. The Gray-Scott model [23] has its basis in chemistry, while the

Fitzhugh-Nagumo model [20, 40] describes the transmission of a electrical signal in

a nerve.

The study of patterns in reaction-diffusion equations has largely been centered

around the models just mentioned. One of the distinguishing features of the research

presented in this thesis is the step beyond these canonical, quite specific models.

Once you know how to find a pattern in a reaction-diffusion system, it doesn’t matter

that much what the system looks like. Of course, there are some mild restrictions

on the reaction terms in the reaction-diffusion system under consideration, but those

aren’t really ‘restrictive’; still, a wide range of systems falls into this admissible class.
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The slowly nonlinear Gierer-Meinhardt model is such a step beyond the canonical

models, in this case beyond the Gierer-Meinhardt model. In chapter 2, the existence

and stability (in that order) of a pulse in this extended version of the Gierer-Meinhardt

model is treated. It turns out that the extension of the Gierer-Meinhardt model with

a slowly nonlinear term introduces a lot of new things: not only is it possible to

construct a new, different type of pulse in comparison with the ‘canonical’ Gierer-

Meinhardt model, the stability analysis of the constructed pulse shows that it can

become unstable in a previously unobserved way. Another feature of this model is

that, even though it is a nonlinear extension of the canonical model, you can still

calculate everything you want in an explicit way: there is an explicit formula for the

pulse, the stability analysis can be carried out explicitly, and even the Evans function

can be determined in an explicit way. This is very useful for the stability analysis, in

finding all the eigenvalues. For this model, it is possible to prove some results about

the stability of the pulse.

Chapter 3 has the same structure as chapter 2. The main difference is that here we

treat a wide range of possible reaction-diffusion systems instead of just one specific

example. Since we showed in chapter 2 that such an extended system can give new

results, it’s interesting to see how far you can go with this. During the entire analysis

in chapter 3, the reaction-diffusion system is kept at a very general form, almost like

‘something involving φ’ as in section 1.2.2 – well, it’s a little more exact than that,

but the main idea still is that it doesn’t really matter that much what your reaction-

diffusion system looks like. Once it obeys some very general conditions, it is possible

to construct a pulse solution for it. Even the stability analysis can be carried out in the

same way as for the explicit example of the slowly nonlinear Gierer-Meinhardt sys-

tem of chapter 2. What’s even more surprising, is that for such a very general system,

you can still write down the Evans function explicitly. This is a really strong result,

because it allows you to prove a number of (in)stability results for this very general

class of systems. It even becomes clear that already during the construction process

of the pulse, you can predict which pulse will certainly be unstable, and which pulse

has a chance to be stable. The previous sentence already suggests that there’s more

than one possibility to construct a pulse (just like in chapter 2), which is indeed true

in general. Chapter 3 shows you how to approach such a general system, and gives

you the tools to construct and analyse a pulse yourself.

In this sense, chapters 2 and 3 are each other’s mirror image. They follow exactly the

same approach: chapter 2 for an explicit system, chapter 3 for a very wide class of

systems of which the slowly nonlinear Gierer-Meinhardt system of chapter 2 is just

an example.
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While both chapters 2 and 3 treat existence and stability, the first two steps of

the general research approach (Figure 1.10), the last chapter takes a first step into the

largely unexplored world of pulse dynamics. Here, the higher order approximation of

a destabilising Hopf bifurcation (which was found to exist in general in chapter 3, and

was explicitly established in chapter 2) leads to the discovery of so-called breathing

pulses, see section 1.3.3. In this fourth chapter, I present two equivalent methods

to calculate these higher order approximations. These higher order approximations

are applied to the slowly nonlinear Gierer-Meinhardt system, using the results of

chapter 2. The numerical simulations which were presented at the end of chapter 2,

section 2.5 already hinted at the existence of breathing pulses (see also Figure 1.27):

in chapter 4, it is shown that these solutions can indeed exist, and when this is the

case.
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2
Pulses in a slowly nonlinear

Gierer-Meinhardt equation

The content of this chapter was published as [54].

2.1 Introduction

The study of localised pulses in a two-component system of singularly perturbed

reaction-diffusion equations has been a very active field of research since the nineties

of the previous century. In its most general form, a system that may exhibit such a

pulse reads – in one, unbounded, spatial dimension –















Ut = Uxx + F(U,V)

Vt = ε
2Vxx +G(U,V)

(2.1a)

(2.1b)

with U,V : R × R+ → R, and 0 < ε ≪ 1 asymptotically small. The nonlinear

reaction terms F,G : R2 → R are assumed to satisfy F(Ū, V̄) = G(Ū, V̄) = 0 for cer-

tain (Ū, V̄), such that the trivial background state (U,V) ≡ (Ū, V̄) is spectrally stable.

However, research on pulses in equations of the type (2.1) has been restricted mostly

to model equations. In particular two of these models have played a central role in

the development of the theory: the (irreversible) Gray-Scott (GS) equation for a class

of autocatalytic reactions [23] – that became the centre of research attention by the

intriguing observations in [38, 43] – and the Gierer-Meinhardt (GM) equation [22]

for (biological) morphogenesis – for which the existence problem has already been
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

considered in the mathematical literature for a somewhat longer time [48]. For both

the GS and the GM model, quite precise insight has been obtained in the existence,

stability and dynamics of localised (multi-) pulses, also in more than one spatial di-

mension – although one certainly cannot claim that the models are fully understood;

see [5, 6, 7, 12, 13, 26, 32, 33, 34, 41, 42, 51, 58] and the references therein for the

literature on one spatial dimension.

The ‘fast’ V-component of a localised (multi)pulse solution of a singularly per-

turbed model (2.1) is asymptotically localised: it decays exponentially to the V-

component V̄ of the background state on a spatial scale that is asymptotically shorter

than the spatial scale associated to the ‘slow’ U-component. As a consequence, the

two-component (U,V)-flow generated by (2.1) is governed by a scalar equation in the

slow component U:

Ut = Uxx + F(U, V̄) (2.2)

except for the asymptotically small spatial regions in which the V-component is not

exponentially close to V̄ . Clearly, this is in general a nonlinear equation. However,

for the GS and GM models, this slow reduced scalar equation is linear:

(GS) Ut = Uxx + A(1 − U), A > 0 parameter, (Ū, V̄) = (1, 0)

(GM) Ut = Uxx − αU, α > 0 parameter, (Ū, V̄) = (0, 0)
(2.3)

In fact, as far as we are aware, this – the fact that the counterpart of (2.2) is linear

– is the case for all singularly perturbed two-component reaction-diffusion equations

with exponentially localised pulse solutions considered in the literature (including

the Schnakenberg model [46, 56]). There are a number of papers in the literature in

which more general classes of equations than the GS or GM models are considered

– see [4, 6, 10]. In these papers the background state (Ū, V̄) is translated to (0, 0)

so that F(Ū, V̄) = F(0, 0) = 0 in (2.1). Moreover, the nonlinear part of F(U,V) is

assumed to be separable, i.e. F(U,V) is written as −αU + F1(U)F2(V). Therefore

F2(V̄) = F2(0) = 0, and these more general systems also reduce to linear slow scalar

equations like (2.3) outside the asymptotically small regions where V is not close to

V̄ .

In this chapter, and in the subsequent chapter 3, we consider the potential impact

of the nonlinearity of F(U, V̄) as function of U in comparison with the literature on

‘slowly linear’ model systems such as GS and GM. Here, we consider a very expli-

cit model problem, a Gierer-Meinhardt equation with a ‘slow nonlinearity’ (see (2.7)

below), in full analytical detail; in chapter 3, we consider the existence and stability
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of pulses in a general setting, i.e. as solutions of (2.1). We refer to Remark 2.1 for

a more specific motivation of our choice to study equations with ‘slow nonlinearities’.

In the standard form (2.1), the classical Gierer-Meinhardt equation [22] is given by























Ut = Uxx − αU + σV2

Vt = ε
2Vxx − V +

V2

U

(2.4a)

(2.4b)

in which α > 0 is the main bifurcation parameter and σ > 0 is most often scaled to 1.

The pulse type solutions of (2.4) have an amplitude of O
(

1
ε

)

[6, 26]. Therefore, we

scale U and V and subsequently x and ε,

U → U

ε
, V → V

ε
, x→

√
ε x, ε→ ε2 (2.5)

to bring (2.4) in its ‘normal form’ [6]























ε2Ut = Uxx − ε2αU + σV2

Vt = ε
2Vxx − V +

V2

U
.

(2.6a)

(2.6b)

In this chapter, we study a ‘slowly nonlinearised’ version of (2.6), that is obtained

from (2.6) by adding a very simple nonlinear term to its ‘slow’ U-equation (2.6a):



























ε2Ut = Uxx − ε2
(

αU − γUd
)

+ σV2

Vt = ε
2Vxx − V +

V2

U

(2.7a)

(2.7b)

with new parameters γ ≥ 0, d > 1. Moreover, we now allow σ ∈ R\{0}. Systems

incorporating such a slow nonlinearity were already encountered in [37] (although no

pulse type solutions were considered in this paper). This equation indeed reduces to

a nonlinear slow reduced scalar U-equation away from the regions in which V is not

exponentially close to V̄ = 0:

Ut = Uχχ − αU + γUd (2.8)

in which χ = εx is a ‘super-slow’ spatial coordinate – see section 2.2. Note that

scaling back the additional ‘slowly nonlinear’ term γUd through (2.5) introduces an

O
(

εd−1
)

, i.e an asymptotically small, additional term to the Gierer-Meinhardt equa-

tion in its classical form (2.4). We will see in the upcoming analysis that this term has
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Figure 2.1: The stationary homoclinic pulse (Uh(x),Vh(x)) of (2.7); (a) σ > 0, (b)

σ < 0.

a significant impact on the dynamics generated by (2.4). Thus, in a way, our work can

also be interpreted as a study of the ‘vulnerability’ of the classical Gierer-Meinhardt

model (2.4) to asymptotically small ‘slowly nonlinear’ changes to the model.

In recent years, the analysis of localised pulses in one-dimensional singularly per-

turbed reaction-diffusion equations has been focused mostly on pulse dynamics and

interactions – see [5, 10, 12, 34] and the references therein. However – like the work

on multi-pulse patterns [26, 32, 33, 51, 52, 56] – this analysis is based on fundamental

insights on the existence and stability of stationary, solitary, pulses [6, 7, 13, 48, 58].

On the unbounded domain, i.e. for x ∈ R, these pulses correspond to homoclinic

solutions of the four-dimensional spatial dynamical system reduction of the partial

differential equation. Here, we restrict our analysis to the existence and stability of

homoclinic stationary pulse solutions (Uh(x),Vh(x)) to (2.7) that are bi-asymptotic to

the background state (0, 0), i.e. limx→±∞ (Uh(x),Vh(x)) = (0, 0). Especially the issue

of stability requires a significant extension of the methods developed in the literature

for ‘slowly linear’ GS/GM-type models. The present results form the foundation for

a subsequent analysis of the multi-pulse patterns – see remark 2.1 – and pulse interac-

tions. Moreover, already at the level of these most basic pulse solutions, we encounter

novel phenomena in the dynamics generated by (2.7) that have not yet been observed

in the literature on ‘slowly linear’ models.

The existence problem – see section 2.2 – can be studied directly along the lines

developed in [6] for ‘slowly linear’ normal form models of GM type with a separable
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nonlinearity. Our main result on the existence of homoclinic pulses (Uh(x),Vh(x)),

Theorem 2.2, can be established by a direct application of the methods of geometric

singular perturbation theory [18, 19]. In other words, at the existence level the ‘slow

nonlinearity’ in (2.7) does not require the development of novel theory. However, it

is established by Theorem 2.2 that (2.7) does exhibit homoclinic pulse patterns that

differ significantly from those found in ‘slowly linear’ GS/GM-type models. Un-

like linear slow reductions such as (2.3), the planar stationary problem associated to

reduction (2.8) has orbits homoclinic to its saddle point (that corresponds to the back-

ground state of (2.7)). As a consequence, unlike the classical GM model (2.4), system

(2.7) has homoclinic pulse solutions (Uh(x),Vh(x)) for σ < 0. At leading order in ε,

the slow U-component Uh(x) follows a large part of the homoclinic orbit of (2.8), so

that for σ < 0 the slow component of the solitary homoclinic 1-pulse solution has the

leading order structure of two combined slow scalar pulses – see Figure 2.1b.

The spectral stability of (Uh(x),Vh(x)) is studied in section 2.3 by the Evans func-

tionD(λ) associated to the linearised stability problem, following the ideas developed

in [6, 7]. As is to be expected from the general theory [3], D(λ) can be decomposed

into a slow and a fast component, and all nontrivial eigenvalues are determined by

the slow component. In [6, 7], i.e. for the GM and GS models, the zeroes of this

slow component are determined analytically by ‘the NLEP method’. The linearity

of the slow scalar reduction (2.3) plays a central role in this approach – as it does in

all analytical studies of the spectral stability of pulses in GS/GM-type models (see

[5, 26, 32, 33, 34, 51, 58] and the references therein). More explicitly, the fact that

the spectral stability problem is exponentially close to a constant coefficients eigen-

value problem outside the asymptotically small regions in which V is not close to V̄

is a crucial ingredient of the stability analysis of GS/GM-type models. Due to the

nonlinearity in the slow scalar reduction (2.8) this is not the case for (2.7): away from

the fast V-pulse, the linear operator associated to the stability problem still has coef-

ficients that depend explicitly (and slowly) on x (on χ – see (2.8)). Its solution space

is therefore not governed by simple, pure exponentials (as for GS/GM-type models).

The key to the NLEP approach as developed in [6, 7] is constructing a set of basis

functions for the linear operator/system associated to the stability of the pulse for

which the Evans function D(λ) – the determinant of this set – can be evaluated, or

better: approximated, explicitly. In chapter, and in the subsequent chapter 3, we show

that the NLEP approach can be based on a set of basis functions that is determined

by the slowly varying problem outside the fast V-pulse region, in such a way that

it is still possible to determine an analytical approximation for the zeroes of D(λ).
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Here, a central role is played by the χ-dependent Sturm-Liouville problem associated

to the linearisation of (2.8) about its (stationary) homoclinic orbit, defined on a half-

line. This problem has a two-dimensional set of slowly varying solutions. We show

that these solutions can take over the role of the slow exponentials coming from the

(slow) stability problem about the trivial state U = 0 of the linear constant coeffi-

cient GS/GM-type reductions (2.3). In the context of this chapter, these solutions can

be expressed in terms of Legendre functions, due to the special/simple nature of the

nonlinearity in (2.8). In the general setting of chapter 3, the construction of the Evans

functions cannot be this explicit. The main novel analytical result of this chapter is

given by Theorem 2.12, in which indeed an explicit expression is given for the ze-

roes ofD(λ), which is a generalisation of the corresponding ‘slowly linear’ results in

[6, 7].

In section 2.4, we analyse and interpret the expression obtained in Theorem 2.12.

One of our first – and quite straightforward – results is Corollary 2.15: the σ < 0

‘double hump’ pulses of Figure 2.1b cannot be stable. The σ > 0 pulses of Figure

2.1a, however, can very well be stable. In Figure 2.3, a graphical description is given

of our two main stability results, Theorems 2.18 and 2.19. The stability of the pulse

(Uh(x),Vh(x)) depends strongly on the character of the ‘slow nonlinearity’ in (2.7).

As long as the exponent of the nonlinearity d is smaller than 3, the stability scenario

is exactly like that of the ‘slowly linear’ GS/GM-type models: (Uh(x),Vh(x)) stabili-

ses by a Hopf bifurcation for increasing α – even the shape of the orbit of the critical

eigenvalues λ(α) through C is very similar to its counterparts in [6, 7]. However, this

orbit changes drastically when d becomes larger than 3 – see Figure 2.3: for d > 3

there is a second Hopf bifurcation (as function of α) that destabilises (Uh(x),Vh(x)).

Different from the results on GS/GM-type models, for d > 3, there is only a bounded

α-region for which (Uh(x),Vh(x)) can be stable. In Theorem 2.20 this is established

rigorously for d > 3 large enough.

Finally, in section 2.5, we present some simulations of (2.7). We have not at-

tempted to perform a systematic (numerical bifurcation) analysis of the dynamics of

(2.7). Apart from checking (and confirming) the outcome of our asymptotic stability

analysis, our goal has been to obtain an indication of whether or not the ‘slow non-

linearity’ of (2.7) generates behaviour that is not known from the (vast) literature on

GS/GM-type models.

We are not aware of any examples in the literature on GS/GM-type models of

stable non-moving solitary pulses that are not completely stationary. A priori, one
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Figure 2.2: The dynamics of the maximum of the U-pulse as function of time in

a simulation of (2.7) with γ = 2, σ = 1, ε = 0.002, d = 5 and α = 90.6 for

x ∈ [−5000, 5000] with homogeneous Neumann boundary conditions – (b) zooms

in on a small part (in time) of (a). The position of the maximum does not vary in

time. The value of α is close to the second Hopf bifurcation at which (Uh(x),Vh(x))

destabilises – see Figure 2.3.

would expect that if a pulse is destabilised (for instance by decreasing α in the GM

model (2.4)), it may bifurcate into a stable standing pulse with a periodically vary-

ing amplitude. However, this requires a supercritical Hopf bifurcation, and all Hopf

bifurcations of stationary pulses in GS/GM-type models reported on in the literature

seem to be subcritical: as α decreases through its critical Hopf bifurcation value, the

standing pulse starts to oscillate up and down, but the amplitude of this oscillation

grows and after a certain time the pulse is extinguished – see for instance Figure

2.11 (a) in section 2.5. It should be noted that this statement is based on numer-

ical observations, the nature of the Hopf bifurcation of solitary, standing pulses in

GS/GM-type models has not been analysed in the literature (for instance by a centre

manifold reduction). Moreover, it should also be remarked that – for instance – the

GS model does exhibit periodic and even chaotic pulse dynamics – see for instance

[5, 42]. However, this richer type of behaviour occurs only in the context of pulse in-

teractions, it is governed by the interactions between travelling pulses, and/or between

pulses and the boundary of the domain. We have not considered this type of dynamics

here, as we have completely focused on the behaviour of standing, solitary spatially

homoclinic pulses. Nevertheless, we have observed very rich dynamics, much richer
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

than that exhibited by linear GS/GM-type models. In section 2.5 examples are given

of periodically oscillating pulses, i.e. standing pulses with an amplitude that varies

periodically in time; quasi-periodically oscillating pulses – the amplitude of the pulse

oscillation is modulated periodically – and oscillating pulses of which the amplitude

is modulated in an even more complex fashion. A simulation of such a ‘chaotically

oscillating pulse’ is shown in Figure 2.2.

In this chapter, it is not investigated whether the pulse dynamics of Figure 2.2 is

‘chaotic’ or –for instance– is quasi-periodic with three or more independent frequen-

cies. In other words, we do not study the details of the associated bifurcation scenario

and do not compute any measure by which the (possible) chaotic nature of the pulse

dynamics can be quantified. The analytic core of this chapter, the analysis of the spec-

trum associated to the stability of (Uh(x),Vh(x)), serves as an ideal starting point for

a centre manifold analysis of the nature of the Hopf (and subsequent) bifurcations for

pulses and/or multi-pulses occurring in this model (and/or generalisations of (2.7)).

This will be the subject of chapter 4, where analytic insight in (the possible route

leading to) the complex/chaotic behaviour observed in Figure 2.2 will be obtained.

Remark 2.1. Our research is strongly motivated by recent findings on the character of

the destabilisation of spatially periodic multi-pulse patterns with long wavelength L.

In [52] it is established for GM-type models that these patterns can only be destabi-

lised by two distinct types of Hopf bifurcations as L → ∞, one in which the linearly

growing mode also has wavelength L – the most commonly encountered destabilisa-

tion in the literature – and another in which this mode has wavelength 2L. Moreover,

these destabilisations alternate countably many times as L → ∞. This is called the

‘Hopf dance’ in [52]. This Hopf dance also occurs in the GS model, as indicated by

the AUTO-simulations in [52]. The GM analysis in [52] shows that this ‘dance’ is

completely driven by the exponential expression E(L) = e−L
√
α+λh associated to the

slow reduced eigenvalue equation uxx − αu = λhu originating from (2.3), in which

λh ∈ C is the (complex) eigenvalue of the homoclinic (L → ∞) limit pattern. The

rotation of E(L) ∈ C as L → ∞ is the mechanism underpinning the Hopf dance.

From a generic point of view, it is not at all clear why this ‘linear’ Hopf dance should

take place (this is even more obvious for the subsequent ‘belly dance’ [52]). Hence,

to really understand the subtleties involved in the destabilisation of long wavelength

spatially periodic patterns, one needs to go beyond ‘slowly linear’ models for which

the associated ‘slow reduced’ eigenvalue problems are not governed by expressions

as E(L). In other words, one needs to study systems of the type (2.1) with F(U, V̄)

not linear as a function of U.
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Figure 2.3: The orbits through C of the critical eigenvalue λ associated to the spectral

stability of (Uh(x),Vh(x)) as function of increasing α (γ = 2, σ = 1), to leading

order in ε. (a) d = 2 < 3: The same scenario as in the GS and the GM models

[6, 7]. Two real positive eigenvalues merge and become a pair of complex conjugate

eigenvalues that travels through the imaginary axis: the pulse is stabilised by a Hopf

bifurcation at a critical value of α. (b) d = 5 > 3: A significantly different scenario.

The eigenvalues initially display the same behaviour as in the case d < 3: the pulse is

again stabilised by a Hopf bifurcation. However, for α increasing further, the orbits

sharply turn around and follow the imaginary axis closely in the negative direction –

see (c), a zoom of (b). Eventually, the orbits branch off, head back to the imaginary

axis, and again cross the imaginary axis at a second critical – Hopf – value of α.

Finally, the pair meets again at the positive real axis and splits up into two positive

real valued eigenvalues.
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

2.2 Pulse construction

Our goal is to construct a stationary pulse solution which is homoclinic to the trivial

background state (U,V) = (0, 0). To achieve this goal, we use the singularly perturbed

nature of the system. The spatial dynamics of the stationary pulse are given by the

four-dimensional system



















































ux = p

px = −σ v2 + ε2
(

α u − γ ud
)

ε vx = q

ε qx = v − v2

u

(2.9a)

(2.9b)

(2.9c)

(2.9d)

Along the lines of Fenichel theory, we can perform a slow-fast decomposition in the

spatial variable x: recognising system (2.9) as the slow system, we can define the fast

variable ξ = x
ε

to obtain the associated fast system



















































uξ = ε p

pξ = −εσ v2 + ε3
(

α u − γ ud
)

vξ = q

qξ = v − v2

u

(2.10a)

(2.10b)

(2.10c)

(2.10d)

The trivial background state is in these systems represented by the origin (u, p, v, q) =

(0, 0, 0, 0). While the vector field which generates the flow of the system is not defined

at the origin due to the singular v2

u
term in the v-equation, the ratio v2

u
will be well-

defined for the constructed pulse.

2.2.1 Geometric analysis

When ε → 0, the slow and fast systems (2.9) and (2.10) reduce to the reduced slow

system

uxx = −σ v2 (2.11a)

q = v − v2

u
= 0 (2.11b)
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2.2 Pulse construction

and the reduced fast system

uξ = pξ = 0 (2.12a)

vξξ = v − v2

u
(2.12b)

We see that in this limit, the slow and fast dynamics decouple completely. We define

M0 = {(u, p, v, q) | u > 0, v = q = 0} as the two-dimensional normally hyperbolic in-

variant manifold that consists of hyperbolic equilibria of the reduced fast system

(2.12); it has three-dimensional stable and unstable manifoldsWs,u(M0) which are

the unions of the two-parameter families of one-dimensional stable and unstable man-

ifolds (fibres) at the saddle points (u0, p0, 0, 0) ∈ M0. The reduced fast dynamics

(2.12) allow a two-parameter family of homoclinic solutions v0,h:

vh,0(ξ; u0, p0) =
3 u0

2
sech2

(

1
2
ξ
)

(2.13)

The union over this family as a bundle over M0 forms the intersection Ws(M0) ∪
Wu(M0), see Figure 2.4a.

Fenichel persistence theory [18, 19, 29, 30] states that, for ε sufficiently small,

the full system (2.10) has a locally invariant slow manifoldMε which is O(ε) close to

M0. SinceM0 is also invariant under the non-reduced (fast) flow of (2.10), we have

already found Mε = M0. Moreover, Fenichel theory states the existence of three-

dimensional stable and unstable manifolds Ws,u(Mε) which are O(ε) close to their

unperturbed counterpartsWs,u(M0). The intersectionWs(Mε)∩Wu(Mε) exists, is

transversal and therefore determines a two-dimensional manifold. This existence and

transversality is based on a Melnikov-type calculation in [6], which can be applied

directly to system (2.10). Since the original model equations (2.7) are invariant under

reflection in the spatial variable x → −x, this reflection is in the four-dimensional

system (2.9) equivalent to the momentum reflection (p, q) → (−p,−q). Because the

coordinate reflection ξ → −ξ mapsWs(Mε) toWu(Mε) and vice versa, it follows

that the intersection of these two manifolds is symmetric in the invariant subset of

the momentum reflection, the two-dimensional hyperplane {(u, p, v, q) | p = q = 0}.
The transversality of this hyperplane to Mε excludes the possibility that it has the

intersection Ws(Mε) ∩ Wu(Mε) as a subset, from which we can conclude that

Ws(Mε) ∩Wu(Mε) intersects the hyperplane {(u, p, v, q) | p = q = 0} transversally.

This determines a one-parameter family of orbits bi-asymptotic to Mε. Since both

Ws(Mε) andWu(Mε) are O(ε) close toWs,u(M0) where the two-parameter family

of homoclinic orbits was parametrised by u0 and p0 (see (2.13)), it is convenient to
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation
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Figure 2.4: Transversal intersection of the stable and unstable manifolds. (a): The

family of homoclinic orbits vh,0(ξ; u0, p0), viewed as a bundle overM0. Both u- and

p-directions are along the vertical axis;M0 is indicated in blue. (b): For the perturbed

system (ε > 0),Ws(Mε) andWu(Mε) intersect transversally: γh (indicated in red)

representsWs(Mε) ∩Wu(Mε), a one-parameter family of orbits homoclinic toMε

– recall that dim (Mε) = 2, dim (Ws,u(Mε)) = 3 so dim (γh) = 2.

use u0 to parametrise the one-parameter family of orbits bi-asymptotic toMε determ-

ined byWs(Mε) ∩Wu(Mε). For a sketch of the situation, see Figure 2.4b.
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2.2 Pulse construction

The next step is to use this structure to construct an orbit homoclinic to (0, 0, 0, 0)

in the full, perturbed system (2.9) / (2.10). For that purpose, it is necessary to consider

the dynamics onMε. The flow onMε can be determined by substituting v = q = 0

in (2.9) and yields

uxx = ε
2
(

α u − γ ud
)

(2.14)

Introducing a super-slow coordinate χ = εx, this can be written as

uχχ = α u − γ ud (2.15)

This equation allows a solution (bi)asymptotic to the trivial background state: since

γ > 0, it is homoclinic to (0, 0, 0, 0) ∈ Mε and explicitly given by

uh,0(χ) =

[

α(d + 1)

2γ
sech2

(

1
2
(d − 1)

√
αχ

)

]
1

d−1

(2.16)

The super-slow dynamics onMε allows us to get a grip on picking exactly that orbit

bi-asymptotic toMε from the intersectionWs(Mε) ∩Wu(Mε) which is also homo-

clinic to (0, 0, 0, 0) ∈ Mε, that is, which is -mostly- asymptotically close to uh,0 ∈ Mε.

This orbit will make a fast excursion through the V-field, since this is where the fast

dynamics take place (see (2.10), (2.12)). Since our goal is to construct a symmet-

ric pulse, we can choose an interval symmetric around the origin in which the fast

jump occurs. The interval needs to be asymptotically small with respect to the slow

variable x, but asymptotically large with respect to the fast variable ξ: to be asymp-

totically close toMε, the V-component of the pulse needs to be exponentially small.

A standard [6] choice for this fast spatial region is

I f =

{

ξ ∈ R
∣

∣

∣

∣

∣

∣

|ξ| < 1
√
ε

}

(2.17)

Indeed, x ≪ 1 and ξ ≫ 1 on ∂I f . For a sketch of the orbit, see Figure 2.5.

Now, we define the take-off and touchdown sets To,d ⊂ Mε to be the collection

of base points of all Fenichel fibres in Wu(Mε) resp. Ws(Mε) that have points in

the transverse intersectionWs(Mε)∩Wu(Mε). Detailed information on To,d can be

obtained by studying the fast system (2.10) onMε. First, we observe that pξ = O(ε3)

onMε so the p-coordinate onMε remains constant to leading order during the fast

excursion through the V-field. Therefore, the change in the p-coordinate of the pulse

is completely determined by its accumulated change during its excursion through the
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

uh ,0
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vh ,0

M Ε u
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v

Figure 2.5: An asymptotic construction of the orbit γh(ξ) of Theorem 2.2 drawn in

three dimensions. The p- and q-directions are combined, since there is no direct in-

teraction between them. The blue surface represents the persistent slow manifoldMε

while the fast dynamics take place on the red surface, which is spanned by the v and

q directions. The slow homoclinic orbit uh,0(χ) is drawn in blue, the fast homoclinic

orbit vh,0(ξ; u∗, 0) is drawn in red. The jump through the fast field projected onMε is

indicated by the purple line.

fast field, and is given by

∆ξp =

∫

I f

pξ dξ =

∫

I f

−εσ v2 + O(ε3) dξ =

∫ ∞

−∞
−εσ vh,0(ξ; u0, p0)2 dξ + O(ε2)

= −6 εσ u2
0 + O(ε2) (2.18)

where we have used (2.10) and (2.13). Moreover, since uξ = ε p and p = O(ε) on I f ,

we see that ∆ξu = O(ε2). This means that during the jump through the fast field, the

u-coordinate of the pulse does not change to leading order.

Since Ws(Mε) ∩ Wu(Mε) intersects the hyperplane {(u, p, v, q) | p = q = 0} trans-

versally, we can define the take-off and touchdown sets as curves

To =
{

(u, p, 0, 0) ∈ Mε

∣

∣

∣ p = 3 εσu2
}

, Td =
{

(u, p, 0, 0) ∈ Mε

∣

∣

∣ p = −3 εσu2
}

(2.19)

at leading order. Note that if σ changes sign, the take-off and touchdown curves are
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2.2 Pulse construction

Td

u h ,0
To

u * u

p

(a) For σ > 0 the jump is downwards, the resulting

pulse is shown in Figure 2.1a.

Td

u h ,0
To

u * u

p

(b) For σ < 0 the jump is upwards, the resulting

pulse is shown in Figure 2.1b.

Figure 2.6: The homoclinic orbit uh,0(χ) is drawn in blue in the (u, p)-plane. The take-

off and touchdown curves To =
{

(u, p)
∣

∣

∣ p = 3 εσu2
}

and Td =
{

(u, p)
∣

∣

∣ p = −3 εσu2
}

are drawn in green. The jump through the fast field at u = u∗ is indicated by the

dashed purple line.

interchanged: for σ > 0 the take-off curve has positive p-values, while for σ < 0 the

take-off curve has negative p-values. This also means the direction of the fast jump

is reversed when σ changes sign, see (2.18) and Figure 2.6a.

An orbit of the system (2.9) / (2.10) is homoclinic to (0, 0, 0, 0) if its Fenichel fibre

basepoints in To,d intersect the super-slow homoclinic orbit uh,0 ∈ Mε, see Figure

2.6a. This intersection can be determined by integrating (2.14) once,

1
2

p2 = ε2
(

1
2
α u2 − γ

d + 1
ud+1

)

(2.20)

and substituting p = ±3 εσu2 from (2.19) to obtain

2γ

d + 1
ud−1 = α − 9σ2u2 (2.21)

which for α, γ, |σ| > 0 and d > 1 always has a unique real positive solution, de-

noted by u∗. Furthermore, we define χ∗ as the (unique) positive χ-value for which

uh,0(χ∗) = u∗, the u-coordinate of the intersection. When σ < 0, we obtain a slightly

different pulse since part of the slow homoclinic orbit uh,0 is covered twice, see Figure

2.6b. This has its consequences for the formulation of our main existence result:
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Theorem 2.2. Let ε > 0 be sufficiently small. Then, for all values of the para-

meters α > 0, γ > 0, |σ| > 0 and d > 1, there exists a unique orbit γh(ξ) =

(uh(ξ), ph(ξ), vh(ξ), qh(ξ)) as a solution of system (2.10) which is homoclinic to

(0, 0, 0, 0) and lies in the intersectionWs(Mε) ∩Wu(Mε). Moreover,

‖vh(ξ) − vh,0(ξ; u∗, 0)‖∞ = O(ε) ,

‖qh(ξ) − d
dξ

vh,0(ξ; u∗, 0)‖∞ = O(ε) (2.22)

for all ξ ∈ R and

‖uh(χ) − uh,0(χ − sgn(σ) χ∗)‖∞ = O(ε) ,

‖ph(χ) − ε d
dχ

uh,0(χ − sgn(σ) χ∗)‖∞ = O(ε) (2.23)

for all χ < 0, while

‖uh(χ) − uh,0(χ + sgn(σ) χ∗)‖∞ = O(ε) ,

‖ph(χ) − ε d
dχ

uh,0(χ + sgn(σ) χ∗)‖∞ = O(ε) (2.24)

for all χ > 0.

The orbit γh corresponds to a homoclinic pulse solution (Uh,Vh) of system (2.7).

Proof. The missing details in the above geometric construction, especially in the pre-

cise estimates of (2.22), (2.23) and (2.24), can be obtained in a manner identical to

the corresponding result on ‘slowly linear’ systems in [6]. �

2.3 Pulse stability: analysis

The linear stability of the stationary pulse solution (Uh,Vh) of (2.7) found in the

previous section is determined by adding a perturbation of the form (ū(x), v̄(x)) eλt

and linearising equation (2.7) around the stationary solution, obtaining in the fast

variable ξ,






















































ūξ = ε p̄

p̄ξ = −2 εσVh(ξ) v̄ + ε3
(

α + λ − γ d Uh(ξ)d−1
)

ū

v̄ξ = q̄

q̄ξ =

(

1 + λ − 2
Vh(ξ)

Uh(ξ)

)

v̄ +
Vh(ξ)2

Uh(ξ)2
ū

(2.25a)

(2.25b)

(2.25c)

(2.25d)
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2.3 Pulse stability: analysis

We write the fast system (2.25) in vector form

d
dξ
φ = A(ξ; λ, ε)φ (2.26)

where φ(ξ) = ((ū(ξ), p̄(ξ), v̄(ξ), q̄(ξ))T and

A(ξ; λ, ε) =





































0 ε 0 0

ε3
(

α + λ − γ d Uh(ξ)d−1
)

0 2 εσVh(ξ) 0

0 0 0 1
Vh(ξ)2

Uh(ξ)2 0 1 + λ − 2
Vh(ξ)

Uh(ξ)
0





































(2.27)

Since the V-component of the stationary pulse decays much faster than its U-compo-

nent, the ratio Vh

Uh
is well-defined and converges to zero as ξ → ±∞. This results in

the constant coefficient matrix

A∞(λ, ε) = lim
|ξ|→∞

A(ξ; λ, ε) =































0 ε 0 0

ε3 (α + λ) 0 0 0

0 0 0 1

0 0 1 + λ 0































(2.28)

which has eigenvalues

± Λ f = ±
√

1 + λ and ± ε2Λs = ±ε2
√
α + λ (2.29)

and associated eigenvectors

E f ,± =
(

0, 0, 1,±
√

1 + λ
)T

and Es,± =
(

1,±ε
√
α + λ, 0, 0

)T
. (2.30)

The essential spectrum of the linear eigenvalue problem (2.25) therefore is

σess = {λ ∈ R | λ ≤ max(−α,−1)} , (2.31)

see [45]. Since α > 0, we can conclude that the stability of the pulse (Uh,Vh) is

determined by its discrete spectrum.

2.3.1 The Evans function and its decomposition

The Evans function, which is complex analytic outside the essential spectrum – see

[3, 45] and the references therein – associated to system (2.25) can be defined by

D(λ, ε) = det
[

φi(ξ; λ, ε)
]

(2.32)

where the functions φi, i = 1, 2, 3, 4 satisfy boundary conditions at ±∞ (see below)

and span the solution space of (2.25). The eigenvalues of (2.26) outside σess coincide

with the roots ofD(λ, ε), including multiplicities.

65



2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Definition 2.3. A statement of the form ‘ f (x) { c g(x) as x → ∞’ is true whenever

the limit limx→∞
1

g(x)
f (x) = c exists and is well-defined.

Lemma 2.4. For all λ ∈ C \ σess, there are solutions φ f ,L/R(ξ; λ, ε) and φs,L/R(ξ; λ, ε)

to (2.25) such that the set
{

φ f ,L/R(ξ; λ, ε), φs,L/R(ξ; λ, ε)
}

spans the solution space of

(2.25) and

φ f ,L(ξ; λ, ε){ E f ,+ eΛ f ξ as ξ → −∞ (2.33a)

φ f ,R(ξ; λ, ε){ E f ,− e−Λ f ξ as ξ → ∞ (2.33b)

φs,L(ξ; λ, ε){ Es,+ eε
2Λsξ as ξ → −∞ (2.33c)

φs,R(ξ; λ, ε){ Es,− e−ε
2Λsξ as ξ → ∞ (2.33d)

Moreover, there exist analytic transmission functions t f ,+(λ, ε) and ts,+(λ, ε) such that

φ f ,L(ξ; λ, ε){ t f ,+(λ, ε) E f ,+ eΛ f ξ as ξ → ∞ (2.34a)

φs,L(ξ; λ, ε){ ts,+(λ, ε) Es,+ eε
2Λsξ as ξ → ∞ (2.34b)

where ts,+(λ, ε) is only defined if t f ,+(λ, ε) , 0. These choices, when possible, determ-

ine φ f ,L/R and φs,L uniquely.

Proof. Although the linearised system 2.26 is not identical to its counterpart in [6],

exactly the same arguments as in [6] can be applied here. Therefore, we refer to [6]

for the details of the proof. �

The Evans function can be determined by taking the limit ξ → ∞ of the determi-

nant of the functions defined in Lemma 2.4, since the Evans function itself does not

depend on ξ since the trace of A(ξ; λ, ε) vanishes (Abel’s theorem). This yields (see

[6])

D(λ, ε) = 4ε t f ,+(λ, ε) ts,+(λ, ε)
√

1 + λ
√
α + λ (2.35)

Corollary 2.5. The set of eigenvalues of (2.26) is contained in the union of the sets

of roots of t f ,+(λ, ε) and ts,+(λ, ε).

Note that, due to the fact that ts,+(λ, ε) only defined when t f ,+(λ, ε) , 0, the Evans

function D(λ, ε) does not necessarily vanish when t f ,+(λ, ε) = 0. This is called the

‘resolution to the NLEP paradox’ in [6, 7]. The roots of t f ,+ will be discussed later,

in section 2.3.3.
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2.3 Pulse stability: analysis

2.3.2 The slow solution φs,L outside I f

To obtain more information about the roots of ts,+(λ, ε), it is necessary to determine

the leading order behaviour of φs,L(ξ; λ, ε) in the different coordinate regimes. From

Lemma 2.4 we know that φs,L is slowly growing in ξ, since its leading order beha-

viour for both ξ → ±∞ is determined by the exponential growth factor ε2Λs = O(ε2).

However, the dynamics governing φs,L differ significantly inside and outside the fast

spatial region I f . Based on our knowledge of the homoclinic solution stated in The-

orem 2.2, we can infer the form of the matrix A(ξ; λ, ε) both inside and outside I f :

A f (ξ; λ, ε) =





































0 ε 0 0

ε3
(

α + λ − γ d ud−1
∗

)

0 2 εσ vh,0(ξ; u∗, 0) 0

0 0 0 1
vh,0(ξ;u∗,0)2

u2
∗

0 1 + λ − 2
vh,0(ξ;u∗,0)

u∗
0





































(2.36)

to leading order for ξ ∈ I f and

As(ξ; λ, ε) =

































0 ε 0 0

ε3
(

α + λ − γ d uh,0(|ε2ξ| + sgn(σ) χ∗)
d−1

)

0 0 0

0 0 0 1

0 0 1 + λ 0

































(2.37)

for ξ < I f to leading order.

Note that it is the fact that this ‘intermediate’ slow matrix exists, or better: that it

is not identical to A∞(λ, ε) (2.28), that distinguishes the ‘slowly nonlinear Gierer-

Meinhardt problem’ from ‘slowly linear’ problems as the classical Gierer-Meinhardt

or Gray-Scott systems. Note also that a intermediate matrix as As(ξ; λ, ε) was already

encountered in [8], in the study of a system with non-exponential (algebraic) decay.

Lemma 2.6. Consider the system

d
dξ
ψ = As(ξ; λ, ε)ψ (2.38)

with As(ξ; λ, ε) as given in (2.37). There exist solutions ψ f ,±(ξ; λ, ε) and ψs,±(ξ; λ, ε)

which span the solution space of (2.38) for ξ < − 1√
ε

and

ψ f ,+(ξ; λ, ε){ E f ,+ eΛ f ξ, ψs,+(ξ; λ, ε){ Es,+ eε
2Λsξ, (2.39a)

ψ f ,−(ξ; λ, ε){ E f ,− e−Λ f ξ, ψs,−(ξ; λ, ε){ Es,− e−ε
2Λsξ (2.39b)

as ξ → −∞.
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Proof. The same arguments as in the proof of Lemma 2.4 can be used, because

limξ→−∞ As(ξ; λ, ε) = A∞(λ, ε). �

Since A(ξ; λ, ε) is to leading order equal to As(ξ; λ, ε) for ξ < − 1√
ε

and both φs,L

and ψs,+ { Es,+ eε
2Λsξ as ξ → −∞, combining Lemma 2.4 and Lemma 2.6 yields the

following Corollary:

Corollary 2.7. For ξ < − 1√
ε
, we can write

φs,L(ξ; λ, ε) = ψs,+(ξ; λ, ε)

to leading order.

The slow evolution of the ū-component of ψs,± can be written, again using χ =

ε2ξ, as

ūχχ −
(

α + λ − γ d uh(|χ| + sgn(σ) χ∗)
d−1

)

ū = 0 (2.40)

We can introduce the coordinate transformation

z = − 1
√
α

d
dχ

uh,0(χ − sgn(σ) χ∗)

uh,0(χ − sgn(σ) χ∗)

=
1
√
α

d

dχ
log

1

uh,0(χ − sgn(σ) χ∗)

= tanh
(

1
2
(d − 1)

√
α (χ − sgn(σ) χ∗)

)

(2.41)

(by (2.16)) for the region χ < 0 to obtain

(1 − z2) ūzz − 2 z ūz +

(

ν(ν + 1) − µ2

1 − z2

)

ū = 0 (2.42)

where

ν =
d + 1

d − 1
(2.43a)

µ = +
2

d − 1

√

1 +
λ

α
(2.43b)

where we have chosen the branch cut associated to σess such that Re µ > 0; note that

ν > 1. Equation (2.42) is the Legendre differential equation: its solutions are the

associated Legendre functions P
µ
ν (z) and Q

µ
ν (z) [1, 2]. Given the symmetry z → −z

of the equation, we choose the basis of the solution space to be P
µ
ν (±z). The limit
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2.3 Pulse stability: analysis

χ → −∞ corresponds to the limit z → −1. Taking into account the normalisation of

ψs,+ from Lemma 2.6, the correct expression for the ū-component of ψs,+ is

ū(χ) = Γ(1 + µ) eΛssgn(σ) χ∗P
−µ
ν (−z(χ)) (2.44)

such that

lim
χ↑0

ū(χ) = Γ(1 + µ) eΛssgn(σ) χ∗P
−µ
ν (z∗) (2.45)

where we define

z∗ = sgn(σ) tanh
(

1
2
(d − 1)

√
αχ∗

)

(2.46)

We can express z∗ in terms of u∗ using equation (2.15): integrating once yields

u2
χ = α u2 − 2 γ

d + 1
ud+1 (2.47)

so, by equation (2.41)

z2 =
1

α

u2
χ

u2
= 1 − 2γ

α(d + 1)
ud−1 (2.48)

hence

α
(

1 − z2
∗
)

=
2γ

d + 1
ud−1
∗ = α − 9σ2u2

∗ (2.49)

by equation (2.21); from this, we conclude that

z∗ =
3σ
√
α

u∗. (2.50)

Note that z∗ inherits the sign of σ since χ∗ is chosen to be positive, see section 2.2.1.

Lemma 2.8. Let ūs(ξ; λ, ε) be the ū-component of φs,L(ξ; λ, ε) as defined in Lemma

2.4. Then

ūs(ξ) = Γ(1 + µ) eΛssgn(σ) χ∗P
−µ
ν (z∗) + O(ε

√
ε) for ξ ∈ I f . (2.51)

Moreover, there are two transmission functions ts,+(λ, ε) and ts,−(λ, ε) such that

φs,L(ξ; λ, ε) = ts,+(λ, ε)ψs,−(−ξ; λ, ε)+ ts,−(λ, ε)ψs,+(−ξ; λ, ε) for ξ >
1
√
ε

(2.52)

up to exponentially small terms in ξ, where ts,+ was already introduced in Lemma 2.4.
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Proof. The ū-component of φs,L is constant on I f , since both d
dξ

ūs and d
dξ

p̄s,+ are

asymptotically small on I f . Therefore, we can determine its leading order value using

Corollary 2.7 and (2.45). The matrix As as defined in (2.37) is symmetric in ξ. For the

region ξ > 1√
ε

we can therefore use the same ψ f ,± and ψs,± from Lemma 2.6 as a basis

for the solution space in this region, under the reflection ξ → −ξ. The role of ψs,+

and ψs,− is reversed compared to the interval ξ < − 1√
ε
: we see that ψs,−(−ξ) grows

(slowly) exponentially as ξ → ∞, whereas ψs,+(−ξ) has an exponential (slow) decay

under the same limit. The normalisation of φs,L for ξ → ∞, which by Lemma 2.4

introduces ts,+(λ, ε) in (2.52), does not exclude the possibility that for ξ > 1√
ε
, φs,L has

components which decay (slowly) as ξ → ∞. Therefore, we write the leading order

expression of φs,L in this region as a linear combination of a slowly increasing and

a slowly decreasing component, and introduce ts,−(λ, ε) to measure the decreasing

component. A term containing the fast decreasing component is omitted, since for

ξ > 1√
ε

this would only give an exponentially small correction to the result in (2.52).

�

Based on the results of Lemma 2.8, we have

lim
χ↓0

ūs(χ) = Γ(1 + µ)
[

ts,+(λ, ε) P
−µ
ν (−z∗) + ts,−(λ, ε) P

−µ
ν (z∗)

]

(2.53)

to leading order.

Corollary 2.9. Combining equations (2.51) and (2.53) yields

ts,+(λ, ε) P
−µ
ν (−z∗) + ts,−(λ, ε) P

−µ
ν (z∗) = P

−µ
ν (z∗) + O(ε

√
ε) (2.54)

to leading order.

This gives a (first) relation between ts,+(λ, ε) and ts,−(λ, ε).

2.3.3 The fast components of φs,L inside I f

Since ūs(ξ; λ, ε) is constant to leading order for ξ ∈ I f (see Lemma 2.8), we can

represent it by its value at 0 ∈ I f . Moreover, the equation for the v̄-component in

(2.25) decouples and yields an inhomogeneous Sturm-Liouville problem,

v̄ξξ −
(

(1 + λ) − 2

u∗
vh,0(ξ; u∗, 0)

)

v̄ =
1

u2
∗

vh,0(ξ; u∗, 0)2 ūs(0) (2.55)

where we used that uh(ξ) = u∗ and vh(ξ) = vh,0(ξ; u∗, 0) for ξ ∈ I f to leading order

(see Theorem 2.2). Based on the slow behaviour of φs,L determined in Lemmas 2.4
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2.3 Pulse stability: analysis

and 2.8, we observe that the solution v̄ of (2.55) must extinguish as ξ → ∂I f , which

implies that v̄ must decay exponentially fast in ξ.

By the nature of the Gierer-Meinhardt equation (2.4) and its ‘slow nonlinearity’

the problem can be solved exactly along the same lines as done in section 2.3.2 for

the slow problem. First, we introduce a coordinate transformation similar to (2.41),

ζ = −
d
dξ

vh,0(ξ; u∗, 0)

vh,0(ξ; u∗, 0)
=

d

dξ
log

1

vh,0(ξ; u∗, 0)
= tanh

(

1
2
ξ
)

(2.56)

using (2.13). In this coordinate, vh can be written as

vh(ζ; u∗, 0) =
3 u∗

2

(

1 − ζ2
)

(2.57)

and equation (2.55) is transformed to

(1 − ζ2) v̄ζζ − 2 ζ v̄ζ +

(

12 − 4(1 + λ)

1 − ζ2

)

v̄ = 9 ūs(0) (1 − ζ2) (2.58)

and I f = {ζ ∈ R | |ζ | < 1 } up to exponentially small terms, compare (2.17).

Its homogeneous reduction

(1 − ζ2) v̄ζζ − 2 ζ v̄ζ +

(

12 − 4(1 + λ)

1 − ζ2

)

v̄ = 0 (2.59)

can again be solved using associated Legendre functions; it is a special case (α = 1,

d = 2) of the slow eigenvalue problem (2.42).

It should be noted that there is a crucial difference between (2.42) and (2.58).

The slow equation (2.42) is only defined on part of the ‘full’ domain: z ∈ (−1, z∗) ⊂
(−1, 1). Therefore, the eigenvalues of (2.42) do not yield direct implications for the

stability of the pulse (Uh,Vh). This is very different from the fast system (2.58). It

has three eigenvalues; its corresponding eigenfunctions are

λ
(0)

f
=

5

4
, v̄

(0)

f
(ζ) =

(

1 − ζ2
)

3
2

(2.60a)

λ
(1)

f
= 0, v̄

(1)

f
(ζ) = ζ

(

1 − ζ2
)

= − 2

3u∗

dζ

dξ

d

dζ
vh(ζ; u∗, 0) (2.60b)

λ
(2)

f
= −3

4
, v̄

(2)

f
(ζ) =

(

ζ2 − 1
5

)

√

1 − ζ2 (2.60c)

Referring to [6], we recall that the roots of t f ,+(λ, ε) are to leading order given by the

eigenvalues of (2.59), so we have the following Lemma:
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

Lemma 2.10. There are unique λ(i)(ε) ∈ R such that limε→0 λ
(i)(ε) = λ

(i)

f
and

t f ,+(λ(i)(ε), ε) = 0 with multiplicity 1 for i = 0, 1, 2.

Proof. See [6]. �

Hence, the eigenvalues of (2.59) are to leading order zeroes of the fast component

of the Evans function D(λ, ε) given in (2.35) and thus in principle candidates for be-

ing zeroes of the full Evans function.

For all λ ∈ C \ σess, the solution space of (2.59) is spanned by the associated

Legendre functions

v̄±(ζ; λ) = c±(λ)P−2
√

1+λ
3

(±ζ); lim
ζ→±1

v̄±(ζ; λ) = 0 (2.61)

where we normalise v̄± (i.e. choose c±) such that their Wronskian is given by

W(v̄−, v̄+)(ζ; λ) =
1

1 − ζ2
(2.62)

which implies that

c+(λ) c−(λ) = −1

2
Γ
(

4 + 2
√

1 + λ
)

Γ
(

−3 + 2
√

1 + λ
)

(2.63)

Indeed, the expression in (2.63) has poles at λ = λ
(i)

f
, i = 0, 1, 2. This is due to the

fact that v̄±(ζ; λ) cannot span the two-dimensional solution space for λ = λ
(i)

f
. Since

we have normalised the Wronskian (2.62), this is now encoded in the values of c±(λ).

We know that the inhomogeneous equation (2.58) has a unique bounded solution

v̄in(ξ; λ) for all λ ∈ C \ σess and λ , λ
(0,1,2)

f
. It can be determined using the Green’s

function

G(ζ, s; λ) =



























v̄−(s; λ) v̄+(ζ; λ)

W(v̄−, v̄+)(s; λ) (1 − s2)
s < ζ

v̄−(ζ; λ) v̄+(s; λ)

W(v̄−, v̄+)(s; λ) (1 − s2)
s > ζ

(2.64)

so that

v̄in(ζ; λ) =

∫ 1

−1

9 ūs(0) (1 − s2) G(ζ, s; λ) ds (2.65)

= 9 ūs(0)

[

v̄+(ζ; λ)

∫ ζ

−1

(1 − s2) v̄−(s; λ) ds + v̄−(ζ; λ)

∫ 1

ζ

(1 − s2) v̄+(s; λ) ds

]
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Note that the inhomogeneous term in (2.58) is only orthogonal to the eigenfunc-

tion corresponding to λ
(1)

f
= 0; for the other two eigenvalues the solvability condition

∫ 1

−1

9 ūs(0) (1 − ζ2) v̄
(i)

f
(ζ) dζ = 0 i = 0, 1, 2 (2.66)

is not satisfied since both v̄
(0,2)

f
(ζ) and 9(1 − ζ2) are even functions in ζ. This means

that v̄in as a function of λ has a simple pole at λ
(0)

f
and λ

(2)

f
, and is smooth at λ

(1)

f
= 0.

To summarise this section, the resulting expression of v̄in is restated in the follow-

ing Lemma:

Lemma 2.11. The unique solution v̄in(ζ; λ) to equation (2.58) is given by

v̄in(ζ; λ) = 9 ūs(0)

[

v̄+(ζ; λ)

∫ ζ

−1

(1 − s2) v̄−(s; λ) ds + v̄−(ζ; λ)

∫ 1

ζ

(1 − s2) v̄+(s; λ) ds

]

(2.67)

with v±(ζ; λ) as defined in (2.61) and subject to condition (2.63).

2.3.4 The slow transmission function ts,+(λ, ε)

In section 2.3.2 we studied φs,L outside I f and in section 2.3.3 we considered its fast

dynamics inside I f . However, we did not yet combine these results.

Using (2.25), we see that

ūξξ = −2 ε2σVh(ξ) v̄ + O(ε4)

= −2 ε2σ vh,0(ξ; u∗, 0) v̄in (ζ(ξ); λ) (2.68)

to leading order in I f . Thus, the total change of ūξ over I f is given by

∆ξūξ =

∫

I f

uξξ dξ

= −2 ε2σ

∫ ∞

−∞
vh,0(ξ; u∗, 0) v̄in (ζ(ξ); λ) dξ

= −2 ε2σ

∫ 1

−1

vh,0 (ξ(ζ); u∗, 0) v̄in (ζ; λ)
2 dζ

1 − ζ2

= −2 ε2σ

∫ 1

−1

3 u∗
2

(1 − ζ2) v̄in (ζ; λ)
2 dζ

1 − ζ2

= −6 ε2σ u∗

∫ 1

−1

v̄in (ζ; λ) dζ := ∆ f (2.69)
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

all to leading order. Using the expression for v̄in(ζ; λ) from Lemma 2.11 and the

symmetry in ζ between v̄+ and v̄−, this can be rewritten as

∆ f = −108 ε2σ u∗ ūs(0)

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ (2.70)

The desired coupling between the slow and fast dynamics can now be obtained by

realising that this change in ūξ should match with the slow behaviour of φs,L outside

I f . Using Corollary 2.7 and Lemma 2.8,

∆ f = ∆ξūξ = ūξ

(

1√
ε

)

− ūξ

(

− 1√
ε

)

= ε2 Γ(1 + µ)
dz

dχ

d

dz

[

ts,+ P
−µ
ν (−z) + ts,− P

−µ
ν (z)

]

z=z∗

− ε2Γ(1 + µ)
dz

dχ

d

dz

[

P
−µ
ν (−z)

]

z=−z∗

= ε2 Γ(1 + µ)
dz

dχ

d

dz

[

ts,+ P
−µ
ν (−z) +

(

ts,− + 1
)

P
−µ
ν (z)

]

z=z∗
(2.71)

to leading order. Together, expressions (2.69) and (2.71) can be used to obtain a

second relation between the two transmission functions ts,±(λ, ε), see Corollary 2.9.

Thus, we can eliminate ts,− and obtain a leading order expression for ts,+:

ts,+ ε
2 dz

dχ

d

dz

[

P
−µ
ν (−z) − P

−µ
ν (−z∗)

P
−µ
ν (z∗)

P
−µ
ν (z)

]

z=z∗

=
∆ f

Γ(1 + µ)
− 2 ε2 dz

dχ

d

dz

[

P
−µ
ν (z)

]

z=z∗

so that, using the Wronskian W
(

P
−µ
ν (z), P

−µ
ν (−z)

)

(z∗),

ts,+ = P
−µ
ν (z∗)

∆ f

Γ(1+µ)
− 2 ε2 dz

dχ
d
dz

[

P
−µ
ν (z)

]

z=z∗

ε2 dz
dχ

W
(

P
−µ
ν (z), P

−µ
ν (−z)

)

(z∗)
(2.72)

which, using (2.69) and (2.50), leads to the following Theorem:

Theorem 2.12. Let ε > 0 be sufficiently small. The function ts,+(λ, ε) is meromorphic

as a function of λ outside σess. It has simple poles at λ(0)(ε) and λ(2)(ε) and is analytic

elsewhere. The leading order behaviour of ts,+ is given by

ts,+(λ, 0) = P
−µ
ν (z∗)

√
α z∗

Γ(1+µ)

∫ 1

−1
v̄in (ζ; λ) dζ + dz

dχ
d
dz

[

P
−µ
ν (z)

]

z=z∗

− 1
2

dz
dχ

W
(

P
−µ
ν (z), P

−µ
ν (−z)

)

(z∗)
(2.73)

The nontrivial roots of the Evans functionD(λ, ε) coincide with the roots of ts,+(λ, ε).

These roots determine the stability of the pulse (Uh(ξ),Vh(ξ)).

74
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Note that it is clear from (2.73) that ts,+ inherits the poles of v̄in at λ = λ
(0,2)

f
.

The roots of the Evans function D(λ, ε) outside σess are given by the roots of the

product t f ,+(λ, ε) ts,+(λ, ε). Based on orthogonality arguments, we have established

that ts,+(λ, 0) has simple poles at λ = λ
(0,2)

f
, see the solvability condition (2.66). These

coincide with the (simple) roots of t f ,+(λ, 0) (see Lemma 2.10), so the Evans function

will not necessarily be zero at these values of λ. Moreover, since the Evans function

is analytic, this statement continues to hold for ε > 0. Note that λ = 0 is always a

trivial eigenvalue for system (2.25), with eigenfunction d
dξ

(Uh(ξ),Vh(ξ)); it does not

appear as a zero of ts,+(λ, 0).

2.4 Pulse stability: results

The purpose of this section is to analyse the roots of ts,+(λ, 0) as given in Theorem

2.12. The Wronskian in the denominator is always finite for −1 < z∗ < 1 because the

underlying differential equation (2.42) is only singular at z = −1, 1. We can therefore

focus at the numerator, which is zero whenever P
−µ
ν (z∗) = 0 or

√
α z∗

Γ(1 + µ)

∫ 1

−1

v̄in (ζ; λ) dζ +
dz

dχ

d

dz

[

P
−µ
ν (z)

]

z=z∗
= 0 (2.74)

Using
[

dz

dχ

]

z=z∗

=
1

2
(d − 1)

√
α(1 − z2

∗) (2.75)

and
d

dz

[

P
−µ
ν (z)

]

z=z∗
=

1

1 − z2
∗

(

(ν − µ)P
−µ
ν−1

(z∗) − z∗νP
−µ
ν (z∗)

)

(2.76)

equation (2.74) can be rewritten into

18 z∗ P
−µ
ν (z∗)

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ

+
1

2
(d − 1)

(

(ν − µ)P
−µ
ν−1

(z∗) − z∗νP
−µ
ν (z∗)

)

= 0, (2.77)

using (2.70) and recalling that ūs(0) = Γ(1 + µ) P
−µ
ν (z∗) to leading order by Lemma

2.8. Since this equation is only relevant if P
−µ
ν (z∗) , 0, we divide by z∗ P

−µ
ν (z∗) (note

that z∗ , 0 since u∗ , 0, see (2.50)) to obtain the following:
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation
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Figure 2.7: Here, LHS(λ) is plotted in blue for λ ∈ (−1, 2); the red line is the graph of

RHS( λ
α

; ν, z∗). In the left plot α = 0.05, ν = 2 and z∗ = 0.75. In the right plot α = 1.5,

ν = 2 and z∗ = −0.60; the right plot is a illustration of the statement in Theorem 2.14.

Corollary 2.13. If P
−µ
ν (z∗) , 0, the nontrivial roots of the Evans function D(λ, ε) as

defined in (2.35) are given to leading order by the solutions of the equation

18

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ =
1

ν − 1













ν − (ν − µ)
P
−µ
ν−1

(z∗)

z∗ P
−µ
ν (z∗)













, (2.78)

with µ, ν, z∗ as given in (2.43) and (2.50).

The left-hand side of this equation is a function of λ only; all parameters are

contained in the right-hand side. Moreover, we have restricted our parameter space

(α, γ, σ, d) ∈ R>0 ×R>0 ×R \ {0} × (1,∞), a union of two orthants in R4 to (α, ν, z∗) ∈
R>0 × (1,∞) × (−1, 0) ∪ (0, 1), the union of two (semi-compact) slabs in R3.

It is useful to define the left- and right-hand sides of equation (2.78) separately:

LHS(λ) = 18

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ (2.79)

RHS( λ
α

; ν, z∗) =
1

ν − 1

























ν − (ν − µ( λ
α

; ν))
P
−µ(

λ
α

;ν)

ν−1
(z∗)

z∗ P
−µ(

λ
α

;ν)

ν (z∗)

























(2.80)

In Figure 2.7, the graphs of LHS(λ) and RHS( λ
α

; ν, z∗) are plotted for real values of λ.

It is worthwhile to note that LHS(λ) = 288R(P =
√

1 + λ; 2, 2) as used in [6].

2.4.1 Immediate results: σ < 0 and γ ↓ 0

In this subsection we present the first ‘immediate’ implications of the developed the-

ory for the stability of the pulse (Uh,Vh).
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2.4 Pulse stability: results

Theorem 2.14. Let ε > 0 be sufficiently small. For all σ < 0, there is a real zero

λpos > λ
(0)

f
> 0 of the Evans function associated with the stability problem (2.25).

Proof. As λ → ∞, from (2.43) we infer that µ ≫ ν such that the ratio
P
−µ
ν−1

(z∗)

P
−µ
ν (z∗)

→ 1.

Therefore, RHS( λ
α

; ν, z∗) {
µ

ν−1
1
z∗
{

1
3σu∗

√
λ as λ → ∞. Using an equivalent argu-

ment to that in [15], Lemma 4.1 (ii), one can show that LHS(λ) increases monotonic-

ally (from −∞) to zero for λ > λ
(0)

f
. Therefore, there is a λ > 5

4
for which LHS and

RHS intersect and which therefore solves (2.78) for all parameter values when σ < 0,

see Figure 2.7. �

Corollary 2.15. A pulse with a double hump in the U-component, as shown in Figure

2.1b, is always unstable.

A direct consequence of the above Corollary is that in order to obtain any stability

result, we have to confine ourselves to the interval 0 < z∗ < 1 since sgn(z∗) = sgn(σ),

see (2.50). It would be beneficial to a complete understanding of the linear stability of

the constructed pulse if more would be known about the zeroes of P
−µ
ν (z∗). However,

while some information can be obtained regarding the number of zeroes of P
−µ
ν (z∗) for

real values of µ (see [1], the general case will be treated in chapter 3, section 3.5.1),

the authors are not aware of any general analytic expressions concerning zeroes of

P
−µ
ν (z∗) for complex µ. Notwithstanding, direct numerical evaluation of P

−µ
ν (z∗) for a

broad parameter range has led to the following Conjecture:

Conjecture 2.16. For all λ ∈ C for which Re λ > 0, P
−µ
ν (z∗) , 0 for all 0 < z∗ < 1.

Moreover, for Im λ , 0, P
−µ
ν (z∗) , 0 for all 0 < |z∗| < 1.

Based on this observation, the study of linear stability of the pulse can be confined

to the study of solutions of (2.78). Moreover, any additional eigenvalues originating

from zeroes of P
−µ
ν (z∗) would occur on the real line and be negative. Note that in the

following results, this Conjecture is not needed.

Equation (2.80) can be studied for different parameter values (and limits thereof)

to obtain information about the pulse spectrum. Another direct result can be obtained

by taking the limit γ ↓ 0 to remove the influence of the slow nonlinearity in (2.7)

and obtain the classical Gierer-Meinhardt equations. As γ ↓ 0, u∗ →
√
α

3|σ| (see (2.21))

so z∗ → sgn(σ) using (2.50). Note that, while the limit γ ↓ 0 reduces equation

(2.7) to the ‘classical’ Gierer-Meinhardt equation –where the slow evolution in U is

linear, yielding a ‘simple’ exponential instead of an associated Legendre function–

the coordinate z is ill-defined for γ = 0, see (2.41) in relation to (2.40). Therefore,
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

some of the expressions in the following will still depend on ν, while ν disappears

from (2.7) as γ ↓ 0. Since

P
−µ
ν (z∗){

1

Γ(1 + µ)

(

1 − z

2

)
µ

2

as z∗ → 1 (2.81a)

P
−µ
ν (z∗){

Γ(µ)

Γ(µ − ν)Γ(1 + µ + ν)

(

1 + z

2

)− µ

2

as z∗ → −1 (2.81b)

(see [1, 2]), this means that

lim
γ↓0

RHS( λ
α

; ν, z∗(α, γ, σ, d)) = lim
z∗→sgn(σ)

RHS( λ
α

; ν, z∗) = sgn(σ)
µ

ν − 1

= sgn(σ)

√

1 +
λ

α
(2.82)

Moreover, P
−µ
ν (z∗) can be written as P

−µ
ν (z∗) =

(

1−z∗
2

)
µ

2
F(z∗) where F(z) has a regular

expansion (see [1, 2]). Near z = 1, F(z) can be expanded as F(z) =
∑∞

k=0 ak

(

1−z
2

)k
,

with

ak =

∞
∑

j=0

(

µ

2

)

k− j
(−ν) j(ν + 1) j

Γ(1 + j + µ)(k − j)! j!
(2.83)

Since a0 =
1

Γ(1+µ)
, 0 for all µ considered since Re µ > 0 and the limit γ ↓ 0 only

influences the value of z∗, it follows that P
−µ
ν (z∗) does not have any zeroes asymptot-

ically close to, but different from z∗ = 1. The same reasoning applies for z∗ → −1.

Therefore, in this particular limit, we do not need to appeal to Conjecture 2.16. This

yields the following Lemma:

Lemma 2.17. For γ ↓ 0, the nontrivial pulse spectrum is to leading order given by

the roots of the equation

18

∫ 1

−1

∫ ζ

−1

v̄+(ζ; λ) v̄−(s; λ)(1 − s2) ds dζ = sgn(σ)

√

1 +
λ

α
(2.84)

which, for σ > 0, coincides with the corresponding expression found in [6] for the

classical Gierer-Meinhardt equations.

2.4.2 Varying α and investigating the role of d

As the parameter α occurs in both the expression for µ and z∗ (see (2.43) and (2.50)), it

is worthwhile to study the behaviour of RHS(λ) as α changes to obtain α-parametrised
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2.4 Pulse stability: results

eigenvalue orbits. Moreover, the parameter α is the classical parameter to be varied,

as α plays the role of µ in the classical Gierer-Meinhardt equations. In Figure 2.3,

left, the (complex) solutions to equation (2.78) are plotted as a function of increas-

ing α for d = 2, γ = 2 and σ = 1. The eigenvalues cross the imaginary axis for

α ≈ 0.83083 and converge to λ ≈ −0.990268± 0.147318 i as α→ ∞. The same plot,

now for d = 5, is given in Figure 2.3, middle and right. The eigenvalues initially dis-

play the same behaviour as in the case d = 2; here, the imaginary axis is crossed for

α ≈ 0.36654. A clear change of behaviour can be seen for increasing α; whereas the

orbit seems to converge to a complex conjugate pair of stable limit points for d = 2,

for d = 5 the orbits crosses the imaginary axis again for α ≈ 90.634 and yields a pair

of unstable eigenvalues as α → ∞. Note that this behaviour is essentially different

from the equivalent analysis found in [6], Figure 5.3 therein.

The behaviour for α→ ∞ can be determined explicitly: since only the right-hand

side of (2.78) is parameter dependent, it suffices to calculate limα→∞ RHS( λ
α

; ν, z∗).

Since

lim
α→∞

µ(λ;α, d) =
2

d − 1
= ν − 1 (2.85)

by (2.43) and

lim
α→∞

z∗(α, γ, σ, d) =

{

0 if d > 3⇔ ν < 2

sgn(σ) if d < 3⇔ ν > 2
(2.86)

by (2.21) and (2.50), we see that a dichotomy occurs at d = 3 or equivalently ν = 2.

For ν > 2, the right-hand side of (2.78) converges as α→ ∞ to

lim
α→∞

RHS
(

λ
α

; ν > 2, z∗(α)
)

= lim
µ→ν−1

lim
z∗→sgn(σ)

RHS (λ; µ, ν > 2, z∗) = sgn(σ) (2.87)

using (2.81).

Following the same reasoning preceding Lemma 2.17, there are no additional ze-

roes of P
−µ
ν (z∗) to be taken into account since the same limit behaviour z∗ → ±1 takes

place here. The fact that a simultaneous limit is taken for µ(λ;α, d) does not change

this, since the coefficients of the expansion of F(z), given in (2.83), have a regular

expansion in orders of 1
α

. Again, a0 =
1

Γ(1+µ)
= 1
Γ(ν)
+ O

(

1
α

)

is not equal to zero since

ν > 1. Therefore, it is not necessary to appeal to Conjecture 2.16 in this limit, since

again it follows that P
−µ
ν (z∗) does not have any zeroes asymptotically close to, but

different from z∗ = ±1.
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{ Re LHS(Λ) = 1 }

{ Im  LHS(Λ) = 0 }

-1.5 -1 -0.5
Re Λ

0.1

0.2

0.3

0.4

Im Λ

Figure 2.8: The equation LHS(λ) = sgn(σ) is solved graphically for σ > 0. Plotted

in blue is the level curve {Re LHS(λ) = 1}, which intersects the purple level curve

{Im LHS(λ) = 0} in the left half-plane for σ > 0 at λ ≈ −0.990268 ± 0.147318 i.

Since the level curves are symmetric, only the upper half-plane is shown.

The solution to LHS(λ) = sgn(σ) is determined by direct evaluation of the inte-

gral (2.79), see Figure 2.8 for a graphic illustration. For σ > 0, this equation has a

conjugate pair of complex solutions in the left half-plane; for σ < 0, there is a real

positive solution, see Theorem 2.14. Of course the existence of these isolated solu-

tions can be confirmed by a rigorous numerical winding number calculation (see [7]).

Note that this both corroborates and extends the corresponding result in [6], giving a

method to calculate the ‘endpoints’ of the eigenvalue orbits. The above leads to the

following Theorem:

Theorem 2.18. Let ε > 0 be sufficiently small. For all 1 < d < 3, there is an

α∗(γ, σ, d) > 0 such that for all α > α∗, the nontrivial zeroes of the Evans function

associated with the stability problem (2.25) are to the left of, and bounded away from

the imaginary axis.

When ν < 2, we need to investigate limz∗→0 limµ→ν−1 RHS( λ
α

; ν < 2, z∗). Since

P
−(ν−1)
ν (z) = z P

−(ν−1)

ν−1
(z) [1, 2], we see that RHS( λ

α
; ν < 2, z∗(α)) { 1

z2
∗

while z∗ → 0

as α → ∞. This means that the solutions of equation (2.78) will either converge to

the poles of LHS(λ), which lie at λ = λ
(2)

f
= − 3

4
and λ = λ

(0)

f
= 5

4
, or take off to

infinity – see Figure 2.7, right. From this, it is clear that the pulse becomes unstable

for ν < 2⇔ d > 3 when α is large enough; see again Figure 2.3 for an example.
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2.4 Pulse stability: results

Theorem 2.19. Let ε > 0 be sufficiently small. For all d > 3, there are α∗,1(γ, σ, d) >

0 and α∗,2(γ, σ, d) > 0 such that for all α < α∗,1 and all α > α∗,2, the nontrivial zeroes

of the Evans function associated with the stability problem (2.25) are to the right of

the imaginary axis.

Proof. The above arguments show that the pulse becomes unstable when α is large

enough. For 0 < α ≪ 1, we see that the same approximations apply as for the case

λ → ∞, see the proof of Theorem 2.14. Moreover, combining (2.21) and (2.50) we

see that z∗ → sgn(σ) as α ↓ 0. Therefore, RHS { sgn(σ)
√
λ√
α

as α ↓ 0. As for the

case α → ∞, RHS thus has to blow up, which yields the existence of a positive real

solution close to λ
(0)

f
for (2.78). �

However, the eigenvalue orbit for d > 3 traverses the left half plane for a partic-

ular α-interval, as shown in Figure 2.3. That is, direct evaluation of (2.78) indicates

that there also is a non-empty region α ∈ (α∗,1, α∗,2) for which the pulse is stable. To

investigate this behaviour analytically, we focus on the parameter d.

Consider the limit d ≫ 1. This is equivalent with the limit ν − 1 ≪ 1. Therefore,

we introduce an asymptotically small parameter δ and set ν = 1 + δ, so that µ =

δ

√

1 + λ
α

(see (2.43)). The equation for z∗, combining (2.21) and (2.50), is

γ(ν − 1)

ν

(

α

9σ2

)
1
ν−1 (

z2
∗
)

1
ν−1
= α(1 − z2

∗) (2.88)

which, when ν = 1 + δ, yields

γ δ

1 + δ

(

α

9σ2

)
1
δ (

z2
∗
)

1
δ
= α(1 − z2

∗) (2.89)

Substituting z2
∗ = e−y, y > 0, we obtain

γ δ

1 + δ

(

α

9σ2

)
1
δ

e−
y

δ = α(1 − e−y); (2.90)

writing
α

9σ2
= eβ (2.91)

this becomes

γ δ

α(1 + δ)

ey

ey − 1
= e

y−β
δ (2.92)
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2. Pulses in a slowly nonlinear Gierer-Meinhardt equation

When β > 0, we can rewrite this as

y = β + δ log

[

γ δ

α(1 + δ)

ey

ey − 1

]

(2.93)

yielding y = β + δ log

(

δ
γeβ

α(eβ−1)

)

+ h.o.t.. When β < 0 and not asymptotically small,

equation (2.92) is solved by y = − log
(

1 − δ γ
α

e
β

δ

)

+ h.o.t.. This means that when

α
9σ2 > 1, then z2

∗ =
9σ2

α

(

α−9σ2

δγ

)δ
+h.o.t, while z2

∗ = 1−δ γ
α

(

α
9σ2

)δ
+h.o.t. when α

9σ2 < 1.

Thus, for d ≫ 1 a sharp transition in the value of z∗ occurs as α passes through

α = 9σ2.

We will now show that at this ‘transition’, all zeroes of the Evans function, i.e. all

solutions of (2.78) (Corollary 2.5), must have negative real part. Using the same de-

composition P
−µ
ν (z∗) =

(

1−z∗
2

)
µ

2
F(z∗) as before, with F(z) having a regular expansion

near z∗ = 1 with coefficients given by (2.83), we see that for µ = δµ0, ν = 1 + δ and

z∗ = 1 − 1
2
y1δ to leading order, both the term

(

1−z∗
2

)
µ

2
and the coefficients in (2.83)

can be expanded in δ, yielding P
−δµ0

1+δ
(1 − 1

2
y1δ) = 1 + 1

2
µ0δ log(δ) + O(δ). From this,

we can conclude that it is not possible to choose y1 such that P
−δµ0

1+δ
(1 − 1

2
y1δ) = 0 for

asymptotically small δ, so Conjecture 2.16 is not needed.

First we set ν = 1 + δ in RHS (2.80):

RHS( λ
α

; 1 + δ, z∗) =
1

δ























1 + δ − (1 + δ − δ
√

1 +
λ

α
)

P
−δ
√

1+ λ
α

δ
(z∗)

z∗ P
−δ
√

1+ λ
α

1+δ
(z∗)























(2.94)

The above approximations yield, with the same asymptotically small parameter δ as

introduced above,

RHS( λ
α

; 1 + δ, z∗) =























− γ
α
+

√

1 + λ
α
+ O(δ) if α < 9σ2

1
δ

(

1 − α
9σ2

)

+ 1 +
−1+
√

1+ λ
α

z3
∗

+ O(δ) if α > 9σ2
(2.95)

From this result, we see that for α < 9σ2, the behaviour of RHS is similar to the

behaviour treated in Theorem 2.18. Moreover, for γ ↓ 0, we obtain the same result as

in Lemma 2.17.
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2.4 Pulse stability: results

However, when α crosses the threshold α ≈ 9σ2, the behaviour of RHS radically

changes. This accounts for the sharp ‘turning’ behaviour observed in Figure 2.3b.

The expression for α > 9σ2 only accounts for the limiting behaviour yielding un-

stable eigenvalues as described in Theorem 2.19, since RHS blows up: to study the

intermediate regime, we must zoom in on the situation when α ≈ 9σ2. By (2.91), we

thus set β = δB + h.o.t., we see that equation (2.92) can be solved by y = δy1 + h.o.t.,

with y1 determined by
γ

α
eB = y1ey1 (2.96)

so y1 = W(
γ

α
eB), where W(z) is the Lambert W-function. Since z2

∗ = e−y = 1 − δy1 at

leading order, the same approximation as for α < 9σ2 can be used, yielding

RHS( λ
α

; 1 + δ, z∗) = −B +

√

1 +
λ

α
+ h.o.t. if

α

9σ2
= 1 + δB + O(δ2) (2.97)

Using the previous analysis, we can go beyond the previous instability result for d > 3

and find an interval for α where the pulse is stable, and state the following:

Theorem 2.20. Let ε > 0 be sufficiently small. There is a d∗ > 3 such that for

all d > d∗, there is an open set Ω∗ in (α, γ, σ)-parameter space such that for all

(α, γ, σ) ∈ Ω∗, the nontrivial zeroes of the Evans function associated with the stability

problem (2.25) are to the left of, and bounded away from the imaginary axis.

Proof. For d ≫ 1, the above analysis can be applied. Taking α = 9σ2, we obtain

from (2.97) RHS( λ
α

) =

√

1 + λ
α

as a leading order expression for RHS. Taking σ = 1,

solving LHS(λ) =

√

1 + λ
α

numerically yields Re λ = −1.2 < 0 for these parameter

values. Note that in this asymptotic approximation, the value of γ does not play a role.

Therefore, for fixed γ = γ∗, there is a d ≫ 1 such that there is an open neighbourhood

of (α, γ, σ) = (9, γ∗, 1) where the statement of the Theorem holds. As observed above,

since this only concerns the numerical evaluation of a meromorphic, coefficient free

expression, this result can be confirmed rigorously by a winding number calculation.

�

For fixed values of the parameter d, accurate numerical simulations and rigor-

ous numerical winding number calculations similar to those used in the proof of the

main stability theorem in [7] can be used. For (α, γ, σ) = ( 1
2
, 2, 1), such numerical

calculations show that for d between 3 and 21, there is a pair of complex conjugate ei-

genvalues with real part < −0.02, where the real part decreases as d increases. Based

on these numerical calculations, we believe Theorem 2.20 holds for all d > 3.
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Figure 2.9: The stabilising (a) and destabilising (b) Hopf bifurcation values αHopf as

a function of d.
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Figure 2.10: The stabilising (a) and destabilising (b) Hopf frequencies ωHopf as a

function of d.

2.5 Numerical simulations

A Hopf bifurcation occurs when the eigenvalues cross the imaginary axis; this hap-

pens once for d < 3 (see Figure 2.3a) and twice for d > 3 (see Figure 2.3b). A plot

of the bifurcation value αHopf as a function of d for both stabilising and destabilising

Hopf bifurcations is given in Figure 2.9 for γ = 2 and σ = 1. The Hopf frequency

ωHopf = Im λHopf for both Hopf bifurcations as a function of d is given in Figure 2.10;

again, γ = 2 and σ = 1. As the destabilising Hopf bifurcation only occurs for d > 3,

a vertical asymptote at d = 3 can be found at both Figures 2.9b and 2.10b. For large
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values of d, the functions seem to converge to the indicated horizontal asymptotes.

Based on the asymptotic d ≫ 1 analysis of the previous subsection, the asymptote

limd→∞ αHopf = 9 of Figure 2.9b can be understood by looking at the asymptotic

expansion of RHS for ν = 1 + δ, see (2.95). If α crosses the threshold α = 9σ2,

RHS blows up yielding unstable eigenvalues, in a manner equivalent to the situation

described in Theorem 2.14. Since RHS blows up for asymptotically small δ, the un-

stable regime lies asymptotically close to α = 9σ2, which explains the horizontal

asymptote αHopf = 9 in Figure 2.9b.

The super- or subcriticality of both stabilising and destabilising Hopf bifurcations

has been checked by direct numerical simulation of the constructed pulse. The pulse

was simulated on the domain x ∈ [−10 ε−1, 10 ε−1] with homogeneous Neumann

boundary conditions. Note that in all these direct numerical pulse simulations, the

position of the pulse was seen to remain completely fixed. This phenomenon will be

treated in detail in chapter 4, section 4.3.2.

In Figure 2.11, the tip of the U-component of the simulated pulse is plotted as a func-

tion of time for d = 2. Here, γ = 2, σ = 1 and ε = 0.02. For these parameter values,

the Hopf bifurcations occurs at αHopf = 0.83 +O(ε). Figure 2.11 shows that for these

parameter values, the Hopf bifurcation is subcritical. For d = 5, the equivalent stabi-

lising Hopf bifurcation occurs at αHopf = 0.37+O(ε) for the same values of the other

parameters. As can be seen in Figure 2.12, this Hopf bifurcation is subcritical as well.

The destabilising Hopf bifurcation occurs for d = 5 at αHopf = 90.634 + O(ε).

In this simulation, ε = 0.002 while still γ = 2 and σ = 1. In Figure 2.13 it can

be seen that upon destabilisation, the pulse tip initially exhibits typical ‘subcritical’

growth behaviour. However, for longer times, a bounded temporally oscillating pulse

is observed. Nearby the other Hopf bifurcations, such ‘breathing’ pulses can also be

observed. For d = 2 and stable values of α, i.e. for α within the region in which the

pulse is stable (here, α = 0.9 > αHopf), Figure 2.14 shows an oscillating pulse.

In Figures 2.15, 2.16 and 2.2, the oscillating behaviour of the pulse near the

destabilising Hopf bifurcation for d = 5 is studied in more detail. For parameter

values relatively far in the stable regime (here, α = 85 < αHopf = 90.634 + O(ε)),

simulations reveal bounded temporally periodic behaviour with a slowly periodically

modulated amplitude, see Figure 2.15. When α is increased towards αHopf, the fre-

quency of the modulation increases; see Figure 2.16 for the pulse behaviour when

α = 90.5. For parameter values even closer to αHopf, the irregular behaviour as shown

in Figure 2.2 is observed.
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Figure 2.11: The tip of the U-pulse as a function of time for α = 0.827 (a) and

α = 0.829 (b). Here, d = 2.

0 10 20 30 40 50 60 70 80 90 100

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

a
m

p
lit
u
d
e

(a)

0 10 20 30 40 50 60 70 80 90 100
0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

t

a
m

p
lit
u
d
e

(b)

Figure 2.12: The tip of the U-pulse as a function of time for α = 0.352 (a) and

α = 0.353 (b). Here, d = 5.

This pulse behaviour has not been observed in the literature on GS/GM-type mod-

els. In the fourth chapter of this thesis, the nature of the Hopf bifurcation of pulses

in system (2.7) is studied. It is established that this Hopf bifurcation can be both sub-

and supercritical, see chapter 4, Theorem 4.16.
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Figure 2.13: The tip of the U-pulse as a function of time for α = 90.61 (a) and

α = 90.69 (b).
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Figure 2.14: The tip of the U-pulse as a function of time for α = 0.9, d = 2. Figure

(a) shows the entire simulated time domain, while (b) zooms in on a part of the time

domain, showing the regularity of the pulse tip movement.
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Figure 2.15: The tip of the U-pulse as a function of time for α = 85, d = 5. Figure

(a) shows the entire simulated time domain, while (b) zooms in on a part of the time

domain.
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Figure 2.16: The tip of the U-pulse as a function of time for α = 90.5, d = 5. Figure

(a) shows the entire simulated time domain, while (b) zooms in on a part of the time

domain.
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3
Pulses in a general

reaction-diffusion system

The content of this chapter was accepted for publication as [16].

3.1 Introduction

The existing theory for the existence and stability of symmetric, stationary pulse solu-

tions to two-component singularly perturbed reaction-diffusion equations has in es-

sence been developed in the context of two explicit models, the Gray-Scott (GS)

model for autocatalytic reactions [23, 13] and the Gierer-Meinhardt (GM) system

modelling morphogenesis [22]. The (generalised) GM equation is directly included

in the general class of two-component, singularly perturbed systems considered here,
{

Ut = Uxx − [µU − ν1F1(U; ε)] +
ν2

ε
F2(U,V; ε)

Vt = ε2Vxx − V + G(U,V; ε),
(3.1)

the particular structure of which emphasises the new, generalised aspects of this sys-

tem compared to the specific well-studied GS/GM-type models. More details on this

specific form can be found in section 3.1.1.

In this chapter, we consider equation (3.1) on the unbounded domain R, so U(x, t),

V(x, t) : R × R>0 → R>0; we restrict ourselves to positive solutions. Moreover, we

assume that µ > 0, ν1,2 ∈ R and F1 : R>0 → R, F2,G : R>0 × R≥0 → R are nonlin-

ear functions obeying mild regularity assumptions, see section 3.1.1. The parameter
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3. Pulses in a general reaction-diffusion system

0 < ε ≪ 1 is assumed to be asymptotically small, i.e. the results established in this

chapter will be valid for ‘ε > 0 small enough’. While strictly speaking not part of

the domain of F2 and G, the trivial background state (U,V) ≡ (0, 0) is assumed to

be asymptotically stable, see also Remark 3.6. The Gray-Scott equation can also be

brought into the form (3.1) by a number of transformations that scale the magnitude

of the patterns to O(1) with respect to ε and that shift the Gray-Scott background state

(1, 0) to the normalised state (0, 0) in (3.1) [6, 14].

The model problem (3.1) can be considered as the most general (semilinear) two

component, singularly perturbed reaction-diffusion system –see equations (3.3) and

(3.4)– that may exhibit O(1) pulse patterns (Remark 3.2), apart from an explicit codi-

mension 1 condition on the structure of the linearised model near the trivial back-

ground state that determines the limiting behaviour of the pulse. This condition –that

roughly states that near this background state the ‘slow’ U-component only couples

into the ‘fast’ V-equation in a nonlinear way– has mainly been imposed for technical

reasons; see however Remark 3.5. A derivation and more precise motivation of the

model will be given in section 3.1.1, together with a list of specific assumptions on

the parameters and nonlinearities in (3.1).

The class of equations covered by (3.1) significantly extends the GS and GM type

models. In this chapter, we will develop an explicit theory for the existence and the

stability of symmetric, stationary pulse solutions to (3.1) that have positive U and

V-components and that have O(1) (sup-)norm with respect to ε (Remark 3.2). We

will especially highlight the effect of generalising two –as it will turn out– quite re-

strictive properties shared by the GS and GM models. Firstly, these models do not

allow for nonlinear behaviour in U in the slow U-equation outside the fast pulse re-

gion, i.e. the slow U-equations of the GS/GM models are linear in U for V = 0.

In other words, both the GS and the (generalised) GM equations correspond to sys-

tem (3.1) with ν1 = 0 – the nonlinearity in the U-equation is decomposed in a V-

independent term (F1) and a term that vanishes at V = 0, hence F2(U, 0) = 0 (see

section 3.1.1 and especially assumption (A3)). In the literature, this linearity in the

slow U-system is crucially exploited in the stability analysis of pulse solutions to

both GS- and GM-type models: this analysis relies heavily on the fact that the sta-

bility problem can be solved explicitly in terms of exponential functions in the slow

U-fields [6, 7, 26, 32, 33, 58]. Note that systems incorporating a slow nonlinearity

(ν1 , 0) were already encountered in [37], although no pulse-type solutions were

considered in this paper. Secondly, in almost all previous studies the nonlinear term

G(U,V) in (3.1) is a simple, explicit power of V as function of V (it is in fact quadratic
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in V in the GS and the standard GM equation) – see [59, 39] for some exceptions in-

volving saturation terms. This also forms an essential ingredient of the analysis, since

it enables one to explicitly solve the fast reduced stability problem (see [6, 7] and sec-

tion 3.3).

One can thus say that the existing methods for the explicit analysis of homoclinic

pulses in two component, singularly perturbed reaction-diffusion equations are ap-

plicable to the subclass of (3.1) in which ν1 = 0 and G(U,V) = g(U)Vd for d > 1

and some function g(U) – see also Remark 3.2. The theory to be developed in this

chapter goes beyond these rather severe restrictions. Moreover, the richness of the

novel phenomena introduced by the extended class (3.1) is shown by way of an ex-

plicit example in chapter 2 – see also Remark 3.1.

In section 3.2, the existence of stationary singular pulses for system (3.1) is es-

tablished by the methods of geometric singular perturbation theory, under mild and

natural assumptions; in particular, we assume that the fast V-system admits a homo-

clinic pulse solution. Similar to related results in [6, 13], pulses correspond to in-

tersections of the slow unstable manifold Wu
s ((0, 0)) and a take off curve To in the

half-plane {(u, p) : u > 0} associated to the reduced slow existence problem (i.e.

V ≡ 0, ε = 0 and U = u(x) in (3.1). As a consequence, system (3.1) may in general

exhibit various homoclinic pulse solutions – see Figure 3.2 in section 3.2. The pre-

cise existence result is summarised in Theorem 3.7. From section 3.3 onwards, the

(linear) stability of a homoclinic pulse is analysed using Evans function techniques.

The slow reduced linear stability problem is no longer of constant coefficient type,

as is the case in the GS/GM type models studied in the literature: both the slow and

fast reduced linear problems have the structure of classical Sturm-Liouville problems.

This fact is strongly used in the analysis. It is shown that the Evans function associ-

ated to the (spectral) stability of the pulse can be decomposed into a fast and a slow

component. The main result of this analysis –which is obtained through a nonlocal

eigenvalue problem (NLEP)– is Theorem 3.21, which provides an explicit expres-

sion for the slow component ts,+ of the Evans function in terms of the nonlinearities

F1,2, G of (3.1) and the leading order approximation of the pulse (as established by

Theorem 3.7). Since it is established in Corollary 3.24 that all nontrivial eigenvalues

correspond to zeroes of ts,+, Theorem 3.21 thus provides an explicit analytical control

over the stability of the pulses given by Theorem 3.7.

Even though the pulse is constructed in a most general setting under mild assumptions

on the nonlinearities F1,2 and G, a number of (relatively) simple instability results is

obtained by detailed analysis of the function ts,+ in the neighbourhood of known ei-
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3. Pulses in a general reaction-diffusion system

genvalues of the fast reduced problem, these results are presented in section 3.5. The

instability of the homoclinic pulse can be established by determining the sign of cer-

tain explicit expressions (Corollary 3.29, Theorem 3.35). Some of these expressions

can be interpreted and determined directly in terms of the existence problem, or more

specifically, by considering the slow unstable manifold Wu
s ((0, 0)) and the take off

curve To that establish the existence of the pulses (Theorem 3.7). In the linear ν1 = 0

case, Wu
s ((0, 0)) always has positive p(= ux)-coordinate so that Wu

s ((0, 0)) ∩ To must

lie in the positive quadrant of the slow reduced {(u, p) : u > 0} half-plane. In general,

Wu
s ((0, 0)) ∩ To may have negative p-coordinates – in such cases the U-component

of the pulse has a maximum on both sides the fast V-pulse, see Figure 3.4c. It is

established in Corollary 3.29 that these pulses are unstable. Moreover, the sign of

the relative slopes of the take-off curve To with respect to the slow unstable mani-

fold Wu
s ((0, 0)) at their intersections also gives a direct instability criterion: this sign

changes at successive intersections, but only those intersections with negative sign

can be stable – see Lemma 3.34, Theorem 3.35 and Figure 3.8. Analysis of the slow

component of the Evans function near the trivial eigenvalue λ = 0 reveals close re-

lations between bifurcations in the existence problem and pulse instabilities, see Co-

rollary 3.30 and Corollary 3.32. Finally, in section 3.6, we discuss some implications

of the general approach developed here.

Remark 3.1. The present general results are both inspired by and reflected in the

analysis in chapter 2, where the theory is developed in the explicit setting of a Gierer-

Meinhardt problem with a ‘slow nonlinearity’:

{

Ut = Uxx − [µU − ν1Ud] +
ν2

ε
V2

Vt = ε2Vxx − V + V2

U
.

(3.2)

For a specific system like this, it is possible to go beyond the previously mentioned in-

stability results, especially since it is possible to get an even more explicit ‘analytical

control’ over the reduced Sturm-Liouville problems associated to the stability of the

pulses – in chapter 2, a crucial role is played by associated Legendre functions. As a

consequence, it is possible to obtain conditions in terms of the model parameters for

which the homoclinic pulse is stable. Moreover, numerical analysis of the resulting

Hopf bifurcations reveals rich nonlinear behaviour such as stable standing localised

pulses that bifurcate from the pulses considered here and of which the maximum os-

cillates up and down in a complex –periodic, quasi-periodic, chaotic– fashion, see

Figure 3.1. This novel and intriguing behaviour has not been observed in the liter-

ature on GS/GM-type models. In the fourth chapter of this thesis, the nature of the

Hopf bifurcation of pulses in system (3.2) is studied. It is established that this Hopf
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Figure 3.1: A stable oscillating pulse, as observed in the slowly nonlinear Gierer-

Meinhardt system (3.2), studied in chapter 2 (see also Remark 3.1). The left figure

shows the position of the tip of the pulse as a function of time. In the right picture, the

u-component of the pulse is shown in a space-time plot. These results were obtained

by direct numerical simulation of the PDE system, for (µ, ν1, ν2, d) = (0.9, 1, 2, 2) and

ε = 0.02.

bifurcation can be both sub- and supercritical, as is expected in the generic setting

of system (3.1). The Hopf bifurcation in GM-type models is always subcritical, as is

confirmed analytically in chapter 4.

Remark 3.2. In this thesis, we only consider pulse solutions for which the fast V-

component makes one homoclinic excursion away from the stable rest state. Thus, we

do not consider localised multi-pulse patterns that are also very common to GS/GM-

type models [13, 6]. More importantly, we also do not consider pulse solutions of

‘mesa’ or FitzHugh-Nagumo type. Such pulses can be described as bi-heteroclinic

(or multi-heteroclinic), since they consist of (at least) two heteroclinic jumps through

the fast spatial field separated by a ‘long’ plateau in which the pattern evolves slowly

(in space); see [53, 25, 28, 31, 35] and the references therein.

Remark 3.3. The Schnakenberg model, the third standard model considered in the

literature [46], is very similar to the GS and GM models, in the sense that the slow re-

duced system also does not contain nonlinearities and that the nonlinearity associated

to G(U,V) is again exactly quadratic as function of V . Although the Schnakenberg

model does not have a trivial stable background state, it can be (and has been) stud-

ied by methods that are very similar to those developed for the GS and GM equation

[27, 56].
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3.1.1 The model

The most general two component reaction-diffusion system on the real line, i.e. for

x̂ ∈ R, reads

{

Ut̂ = dUU x̂x̂ + a11U + a12V + H1(U,V)

Vt̂ = dVVx̂x̂ + a21U + a22V + H2(U,V)
(3.3)

in which H1,2(U,V) : R2 → R are nonlinear terms that do not include linear compo-

nents in U or V . Stable pulse solutions must be bi-asymptotic to a spectrally stable

‘trivial state’ (U,V) ≡ (Ū, V̄). It can be assumed, by a simple translation of U and

V , that (Ū, V̄) = (0, 0) –which does not necessarily need to be a solution to (3.3), see

Remark 3.6–. This trivial state is stable if a11 + a22 < 0 and a11a22 − a12a21 > 0. The

system is assumed to be singularly perturbed, i.e. it is assumed that U(x̂, t̂) is slowly

varying as function of x̂ compared to the (relatively fast) spatial variation of V(x̂, t̂) –

see also Remark 3.5. In other words, we assume that 0 < dV ≪ dU , or, without loss

of generality, that dV = ε
2 ≪ 1, with 0 < ε ≪ 1 asymptotically small, and dU = 1.

This introduces the fast spatial variable ξ̂ = x̂/ε, in which (3.3) has the form

{

ε2Ut̂ = Uξ̂ξ̂ + ε2 [a11U + a12V + H1(U,V)]

Vt̂ = Vξ̂ξ̂ + a21U + a22V + H2(U,V).
(3.4)

Since Û(x, t) is assumed to be bounded on R, we formally conclude from the first

equation in (3.4) that U(ξ̂, t̂) must approach a constant value Ū in the limit ε → 0;

in other words, the singularly perturbed nature of (3.4) causes U to be constant in

leading order as function of the fast spatial variable ξ̂. As a consequence, in the

singular limit ε→ 0 the existence problem for stationary patterns reduces to a family

of fast reduced existence problems for V = v f (ξ),

v f ,ξ̂ξ̂ + a21Ū + a22v f + H2(Ū, v f ) = 0, (3.5)

parameterised by Ū ∈ R; note that this is an integrable planar system.

In this thesis, we focus on the most simple pulse solutions: stationary solutions

that are biasymptotic to the stable background state (0, 0) of (3.4), that are symmet-

ric in ξ̂ (or x̂), and that only make one ‘jump’ through the fast field (which is to

leading order described by (3.5) – see also Remark 3.2. By the above asymptotic ar-

guments, system (3.4) can only have such a pulse solution if there are values of Ū for

which (3.5) has a ‘fast’ homoclinic orbit v f ,h(ξ̂; Ū). The main codimension 1 assump-

tion underlying the reduction of the most general system (3.3)/(3.4) to the model
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problem (3.1) is that this homoclinic solution is biasymptotic to the critical point

(v f , v f ,ξ̂) = (0, 0) of (3.5), i.e. that limξ̂→±∞ v f ,h(ξ̂; Ū) = limξ̂→±∞
d

dξ̂
v f ,h(ξ̂; Ū) = 0.

In principle, this is quite a restrictive condition. Since Ū , 0 in general, it directly

implies that a21 must be 0. Nevertheless, the methods developed in this chapter can

also be applied to systems for which limξ→±∞ v f ,h(ξ̂; Ū) depends on Ū, and only ap-

proaches 0 on the slow spatial scale, as Ū → 0. However, the analysis does become

more involved for those systems: outside the fast homoclinic jump region described

by (3.5), the component V will not be constant, but will evolve slowly (as function of

x̂), ‘slaved’ to the slow U-component – see Remark 3.5. To highlight the impact of

allowing for fully general nonlinearities in (3.1) compared to the restricted cases of

the GM and GS equations, we focus on a class of systems (3.3)/(3.4) with a21 = 0. In

other words, we focus on the general class of two component, singularly perturbed,

systems in which the slow component U(x̂, t̂) only couples into the fast V-equation

through the nonlinear term H2(U,V).

Since a21 = 0, the assumption that the trivial state (U(ξ̂, t̂),V(ξ̂, t̂) ≡ (0, 0) is

spectrally stable reduces to a11 < 0 and a22 < 0. By introducing t = −a22 t̂ and

ξ =
√−a22ξ̂, equation (3.4) can now be written as

{

ε2Ut = Uξξ + ε2
[−µU + F(U,V; ε)]

Vt = Vξξ − V + G(U,V; ε)

with

µ =
a11

a22

> 0, F(U,V; ε) = − 1

a22

[a12V + H1(U,V)] , G(U,V; ε) = − 1

a22

H1(U,V).

Next, we decompose F(U,V; ε) into a part that depends only on U and a part that is

0 if V = 0,

F(U,V; ε) = F(U, 0; ε) + [F(U,V; ε) − F(U, 0; ε)]
def
= ν1F1(U; ε) +

ν2

ε
F2(U,V; ε),

(3.6)

where ν1,2 ∈ R (not necessarily O(1) in ε) have been introduced to control the relative

impact of the nonlinear, non-GS/GM term F1(U) and the nonlinear coupling term

F2(U,V). Hence, we arrive at (3.1) written in the fast spatial variable ξ,

{

ε2Ut = Uξξ − ε2[µU − ν1F1(U; ε)] + εν2F2(U,V; ε)

Vt = Vξξ − V + G(U,V; ε).
(3.7)

Apart from the condition on the (non)appearance of terms that are linear in U in the

V-equation, (Remarks 3.5 and 3.11), the model problem (3.1) can thus be seen as a
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general two component, singularly perturbed model, in which O(1) pulses can exist.

A priori, one could argue that the term ν2/ε in (3.6) also introduces a further restric-

tion, but this is not the case since ν2 will be allowed to be O(ε) in the analysis. The

F2-term in (3.1)/(3.7) has been artificially ‘blown up’ by a factor of 1/ε for clarity of

presentation – which can be explained most clearly by looking at (3.1). The fast V

component enters into the slow U-equation of (3.1) through an asymptotically large

term of O(1/ε) – as is also the case in the GS, generalised GM and Schnakenberg

models. Since V(x, t) is strongly localised to a domain of size O(ε) in the x-scaling,

this is quite natural: if the interaction term in the U-equation would be smaller, then

the direct impact of V on the evolution of U would be asymptotically small. As was

already remarked, this situation can, and will, be studied by considering |ν2| ≪ 1 in

(3.7), see Corollary 3.37. It will be found that (3.7) may have pulse solutions in this

case, but that these pulse must be unstable: (3.7) in essence decouples into two scalar

equations, the coupling is not strong enough to counteract the unstable eigenvalues of

the scalar U,V-subsystems. In other words, by artificially ‘blowing up’ the F2-term

in (3.1), we automatically focus on the most relevant region in the parameter space

associated to (3.1).

Since we have introduced ambiguities by the introduction of ν1,2 in (3.6), and

since we so far not discussed the precise nature of the nonlinear terms, we now list

the basic assumptions we impose on the parameters µ, ν1, ν2 and the nonlinearities

F1, F2,G in (3.1)/(3.7) in the subsequent analysis (for the use of the symbol “{”, see

Definition 2.3):

Assumptions 3.4. The following is assumed to hold:

(A1) µ, ν1,2 are real and nonsingular in ε; furthermore, µ > 0.

(A2) F1(U; ε){ U f1 as U ↓ 0 for some f1 > 1;

F1 is smooth both on its domain and as a function of ε.

(A3) Writing F2(U,V; ε) = F2,1(U; ε) V + F2,2(U,V; ε),

F2,1(U; ε){ F̃2,1(ε) Uγ1 as U ↓ 0 for some γ1 ≥ 0 and F̃2,1(ε) ∈ R;

F2,2(U,V; ε){ F̃2,2,u(V; ε) Uα1 as U ↓ 0 for some α1 ∈ R;

F2,2(U,V; ε){ F̃2,2,v(U; ε) Vβ1 as V → 0 for some β1 > 1;

F2 is smooth both on its domain and as a function of ε.

(A4) G(U,V; ε){ G̃u(V; ε) Uα2 as U ↓ 0 for some α2 ∈ R;

G(U,V; ε){ G̃v(U; ε) Vβ2 as V → 0 for some β2 > 1;

G is smooth both on its domain and as a function of ε.
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3.1 Introduction

Assumption (A2) defines F1(U; ε) and ν1 uniquely, while F2(U,V; ε) and ν2 are

not (yet), but will be uniquely defined with assumption (A6). The possibly singular

behaviour of the functions F2,2(U,V; ε) and G(U,V; ε) for U and/or V small (assump-

tions (A3) and (A4)) is in accordance with the behaviour of the nonlinearities in the

generalised GM model, see also Remark 3.11. In fact, the generalised GM model

corresponds to (3.1)/(3.7) with

ν1 = 0, ν2 = 1, F2,1(U; ε) ≡ 0,

F2,2(U,V; ε) = Uα1 Vβ1 , G(U,V; ε) = Uα2 Vβ2 , β1, β2 > 1. (3.8)

Remark 3.5. As was already noted, if a21 , 0, it follows from (3.5) that the fast V-

component of the homoclinic pattern (Uh(ξ),Vh(ξ)) does not go to 0 as ξ leaves the

fast field, but instead will be ‘slaved’ to the slowly evolving U-component and thus

only approaches 0 on the slow spatial scale. It has been shown for a model problem

[9] that such a situation can be studied along the lines of the present approach. Thus,

letting go of the condition a21 = 0 a priori mostly introduces additional technicali-

ties (see also Remark 3.11). However, allowing a21 to be , 0 may possibly generate

more than just ‘additional technicalities’. A linear U-term in the V-equation may in-

troduce the possibility of having homoclinic pulse patterns with spatially oscillating,

i.e. non-monotonously, decaying ‘tails’. We are not aware of any analytical, or even

numerical, study of this type of localised patterns in singularly perturbed reaction

diffusion equations. At the introduction of the asymptotically large ν2/ε pre-factor in

(3.6), we argued that the fast V-component must couple in an asymptotically strong

fashion into the slow U-equation. If V is slowly varying, and thus no longer at lead-

ing order constant (i.e. 0) outside the fast field, one has to think carefully about the

magnitude and/or impact of the nonlinear coupling term F2(U,V) in the U-equation.

Thus, our choice to impose the codimension 1 condition a21 = 0 is motivated by our

preference to avoid ‘additional technicalities’, however, this more technical case may

exhibit novel phenomena and/or may eventually ask for the development of a novel

theoretical approach.

Remark 3.6. We explicitly allow the nonlinearities F2 and G to be singular in U

as U ↓ 0, see assumptions (A3) and (A4) on the exponents α1,2. This implies that

(U,V) = (0, 0) is not necessarily a solution to (3.1). However, the specific form of

(3.1) was derived from (3.3) based on considerations on the stability of the trivial

state. While strictly speaking this line of reasoning loses validity for singular F2

and G, the specific context of the pulse construction (see section 3.2) allows for

a more ’loose’ notion of stability of the trivial state. Since it will turn out that

that V = 0 to exponential order long before U ↓ 0 in x̂, it is only necessary that
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3. Pulses in a general reaction-diffusion system

limU→0 limV→0 H1,2(U,V) = 0, which follows from assumptions (A3) and (A4).

As to questions concerning nonlinear stability, the presence of a singularity as U → 0

does have an important influence on the treatment of the subject; however, these ques-

tions fall outside the scope of this chapter and this thesis. A more elaborate discussion

on the influence of singular terms on well-posedness and nonlinear stability can be

found in [6], Remark 1.3.

3.2 The existence of pulses

In this section, we study the existence of positive, symmetric, stationary pulse solu-

tions (U(ξ, t),V(ξ, t) = (Uh(ξ),Vh(ξ)) to (3.7) (or equivalently (3.1). In the fast spatial

coordinate ξ, the associated ODE takes the form































uξ =
√
εp

pξ =
√
ε
[−ν2F2(u, v; ε) + ε[µu − ν1F1(u; ε)]

]

vξ = q

qξ = v −G(u, v; ε)

(3.9)

This equation inherits the reversibility symmetry of (3.7) in the form of

ξ → −ξ, p→ −p, q→ −q. (3.10)

Especially since we focus on symmetric pulses, this symmetry will play a crucial role

in the forthcoming analysis. The singularly perturbed system (3.9) has a family of

integrable planar ODEs as fast reduced limit,

v f ,ξξ = v f −G(u0, v f ; 0) or

{

v f ,ξ = q f

q f ,ξ = v f −G(u0, v f ; 0)
, u0 > 0 (3.11)

with integrals

Hv(u0) =
1

2
q2

f −
1

2
v2

f +

∫ v f

0

G(u0, ṽ; 0) dṽ, (3.12)

parameterised by u0. Note that by the assumption (A4) on G(u, v; ε) (section 3.1.1),

(v f , q f ) = (0, 0) is a critical point of saddle type for all u0. The following additional

assumption on G(u, v; 0) will be used throughout this chapter.

(A5) For all u0 > 0 there exists a positive solution v f ,h(ξ; u0) to (3.11) which is

homoclinic to (v f , q f ) = (0, 0).
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3.2 The existence of pulses

Assumption (A5) implies that, for all for all u0 > 0, the level set {Hv(u0) = 0}
(3.12) through the saddle point (0, 0) must intersect the v-axis at vM > 0. If there are

multiple intersections, vM is defined uniquely as the smallest (positive) solution. Due

to the translation invariance, v f ,h(ξ; u0) is not yet determined uniquely as function of

ξ. Since we consider symmetric pulses in this thesis, we fix v f ,h(ξ; u0) by assuming

that

v f ,h(0; u0) = vM ,
d

dξ
v f ,h(0; u0) = 0. (3.13)

It is essential for the existence of (positive, symmetric, stationary) pulse solutions

(Uh(ξ)),Vh(ξ)) to (3.7) that there are open regions in u0 for which (3.11) has homo-

clinic solutions to (0, 0): the fast component Vh(ξ) is to leading order determined by

an orbit v f ,h(ξ; u0) for a certain u0 = u∗ (see [6, 13] and the subsequent analysis).

It is in principle not necessary that such a u0-region includes the full positive half

line. Therefore (A5) is not a crucial assumption to the fullest extent, in the sense

that the theory developed here can be straightforwardly extended to equations of the

type (3.7) that do not satisfy this condition for all u0 > 0. However, if (A5) is not

satisfied, then especially the bifurcation analysis would become much more involved,

since homoclinic orbits will appear and disappear as u∗ approaches a boundary of one

of these regions. These additional bifurcations are not relevant for the method, but do

severely diminish the transparency of presentation.

The structure of this section is as follows: we first present an intuitive sketch of

the geometrical procedure by which the existence of pulse can be established (that is

strongly based on [6]). Based on this, we then formulate our main existence result

(Theorem 3.7).

By assumption (A4) on G(U,V; ε), system (3.9) has a two-dimensional invariant,

normally hyperbolic (slow) manifoldM, given by

M = {(u, p, v, q) : v = q = 0, u > 0}, (3.14)

where we restrict ourselves to the positive u-half space since we have allowed G to

be singular at U = 0 ((A4), [6]). By Fenichel theory [18, 19],M must have (three-

dimensional) stable and unstable manifolds, Ws(M) and Wu(M), that are O(
√
ε)

close to the (three-dimensional) stack of level sets {Hv(u0) = 0} (3.12) associated

to the fast reduced limit (3.11). Note that this also implies that both Ws(M) and

Wu(M) must intersect the hyperplane {q = 0} transversally.
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3. Pulses in a general reaction-diffusion system

The pulse patterns (Uh(ξ),Vh(ξ)) considered here (Remark 3.2) correspond to

homoclinic orbits Γh(ξ) = (uh(ξ), ph(ξ), vh(ξ), qh(ξ)) to the critical point (0, 0, 0, 0)

of (3.9). These orbits must be contained in the intersection Ws(M) ∩ Wu(M) of

the stable and unstable manifolds Ws(M) and Wu(M) of M. These manifolds

may (and most often will) have countably many (two-dimensional) intersections [6].

Here, we restrict ourselves to the first intersections ofWs(M) andWu(M) on which

the most simple, one-circuit, homoclinic orbits lie (Remark 3.2). It can be shown

by a straightforward Melnikov calculation that the two-dimensional first intersec-

tions I+1 = Wu(M) ∩ {q = 0} and I−1 = Ws(M) ∩ {q = 0} must intersect in a

one-dimensional manifold I+1 ∩ I−1 = {(u0, 0, v f ,h(0; u0) + O(
√
ε), 0); u0 > 0} ⊂

{p = q = 0}, parametrised by u0 (see [6]). To each u0 > 0 corresponds a solution

Γ(ξ; u0) = (u(ξ; u0), p(ξ; u0), v(ξ; u0), q(ξ; u0)) to (3.9) that is biasymptotic toM (with

Γ(0; u0) ∈ I+1∩I−1). Note that this is a natural result: the intersection corresponds to

symmetric solutions Γ(ξ; u0) to (3.10); their components u(ξ; u0) and v(ξ; u0) are even

as function of ξ and have a local extremum at ξ = 0. Moreover, if it exists, the homo-

clinic orbit Γh(ξ) must correspond to one of the orbits Γ(ξ; u0), i.e. Γh(ξ) = Γ(ξ; u∗)

for a certain u∗ > 0.

Since the u- and p-coordinates only vary slowly in (3.9), the u- and p-components

of each orbit Γ(ξ; u0) ∈ Ws(M)∩Wu(M) remain to leading order constant during the

passage of Γ(ξ; u0) through the fast field. To determine u∗, it is necessary to compute

the accumulated change ∆u(u0) in u(ξ; u0) and ∆p(u0) in p(ξ; u0) during a ‘jump’ of

Γ(ξ; u0) through the fast field. To do so, we first give a more precise definition of the

fast field,

I f
def
=

[

− 1

ε
1
4

,
1

ε
1
4

]

. (3.15)

The boundary of I f has been placed at the transition zone in which |ξ| = ε−
1
4 ≫ 1

and |x| = ε 3
4 ≪ 1, the precise location of ∂I f is not essential [6, 8]. In particular the

quantity ∆p(u0) plays an important role in the analysis, and can be determined as

∆p(u0) =
∫ ε
− 1

4

−ε−
1
4

pξ dξ

=
√
ε
∫ ε
− 1

4

−ε−
1
4

[−ν2F2(u, v; ε) + ε[µu − ν1F1(u; ε)]
]

dξ

= −ν2

√
ε
∫ ε
− 1

4

−ε−
1
4

F2(u(ξ; u0), v(ξ; u0); ε) dξ + O(ε
5
4 )

= −ν2

√
ε
∫ ε
− 1

4

−ε−
1
4

F2(u0, v f ,h(ξ; u0); 0) dξ + O(ε
3
4 )

= −ν2

√
ε
∫ ∞
−∞ F2(u0, v f ,h(ξ; u0); 0) dξ + O(ε

3
4 ),

(3.16)
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3.2 The existence of pulses

where we used the regular perturbation result that both |u(ξ; u0) − u0| and |v(ξ; u0) −
v f ,h(ξ; u0)| are O(

√
ε) for ξ ∈ I f with v f ,h(ξ; u0) the homoclinic solution of the fast

reduced limit system (3.11); note also that F2(u0, v f ,h(ξ; u0); 0) decays exponentially

in ξ as |ξ| → ∞ (since F2(u, 0; 0) = 0 (A3) and v f ,h(ξ; u0) decays exponentially). We

define

Dp(u0) =

∫ ∞

−∞
F2(u0, v f ,h(ξ; u0); 0) dξ, (3.17)

so that ∆p(u0) = −ν2

√
εDp(u0)+o(ε

3
4 ). Hence, p(ξ; u0) = O(

√
ε) in I f , which implies

that

∆u(u0) =

∫ ε
− 1

4

−ε−
1
4

uξ dξ =
√
ε

∫ ε
− 1

4

−ε−
1
4

p(ξ; u0) dξ = O(ε
3
4 ), (3.18)

i.e. that u(ξ; u0) does not vary at O(
√
ε). We can now remove the remaining ambigu-

ities involving the sign of the product of ν2 and F2 by determining the leading order

behaviour of F2 by gauging

(A6) Dp(u){ 1 · udp as u ↓ 0 for some dp ∈ R;

see the discussion immediately below Theorem 3.7 for a motivation of this definition.

From the above, it follows that the orbits Γ(ξ; u0) ‘take off’ fromM O(ε
3
4 ) close to

the curve

To =
{

p = 1
2
ν2

√
εDp(u), u > 0

}

⊂ M (3.19)

and ‘touch down’ again on its symmetrical image

Td =
{

p = − 1
2
ν2

√
εDp(u), u > 0

}

⊂ M. (3.20)

The curve To, respectively Td, represents the leading order approximation of the col-

lection of base points of the Fenichel fibres inWu(M), resp. Ws(M), that are ele-

ments of Wu(M) ∩Ws(M) – see [6] for more details. Hence, the slow evolution

of Γ(ξ; u0) ⊂ Wu(M) ∩Ws(M) after, respectively before its jump through the fast

field, i.e. for ξ > ε−
1
4 resp. ξ < −ε− 1

4 , is to leading order governed by a solution of

the flow on (the invariant manifold)M that has (u0, p0) ∈ Td, resp. ∈ To, as boundary

(initial, resp. end) conditions. Since F2(u, 0; ε) ≡ 0 (assumption (A3)), the flow on

M is governed by

us,xx = µus − ν1F1(us; ε), or

{

us,x = ps

ps,x = µus − ν1F1(us; ε)
, u > 0, (3.21)
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3. Pulses in a general reaction-diffusion system

where x is the original slow spatial coordinate of (3.1) (i.e. x = εξ). Equation (3.21)

is integrable with integral

Hu(ε) =
1

2
p2

s −
1

2
µu2

s + ν1

∫ us

0

F1(ũ; ε) dũ. (3.22)

Since |x| = ε 3
4 on ∂I f , the above boundary conditions can (to leading order) be con-

sidered as conditions on (us(x), ps(x)) at x = 0. Note that (3.21) does still depend on

ε, i.e. it is not the slow reduced limit associated (3.9): in the form (us(x), ps(x), 0, 0),

the solution of (3.21) also is an exact solution of (3.9), in the slow variable x since

M is invariant for the full system (3.9). In fact, since ux =
1
ε
uξ =

1√
ε

p in (3.9), ps in

(3.21) corresponds to 1√
ε

p in (3.9), so that the boundary conditions on (us(x), ps(x))

correspond in leading order to

(us(0), ps(0)) =
(

u0,± 1
2
ν2Dp(u0)

)

. (3.23)

By the stability of the background state (U,V) ≡ (0, 0) and assumption (A2), the

critical point (0, 0) of (3.21) is a saddle point with (one-dimensional) stable, and

unstable, manifolds Ws
s((0, 0); ε) and Wu

s ((0, 0); ε). Near M, the orbits Γ(ξ; u0) ⊂
Wu(M) ∩ Ws(M) are with exponential accuracy governed by solutions us(x) of

(3.21) that satisfy the boundary conditions (us(0), ps(0)) ∈ To,d, hence it follows that

Γ(ξ; u0) is homoclinic to (0, 0, 0, 0) if u0 = u∗ > 0 is such that Γ(ξ; u∗) takes off from

Wu
s ((0, 0)) and touches down at Ws

s((0, 0)). In other words, the homoclinic orbit

Γh(ξ) corresponds to a Γ(ξ; u∗) with u∗ determined as the u-coordinate of an intersec-

tion of To and Wu
s ((0, 0)); note that To ∩Wu

s ((0, 0)) and Td ∩Ws
s((0, 0)) have the

same u-coordinates by the symmetry (3.10) – see Figure 3.2.

The manifoldsWu
s ((0, 0)) resp.Ws

s((0, 0)) are by definition spanned by the solu-

tions (uu
s(x; ε), pu

s(x; ε)) resp. (us
s(x; ε), ps

s(x; ε)) of (3.21). Note that us
s(x) = uu

s(−x)

and ps
s(x) = −pu

s(−x) by the reversibility symmetry. As with the definition of the

fast reduced homoclinic orbit v f ,h(ξ; u0) – see (3.13) – we need to be more pre-

cise here and eliminate the translational invariance from the orbit (uu
s(x; ε), pu

s(x; ε)).

This can be done by fixing the location of the point x = 0 as (uu
s(0; ε), pu

s(0; ε)) =

(uu
0
, pu

0
) ∈ Wu

s ((0, 0)); now (uu
s(x; ε), pu

s(x; ε)) and therefore (us
s(x; ε), ps

s(x; ε)) are

uniquely determined as solutions of (3.21). Note that the precise position of the point

(uu
0
, pu

0
) ∈ Wu

s ((0, 0)) is in general not relevant. However, in an explicit setting, a

natural choice for (uu
0
, pu

0
) often presents itself; see the discussion on the relative con-

figurations ofWu
s ((0, 0)) andWs

s((0, 0)) following the statement of Theorem 3.7.
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Ws
u HH0, 0LL

To

Td

Ws
s HH0, 0LL

u *
u

p

Figure 3.2: The dynamics on the slow manifoldM, governed by (3.21). The jump

through the fast field is indicated by a red dashed line.

As manifoldsWu
s ((0, 0)) and Ws

s((0, 0)) cannot cross to the negative half-plane (in

u), bothWu
s ((0, 0)) andWs

s((0, 0)) are subsets of {Hu = 0} ∩ {u ≥ 0}. A necessary,

leading order condition on the critical value(s) u∗ for which Γ(ξ; u∗) is homoclinic to

(0, 0, 0, 0) can be obtained by combining (3.23) with (3.22) and setting ε to 0, i.e. by

imposing that (us(0; 0), ps(0; 0)) ∈ {Hu(0) = 0}, yielding

µu2 − 2ν1

∫ u

0

F1(ũ; 0) dũ = 1
4
ν2

2 D2
p(u) = 1

4
ν2

2

[∫ ∞

−∞
F2(u, v f ,h(ξ; u); 0) dξ

]2

. (3.24)

Since this relation does neither distinguish between To and Td nor between Wu
s ((0, 0))

and Ws
s((0, 0)), there may be solutions u∗, j of this equation that do not correspond to

homoclinic orbits Γh(ξ). Using (3.23) we define p∗ = +
1
2
ν2Dp(u∗).

As a final prerequisite for the upcoming Theorem, we combine the above defined

solutions (uu
s(x; ε), pu

s(x; ε)) which span the slow unstable manifoldWu
s ((0, 0)) with

the (possibly multiple) solution(s) u∗ of (3.24) by introducing translational shift(s) x∗,
for which the following leading order expression holds:

(uu
s(−x∗; 0), pu

s(−x∗; 0)) = (u∗, p∗) = (us
s(x∗; 0),−ps

s(x∗; 0)). (3.25)

Note that the value of the shift(s) x∗ is directly related to the choice of (uu
0
, pu

0
).

103



3. Pulses in a general reaction-diffusion system

Theorem 3.7. Assume that conditions 3.4 hold and let ε > 0 be small enough.

Let K be the number of non-degenerate solutions u = u∗,k > 0 of (3.24) such that

(u∗,k, p∗,k) = (u∗,k,
1
2
ν2Dp(u∗,k)) ∈ Wu

s ((0, 0); 0).

If K = 0 then there are no symmetric, positive, one-circuit homoclinic solutions to

(0, 0, 0, 0) in (3.9).

If K , 0, there are K distinct positive, symmetric, one-circuit homoclinic orbits

Γh,k(ξ) = (uh,k(ξ), ph,k(ξ), vh,k(ξ), qh,k(ξ)) ⊂ Wu(M) ∩ Ws(M), k = 1, 2, ...,K, in

(3.9) with internal reflection point ξ = 0, so that Γh,k(0) = (uh,k(0), 0, vh,k(0), 0). In the

fast field, Γh,k(ξ) is to leading order determined by the homoclinic solution v f ,h(ξ; u∗,k)

of (3.11): there is an O(1) constant C1 > 0 such that

∣

∣

∣uh,k(ξ) − u∗,k
∣

∣

∣,
∣

∣

∣ph,k(ξ)
∣

∣

∣,
∣

∣

∣vh,k(ξ) − v f ,h(ξ; u∗,k)
∣

∣

∣,
∣

∣

∣qh,k(ξ) − d
dξ

v f ,h(ξ; u∗,k)
∣

∣

∣ < C1

√
ε for ξ ∈ I f (3.26)

cf. (3.15). In the slow field, Γh,k(ξ) approaches Wu
s ((0, 0); ε) ⊂ M, respectively

Ws
s((0, 0); ε) ⊂ M exponentially fast for ξ → −∞, resp. ξ → ∞: there exist O(1)

constants C2,3 > 0 such that

•
∣

∣

∣vh,k(ξ)
∣

∣

∣,
∣

∣

∣qh,k(ξ)
∣

∣

∣ < C2e−C3 |ξ| for ξ ∈ R\I f ;

• there are shifts x∗,k ∈ R and solutions
(

uu
∗,k(x), pu

∗,k(x)
)

=
(

uu
s(x − x∗,k), pu

s(x − x∗,k)
)

of (3.21), such that
(

uu
∗,k(−ε 3

4 ), pu
∗,k(−ε 3

4 )
)

=

(

uh,k(−ε− 1
4 ), 1√

ε
ph,k(−ε− 1

4 )

)

=
(

u∗,k +

O(
√
ε), p∗,k + O(

√
ε)

)

and

∣

∣

∣uh,k(ξ) − uu
∗,k(εξ)

∣

∣

∣,
∣

∣

∣

1√
ε

ph,k(ξ) − pu
∗,k(εξ)

∣

∣

∣ < C2eC3ξ for ξ < −ε− 1
4 ; (3.27)

•
(

us
∗,k(ε

3
4 ), ps

∗,k(ε
3
4 )
)

=
(

uh,k(ε−
1
4 ), 1√

ε
ph,k(ε−

1
4 )
)

=
(

u∗,k +O(
√
ε),−p∗,k +O(

√
ε)

)

with
(

us
∗,k(x), ps

∗,k(x)
)

=
(

uu
∗,k(−x),−pu

∗,k(−x)
)

and

∣

∣

∣uh,k(ξ) − us
∗,k(εξ)

∣

∣

∣,
∣

∣

∣

1√
ε

ph,k(ξ) − ps
∗,k(εξ)

∣

∣

∣ < C2e−C3ξ for ξ > ε−
1
4 . (3.28)

The orbits Γh,k(ξ) correspond to the homoclinic pulse patterns
(

Uh,k(ξ),Vh,k(ξ)
)

in

(3.7) that are symmetric with respect to ξ = 0 through Uh,k(ξ) = uh,k(ξ), Vh,k(ξ) =

vh,k(ξ), k = 1, ...,K.

Proof. The essential ingredients of the proof have already been sketched above. The

fact that (3.9) concerns a more general class of systems than the generalised GM

model does not influence the geometric approach; therefore, we refer to [6] for the

full details. �

104



3.2 The existence of pulses

The (implicit) definition of the signs of F2(U,V) and ν2 in assumption (A6) im-

plies that To ⊂ {us ≥ 0, ps ≤ 0} for us small enough and ν2 < 0. In the case that

Wu
s ((0, 0)) ⊂ {us ≥ 0, ps ≥ 0} this immediately implies that To andWu

s ((0, 0)) can-

not intersect near the saddle (0, 0) if ν2 < 0. It then follows that, if it is known

that expression Dp(u) cannot change sign – which is the case for both the GS and

the (generalised) GM models, see [13, 6] and section 3.5.3 – then homoclinic pulse

patterns cannot exist. Thus, the definition of the signs of F2(U,V) and ν2 through

(A6) provides a more direct insight in the relevance of a solution u∗ of (3.24), since

it gauges the relative positions of To andWu
s ((0, 0)) as function of ν2.

Clearly, the condition that (u∗,k, p∗,k) ∈ Wu
s ((0, 0); 0) is central to the construction

of the pulse pattern
(

Uh,k(ξ),Vh,k(ξ)
)

. Therefore, it is relevant to note that there are

two distinct configurations. IfWu
s ((0, 0)) ∩ {ps = 0} = ∅, then clearlyWu

s ((0, 0)) ∩
Ws

s((0, 0)) = ∅ andWu
s ((0, 0)) ⊂ {us ≥ 0, ps ≥ 0} (andWs

s((0, 0)) ⊂ {us ≥ 0, ps ≤
0}). On the other hand, if Wu

s ((0, 0)) ∩ {ps = 0} , ∅, then (by the symmetry)

Wu
s ((0, 0)) and Ws

s((0, 0)) must have the same, unique, intersection uM > 0 with

the us-axis and thus merge in a homoclinic orbit to (0, 0) – note that this can only

happen if ν1 , 0. In this case it is natural to determine
(

uu
s(x; ε), pu

s(x; ε)
)

uniquely by

choosing x = 0 as the location of the internal reflection point of the homoclinic orbit,

i.e. to set
(

uu
s(0; ε), pu

s(0; ε)
)

= (uu
0
, pu

0
) = (uM , 0). Once this gauge choice is made, the

sign of x∗ determines whether the jump through the fast field occurs before or after

the slow component of the pulse passes through the maximum of the slow homoclinic

orbit, i.e. whether the jump is downwards (x∗ > 0) or upwards (x∗ < 0); see Figure

3.4a resp. 3.4c for an illustration of these two configurations in the context of the

model (3.2) studied in chapter 2. It will be shown in section 3.5 (Corollary 3.29) that

the second configuration is always unstable. IfWu
s ((0, 0)) ∩ {ps = 0} = ∅, there is

no natural unique way to gauge the choice of
(

uu
s(0; ε), pu

s(0; ε)
)

. This is undesirable

since in extension the value (and sign) of x∗ (3.25) is not fixed. This will turn out

to be the cause of technical complications in some parts of the stability analysis, see

section 3.5.1. However, the following Lemma allows us to make an unambiguous

gauge choice for
(

uu
s(0; ε), pu

s(0; ε)
)

= (uu
0
, pu

0
) in either case. The idea is to alter the

vector field defined by F1,2 and G beyond a certain u-value, ’bending’ the unstable

and stable slow manifolds towards each other such that they do intersect.

Lemma 3.8. Without loss of generality, we may assume thatWu
s ((0, 0))∩{ps = 0} , ∅

and therefore choose
(

uu
s(0; ε), pu

s(0; ε)
)

= (uu
0
, pu

0
) = (uM , 0). This fixes the sign of x∗

as sgn(x∗) = sgn(p∗).

Proof. Given the functions F1,2 and G for which assumptions 3.4 hold, consider an
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Ws
u IH0, 0LM

Ws
s IH0, 0LM

To

Td

u * u
�

M

u
�

s
s (x)

u

p

Figure 3.3: The slow manifold with its dynamics as in Figure 3.2, but altered for

u > u∗ in such a way that the (new) slow stable and unstable manifolds W̃s
s((0, 0))

and W̃s
u((0, 0)) intersect at (ũM , 0).

open neighbourhood U ∈ R4 of the set
{

(u, p, v, q) ∈ R4 | u ≤ u∗,K
}

where u∗,K is

largest solution to (3.24), see Theorem 3.7. For each function trio (F̃1,2, G̃) ∈ Ω
with

Ω =
{

F̂1,2 and Ĝ are smooth and (F̃1,2(U), G̃(U)) = (F1,2(U),G(U))
}

,

Theorem 3.7 can be applied in the same way and will yield the same results. Now, we

alter the original vector field defined by F1,2 and G, i.e. pick a suitable function trio

(F̃1,2, G̃) ∈ Ω such that the associated slow stable manifold W̃s
s((0, 0)) actually does

intersect the u-axis beyond u∗,K and therefore coincides with W̃s
u((0, 0)) by symmetry.

In the new, altered vector field, the function ũs
s(x) defines a homoclinic orbit, see

Figure 3.3. We make the natural choice (ũu
0
, p̃u

0
) = (ũM , 0), see the discussion after

Theorem 3.7; this also redefines x∗ accordingly as x̃∗. From the choice p̃u
0
= p̃s

0
= 0

it follows that x̃∗ > 0 when p̃∗ > 0 and vice versa, see (3.25). �

Note that the modification of F1,2 and G may induce new intersections of W̃u
s ((0, 0))

and To, see Figure 3.3. These intersections are artificial and –of course– do not cor-

respond to homoclinic orbits in the original system.
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U h Vh

x

x*  > 0

0

(a)

U h Vh

x

x*  = 0

0

(b)

U h Vh

x

x*  < 0

0

(c)

Figure 3.4: The stationary homoclinic pulse Γh(x) = (Uh(x),Vh(x)) as a solution to

(3.2) for x∗ > 0 (3.4a), x∗ = 0 (3.4b) and x∗ < 0 (3.4c), as studied in chapter 2.

Finally, we formulate a result on the occurrence of homoclinic saddle node bi-

furcations, which will especially be relevant in the upcoming stability analysis. We

again refer to [6] for (details on the geometry behind) its proof.

Corollary 3.9. Assume that conditions 3.4 hold and let ε > 0 be small enough.

Assume that u = u∗,sn > 0 is a degenerate solution of (3.24), i.e. that both (3.24) and

its u-derivative

2µu − 2ν1F1(u; 0) = 1
2
ν2

2 Dp(u)
d

du
Dp(u) (3.29)

hold for a certain parameter combination (µsn, ν1,sn, ν2,sn) to leading order in ε. As-

sume furthermore that (u∗,sn, p∗,sn) = (u∗,sn,
1
2
ν2Dp(u∗,sn)) ∈ Wu

s ((0, 0); 0) and that

u∗,sn is a quadratic zero of (3.24). Then the parameter combination (µsn, ν1,sn, ν2,sn)

determines a saddle node bifurcation of homoclinic orbits: by changing one of the

parameters µ, ν1, or ν2 (and keeping the other two fixed), two distinct homoclinic

orbits Γh,l(ξ) and Γh,l+1(ξ) of (3.9) merge and annihilate each other.

Remark 3.10. It the forthcoming stability analysis – see especially sections 3.3.2

and 3.5 – it will be necessary to have a measure for the decay rate of v f ,h(ξ; u∗) and

v f ,h(ξ; u∗,k) as ξ → ±∞. It follows from (3.11) in combination with assumption (A4)

that v f ,h(ξ; u∗) decays like e∓ξ for ξ → ±∞. Therefore, we define v f ,∞ by

v f ,h(ξ; u∗){ v f ,∞(u∗) e∓ξ as ξ → ±∞. (3.30)

Note that v f ,∞ , 0 is determined uniquely, since v f ,h(ξ; u∗) has been determined

uniquely (3.13) . Likewise, we define us,∞ by

us
s(x; ε){ us,∞ e−

√
µx as x→ ∞, (3.31)

where us
s(x; ε) is the unique nonzero solution to (3.21) that spans the stable manifold

Ws
s((0, 0); ε) – note that the limit exists by assumption (A2).
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3. Pulses in a general reaction-diffusion system

3.3 Linearization and the reduced problems

In the forthcoming sections we consider the stability of one of the K homoclinic

pulse patterns in (3.1) or (3.7) – Theorem 3.7 –, denoted by either (Uh(x),Vh(x)) or

(Uh(ξ),Vh(ξ)).

3.3.1 The linear stability problem

With a small abuse of notation, re-introduce u(ξ) and v(ξ) by

U(ξ, t) = Uh(ξ) + u(ξ)eλt, V(ξ, t) = Vh(x) + v(ξ)eλt,

with λ ∈ C. The linearised stability of (Uh(ξ),Vh(ξ)) is thus determined by

ε2λu = uξξ − ε2[µ u − ν1

dF1

dU
(Uh) u] + εν2

∂F2

∂U
(Uh,Vh) u + εν2

∂F2

∂V
(Uh,Vh) v

λv = vξξ − v +
∂G

∂U
(Uh,Vh)u +

∂G

∂V
(Uh,Vh) v (3.32)

Introducing the vector φ(ξ) = (u(ξ), p(ξ), v(ξ), q(ξ))T , with p = 1√
ε

uξ and q = vξ,

these equations yield the system

φ̇ = A(ξ; λ, ε)φ, (3.33)

where the dot represents d
dξ

. Here,A(ξ; λ, ε) =

































0
√
ε 0 0√

ε
(

−ν2
∂F2

∂U
(Uh,Vh) + ε

[

µ + λ − ν1
dF1

dU
(Uh)

])

0
√
ε
(

−ν2
∂F2

∂V
(Uh,Vh)

)

0

0 0 0 1

− ∂G
∂U

(Uh,Vh) 0 λ + 1 − ∂G
∂V

(Uh,Vh) 0

































.

(3.34)

It follows from the smoothness and decay rates in V as V → 0 assumed in (A3) that
∂F2

∂V
(U, 0) = F2,1(U)+

∂F2,2

∂V
(U, 0) = F2,1(U) and that ∂F2

∂U
(U, 0) = 0. Likewise, by (A4),

∂G
∂U

(U, 0) = ∂G
∂V

(U, 0) = 0. Since Vh(ξ) becomes exponentially small as ξ approaches

the boundaries ξ = ±ε− 1
4 of the fast field I f , by the approximation results (3.27),

(3.28) on Uh(ξ) for |ξ| > ε− 1
4 (Theorem 3.7) and by the reversibility symmetry (3.10),

it follows thatA(ξ; λ, ε) approaches the intermediate, slowly varying matrix

As(εξ; λ, ε) =

































0
√
ε 0 0

ε
√
ε
[

(µ + λ) − ν1
dF1

dU
(us
∗(|εξ|))

]

0 −ν2

√
εF2,1(us

∗(|εξ|)) 0

0 0 0 1

0 0 λ + 1 0

































(3.35)

108



3.3 Linearization and the reduced problems

in the slow field |ξ| > ε−
1
4 – see section 3.3.4. It clearly also follows from (3.27),

(3.28) (and assumptions (A1 - A4)) that there are positive O(1) constants C̃2 and C̃3

such that

‖A(ξ; λ, ε) −As(εξ; λ, ε)‖ ≤ C̃2e−C̃3 |ξ| for |ξ| > ε−
1
4 . (3.36)

Both matricesA(ξ; λ, ε) andAs(x; λ, ε) approach the constant coefficient matrix

A∞(λ, ε) =































0
√
ε 0 0

ε
√
ε(λ + µ) 0 −ν2

√
εF2,1(0) 0

0 0 0 1

0 0 λ + 1 0































(3.37)

as ξ, x → ±∞ by assumption (A3). Due to the block diagonal, upper triangular

structure ofA∞(λ), its eigenvalues
{

±Λ f ,±εΛs

}

with

Λ f (λ) =
√

1 + λ, Λs(λ) =
√

µ + λ. (3.38)

are not influenced by the coupling term −ν2

√
εF2,1(0). It follows that Re Λ f (λ) >

Re εΛs(λ) outside an O(ε) neighborhood of the essential spectrum

σe = {λ ∈ R : λ ≤ max (−µ,−1)} ⊂ C (3.39)

associated to the linear stability problem (3.32)/(3.33) – recall that σe corresponds to

those values of λ for which one of the Λ f ,s(λ)’s is purely imaginary [45]. The impact

of the coupling term −ν2

√
εF2,1(0) on the eigenvectors ofA∞(λ) is at most of O(

√
ε)

as long as λ is not O(
√
ε) close to σe:

E f ,±(λ, ε) =
(

− ν2εF2,1(0;ε)

1+λ−ε2(λ+µ)
, ∓ ν2

√
εF2,1(0;ε)

1+λ−ε2(λ+µ)

√
1 + λ , 1 , ±

√
1 + λ

)T
,

Es,±(λ, ε) =
(

1 , ±
√
ε
√
µ + λ , 0 , 0

)T
.

(3.40)

The essential difference between the present stability analysis and the existing literat-

ure on the stability of pulses in GS/GM-type models [6, 7, 26, 32, 33] is made explicit

by the terms ν1
dF1

dU
(us
∗(|εξ|)) and −ν2

√
εF2,1(us

∗(|εξ|)) ofAs(εξ; λ), i.e. by the fact that

there is an intermediate slowly varying matrix between A(ξ; λ, ε) and A∞(λε): in

general the matrixA(ξ; λ, ε) thus does not approach its constant coefficient limit state

A∞(λ, ε) exponentially fast on the fast spatial scale. In other words, the GS/GM-type

models are (very!) special in the sense that ν1 = 0 and F2,1(0) = 0, so that there is an

exponentially accurate estimate like (3.36) on ‖A(ξ; λ, ε) − A∞(λ, ε)‖ for ξ ∈ R\I f .

This fact is crucially used in the stability analysis: it allows one to solve (3.33) out-

side I f with an exponential accuracy in terms of simple exponentials (based on (3.38),
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3. Pulses in a general reaction-diffusion system

(3.40)). Moreover, this behaviour is also central to the construction of an Evans func-

tion D(λ; ε) associated to (3.33) and it subsequent decomposition into a slow and a

fast Evans function [3, 6, 7].

In this chapter, the role of A∞(λ, ε) will be taken over by the slow intermediate

matrix As(εξ; λ, ε) for ξ < I f . The construction of the Evans function D(λ) associ-

ated to (3.33) will also be based on the matrixAs(εξ; λ, ε). This Evans function will

be decomposed in a slow and a fast component using the fast exponential estimate

(3.36) – see section 3.4. In the construction of D(λ), the role of the simple expo-

nentials associated to A∞(λ, ε) will be taken over by the fundamental intermediate

solutions of the linear system associated to As(εξ; λ, ε). This system will be studied

in section 3.3.4. However, we will first study the fast reduced limit systems associated

to (3.32)/(3.33).

Remark 3.11. The assumption that β2 > 1 in (A4) excludes the possibility of having

terms like UV in the V equation, i.e. the nonlinear term G(U,V) of the V-equation is

not allowed to be like its counterpart F2(U,V) in the U-equation (A3). Similar to the

effect of a linear term in U in the V-equation for the existence problem – see section

3.1.1 and Remark 3.5 – terms like UV in the V-equation will lead to slowly varying

terms in the fast stability equation. Once again (Remark 3.5), this can in principle

be handled, see for instance [8] in which an explicit (Ginzburg-Landau type) system

with a coupling term the type UV has been analysed along the lines of the present

approach. However, since it introduces additional technicalities (and thus obscures

the presentation), we refrain from going into the details.

3.3.2 The homogeneous fast reduced Sturm-Liouville prob-

lem

It follows from (3.26) in Theorem 3.7 that the linear stability problem (3.32) reduces

in the region I f and in the limit ε→ 0 to the fast reduced limit problem

λv = vξξ − v +
∂G

∂U
(u∗, v f ,h(ξ; u∗)) u(0) +

∂G

∂V
(u∗, v f ,h(ξ; u∗)) v, ξ ∈ R, (3.41)

where we have used that u(ξ) only varies slowly and thus approaches a constant value

u(0) in I f in this limit. Equation (3.41) is an inhomogeneous Sturm-Liouville prob-

lem. In this section, we study the associated homogeneous problem

(L f (ξ) − λ) w
def
= wξξ +

[

∂G

∂V
(u∗, v f ,h(ξ; u∗)) − (1 + λ)

]

w = 0, with lim
ξ→±∞

w(ξ) = 0.

(3.42)
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3.3 Linearization and the reduced problems

In the NLEP analysis of the Evans function associated to the stability of a pulse in

GS/GM-type models [6, 7], the homogeneous fast reduced linearised stability prob-

lem (3.42) has a very special form: as function of V , G(U,V) simply behaves as

Vβ1 (with β2 > 1 in the (generalised) GM setting (3.8) and β2 = 2 for the GS and the

standard GM model). As a consequence, (3.42) can be solved exactly (in terms of hy-

pergeometric functions [6, 7] or associated Legendre functions, see chapter 2). This

fact is an essential ingredient of the NLEP analysis in this type of models. Of course

this is quite a special, and thus a priori restrictive feature of the GS/GM-type models.

As was already remarked in the introduction, this restriction forms the second main

ingredient of our motivation to develop the present more general (stability) theory.

To do so, we first note that for functions G(U,V) as described by assumption

(A4) and v f ,h(ξ; u∗) as homoclinic solution to (3.11), equation (3.42) has the form

of a classical (singular) Sturm-Liouville eigenvalue problem. The following Lemma

summarises results on this type of problems in the literature (see for instance [49]).

Lemma 3.12. Let H : R≥0 → R be such that the differential equation wxx =

ρw − H(w), ρ > 0 has a solution wh which is homoclinic to (w,wx) = (0, 0), and

write h(x) = H′(wh(x)). For a differential operator of the form L(x) = d2

dx2 +

h(x) − ρ, consider the eigenvalue problem [L(x) − λ] w = 0 with boundary condi-

tions limx→±∞ w(x) = 0. Moreover, define Λ =
√
ρ + λ; arg(Λ) ∈ (− π

2
, π

2
]. Then the

following holds:

(i) There is a finite number of real eigenvalues λ j, j = 0, 1, · · · , J for which λ0 > 0,

λ1 = 0 and 0 > λ2 > · · · > λJ > −ρ. Equivalently, there is a finite number of real

eigenvalues Λ j for which Λ0 >
√
ρ, Λ1 =

√
ρ and

√
ρ > Λ2 > · · · > ΛJ > 0.

(ii) The associated eigenfunctions w j(x) have j distinct zeroes and are even resp.

odd as a function of x if j is even resp. odd. Moreover, d
dx

wh(x) is an eigenfunc-

tion for λ1 = 0 (or Λ1 = 1); in other words, w1(x) ∈ span
{

d
dx

wh(x)
}

.

(iii) The eigenfunctions w j(x), j = 0, · · · , J form an orthogonal set:

〈w j,wk〉 =
∞

∫

−∞

w j(x)wk(x) dx = 0 for j , k, and ‖w j‖2 =
√

〈w j,w j〉 , 0;

these eigenfunctions can be determined uniquely by the condition

w j(x){ 1 · e−Λ j x as x→ ∞. (3.43)
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3. Pulses in a general reaction-diffusion system

(iv) The spectrum associated to the eigenvalue problem [L(x)− λ] w = 0 is given by

σλ = (−∞,−ρ) ∪ {λ0, · · · , λJ} or equivalently σΛ = iR>0 ∪ {Λ0, · · · ,ΛJ}.

(v) For every λ < σλ, there is a unique solution wR
λ

(x) (which depends smoothly on

λ) such that

wR
λ (x){ 1 · e−Λx as x→ ∞. (3.44)

Moreover, the pair {wR
λ
,wL

λ
} with wL

λ
(x) = wR

λ
(−x) spans the solution space of

the eigenvalue problem [L(x) − λ] w = 0.

For (3.42) we can apply the above Lemma with ρ = 1, obtaining a set of fast

eigenvalues λ f , j and their associated eigenfunctions w f , j(ξ). Moreover, we observe

that for ρ = 1, Λ = Λ f (3.38).

Next, we consider the Wronskian

W(λ)
def
= det

(

wL
λ
(ξ) wR

λ
(ξ)

d
dξ

wL
λ
(ξ) d

dξ
wR
λ

(ξ)

)

(3.45)

associated to (3.42). For notational convenience we only considerW as function of λ

here and in the upcoming Lemma. In the forthcoming analysis we will however often

switch between the equivalent expressionsW(λ) andW(Λ f ). This Wronskian can

be defined as a smooth, in fact analytic, function of λ for all λ ∈ C outside the (closure

of the) essential spectrum associated to (3.42), i.e. for λ < (−∞,−1], but including the

(eigen)values λ = λ f , j (Lemma 3.12), by settingW(λ f , j) = 0, j = 0, ..., J [49]. Note

that W(λ) is in fact an Evans function [3]. In combination with Lemma 3.12, the

following result onW(λ) enables us to generalise the GS/GM-type hypergeometric

functions approach to the present setting.

Lemma 3.13. LetW(λ) be the Wronskian associated to (3.42) and let λ < (−∞,−1],

then

W(λ){ (−1) j+1‖w f , j‖22(λ − λ f , j) as λ→ λ f , j, j = 0, ..., J.

See Figure 3.5 for a sketch of aW(λ) for real λ > −1.

Proof. Since we know thatW(λ) is a smooth function of λ near its zeroes λ f , j, the

proof can be based on a (finite) Taylor expansion ofW(λ f , j + δ) for δ = λ − λ f , j ∈ C
small. To do so, we first need to approximate wR

λ
(ξ) for λ = λ f , j + δ. Therefore, we

introduce the (regular) approximation

wR
λ f , j+δ

(ξ) = w f , j(ξ) + δw1, j(ξ) + R(ξ; δ), (3.46)
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Λ f ,0 Λ f ,2

0 = Λ f ,1

W(Λ)

Λ

Figure 3.5: A sketch of the WronskianW(λ) associated to (3.42) in the case of the

model problem (3.2), for λ ∈ R.

in which R(ξ; δ) represents the error terms. This expansion can in general not give

a valid approximation of wR
λ f , j+δ

(ξ) for ξ → ∞. However, it follows directly from

Poincaré’s Expansion Theorem (see for instance [55]) that for every ρ ∈ [0, 1) there

is a positive O(1) constant Cρ such that

|wR
λ f , j+δ

(ξ) − (w f , j(ξ) + δw1, j(ξ))| = |R(ξ; δ)| < Cρδ
2(1−ρ), (3.47)

for |ξ| < O(δ−ρ). Note that the standard (and natural) result that R(ξ; δ)| = O(δ2) on

O(1) ξ-intervals corresponds to the case ρ = 0 in (3.47). To determine the leading or-

der correction w1, j(ξ), we substitute (3.46) into (3.42) and obtain the inhomogeneous

problem

(L f (ξ) − λ f , j) w1, j = w f , j(ξ) + O
(

δ1−2ρ
)

(3.42) on the domain |ξ| < O(δ−ρ). It is clear that for the above to be a leading

order expression, ρ < 1
2

must hold. This equation cannot have a solution that is

bounded on R, since the operator L f (ξ) − λ is not invertible at λ = λ f , j and the

inhomogeneous term b(ξ) = w f , j(ξ) clearly does not satisfy the solvability condition

〈b,w f , j〉 = 〈w f , j,w f , j〉 = 0, see also section 3.3.3. However, this is not a problem:

we are constructing an approximation of a solution wR
λ

(ξ) and this solution need not

be bounded on R for λ , λ f , j (Lemma 3.12). Since w f , j(ξ) is a solution of the

homogeneous problem, we apply the variation of constants method, i.e. we introduce
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3. Pulses in a general reaction-diffusion system

the unknown function c j(ξ) by w1, j(ξ) = c j(ξ)w f , j(ξ) and obtain an equation for c j:

c̈ jw f , j + 2ċ jẇ f , j = w f , j.

This implies that

ċ j(ξ) =
1

w2
f , j

(ξ)

[∫ ξ

0

w2
f , j(η) dη + c1, j

]

,

where c1, j is a constant of integration. Writing c1, j = ĉ1, j −
∫ ∞

0
w2

f , j
(η) dη, we in-

vestigate the behaviour of ċ j(ξ) as ξ → δ−ρ. From Lemma 3.12, we know that

w f , j(ξ){ e−Λ f , jδ
−ρ

as ξ → δ−ρ. Therefore,

ċ j(ξ){ e2Λ f , jδ
−ρ

[

∫ δ−ρ

0
w2

f , j
(η) dη −

∫ ∞
0

w2
f , j

(η) dη + ĉ1, j

]

=
[

−
∫ ∞
δ−ρ

w2
f , j

(η) dη + ĉ1, j

]

e2Λ f , jδ
−ρ

= − 1
2Λ f , j
+ ĉ1, je

2Λ f , jδ
−ρ

(3.48)

as ξ → δ−ρ. Since the solution wR
λ f , j+δ

(ξ) (3.46) does not grow exponentially as ξ →
δ−ρ (3.44), it necessarily follows that w1, j(ξ) does neither. Therefore, c j(ξ) can at

most grow as 1
w f , j

, which is as eΛ f , jξ. From this, it follows that ĉ1, j = 0 and therefore

c1, j = −
∫ ∞

0

w2
f , j(η) dη so that ċ j(ξ) = −

1

w2
f , j

(ξ)

∫ ∞

ξ

w2
f , j(η) dη. (3.49)

We now return to the Wronskian (3.45). Since wR
λ f , j+δ

(ξ) = w f , j(ξ)
(

1 + δc j(ξ)
)

+

R(ξ; δ), we can use Lemma 3.12 (ii),(v) to obtain

wR
λ f , j+δ

(ξ) = w f , j(ξ)
(

1 + δc j(ξ)
)

+ R(ξ; δ), (3.50)

wL
λ f , j+δ

(ξ) = (−1) jw f , j(ξ)
(

1 + δc j(−ξ)
)

+ R(−ξ; δ), (3.51)

d
dξ

wR
λ f , j+δ

(ξ) =
dw f , j

dξ
(ξ)

(

1 + δc j(ξ)
)

+ δw f , j(ξ)
dc j

dξ
(ξ) + dR

dξ
(ξ; δ), (3.52)

d
dξ

wL
λ f , j+δ

(ξ) = (−1) j
[

dw f , j

dξ
(ξ)

(

1 + δc j(−ξ)
)

− δw f , j(ξ)
dc j

dξ
(−ξ)

]

− dR
dξ

(−ξ; δ). (3.53)

Since w
L/R

λ
(ξ) depends smoothly on λ (cf. Lemma 3.12), the Poincaré Expansion

Theorem can be applied to d
dξ

wR
λ f , j+δ

to obtain the result that for every ρ̂ ∈ [0, 1) there

is a Cρ̂ such that | dR
dξ

(ξ; δ)| < Cρ̂δ
2(1−ρ̂). Choosing ρ̂ = ρ < 1

2
enables us to treat dR

dξ
as

a higher order term. Using the above expansions for the Wronskian, we obtain

W(λ f , j + δ) = (−1) j
(

w f , j
dw f , j

dξ
− dw f , j

dξ
w f , j

) (

1 + δc j(ξ) + δc j(−ξ)
)

+ δ (−1) jw2
f , j(ξ)

[

dc j

dξ
(ξ) +

dc j

dξ
(−ξ)

]

+ O(δ2)

= δ (−1) jw2
f , j(ξ)

[

dc j

dξ
(ξ) +

dc j

dξ
(−ξ)

]

+ O(δ2), (3.54)
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in which we refrained from explicitly writing down all O(δ2) = O(|λ − λ f , j|2) correc-

tion terms. Using (3.49), we see that

w2
f , j

(ξ)
[

dc j

dξ
(ξ) +

dc j

dξ
(−ξ)

]

= −
∫ ∞
ξ

w2
f , j

(η) dη −
∫ ∞
−ξ w2

f , j
(η) dη

= −
∫ ∞
−∞ w2

f , j
(η) dη = −‖w f , j‖22

using again Lemma 3.12 (ii). �

Clearly, the WronskianW(λ) has an extremum for λ ∈ R between two succes-

sive eigenvalues. Based on the previous Lemma it can easily be established that this

extremum is a maximum between λ2 j+1 < λ2 j and a minimum between λ2 j < λ2 j−1.

The following Lemma determines the limit behaviour ofW(λ) for λ ∈ R large, see

also Figure 3.5.

Lemma 3.14. LetW(λ) be the Wronskian associated to (3.42) and let λ ∈ R\(−∞,−1],

then

W(λ){ −2
√
λ as λ→ +∞.

Proof. Define δ = 1/Λ f > 0 (Λ f ∈ R). It can be shown by the methods of the above

proof that for δ small enough, i.e. Λ f > 0 large enough,

wR
λ (ξ) = e−Λ f ξ(1 + O(δ)), and wL

λ (ξ) = eΛ f ξ(1 + O(δ)).

on an O(1) ξ-domain ⊃ {ξ = 0}. Hence, for Λ f large enough,

W(Λ f ) = det

(

eΛ f ξ(1 + O(δ)) e−Λ f ξ(1 + O(δ))

Λ f e
Λ f ξ(1 + O(δ)) −Λ f e

−Λ f ξ(1 + O(δ))

)

= −2Λ f (1 + O(δ)),

which is equivalent to the statement of the Lemma by the definition ofΛ f (3.38). �

3.3.3 The inhomogeneous fast reduced Sturm-Liouville prob-

lem

Since the inhomogeneous problem (3.41) is linear (and can thus be rescaled), we

define vin(ξ; λ) as the bounded solution of

(L f (ξ) − λ) v = − ∂G

∂U
(u∗, v f ,h(ξ; u∗)). (3.55)

Note that this is only possible if u(0) , 0; the situation where u(0) = 0 will be

treated in section 3.5 (which is related to the case B−(λ) = 0 there). It follows from
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3. Pulses in a general reaction-diffusion system

the general theory on Sturm-Liouville problems that vin(ξ; λ) is uniquely determined

for λ < σ f [49]. Since {wL
λ
(ξ),wR

λ
(ξ)} = {wR

λ
(−ξ),wR

λ
(ξ)} span the solution space

associated to the homogeneous problem (Lemma 3.12), vin(ξ; λ) can be determined

explicitly (in terms of wR
λ

(±ξ)).

Lemma 3.15. The bounded solution of (3.55) is given by vin(ξ; λ) = A(ξ)wR
λ

(ξ) +

A(−ξ)wR
λ

(−ξ), with

A(ξ) = A(ξ; λ) = − 1

W(λ)

∫ ξ

−∞

∂G

∂U
(u∗, v f ,h(ξ̃; u∗)) wR

λ (−ξ̃) dξ̃. (3.56)

Note that it immediately follows from this expression and assumption (A4) in

combination with the properties of v f ,h(ξ; u∗) that vin(ξ; λ) decays exponentially fast

to 0 as ξ → ±∞ (and as ξ approaches the boundaries of I f (3.15)).

Proof. By the variation of constants approach, we introduce the unknown functions

AL/R(ξ) by vin(ξ) = AL(ξ)wL
λ
(ξ) + AR(ξ)wR

λ
(ξ). Substitution in (3.55) yields

ȦL/R =
∓1

W(λ)

∂G

∂U
(u∗, v f ,h(ξ; u∗))w

∓
λ (ξ),

so that

AL/R(ξ) = AL/R(0) ∓ 1

W(λ)

∫ ξ

0

∂G

∂U
(u∗, v f ,h(ξ̃; u∗))w

∓
λ (ξ̃) dξ̃.

Both the operator L f (ξ) and the inhomogeneous term in (3.55) are even as function

of ξ. This implies that also vin(ξ; λ) must be even, so that AR(ξ) = AL(−ξ) def
= A(ξ)

and AR(0) = AL(0). A straightforward analysis yields that vin(ξ) can only be bounded

if

A(0) = − 1

W(λ)

∫ 0

−∞

∂G

∂U
(u∗, v f ,h(ξ̃; u∗))w

L
λ (ξ̃) dξ̃,

which is a converging integral by assumption (A4). �

A priori, there is a singularity in the solutions vin(ξ; λ) as λ→ λ f , j, due to the fact

that (L f (ξ) − λ) is not invertible at λ f , j (and that thus W(λ f , j) = 0, Lemma 3.13).

However, by the Fredholm alternative, (3.55) will have solutions for λ = λ f , j with j

odd, since w f , j(ξ) is odd as function of ξ (Lemma 3.12) and the (even) inhomogeneity

of (3.55) thus satisfies the solvability condition.
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3.3 Linearization and the reduced problems

Corollary 3.16. For j even,

vin(ξ; λ){

(

w f , j(ξ)

‖w f , j‖22

∫ ∞

−∞

∂G

∂U
(u∗, v f ,h(ξ̃; u∗)) w f , j(ξ̃) dξ̃

)

· 1

λ − λ f , j

as λ→ λ f , j,

(3.57)

while limλ→λ f , j
vin(ξ; λ) exists for j odd.

Proof. Using the fact that w f , j(ξ) is even/odd as function of ξ for j even/odd, identity

(3.57) can be obtained directly by combining Lemma’s 3.13 and 3.15, both for j even

and for j odd – in the latter case, the integral in (3.57) vanishes. �

It will be necessary to also have an explicit characterization of vin(ξ; λ) for λ near

λ f ,1, the crucial (odd) case j = 1 for which λ f ,1 = 0.

Lemma 3.17. For λ = λ f ,1 = 0, vin(ξ; λ) is not uniquely determined: here,

vin(ξ; 0) =
∂

∂u
v f ,h(ξ; u)|u=u∗ +Cv̇ f ,h(ξ; u∗),

in which C ∈ R is a free parameter.

It is also possible to obtain leading order approximations of vin(ξ; λ) for λ near

λ f , j with j ≥ 3 odd. However, we refrain from going into these details.

Proof. The fact that ∂
∂u

v f ,h(ξ; u)|u=u∗ is a solution of (3.55) follows immediately from

taking the derivative with respect to the parameter u (or u0) in (3.11). Uniqueness is

lost by adding the kernel v̇ f ,h(ξ; u∗) associated to the operator L f (ξ). �

3.3.4 The intermediate, slowly varying problem

Consider the intermediate (linear) problem

ψ̇ = As(εξ; λ, ε)ψ (3.58)

to the right of I f , that is for ξ > ε−
1
4 . Its solution space is four-dimensional. For λ < σe

(3.39), one can decompose the basis of this space into two fast solutions ψ f ,±(ξ; λ, ε)

that vary with ξ and two slowly varying solutions ψs,±(εξ; λ, ε). The fast solutions

ψ f ,±(ξ; λ, ε) are at leading order determined by the lower diagonal 2 × 2 block of

As(εξ; λ, ε) (3.35) and thus at leading order determined by their (v, q)-components:

the (u, p)-components are only weakly driven by the asymptotically small coupling

term −ν2

√
εF2,1(us,∗(εξ)) in (3.35). The existence of a fast converging solution ψ f ,−

with an exponential decay that is governed by the most negative eigenvalue −Λ f of
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3. Pulses in a general reaction-diffusion system

the limiting matrix A∞(λ, ε) (3.38) follows directly by classical methods (see also

[3, 21]). Note that ψ f ,− is uniquely determined up to a normalization constant (see

below). This is not the case for its fast diverging counterpart ψ f ,+, of which the growth

is determined by +Λ f for ξ large enough (one can for instance add a multiple of ψ f ,−
to ψ f ,+). However, its existence can be settled by the same methods as for ψ f ,−. In

fact, ψ f ,+ can be chosen such that for x large, i.e. for ξ ≫ 1
ε
, its decomposition with

respect to the four basis solutions of the limiting constant coefficient problem associ-

ated to A∞(λ, ε) (section 3.3.1) does not contain ‘slow’ behaviour (governed by the

eigenvalues ±εΛs). Nevertheless ψ f ,+ needs to be chosen from a family of options,

also after normalization. Note that these assertions are all standard within the frame-

work of the Evans function approach – see [3, 21, 6, 7]. Note also that in general

ψ f ,+(ξ) , ψ f ,−(−ξ).

In the upcoming analysis, it will be convenient to normalise the fast solutions

ψ f ,±(ξ; λ, ε) as

ψ f ,±(ξ; λ, ε){ E f ,±(λ; ε) e±Λ f ξ as ξ → ∞ (3.59)

with Λ f and E f ,±(λ; ε) as defined in (3.38), (3.40).

It follows from the structure of As(εξ; λ, ε) (3.35) that the slow solutions ψs,± have

trivial v and q components, so that ψs,±(εξ; λ, ε) =
(

us,±(εξ; λ, ε), ps,±(εξ; λ, ε), 0, 0
)T

.

Note that ψs,± is considered here as function of the slowly varying spatial variable

x = εξ; more specifically, ps,± is defined as d
dx

us,±. By construction, and by the

approximations of Theorem 3.7, us,±(x; λ, ε) is a solution of

uxx −
[

(µ + λ) − ν1

dF1

dU

(

us
∗(x)

)

]

u = 0 for x > ε
3
4 . (3.60)

Since

us
∗(x) = uu

∗(−x) = uu
s(−x − x∗) = us

s(x + x∗) = us
s(y),

with y = x + x∗ (section 3.2 and Theorem 3.7), (3.60) can be rewritten as

(Ls(y) − λ) û
def
= ûyy +

[

ν1

dF1

dU
(us

s(y)) − (µ + λ)

]

û = 0 for y > y∗, (3.61)

where y∗ = x∗ + ε
3
4 . Except for the condition on y, this is a Sturm-Liouville problem

of the type (3.42). As a consequence, Lemma 3.12 can be applied to (3.61) with ρ

replaced by µ so that Λ = Λs. Hence, for λ < σe (3.39) we can define the converging

function ûs,−(y; λ, ε) as the solution of (3.61) that satisfies

ûs,−(y; λ, ε){ 1 · e−Λs x = eΛs x∗ · e−Λsy as y→ ∞. (3.62)
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Note that it is not necessary to exclude the values of λ that are eigenvalues for the full

problem, i.e. (3.61) with y ∈ R: in that case ûs,− can be defined as the (normalised) ei-

genfunction. Of course, us,− is related to ûs,− through us,−(x; λ, ε) = ûs,−(x + x∗; λ, ε).

Its diverging counterpart ûs,+(y; λ, ε) can be obtained by the same methods as above,

or as in the proof of Lemma 3.12 (note that the existence of these diverging solutions

is not a part of this Lemma). As above, the diverging solution is again not uniquely

determined and in general not equal to ûs,−(−y; λ, ε). In fact, this is impossible at an

eigenvalue of the full problem, since in that case ûs,−(−y; λ, ε) does not grow expo-

nentially as y → ∞. For future reference, we gauge the diverging solution ûs,+ such

that

ûs,+(y; λ, ε){ 1 · e+Λs x as y→ ∞. (3.63)

Both basis functions ψs,±(x; λ, ε) can now be defined for λ < σe; recall that ψs,±(x; λ, ε)

are only defined for x > ε
3
4 . As above, we assume that ψs,±(x; λ, ε) are normalised

such that

ψs,±(x; λ, ε){ Es,±(λ; ε) e±Λs x as x→ ∞ (3.64)

(3.38), (3.40); note that this is equivalent to (3.62) for ψ−,s(x; λ).

Since the matrix As is symmetric in εξ, the above solutions ψ f ,±(ξ; λ, ε) and

ψs,±(εξ; λ, ε) can be used to define their equivalent counterparts to the left of I f , i.e.

for ξ < −ε− 1
4 , by using the reflection ξ → −ξ. This fact will be exploited in the next

section where the Evans function will be constructed.

3.4 The Evans function and the NLEP procedure

3.4.1 The construction of the Evans function

The Evans function, which is complex analytic outside the essential spectrum – see

[45, 3] and the references therein – associated to system (3.33) can be defined by

D(λ, ε) = det
[

φi(ξ; λ, ε)
]

(3.65)

where the functions φi, i = 1, 2, 3, 4 satisfy boundary conditions at ±∞ (see below)

and span the solution space of (3.33). The eigenvalues of (3.34) outside σe coincide

with the roots ofD(λ, ε), including multiplicities.

Lemma 3.18. For all λ ∈ C \ σe, there are solutions φ
L/R

f
(ξ; λ, ε) and φ

L/R
s (ξ; λ, ε) to

(3.33) such that the set
{

φ
L/R

f
(ξ; λ, ε), φ

L/R
s (ξ; λ, ε)

}

spans the solution space of (3.33)
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and

φL
f (ξ; λ, ε){ E f ,+ eΛ f ξ as ξ → −∞ (3.66a)

φR
f (ξ; λ, ε){ E f ,− e−Λ f ξ as ξ → ∞ (3.66b)

φL
s (ξ; λ, ε){ Es,+ eεΛsξ as ξ → −∞ (3.66c)

φR
s (ξ; λ, ε){ Es,− e−εΛsξ as ξ → ∞ (3.66d)

Moreover, there exist analytic transmission functions t f ,+(λ, ε) and ts,+(λ, ε) such that

φL
f (ξ; λ, ε){ t f ,+(λ, ε) E f ,+ eΛ f ξ as ξ → ∞ (3.67a)

φL
s (ξ; λ, ε){ ts,+(λ, ε) Es,+ eεΛsξ as ξ → ∞ (3.67b)

where ts,+(λ, ε) is only defined if t f ,+(λ, ε) , 0. These choices, when possible, deter-

mine φ
L/R

f
and φL

s uniquely.

Proof. Although the linearised system (3.33) is not identical to its counterpart in [6],

exactly the same arguments as in [6] can be applied here. Therefore, we refer to [6]

for the details of the proof. �

The relation between the functions φ
L/R

f /s
defined in the above Lemma and the func-

tions ψ f /s,± defined in section 3.3.4 will be specified in the next section. Using this

relation, an explicit leading order expression for the slow transmission function ts,+(λ)

will be derived.

The Evans function can be determined by taking the limit ξ → ∞ of the determi-

nant of the functions defined in Lemma 3.18, since the Evans function itself does not

depend on ξ; the latter can be established by combining Abel’s Theorem with the fact

that the trace ofA(ξ; λ, ε) vanishes. This yields using (3.38) and (3.40)

D(λ, ε) = det
[{

φL
f , φ

R
f , φ

L
s , φ

R
s

}]

= lim
ξ→∞

det
[{

φL
f , φ

R
f , φ

L
s , φ

R
s

}]

= lim
ξ→∞

det
[{

t f ,+(λ, ε) E f ,+ eΛ f ξ, E f ,− e−Λ f ξ, ts,+(λ, ε) Es,+ eεΛsξ, Es,− e−εΛsξ
}]

= lim
ξ→∞

t f ,+(λ, ε)ts,+(λ, ε) det
[{

E f ,+, E f ,−, Es,+, Es,−
}]

= 4ε t f ,+(λ, ε) ts,+(λ, ε)
√

1 + λ
√

µ + λ. (3.68)

Corollary 3.19. The set of eigenvalues of (3.34) is contained in the union of the sets

of roots of t f ,+(λ, ε) and ts,+(λ, ε).
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Note that, due to the fact that ts,+(λ, ε) only defined when t f ,+(λ, ε) , 0, the Evans

function D(λ, ε) doesn’t necessarily vanish when t f ,+(λ, ε) = 0. This is called the

‘resolution to the NLEP paradox’ in [6, 7]. Referring to [6], we recall that the roots

of t f ,+(λ, ε) are to leading order given by the eigenvalues of the homogeneous fast

eigenvalue problem (3.42), yielding the following Lemma:

Lemma 3.20. There are unique λ j(ε) ∈ R such that limε→0 λ j(ε) = λ f , j and

t f ,+(λ j(ε), ε) = 0 with multiplicity 1 for j = 0, ..., J.

Proof. This statement (and, as a consequence, its proof) is analogous to that of [6],

Lemma 4.1. From Lemma 3.13 we know that the Wronksian W(λ) defined there

–which is an Evans function itself for the fast problem (3.42)– vanishes at λ = λ f , j in

a nondegenerate way. By construction, t f ,+(λ j(ε), ε) approachesW(λ) as ε → 0; see

[3, 21, 7] for the technical details. �

Hence, the eigenvalues of (3.42) are to leading order zeroes of the fast component

of the Evans functionD(λ, ε) given in (3.68) and thus in principle candidates for being

a zero of the full Evans function.

3.4.2 The NLEP procedure

Since in the slow field ξ > |ε− 1
4 | the matrix A(ξ; λ, ε) (3.34) is with exponential

accuracy (3.36) given byAs(εξ; λ, ε) (3.35), we can conclude that

φR
s (ξ; λ, ε) = ψs,−(εξ; λ, ε) for ξ > ε−

1
4 (3.69)

by combining (3.64) with Lemma 3.18. By the reversibility symmetry,

φL
s (ξ; λ, ε) = ψs,−(−εξ; λ, ε) for ξ < −ε− 1

4 . (3.70)

Both approximations are valid with exponential accuracy. Moreover, from the second

part of Lemma 3.18, we can infer that in the right slow field we can approximate φL
s

to exponential accuracy as

φL
s (ξ; λ, ε) = ts,+(λ, ε)ψs,+(εξ; λ, ε) + ts,−(λ, ε)ψs,−(εξ; λ, ε) for ξ > ε−

1
4 . (3.71)

The additional transmission function ts,− needs to be introduced since the asymptotic

behaviour of φL
s in the right slow field is only determined by its slow growth, see

Lemma 3.18. This normalization choice does not exclude the possibility that φs,L has

a slowly decaying component in the right slow field. Since {ψ f ,±, ψs,±} form a basis of

the solution space of the right slow field to exponential accuracy, the slowly decaying
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component can be represented by ψs,−. Note that since the solution is approximated

to exponential accuracy, the possible presence of a fast decaying component is incor-

porated in this exponential error estimate.

Using the above approximations, an explicit leading order expression for the

transmission function ts,+ can be determined. Recall that from section 3.4.1 it is

known that λ is a zero of the Evans function, and thus an eigenvalue of (3.33), if

ts,+(λ, ε) = 0. The Theorem below can therefore be considered as the main result of

section 3.4 and therefore as one of the main results of this chapter.

Theorem 3.21. Let ε > 0 be small enough. Define B± and B′± by

B±(λ) = lim
ε→0

ûs,±(y∗; λ, ε), B′±(λ) = lim
ε→0

d

dy
ûs,±(y; λ, ε)

∣

∣

∣

∣

y=y∗
, (3.72)

then, up to corrections of O(ε
3
4 ),

ts,+(λ) = −B2
−
Λs

{

B′−
B−
+

1

2
ν2

∫ ∞

−∞

[

∂F2

∂U
(u∗, v f ,h(ξ; u∗)) +

∂F2

∂V
(u∗, v f ,h(ξ; u∗)) vin(ξ)

]

dξ

}

,

(3.73)

with vin(ξ; λ) as given in Lemma 3.15.

Proof. Let uL
s be the u-component of φL

s . The approximations (3.70) and (3.71) of

uL
s (ξ; λ, ε) are valid outside I f (3.15). Since I f has a O(ε

− 1
4 ) width in ξ and uξ = εp =

O(ε), it follows that uL
s (ξ; λ, ε) can at most change an amount ofO(ε

3
4 ) over I f . Hence,

taking the limits ξ ↑ −ε−
1
4 in (3.70) and ξ ↓ ε−

1
4 in (3.71) yields, in combination with

de definition of y (section 3.3.4),

ûs,−(y∗; λ) = ts,+(λ)ûs,+(y∗; λ) + ts,−(λ)ûs,−(y∗; λ) + O(ε
3
4 ).

From this, we obtain a first relation between t+(λ) and t−(λ):

B−(λ) = t+(λ)B+(λ) + t−(λ)B−(λ) + O(ε
3
4 ). (3.74)

A second leading order relation between t+(λ) and t−(λ) can be obtained by studying

the accumulated change in d
dξ

uL
s (ξ; λ) over I f . According to (3.32) and by Theorem

3.7,

∆ f

(

d
dξ

uL
s

)

=
∫

I f

d2

dξ2 uL
s dξ

= −εν2

∫

I f

[

∂F2

∂U
(uh(ξ), vh(ξ))uL

s (ξ) + ∂F2

∂V
(uh(ξ), vh(ξ))vL

s (ξ) + O(ε)
]

dξ

= −εν2

∫

I f

[

∂F2

∂U
(u∗, v f ,h(ξ; u∗))u

L
s (ξ) + ∂F2

∂V
(u∗, v f ,h(ξ; u∗))v

L
s (ξ)

]

dξ
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3.4 The Evans function and the NLEP procedure

up to O(ε7/4), where vL
s is the v-component of φL

s . For ξ ∈ I f , we know that uL
s is

constant to leading order. Using (3.74), we see that uL
s (ξ) = B− + O(ε

3
4 ) for ξ ∈ I f .

The second equation of (3.32) – which describes the evolution of vL
s – can therefore

be written as

(L f (ξ) − λ) vL
s = −B−

∂G

∂U
(u∗, v f ,h(ξ; u∗)) + O(ε

3
4 ),

which implies that (see section 3.3.3)

vL
s (ξ; λ, ε) = B−(λ)vin(ξ; λ) + O(ε

3
4 ),

so that vL
+,s(ξ; λ) is explicitly known (Lemma 3.15) to leading order. As a con-

sequence,

∆ f

(

d
dξ

uL
s

)

= −εν2B−
∫

I f

[

∂F2

∂U
(u∗, v f ,h(ξ)) + ∂F2

∂V
(u∗, v f ,h(ξ))vin(ξ)

]

dξ + O(ε7/4)

= −εν2B−
∫ ∞
−∞

[

∂F2

∂U
(u∗, v f ,h(ξ)) + ∂F2

∂V
(u∗, v f ,h(ξ))vin(ξ)

]

dξ + O(ε7/4)

(3.75)

by the convergence properties of v f ,h(ξ; u∗) and vin(ξ; λ) in combination with assump-

tion (A3) – note that this same combination also implies that the integral converges.

Of course, this accumulated change in d
dξ

uL
+,s(ξ; λ) must also be reflected by the lead-

ing order approximations (3.70) and (3.71) as ξ ↑ −ε−
1
4 respectively ξ ↓ ε−

1
4 . Com-

bining (3.75) with (3.70) and (3.71) yields

∆s

(

d
dξ

uL
+,s

)

= lim
ξ↓ε−

1
4

d
dξ

[

ts,+ûs,+(εξ + x∗) + ts,−ûs,−(εξ + x∗)
]

− lim
ξ↑−ε

1
4

d
dξ

ûs,−(−εξ + x∗)

= ε
[

ts,+(λ)B′+(λ) + ts,−(λ)B′−(λ) + B′−(λ)
]

+ O(ε7/4).

(3.76)

The second relation between t−(λ) and t+(λ) follows by identifying (3.75) and (3.76).

Finally, the term B+B′− − B−B′+ obtained by combining (3.74) with (3.76) and solving

for ts,+ can be simplified by recognising it as the Wronksian associated to (3.61)

for the solutions ûs,±, evaluated at y = y∗. Using Abel’s Theorem, we see that the

Wronskian associated (3.61) is constant in y. Its value can therefore be determined

by taking the limit y→ ∞, using (3.62) and (3.63). Thus,

B+B′− − B−B′+ = lim
y→∞

B+B′− − B−B′+ = −2Λs.

Identity (3.73) can now be obtained by combining relation (3.76) with (3.74), using

the above simplification for B+B′− − B−B′+. �
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3. Pulses in a general reaction-diffusion system

The expression for ts,+ (3.73) can be studied in the ’linear’ limit, yielding the

following result:

Corollary 3.22. Both as ν1 → 0 and in the limit of large positive y∗, the roots of

ts,+(λ) are to leading order given by the solutions to

ν2

2

∫ ∞

−∞

[

∂F2

∂U
(u∗, v f ,h(ξ; u∗)) +

∂F2

∂V
(u∗, v f ,h(ξ; u∗)) vin(ξ)

]

dξ =
√

µ + λ. (3.77)

Note that the ’linear limit’ (3.77) indeed coincides with [6], expression (4.11),

which determines the (nontrivial) zeroes of an Evans function associated to the stabil-

ity of pulses in a ‘linear’ generalised GM-type system (i.e. F1(U; ε) ≡ 0, F2(U,V; ε) =

Uα1 Vβ1 , G(U,V; ε) = Uα2 Vβ2 ).

Proof. We approximate B±, B′± for large y∗ > 0 using (3.62) and (3.63), yielding

B−(λ){ e−Λsy∗ and B′−(λ){ −Λs e−Λsy∗ as y∗ → ∞. (3.78)

From (3.61), it follows that the limit ν1 → 0 also yields the ’linear limit’, i.e. the

solutions ûs,± become pure exponentials. Therefore, any zero of ts,+ in either of these

limits comes from a solution of equation (3.77). �

3.5 Implications of Theorem 3.21: (in)stability res-

ults

The explicit leading order expression for ts,+(λ) established in the previous section

and stated in Theorem 3.21 can be interpreted in certain limiting situations, such as

near the known fast eigenvalues λ f , j of the homogeneous problem (3.42) or for certain

parameter limits. In this section, a number of results of this type will be stated, leading

to a number of explicit (in)stability results for the full problem (3.33).

Lemma 3.23. For λ close to λ f ,0, we can describe the leading order behaviour of ts,+

as

ts,+(λ){ −
ν2B−(λ f ,0)2

2Λs(λ f ,0)
· T

λ − λ f ,0

as λ→ λ f ,0, (3.79)

where

T =

(∫ ∞

−∞

∂F2

∂V
(u∗, v f ,h(ξ; u∗))

w f ,0(ξ)

‖w f ,0‖2 dξ

) (∫ ∞

−∞

∂G

∂U
(u∗, v f ,h(ξ; u∗))

w f ,0(ξ)

‖w f ,0‖2 dξ

)

. (3.80)
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Proof. By Corollary 3.16 we see that vin(ξ; λ) is singular in λ as λ → λ f ,0. Com-

bining (3.57) with (3.73), we can describe the leading order behaviour of the slow

transmission function as (3.79) with the constant T is given by (3.80). �

Corollary 3.24. Let ε > 0 be sufficiently small. The nontrivial roots of the Evans

function D(λ, ε) are determined by ts,+(λ, ε) (3.73). In other words, ts,+ determines

the stability of the pulse Γh as defined in Theorem 3.7.

Proof. By Lemma 3.20, the fast transmission function t f ,+(λ, ε) has a single zero

at λ = λ f ,0 to leading order in ε. Since t f ,+(λ) is smooth and it approximates the

WronskianW(λ) of Lemma 3.13 (see Lemma 3.20), we can approximate it linearly

as t f ,+(λ, ε){ t̂ f ,+ ·(λ−λ f ,0)+O(ε) as λ→ λ f ,0, with t̂ f ,+ = −‖w f ,0‖22 , 0. This would

suggest that λ f ,0 is a zero of the full Evans function (3.68). However, combining the

results of Lemma 3.23 with the fact that Λs(λ f ,0) =
√

µ + λ f ,0, we see that the Evans

function (3.68) behaves to leading order in ε as

D(λ, ε){ 2 ε ν2 ‖w f ,0‖22T

√

1 + λ f ,0 B−(λ f ,0)2 as λ→ λ f ,0.

We see thatD(λ f ,0, ε) = 0 if and only if ν2T B−(λ f ,0)2 = 0. Thus, the possibility of an

eigenvalue at λ = λ f ,0 is determined by ts,+(λ), not by t f ,+(λ). �

Note that in general λ f ,0 is thus not (close to) an eigenvalue of the full problem.

This –again– relates directly to the resolution of the NLEP paradox [6, 7]. The first,

positive eigenvalue λ f ,0 of the fast homogeneous problem (3.42) is a zero of the Evans

function (3.68) and therefore an eigenvalue of the full problem (3.33) if and only if

ν2 T B−(λ f ,0) = 0, (3.81)

where T as defined in (3.80); therefore, (3.81) determines a condition on the para-

meters of (3.1). Moreover, the relevance of more detailed insight in the behaviour in

general and the roots in particular of B−(λ) is apparent.

3.5.1 The structure of B−(λ)

Recalling the definition of B−(λ) (3.72), we see that the roots of B−(λ) are directly

related to the structure of ûs,− as a function of λ; also recall that ûs,− is the solution of

(3.61) that decreases exponentially as y→ ∞, see (3.62).
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3. Pulses in a general reaction-diffusion system

Consider the slow eigenvalue problem (3.61). Following the classical approach

of [49], we introduce the polar coordinate transformation

û(y) = r(y) cos θ(y), ûy(y) = r(y) sin θ(y), (3.82)

where r(y) > 0. Using the consistency condition

r(y) sin θ(y) = ûy =
d

dy
û = r′(y) cos θ(y) − r(y)θ′(y) sin θ(y), (3.83)

the second order equation (3.61) can be transformed into the system

r′ =

[

1 + µ + λ − ν1

dF1

dU
(us

s(y))

]

r cos θ sin θ (3.84)

θ′ =

[

1 + µ + λ − ν1

dF1

dU
(us

s(y))

]

cos2 θ − 1. (3.85)

Since r is a strictly positive function, we can identify the zeroes of û(y) by studying

θ(y):

û(y) = 0 ⇐⇒ θ(y) =
1

2
π + kπ, k ∈ Z. (3.86)

Moreover, we can establish an ordering principle for θ, as stated in the following

Lemma:

Lemma 3.25. Let û1, û2 be solutions to (3.61) for real λ1 resp. λ2 outside the essen-

tial spectrum σe (3.39). Assume θ2(y0) < θ1(y0) for some y0 ∈ (y∗,∞), where θ1,2 are

related to û1,2 by (3.82). If λ2 > λ1, then θ2(y) < θ1(y) for all y∗ ≤ y ≤ y0.

Proof. Introduce ∆λ = λ2 − λ1 > 0. Using (3.85), we can deduce a differential

equation for the difference θ1 − θ2:

(θ1 − θ2)′ =

[

1 + µ + λ1 − ν1

dF1

dU
(us

s(y))

]

(

cos2 θ1 − cos2 θ2

)

θ1 − θ2

(θ1 − θ2) − ∆λ cos2 θ2

(3.87)

This equation has the form u′ = f u − h, where u = θ1 − θ2 and h = ∆λ cos2 θ2 ≥ 0.

By introducing F(y) =
∫ y0

y
f (η)dη, we see that eF (u′ − f u) = d

dy

(

eFu
)

= −h eF ≤ 0.

Since eFu is decreasing and eF(y0)u(y0) = u(y0) > 0 since θ1(y0) − θ2(y0) > 0, we can

conclude that eF(y)u(y) > 0 and hence u(y) > 0 for all y∗ ≤ y ≤ y0. �

We use Lemma 3.25 to establish a similar ordering result for θ̂s,−(y; λ, ε), which

is the ’angular function’ associated to ûs,−(y; λ, ε) through the polar transformation

(3.82). Once again we use the fact that we can approximate θ̂s,− by an exponential for

large values of y (see (3.60)), by taking y0 arbitrarily large.
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3.5 Implications of Theorem 3.21: (in)stability results

Lemma 3.26. Consider real λ1, λ2 < σe (3.39). If λ2 > λ1, then θs,−(y; λ2, ε) <

θs,−(y; λ1, ε) for all y ∈ (y∗,∞).

Proof. Since ûs,−(y; λ, ε) { eΛs x∗e−Λsy as y → ∞ (3.62) and therefore d
dy

ûs,− {

−Λs eΛs x∗e−Λsy as y→ ∞, it follows that

rs,− {
√

1 + λ + µ e
√
λ+µx∗e−

√
λ+µ y as y→ ∞,

cos θs,− {
1

√

1 + λ + µ
as y→ ∞,

sin θs,− { −
√
λ + µ

√

1 + λ + µ
as y→ ∞

so tan θs,− { −
√
λ + µ as y → ∞. Since we consider λ ∈ R outside the essen-

tial spectrum (3.39), we know that 0 < 1√
1+λ+µ

< 1 so θs,−(mod 2π) ∈ (− π
2
, π

2
) as

y → ∞. The angle variable θ is still defined up to a multiple of 2π: we gauge

θs,− such that θs,− ∈ (− π
2
, π

2
) as y → ∞. Since the tangent is strictly increasing

on (− π
2
, π

2
), it follows that if λ2 > λ1 then −

√
λ2 + µ < −

√
λ1 + µ and therefore

tan θs,−(y; λ1; ε) − tan θs,−(y; λ2; ε) { K1 > 0 as y → ∞; we can conclude that

θs,−(y; λ1, ε) − θs,−(y; λ2, ε) { K2 > 0 as y → ∞. Lemma 3.25 can now be used

to establish the statement of the Lemma. �

The ordering principle from Lemma 3.25 can be combined with the eigenfunction

hierarchy from Lemma 3.12. This is only possible if the slow eigenvalue problem

(3.60) can be extended to the entire real line, i.e. when us
s(x) is bounded for x→ ±∞.

Invoking the result of Lemma 3.8, we see that we may assumeWs
s((0, 0))∩{ps = 0} ,

∅ without loss of generality, and that as a consequence us
s(x) may be assumed to be

bounded, since the function us
s(x) describes a homoclinic orbit on the slow manifold

M. This allows us to use Lemma 3.12 on (the extended) eigenvalue problem (3.60),

introducing the slow eigenvalues λs, j with their associated eigenfunctions ws, j from

Lemma 3.12.

Lemma 3.27. Assume without loss of generality thatWs
s((0, 0)) ∩ {ps = 0} , ∅. If

λs, j+1 < λ < λs, j then the associated function ûs,−(y; λ; ε) has at least j and at most

j + 1 zeroes as a function of y. Furthermore, if 0 < λ < λs,0, then ûs,−(y; λ; ε) > 0 if

y > 0. Secondly, if λs,0 ≤ λ, then ûs,−(y; λ; ε) > 0 for all y ∈ R.

Proof. SinceWs
s((0, 0)) ∩ {ps = 0} , ∅, us

s(x) is bounded. This allows us to apply

Lemma 3.12 in full, introducing the slow eigenvalues λs, j with associated eigenfunc-

tions ws, j. From Lemma 3.12 (ii) and (iii), it follows that ws,1(y) = − d
dy

us
s(y) for
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3. Pulses in a general reaction-diffusion system

λs,1 = 0. Moreover, ws, j(y) has j distinct zeroes – in particular, ws,0(y) is positive

(Lemma 3.12 (iii)) and never zero. Using the fact that ws,0(y) is even, we can reason

analogously to the proof of Lemma 3.26 and conclude that θs,0(y) ∈ (− π
2
, π

2
) for all y

– we use the same gauge for θs, j as that for θs,− in the proof of Lemma 3.26.

Furthermore, evaluating (3.85) at the ’critical’ θ-values from (3.86), we see that

θ(y) =
1

2
π + kπ, k ∈ Z ⇐⇒ θ′(y) = −1. (3.88)

The function θ(y) thus crosses each ’critical’ value θ(y) = 1
2
π + kπ, k ∈ Z only once,

and in a transversal way. Since ws,1(y) is odd, we can infer analogously to the proof

of Lemma 3.26 that cos θs,1 { − 1√
1+µ

and sin θs,1 { −
√
µ√

1+µ
as y → −∞. This

means that θs,1 (mod2π) ∈ (π, 3
2
π) as y → −∞. Using the fact that ws,1(y) is has

only one zero and therefore θs,1 crosses the line θ = 1
2
π only once, we see that the

gauge choice allows us to omit the ”mod2π”, yielding θs,1 ∈ (π, 3
2
π) as y → −∞.

Using Lemmas 3.25 and 3.26 (extended to the entire real line), we conclude that

for all λs,1 = 0 < λ < λs,0, the function wR
s,λ

(y) has at most one zero, see Figure

3.6. Furthermore, since we know that θs,1 crosses the line θ = 1
2
π exactly at y = 0

(with slope −1), the aforementioned zero of wR
s,λ

(y) can only occur for negative values

of y. Moreover, analogous reasoning can be applied to every pair (λs, j, λs, j+1): if

λs, j+1 < λ < λs, j, then wR
s,λ

(y) has at least j and at most j + 1 zeroes. Note that the

above also implies that for λs,0 < λ, the function wR
s,λ

(y) is never zero. Identification

of wR
s,λ

(y) with ûs,−(y; λ, ε) yields the Lemma. �

The result of Lemma 3.27 can used to make a statement about B−(λ):

Lemma 3.28. If y∗ > 0, then B−(λ) , 0 for all λ ≥ 0. If y∗ ≤ 0, then there is a λ ≥ 0

for which B−(λ) = 0.

Of course, this has an immediate consequence for pulses for which x∗ < 0 (see

Figure 3.4c).

Corollary 3.29. Let F1,2 and G be such thatWs
s((0, 0)) ∩ {ps = 0} , ∅, and assume

that x∗ < 0. Let Γh be a pulse solution of (3.7) with x∗ < 0 (Theorem 3.7). Then Γh is

unstable.

Proof of Lemma 3.28. y∗ > 0 : Since B−(λ) = limε→0 ûs,−(y∗; λ, ε), the last statement

of Lemma 3.27 applies for all values of y∗ if λ ≥ λs,0. For 0 ≤ λ < λs,0, the second

statement of Lemma 3.27 makes sure that whenever y∗ > 0, ûs,−(y∗; λ, ε) , 0 and

therefore B−(λ) , 0.
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3 Π

2

Π

2

- Π
2

Θs ,-Hy , Λs ,1L

Θs ,-Hy , Λs ,0L
y

Θ

Figure 3.6: The ordering of θs,−(y; λ), depicted for λ1 ≤ λ ≤ λ0. The intersections

with the line θ = π
2

are also indicated; for these values of λ, each of these intersections

is to the left of y = 0.

y∗ ≤ 0 : Consider λ ≥ 0; we set out to prove that for every y∗ ≤ 0 there is a λ ≥ 0

such that limε→0 ûs,−(y∗; λ, ε) = 0. Define U0 =
{

(λ, y0) | limε→0 ûs,−(y0; λ, ε) = 0
}

.

Using Lemma 3.27 and the previously proven results for y∗ > 0, we know that

(U0 ∩ {(λ, y0) | λ ≥ 0}) ⊂ [0, λs,0) × (−∞, 0]. By the polar coordinate transformation

(3.82), we see that U0 = Θ0, where Θ0 =
{

(λ, y0) | limε→0 θs,−(y0, λ, ε) = π
2

}

. Tak-

ing the derivative with respect to λ of the defining equation limε→0 θs,−(y0; λ, ε) = π
2

yields
∂θs,−
∂y

dy0

dλ
+

∂θs,−
∂λ
= 0. For (λ, y0) ∈ Θ0 we have

∂θs,−
∂y
= −1 (3.88), so

dy0

dλ
=

∂θs,−
partialλ

for (λ, y0) ∈ Θ0. Now consider (λ̂, ŷ0) ∈ Θ0 and take 0 < δ ≪ 1 small enough.

Using the smoothness of θs,− as a function of λ, we can write θs,−(ŷ0; λ̂ + δ, ε) =

θs,−(ŷ0; λ̂, ε) + δ
∂θs,−
∂λ

(ŷ0; λ̂, ε) + O(δ2). Using the extension of Lemma 3.26 to the en-

tire real line, we know that θs,−(ŷ0; λ̂ + δ, ε) < θs,−(ŷ0; λ̂, ε). Taking the limit ε → 0

yields π
2
+ δ limε→0

∂θs,−
∂λ

(ŷ0; λ̂, ε) + O(δ2) < π
2

so limε→0
∂θs,−
∂λ

(ŷ0; λ̂, ε) < 0 for all

(λ̂, ŷ0) ∈ Θ0. This implies that
dy0

dλ
< 0 on Θ0. Therefore, Θ0 is a smooth one-

dimensional submanifold of the the (λ, y0)-(half)plane. The continuity of ûs,−(y; λ, ε)

both as a function of y and λ implies that U0 = Θ0 is closed. Since
∂θs,−
∂y

(λ, y0) = −1

when limε→0 θs,−(y0; λ, ε) = π
2
, there is a η > 0 such that limε→0 θs,−(y0 − η; λ, ε) > π

2

and limε→0 θs,−(y0 + η; λ, ε) < π
2
. The smoothness of ûs,−(y; λ, ε) as a function of λ

implies that these inequalities also hold for an open interval containing λ. This means

that Θ0 is connected and that it does not have singular, i.e. terminal points in the
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Q0

Λ s,0

y

Λ

Figure 3.7: The zero set Θ0 =
{

(λ, y0) | limε→0 θs,−(y0, λ, ε) = π
2

}

.

interior of the half-plane {(λ, y0) | λ ≥ 0}, except for (0, 0) ∈ Θ0 – which also ensures

that Θ0 is nonempty. We conclude that as a graph over λ, the map λ 7→ y0(λ) defines a

strictly decreasing function which has the entire negative halfline (−∞, 0] as its range,

see Figure 3.7.

Therefore, for every y0 ≤ 0 there is a λ ≥ 0 such that limε→0 θs,−(y0; λ, ε) = π
2
, which

implies that B−(λ) = limε→0 ûs,−(y∗; λ, ε) = 0 if we take y∗ = y0. �

The fact that B−(λ) , 0 for λ ≥ 0 only excludes real positive zeroes of B−(λ)

if y∗ > 0. In chapter 2, we have conjectured that B−(λ) , 0 for all λ ∈ C with

Im λ , 0 for the explicit system (3.2) considered there (Conjecture 2.16). Even for

the very simple case in which ûs,− can be expressed in terms of associated Legendre

functions –as is the case in chapter 2–, there is no result in the literature about the

(non-)existence of complex zeroes we are aware of. In our (numerical) investigations

of B−(λ) we have not found any evidence of the possibility that B−(λ) can be zero for

λ < R.

3.5.2 The trivial eigenvalue λ = 0

While the explicit expression for ts,+ (3.73) is in the general setting hard to analyse

explicitly, it is possible to treat some specific situations in detail; in this section, we

focus on the trivial eigenvalue λ = 0. From Lemmas 3.27 and 3.28 we know that

B−(0) = 0 if and only if y∗ = 0 since d
dy

us
s(y∗) = 0 if and only if y∗ = 0. This situation

can be interpreted geometrically as a quadruple intersection of both curves To (3.19)

and Td (3.20) withWu
s ((0, 0))∩Ws

s((0, 0)) at (uM , 0). This implies that p∗ = 0 (3.25)

and hence Dp(u∗) = 0 (3.17), which in turn means that the u-coordinate does not

make a jump (3.16). Note that this does not necessarily mean that V-component is
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identically zero, only that the U- and V-components decouple to leading order. Since

λ = 0 is always a simple eigenvalue of the pulse, we can conclude the following:

Corollary 3.30. When x∗ = 0, the trivial eigenvalue λ = 0 has multiplicity 2.

Therefore, the bifurcation which changes the sign of x∗ = y∗ + O
(

ε
3
4

)

, i.e. which

changes the qualitative properties of the homoclinic pulse from the situation depicted

in Figure 3.4a to Figure 3.4c, (further) destabilises the pulse by sending an eigenvalue

through the origin; it is highly likely that there are additional unstable eigenvalues.

The fact that the trivial eigenvalue has multiplicity 2 when x∗ = 0 can also be under-

stood by noticing that in this case there is virtually no coupling between the slow U-

and fast V-equation: the fast V-pulse does not have an impact on the U-component

since Dp(u∗) = 0. The uncoupled Uh- and Vh-components both have a zero (as well as

a positive) eigenvalue, since their derivatives are a solution to their respective scalar

equations.

The slow transmission function ts,+ can be analysed in more detail at λ = 0,

yielding the following Lemma.

Lemma 3.31. At the trivial eigenvalue λ = 0, the slow transmission function ts,+(λ)

can be expressed as

ts,+(0) =
1

2
√
µ

ν2Dp(u∗)

u2
s,∞

{

µu∗ − ν1F1(u∗; 0) − 1

4
ν2

2Dp(u∗)
d

du

∣

∣

∣

∣

∣

u=u∗

Dp(u)

}

. (3.89)

Proof. First, we recall Lemma 3.17: for λ = 0, we can write vin(ξ; λ = 0) as

vin(ξ; 0) =
∂

∂u

∣

∣

∣

∣

∣

u=u∗

v f ,h(ξ; u) +Cv̇ f ,h(ξ; u∗)

where C ∈ R is a free parameter. Since v f ,h(ξ, u) is an even function of ξ, the product

∂F2

∂V
(u∗, v f ,h(ξ; u∗))

∂

∂ξ
v f ,h(ξ; u∗)

is odd as a function of ξ, hence its integral vanishes. Therefore we can write the

integrand of the integral term occcuring in the expression of ts,+ (3.73) as

∂F2

∂U
(u∗, v f ,h(ξ; u∗)) +

∂F2

∂V
(u∗, v f ,h(ξ; u∗))vin(ξ) =

d

du

∣

∣

∣

∣

∣

u=u∗

F2(u, v f ,h(ξ; u)).
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Using the notation introduced in (2.9), we can write the integral in (3.73) as

∫ ∞

−∞

[

∂F2

∂U
(u∗, v f ,h(ξ; u∗)) +

∂F2

∂V
(u∗, v f ,h(ξ; u∗)) vin(ξ)

]

dξ =

∫ ∞

−∞

[

d

du

∣

∣

∣

∣

∣

u=u∗

F2(u, v f ,h(ξ; u))

]

dξ =
d

du

∣

∣

∣

∣

∣

u=u∗

Dp(u). (3.90)

As for the expressions B− and B′−, we recall Lemma 3.12 (ii): the eigenfunction at

λ = 0 for the problem (Ls(y) − λ)u = 0 is (a scalar multiple of) the derivative of the

function which is perturbed, in our case

ûs,−(y∗; λ = 0) = C1

d

dy

∣

∣

∣

∣

∣

y=y∗

us
s(y) = C1

d

dx

∣

∣

∣

∣

∣

x=x∗

us
s(x), C1 ∈ R

where us
s(x) is the solution to (3.21) that spans the stable manifold Ws

s((0, 0)). Using

(3.31), we can determine C1 =
1

us,∞
. Similarly, we can write

d

dy

∣

∣

∣

∣

∣

y=y∗

ûs,−(y; λ = 0) =
1

us,∞

d2

dx2

∣

∣

∣

∣

∣

∣

x=x∗

us
s(x).

As both B− and B′− are defined as the limit of the above expressions as ε→ 0 (3.74),

we see that

B−(0) =
1

us,∞

d

dx

∣

∣

∣

∣

∣

x=x∗

us
s(x) and B′−(0) =

1

us,∞

d2

dx2

∣

∣

∣

∣

∣

∣

x=x∗

us
s(x). (3.91)

Since the flow on the stable manifold is governed by (3.21), we can write

us,∞B′−(0) = µu∗ − ν1F1(u∗; 0). (3.92)

Moreover, since the expressions for B− and B′− are evaluated at x = x∗, we know that

at u(x∗) = u∗ the slow manifold intersects the touchdown curve Td. Therefore, by

(3.23)

us,∞B−(0) = −1

2
ν2Dp(u∗). (3.93)

Substitution of (3.90), (3.92) and (3.93) in (3.73) yields the Lemma, using the fact

that us,∞ , 0. �

When y∗ , 0 and hence B−(0) , 0, the trivial eigenvalue is again connected to a

bifurcation of the homoclinic pulse (Remark 3.10). Comparison of the saddle-node

condition (3.29) from Corollary 3.9 with the expression for ts,+(0) from Lemma 3.31

yields the following Corollary:
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Corollary 3.32. Assume B−(0) , 0. The critical eigenvalue λ = 0 has multiplicity

2 or more – or equivalently ts,+(0) = 0 – if and only if the homoclinic orbit Γh(ξ) of

Theorem 3.7 undergoes a saddle node bifurcation (as described in Corollary 3.9).

This way we may conclude that, apart from the saddle node bifurcation (Corol-

lary 3.9) and the crossing of x∗ through 0 (Corollary 3.30), the homoclinic pulse Γh

can only lose or gain stability when a pair of complex conjugate eigenvalues –with

nonzero imaginary parts– crosses the imaginary axis: the associated bifurcation is of

Hopf type. In explicit settings, the bifurcation structure of these Hopf bifurcations

can be analysed in detail, see chapter 2, section 2.4. The nature of this Hopf bifur-

cation will be analysed extensively in chapter 4, both in the general setting treated in

this chapter and in the applied setting of chapter 2.

3.5.3 Further instability results

The structure of ts,+(λ) at λ = 0 and near λ = λ f ,0 can be used to establish explicit

conditions for the existence of real positive zeroes of ts,+(λ). Note that the line of

reasoning is similar to that in [28], where the sign of the Evans function at λ = 0 and

for λ→ ∞was combined with counting arguments to establish the (non-)existence of

intersections of the (real) Evans function with the positive λ-axis. Compared to [28],

we have additional information about the slow component of the Evans function near

its pole at λ = λ f ,0.

Lemma 3.33. Consider T as given in (3.80). If ν2 T > 0, there exists a positive real

zero of ts,+(λ); therefore, the homoclinic pulse Γh unstable when ν2 T > 0.

When F2 is monotonic in V and G is monotonic in U, the coefficient T is nonzero

and its sign is known (see (3.80) and recall that w f ,0(ξ) > 0). In that case –which

will often arise in explicit settings such as the generalised GM model– the equation

ν2 B−(λ f ,0) = 0 determines a codimension 1 instability condition, see the discussion

following Corollary 3.24 on (3.81). Combining this with Lemma 3.33, we see that

the homoclinic pulse Γh is unstable for either ν2 ∈ (−∞, 0] or ν2 ∈ [0,∞), depending

on the (fixed) sign of T .

Proof. The idea of the proof is to combine insights on the behaviour of ts,+(λ) for real

λ as λ→ ∞ with the behaviour of ts,+(λ) as λ ↓ λ f ,0, then use the continuity of ts,+.

Firstly, as in the proof of Lemma 3.14, define δ = 1
λ
. For δ small enough, i.e.

for λ large enough, it can be shown analogous to the proof of Lemma 3.14 that

ûs,±(y; λ, ε) = e±
√
λy(1 + O(δ)) on an O(1) y-domain ⊃ {y = 0}, using (3.62) and
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3. Pulses in a general reaction-diffusion system

(3.63). Therefore, we can approximate B± and B′± as

B±(λ) = e±
√
λy∗ (1 + O(δ)) and B′±(λ) = ±

√
λ e±

√
λy∗ (1 + O(δ)),

yielding

ts,+(λ) =
e−2
√
λy∗

√
λ

{√
λ − ν2

2

∫ ∞

−∞

[

∂F2

∂U
(u∗, v f ,h(ξ; u∗)) +

∂F2

∂V
(u∗, v f ,h(ξ; u∗)) vin(ξ)

]

dξ

}

.

Combining Lemma 3.14 and the elements of its proof with the expression for vin from

Lemma 3.15, we obtain

vin(ξ; λ) =
1

2
√
λ

∫ ∞

−∞

∂G

∂U
(u∗, v f ,h(ξ̃; u∗)) e−

√
λ|ξ−ξ̃|dξ̃ + O(δ).

From this, we see that
∫ ∞
−∞

∂F2

∂V
(u∗, v f ,h(ξ; u∗)) vin(ξ) dξ → 0 as λ → ∞. Since the

integral
∫ ∞
−∞

∂F2

∂U
(u∗, v f ,h(ξ; u∗)) dξ does not depend on λ, it follows that

ts,+(λ){ e−2λy∗ as λ→ ∞.

Secondly, we know the behaviour of ts,+ in another limit from Lemma 3.23: recall

(3.79), with T as in (3.80). Now, when ν2 T > 0, then ts,+ tends to −∞ as λ ↓ λ f ,0.

Since there are no other poles of ts,+ for λ > λ f ,0, by continuity there must be a

λ∗ > λ f ,0 > 0 where ts,+ = 0 because ts,+ approaches zero from above for λ → ∞.

The existence positive real zero of ts,+ establishes the instability of the homoclinic

pulse Γh. �

Combining the statement of Corollary 3.29 with the observation that the condition

x∗ < 0 is equivalent with ν2Dp(u∗) < 0 (combining the definition p∗ = +
1
2
ν2Dp(u∗)

with with Lemma 3.8), we see that the homoclinic pulse may only be stable when

ν2Dp(u∗) > 0. This observation can be used to obtain another instability criterion:

Lemma 3.34. Assume ν2Dp(u∗) > 0, and let R be defined by

R = µu∗ − ν1F1(u∗; 0) − 1

4
ν2

2Dp(u∗)
d

du

∣

∣

∣

∣

∣

u=u∗

Dp(u). (3.94)

If R > 0, the homoclinic pulse Γh is unstable.

Since R is directly related to the dervative of (3.24) with respect to u (see Co-

rollary 3.9 and Lemma 3.31), it can be interpreted geometrically in the context of

the existence problem as the relative slope of To with respect to Wu
s ((0, 0)) at their

intersection (u∗, p∗). In Figure 3.8, we have indicated the signs of R related to the

three possible homoclinic pulses associated to the configuration depicted in Figure

3.2. Lemma 3.34 directly yields the instability of the first and third intersection.
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Ws
u IH0, 0LM

To

Td

Ws
s IH0, 0LM

u *

R > 0

R < 0

R > 0

u

p

Figure 3.8: The coefficient R (3.94) interpreted geometrically as the relative slope of

To with respect toWu
s ((0, 0)) at their intersection point. Only the homoclinic pulse

associated to the second intersection can be stable (Lemma 3.34).

Proof. Since Lemma 3.33 ensures that the pulse is unstable when ν2T > 0, we as-

sume ν2T < 0 without loss of generality. Using Lemma 3.31, we see that ts,+(0) =
1

2
√
µ

ν2Dp(u∗)

u2
s,∞

R, so sgn
(

ts,+(0)
)

= sgn(R) since ν2Dp(u∗) > 0. Since ν2T < 0, we can

use Lemma 3.23 to conclude that ts,+ → −∞ as λ ↑ λ f ,0. If R > 0, i.e. ts,+(0) > 0, it

follows that there is a λ0 ∈ (0, λ f ,0) for which ts,+(λ0) = 0 since ts,+(λ) is continuous

for λ ∈ [0, λ f ,0). Since λ0 > 0 is a positive zero of ts,+(λ), the homoclinic pulse Γh is

unstable. �

We refer to Figure 3.9 for an illustration of the necessary existence of unstable

eigenvalues in the case ν2T > 0 (Lemma 3.33) and the case R > 0, ν2T < 0 (Lemma

3.34). Note that R < 0 for the only existing pulse in the explicit model (3.2), see

Figure 2.6a in chapter 2.

Combining Corollary 3.29, Lemma 3.33 and Lemma 3.34, we may conclude:

Theorem 3.35. Let Γh be a homoclinic pulse whose existence is established by The-

orem 3.7. Γh can only be stable if ν2Dp(u∗) > 0, ν2T < 0 and R < 0, where Dp(u∗), T

and R are explicitly computable expressions given in (3.17), (3.80) and (3.94).

Finally, we formulate another instability result that is again based on the fact that

we know ts,+ has a pole at λ = λ f ,0.
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Ν2 T > 0  

Λ

ts,+

(a)

Ν2 T < 0  

R > 0  

Λ

ts,+

(b)

Figure 3.9: An illustration of the proof of Lemma 3.33 (3.9a) and Lemma 3.34 (3.9b).

The (singular) behaviour of ts,+ near λ = λ f ,0 is determined by the sign of ν2T

(Lemma 3.23). In (a), this leads to at least one root of ts,+ to the right of λ f ,0 > 0

since ts,+ { e−2y∗λ as λ → ∞. In (b), ts,+ has to cross the horizontal axis in the

interval λ ∈ (0, λ f ,0) at least once if R > 0.

Lemma 3.36. Assume ν2 , 0 and B−(λ f ,0) , 0. Let S be defined by

S =
2

ν2

B′−(λ f ,0)

B−(λ f ,0)
+

∫ ∞

−∞

∂F2

∂U
(u∗, v f ,h(ξ; u∗)) dξ. (3.95)

If |S | is large enough, then ts,+(λ) has a zero near λ f ,0, rendering the homoclinic pulse

unstable.

Proof. Take the interval I(λ f ,0, δ) to be a (symmetric) δ-neighbourhood of λ f ,0 in R

with 0 < δ ≪ 1 small enough. We can rewrite the equation ts,+(λ) = 0 using (3.73) as

∫ ∞

−∞

∂F2

∂V
(u∗, v f ,h(ξ; u∗)) vin(ξ) dξ = − 2

ν2

B′−
B−
−

∫ ∞

−∞

∂F2

∂U
(u∗, v f ,h(ξ; u∗)) dξ (3.96)

From Corollary 3.16 we know that the lefthand side of (3.96) behaves as 1
λ−λ f ,0

in

I(λ f ,0, δ), while the righthand side of (3.96), given by S to leading order in δ, is

continuous –and to leading order constant– in λ on the same interval. Therefore, a

solution to (3.96) in the interval I(λ f ,0, δ) can be found if |S | is large enough; see also

Figure 3.10. �

This Lemma can be used to clarify the scaling of the F2 term in (3.1) / (3.7), as

argued in the introductory section 3.1:

136



3.6 Discussion

Λ f ,0

S  

Λ

Figure 3.10: The statement of Lemma 3.36 graphically explained. The lefthand side

of (3.96), which is singular at λ = λ f ,0, is indicated in blue, the righthand side of

(3.96) is indicated in red and its approximation S (3.95) by the dashed line.

Corollary 3.37. When ν2 is small enough, in particular when ν2 = O(ε), the homo-

clinic pulse is unstable.

3.6 Discussion

The existence and stability theory for localised homoclinic pulses in the general set-

ting of equation (3.1) presented in this chapter can be seen as the first fundamental

step in the analysis of the dynamics of interacting localised structures. Based on this

work, some next steps can now be taken. Several of these steps have already been

made in the context of GS/GM-type models – see [5, 12, 14, 26, 32, 33, 34, 47, 51, 58]

and the references therein. The present chapter and its predecessor, chapter 2, show

that there will be fundamental analytical challenges in further developing the theory

in the general setting of (3.1). Moreover, it is clear that the ‘slow nonlinearity’ of

(3.1) will generate pulse dynamics that is much richer than that of ‘slowly linear’

models – see Remark 3.1 for the case of one localised homoclinic pulse.

A first next step –one that in fact largely inspired the present work– is the stability

analysis of localised spatially periodic patterns to systems of type (3.1) on bounded

and/or unbounded domains. Based on [51], it was found in the recent work [14] that

the nature of the destabilization of spatially periodic multi-pulse patterns with long

wavelength is quite complex. It is shown in [14] in the context of GM-type mod-

els that such patterns can be destabilised by two distinct types of Hopf bifurcations:
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one in which the destabilization makes the pulses of the periodic pattern oscillate

exactly in phase with their neighbouring pulses, and one in which each destabilised

pulse starts to oscillate exactly out of phase with its neighbours. Moreover, on the

unbounded domain x ∈ R, the character of the destabilization alternates countably

many times between these two types of Hopf bifurcation as the wavelength of the

underlying pattern grows, i.e. as the spatially periodic pattern approaches the homo-

clinic limit. This so-called ‘Hopf dance’ has also been found numerically by AUTO-

simulations in generalised Gray-Scott models – models that even include nonlinear

diffusion in the slow U-component [14, 52]. The analysis of [14] clearly shows that

the Hopf dance, and especially the associated higher order ‘belly dance’, has its ori-

gins in the ‘slowly linear’ character of GM/GS-type models. It can be expected that

the destabilization of long wavelength periodic patterns in system (3.1) has an even

richer structure. This is the subject of work in progress, and falls outside the scope of

this thesis.

Already in the case of GS/GM-type models, interacting pulses may exhibit com-

plicated, even chaotic, behaviour [41, 42]. However, in the parameter regimes in

which the pulse dynamics can be studied in full analytical detail –i.e. the regime in

which pulse self-replication does not occur– the pulse interactions are of a much more

simple nature, see [5, 12, 32, 33, 34, 47] and the references therein. Nevertheless, the

semi-strong pulse dynamics exhibited by GS/GM-type models are much richer than

in the weakly interacting case. Weak pulse interactions are only driven by exponen-

tially small tail interactions [17, 44, 45]. The semi-strong GS/GM-type dynamics are

largely determined by the slow U-component that does not approach its background

state in between the fast V-pulses. However, in the GS/GM-type models studied in

the literature, the slow U-dynamics are linear, and –exactly as in the stability analysis

for homoclinic pulses– this linearity plays a crucial role in the analysis. In the general

system (3.1), also the slow U-dynamics between localised V-pulses will be nonlin-

ear. In combination with the observations of chapter 2 –especially the possibility of

stably oscillating pulses (see Remark 3.1)– this implies that even in the semi-strong

regime, the pulse dynamics generated by systems of the type (3.1) will be much more

rich and complex than encountered so far in the literature. A first step towards the

analysis of such rich and complex behaviour is presented in the next and last chapter

of this thesis, chapter 4.
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4
Hopf bifurcations for

localised pulses

4.1 Introduction

The study of localised patterns in systems of reaction-diffusion equations has been a

very active field of research for the last couple of decades. In canonical model systems

such as the Gray-Scott [23] or Gierer-Meinhardt [22] model, far-from-equilibrium

patterns were constructed and analysed in the presence of an asymptotically small

parameter, giving the system under consideration a singularly perturbed nature [11,

26]. This singularly perturbed structure induces a spatial scale separation, which can

be used to obtain explicit leading order expressions for the pattern under considera-

tion (e.g. [6]). These techniques were applied in full generality in chapter 3 in the

context of single pulse patterns, going beyond the existing analysis in the context of

the canonical Gray-Scott and Gierer-Meinhardt models. In chapter 2, this extended

theory was applied in the context of an explicit model, exhibiting new, previously

unobserved behaviour.

In chapters 2 and 3, the stability analysis of the pulse solutions under considera-

tion led to observation that, under certain general conditions, the most general pulse

destabilisation scenario corresponds to a Hopf bifurcation of the pulse eigenvalues,

an observation that is also known from the extensive literature on Gray-Scott/Gierer-

Meinhardt models [5, 6, 7, 14, 17, 26, 32, 47, 52, 57]. This Hopf bifurcation, and in

particular its unfolding, is the main topic of this last chapter. The aim of this chapter
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4. Hopf bifurcations for localised pulses

is to develop a mechanism for the weakly nonlinear analysis of the aforementioned

Hopf destabilisation scenario, through local analysis of the associated centre mani-

fold.

The chapter is structured as follows. In section 4.2, relevant results from chapter

3 on the existence and stability of pulse solutions are summarised, (re)introducing

notation which will be used throughout the text. In section 4.3, the Hopf centre man-

ifold is introduced. Also, the issue of the translational eigenmode is addressed. Since

the systems of reaction-diffusion equations studied in the field of pattern formation –

and in extension localised pattern solutions thereof – exhibit translational invariance,

the translational eigenmode with corresponding (central) eigenvalue λ = 0 is always

present when the stability of the pattern under consideration is assessed. However,

the centre manifold can be foliated along the direction spanned by the translational

mode (Theorem 4.8), and it follows that the dynamics along the translational direc-

tion are trivial.

Section 4.4 is dedicated to the explicit local expansion of the centre manifold es-

tablished in section 4.3, using direct expansions in the Hopf eigenmodes. The main

result is an explicit, albeit elaborate, expression for the first Lyapunov coefficient

of the (normal form of) the Hopf bifurcation (Corollary 4.12 and equation (4.58)).

Leading order expressions for the pulse and its eigenmodes as developed in chapter

3 (summarised in Theorem 4.2 resp. Theorem 4.3), combined with a specific choice

for the inner product, are then used to obtain an explicit leading order expression for

this first Lyapunov coefficient, which is used to decide whether the Hopf bifurcation

under consideration is subcritical or supercritical. Given the intricate nature of the

problem, this result is quite remarkable: the formal centre manifold expansion leads

to concrete, explicitly computable results, based on explicit leading order expressions

for the Hopf eigenfunctions.

In section 4.5, an alternative method for the calculation of the first Lyapunov coef-

ficient is presented, based on the analysis in [24]. While the algebraic manipulations

leading to the explicit expression of the first Lyapunov coefficient are less cumber-

some than those in section 4.4, this method introduces a number of new inverse prob-

lems to be solved, along with the analysis of the adjoint linear operator associated

to the linearisation of the pulse solution. It is argued that, while both methods are

in essence equivalent, either one of the two approaches can be preferable in terms

of algebraic and analytic tractability, depending on the specific choice of (nonlinear)

reaction terms in the system under consideration.
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The developed theory is in section 4.6 applied to a model example, the slowly

nonlinear Gierer-Meinhardt equation (4.109), which was considered in chapter 2. The

explicit leading order expressions available for the pulse and its eigenfunctions allow

one to obtain directly computable eigenvalues, and in extension directly computable

values of the associated first Lyapunov coefficients. For this example, it is shown that

the extension of the canonical Gierer-Meinhardt model with a slowly nonlinear term

introduces a Hopf bifurcation which can change its nature from sub- to supercritical,

depending on the parameter values (Theorem 4.16). As an aside, a relatively old

observation from the literature, based on numerical simulations, is confirmed analyti-

cally [11, 57], namely that Hopf bifurcation associated with the pulse in the canonical

Gierer-Meinhardt equation is always subcritical (Corollary 4.17).

4.2 Preliminaries

In chapter 3, a general theory for establishing the existence and stability of stationary

single pulses was presented in a general setting of a singularly perturbed, two com-

ponent system of reaction-diffusion equations on the real line, with asymptotically

small parameter 0 < ε ≪ 1. It was shown that the most general context in which

these pulse solutions could be constructed led to the following system:

{

Ut = Uxx − (µU − ν1F1(U; ε)) +
ν2

ε
F2(U,V; ε)

Vt = ε2Vxx − V + G(U,V; ε)
. (4.1)

System (4.1) is considered on the unbounded domain such that U,V : R × R>0 → R;

moreover, we restrict ourselves to positive solutions. A stable homogeneous trivial

background state is assumed. The range of the model parameters µ, ν1,2 and mild

regularity assumptions on the nonlinear reaction terms F1,2 and G are specified in (A1

- A4) of Assumptions 4.1. In the following subsections 4.2.1 and 4.2.2, a very concise

overview of the results obtained in chapter 3 are given. The necessary ingredients for

establishing localised pulses and their eigenfunctions are given, in order to be able to

set up the theory for a Hopf bifurcation of such a localised pulse, which is the main

subject of this chapter. By nature, this overview is far from complete and very brief:

the reader is encouraged to consider chapter 3 for a complete exposition.
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4.2.1 Existence

Introducing the ’fast’ (or short scale) coordinate ξ = x
ε
, (4.1) can be transformed into

{

Ut =
1
ε2 Uξξ − (µU − ν1F1(U; ε)) +

ν2

ε
F2(U,V; ε)

Vt = Vξξ − V + G(U,V; ε)
. (4.2)

Establishing the existence of a stationary pulse solution in (4.2) (or equivalently (4.1))

which is asymptotic to the (stable) trivial background state of (4.2) is equivalent to

constructing a homoclinic orbit in the associated ODE system































uξ =
√
εp

pξ =
√
ε (−ν2F2(u, v; ε) + ε (µu − ν1F1(u; ε)))

vξ = q

qξ = v −G(u, v; ε)

. (4.3)

Since ε is taken to be asymptotically small, (4.3) can be analysed using geometric

singular perturbation (or Fenichel) theory [18, 19]. Taking the limit ε → 0 in (4.3)

yields the fast reduced system

v f ,ξξ = v f−G(u0, v f ; 0) or

{

v f ,ξ = q f

q f ,ξ = v f −G(u0, v f ; 0)
, u0 > 0 constant, (4.4)

together with the normally hyperbolic invariant manifold

M = {(u, p, v, q) | v = q = 0, u > 0} .

Note that, by Assumptions 4.1, (A4), M is also invariant for the full system (4.3);

there, its unstable and stable manifolds are denoted byWu/s(M).

OnM, the slow dynamics can be represented to leading order by the slow reduced

system

us,xx = µus − ν1F1(us; ε), or

{

us,x = ps

ps,x = µus − ν1F1(us; ε)
, u > 0. (4.5)

For this slow reduced system, the unstable and stable manifolds of the origin are de-

noted byWu/s
s ((0, 0); ε). These manifolds are by definition spanned by the solutions

(uu
s(x; ε), pu

s(x; ε)) resp. (us
s(x; ε), ps

s(x; ε)) of (4.5). Note that us
s(x) = uu

s(−x) and

ps
s(x) = −pu

s(−x) by the reversibility symmetry of (4.5).
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The existence of a symmetric stationary pulse solution of (4.2) was established

in chapter 3 under certain conditions; first, Assumptions 4.1, (A5) below ensures the

existence of a homoclinic orbit in the fast reduced system (4.4). Second, introducing

Dp(u0) =

∫ ∞

−∞
F2(u0, v f ,h(ξ; u0); 0) dξ, (4.6)

it was seen that the solutions to the equation

µu2 − 2ν1

∫ u

0

F1(ũ; 0) dũ = 1
4
ν2

2 D2
p(u) = 1

4
ν2

2

[∫ ∞

−∞
F2(u, v f ,h(ξ; u); 0) dξ

]2

(4.7)

play a central role in the pulse construction process. To remove a number of sign

ambiguities, it is necessary to gauge F2 such that the function Dp obeys Assumptions

4.1, (A6). For a more detailed and extended presentation of the above, see chapter 3,

section 3.2. We restate the assumptions from chapter 3; see also Definition 2.3.

Assumptions 4.1. The following is assumed to hold:

(A1) µ, ν1,2 are real and nonsingular in ε; furthermore, µ > 0.

(A2) F1(U; ε){ U f1 as U ↓ 0 for some f1 > 1;

F1 is smooth both on its domain and as a function of ε.

(A3) Writing F2(U,V; ε) = F2,1(U; ε) V + F2,2(U,V; ε),

F2,1(U; ε){ F̃2,1(ε) Uγ1 as U ↓ 0 for some γ1 ≥ 0 and F̃2,1(ε) ∈ R;

F2,2(U,V; ε){ F̃2,2,u(V; ε) Uα1 as U ↓ 0 for some α1 ∈ R;

F2,2(U,V; ε){ F̃2,2,v(U; ε) Vβ1 as V → 0 for some β1 > 1;

F2 is smooth both on its domain and as a function of ε.

(A4) G(U,V; ε){ G̃u(V; ε) Uα2 as U ↓ 0 for some α2 ∈ R;

G(U,V; ε){ G̃v(U; ε) Vβ2 as V → 0 for some β2 > 1;

G is smooth both on its domain and as a function of ε.

(A5) For all u0 > 0 there exists a positive solution v f ,h(ξ; u0) to (4.4) which is homo-

clinic to (v f , q f ) = (0, 0).

(A6) Dp(u){ 1 · udp as u ↓ 0 for some dp ∈ R, c.f. (4.6).

The Gray-Scott and Gierer-Meinhardt models are examples of systems obeying

these assumptions. However, the full class of systems described in this way is far

more encompassing.
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U h Vh

x
0

Figure 4.1: A sketch of the stationary, symmetric pulse solution to (4.2), whose ex-

istence and structure is established in Theorem 4.2.

The slow-fast structure present in the ODE system (4.3) leads to a scale separation

between the U- and V-components of the pulse. Loosely speaking, one can within

the unbounded domain define an inner, ’fast’ region

I f =

[

− 1

ε
1
4

,
1

ε
1
4

]

(4.8)

where the U-component of the pulse is constant to leading order in ε, while outside I f

the V-component of the pulse is exponentially small; see Figure 4.1. The exact lead-

ing order pulse structure and existence conditions were stated in chapter 3, Theorem

3.7, reformulated here for reference purposes:

Theorem 4.2. Assume that conditions 4.1 hold and let ε > 0 be small enough. Let K

be the number of non-degenerate solutions u = u∗,k > 0 of (4.7) such that (u∗,k, p∗,k) =

(u∗,k,
1
2
ν2Dp(u∗,k)) ∈ Wu

s ((0, 0); 0).

1. If K = 0 then there are no symmetric, positive, one-circuit homoclinic solutions

to (0, 0, 0, 0) in (4.3).

2. If K , 0, there are K distinct positive, symmetric, one-circuit homoclinic orbits

Γh,k(ξ) = (uh,k(ξ), ph,k(ξ), vh,k(ξ), qh,k(ξ)) ⊂ Wu(M) ∩Ws(M), k = 1, 2, ...,K,

with internal reflection point ξ = 0, so that Γh,k(0) = (uh,k(0), 0, vh,k(0), 0) in

(4.3). In the fast field (4.8), Γh,k(ξ) is to leading order determined by the homo-

clinic solution v f ,h(ξ; u∗,k) of (4.4):

Γh,k(ξ) =
(

u∗,k, 0, v f ,h(ξ; u∗,k), d
dξ

v f ,h(ξ; u∗,k)
)

+ O(
√
ε) for ξ ∈ I f .

In the slow field, Γh,k(ξ) approachesWu
s ((0, 0); ε) ⊂ M, resp. Ws

s((0, 0); ε) ⊂
M exponentially fast for ξ → ±∞: there are O(1) constants C1,2 such that
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4.2 Preliminaries

• vh,k(ξ){ C1e−|ξ| and qh,k(ξ){ ∓C1e−|ξ| as ξ → ±∞;

• there are shifts x∗,k ∈ R and solutions uu
∗,k(x) = uu

s(x − x∗,k), pu
∗,k(x) =

pu
s(x − x∗,k) of (4.5), such that

(

uu
∗,k(−ε 3

4 ), pu
∗,k(−ε 3

4 )
)

=
(

uh,k(−ε− 1
4 ), 1√

ε
ph,k(−ε− 1

4 )

)

=
(

u∗,k, p∗,k
)

+ O(
√
ε) and

(

uh,k(ξ), 1√
ε

ph,k(ξ)

)

=
(

uu
∗,k(εξ), pu

∗,k(εξ)
)

+ O
(

eC2ξ
)

for ξ < −ε− 1
4 ;

• similarly,
(

us
∗,k(ε

3
4 ), ps

∗,k(ε
3
4 )
)

=
(

uh,k(ε−
1
4 ), 1√

ε
ph,k(ε−

1
4 )
)

=
(

u∗,k,−p∗,k
)

+

O(
√
ε) with

(

us
∗,k(x), ps

∗,k(x)
)

=
(

uu
∗,k(−x),−pu

∗,k(−x)
)

and

(

uh,k(ξ), 1√
ε

ph,k(ξ)

)

=
(

us
∗,k(εξ), ps

∗,k(εξ)
)

+ O
(

e−C2ξ
)

for ξ > ε−
1
4 .

The orbits Γh,k(ξ) correspond to the homoclinic pulse patterns
(

Uh,k(ξ),Vh,k(ξ)
)

in

(4.2) that are symmetric with respect to ξ = 0 through Uh,k(ξ) = uh,k(ξ), Vh,k(ξ) =

vh,k(ξ).

The situation described in the theorem is illustrated in chapter 3, Figure 3.2.

4.2.2 Linearisation and eigenfunctions

In order to set up an analysis of Hopf bifurcations of the localised pulses considered

in the previous section, it is necessary to highlight some aspects of the stability ana-

lysis of the pulse, as carried out in chapter 3, section 3.3. The main purpose of the

current section is to obtain a leading order expression for the eigenfunctions of such

a localised pulse.

In the following, assume that K ≥ 1 and fix k (see Theorem 4.2); the associated

homoclinic pulse pattern is denoted by Γh(ξ) = (Uh(ξ),Vh(ξ)). The stability analysis

of this pulse is closely related to the study of the linear operator

L(ξ; ε) =

(

ε−2 0

0 1

)

d2

dξ2
−A(ξ; ε), (4.9)

where

A(ξ; ε) =

(

µ − ν1
dF1

dU
− ν2

ε

∂F2

∂U
− ν2

ε

∂F2

∂V

− ∂G
∂U

1 − ∂G
∂V

)
∣

∣

∣

∣

∣

∣

(U,V)=(Uh(ξ),Vh(ξ))

. (4.10)
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4. Hopf bifurcations for localised pulses

Since limξ→±∞ Γh(ξ) = (0, 0), the matrix A(ξ; ε) is asymptotically constant as ξ →
±∞: limξ→±∞A(ξ; ε) = A∞(ε). The eigenvalues of this constant matrix determine

the essential spectrum σe of the operator L, which is given by

σe = {λ ∈ R : λ ≤ max (−µ,−1)} ⊂ C. (4.11)

The slow-fast structure of the homoclinic pulse Γh, made explicit in Theorem 4.2, is

inherited by the linear operator L; this operator is the linearisation of (4.2) around

Γh. One can therefore introduce the ’fast’ linear operator

L f (ξ) =
d2

dξ2
−

[

1 − ∂G

∂V
(u∗, v f ,h(ξ; u∗))

]

, ξ ∈ R, (4.12)

with u∗ = u∗,1 and v f ,h as in Theorem 4.2, and determine its spectrum. The associated

eigenvalue problem
(

L f − λ
)

v = 0 is of Sturm-Liouville type; relevant results from

the literature are summarised in chapter 3, Lemma 3.12. Based on those results, let

λ f , j, j ∈ Z≥0 be the eigenvalues of the linear operator L f acting on the space of

bounded integrable functions on the entire real line.

Similarly, the ’slow’ linear operator

Ls(x) =
d2

dx2
−

[

µ − ν1

∂F1

∂U
(us
∗(x), 0)

]

, x ≥ 0, (4.13)

with us
∗ = us

∗,1 as in Theorem 4.2, plays a central role in the spectral analysis of L.

The eigenvalue problem (Ls − λ) u = 0 is again of Sturm-Liouville type, albeit on the

positive halfline. Let us,−(x; λ, ε) be the solution to the eigenvalue problem Lsu = λ u

that is bounded as x→ ∞, such that us,−(x; λ, ε){ 1 · e−
√
µ+λ x as x→ ∞.

The coupling between the U- and V-components of the pulse (apparent in the

off-diagonal entries of A) manifests itself in the spectral analysis of L through the

nonhomogeneous problem

(

L f − λ
)

v = − ∂G

∂U
(u∗, v f ,h(ξ; u∗)), ξ ∈ R. (4.14)

For λ , λ f , j and λ < σe, let vin(ξ; λ, ε) be the unique bounded solution to (4.14). The

existence and uniqueness of vin follows from the analysis in chapter 3, section 3.3.3,

which is based on the Fredholm alternative. Note that it immediately follows that vin

is even as a function of ξ, i.e. vin(ξ; λ, ε) = vin(−ξ; λ, ε).
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The actual spectral analysis of L (4.9) does not need to be summarised here: for

an overview of this spectral analysis, using an Evans function approach, see chapter

3, sections 3.4 and 3.5. There, a leading order expression for the Evans function was

derived (Theorem 3.21), enabling direct calculation of the pulse eigenvalues. It was

shown (as a result of Corollary 3.32) that the most general destabilisation scenario

for a localised pulse in (4.2) is through a Hopf bifurcation. That observation will be

the starting point of the analysis presented in this chapter. However, some comments

on the trivial eigenvalue are in order; they can be found in section 4.2.3.

The following theorem, which summarises results from section 3.4.2 in chapter

3, characterises the leading order behaviour of eigenfunctions of the linear operator

L (4.9). This leading order behaviour will be very instrumental in the upcoming

analysis.

Theorem 4.3. Let ε > 0 be small enough. Assume that λ < σe and λ , λ f , j. If there

is a λ ∈ C for which there is a bounded integrable function φ : R → C2 such that

L(ξ; ε) φ(ξ; λ, ε) = λ φ(ξ; λ, ε), then φ(ξ; λ, ε) is determined uniquely. Furthermore,

there are O(1) constants C1,2 such that the following holds:

• φ(ξ; λ, ε) =

(

us,−(εξ; λ, ε)

0

)

+C1e−C2ξ for ξ > ε−
1
4 ;

• φ(ξ; λ, ε) = φ(−ξ; λ, ε) for ξ < −ε− 1
4 ;

• φ(ξ; λ, ε) = us,−(0; λ, ε)

(

1

vin(ξ; λ, ε)

)

+ O(ε
3
4 ) for ξ ∈ I f .

Proof. The leading order expressions for the eigenfunction of L are based on the

proof of Theorem 3.21 in chapter 3. �

Remark 4.4. From Lemma 3.20 in chapter 3, we know that the ‘true’ fast eigenvalues

of the full linear operator L (4.9) are only to leading order in ε determined by the fast

eigenvalues λ f , j of the fast operatorL f (4.12): these ‘true’ fast eigenvalues λ j(ε) ofL
obey limε→0 λ j(ε) = λ f , j. Since the above Theorem 4.3 only determines the leading

order expression for the eigenfunction φ, it is sufficient to exclude the λ-values for

which vin, the unique bounded solution to the inhomogeneous problem (4.14), is not

defined. We therefore assume λ , λ f , j instead of λ , λ j(ε).
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4. Hopf bifurcations for localised pulses

4.2.3 Translational symmetry and the trivial eigenvalue

A general n-component reaction-diffusion equation

ũt = Dũxx + f (ũ), ũ ∈ Rn, D ∈ Mat(n,R), f : Rn → Rn (4.15)

is equivariant under the continuous one-parameter group of isometries (Tα)α∈R which

acts as

Tαũ(x) = ũ(x + α). (4.16)

Every stationary solution ũ0 to (4.15), for which

Dũ0,xx + f (ũ0) = 0, (4.17)

can therefore be thought of as representing a continuous family of stationary solutions

(Tαũ0)α∈R, obtained under the group action Tα. Since the infinitesimal generator of

this underlying translational symmetry group (4.16) is τ = ∂
∂x

, it follows from (4.17)

that τũ0 obeys the linear equation

[

D
∂2

∂x2
+

d f

dũ
(ũ0)

]

τũ0 = 0. (4.18)

The above considerations apply to the PDE system (4.1)/(4.2); in particular, for the

homoclinic pulse solution whose existence was established in Theorem 4.2. In this

context, (4.18) takes the form

L d

dξ
Γh = 0,

from which follows that λ = 0 is always an eigenvalue of the operator L (4.9), with

eigenfunction d
dξ
Γh. Note that Theorem 4.3 does not apply for this eigenvalue, since

λ f ,1 = 0 (see chapter 3; also, the above argument can be applied to (4.4) with its

linearisation (4.12) around the orbit v f ,h, Assumptions 4.1 (A5)). However, the ei-

genfunction d
dξ
Γh does have the same scale separated structure as the eigenfunctions

described by Theorem 4.3, see Theorem 4.2. Both considerations will be of impor-

tance in the next section.

4.3 The Hopf centre manifold

We will focus on the situation where the pulse Γh undergoes a Hopf bifurcation. In

other words, let (µ, ν1, ν2) = (µH , ν1,H , ν2,H) be such that there is a bounded integrable

function φH : R→ C2 as in Theorem 4.3 for which

L φH = iωHφH , (4.19)
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4.3 The Hopf centre manifold

with ωH > 0. Since the operator L is real, it immediately follows that the Hopf bifur-

cation (4.19) yields a complex conjugate pair of eigenvalues ±iωH with associated

eigenfunction pair
{

φH , φH

}

– here and henceforth, complex conjugation will be de-

noted by an overline.

Since the linear operator L (4.9) is sectorial and its continuous spectrum is com-

pletely determined by the essential spectrum σe (4.11), we can infer that its central

spectrum

σ0 =
{

λ ∈ C : λ is in the spectrum of L, Re(λ) = 0
}

consists of finitely many eigenvalues. Moreover, λ = 0 ∈ σ0 (see subsection 4.2.3);

we assume that this trivial eigenvalue is nondegenerate. As mentioned before, it was

argued in chapter 3 that this is the most general destabilisation scenario for a given

pulse whose existence is ensured by Theorem 4.2. Indeed, this destabilisation through

a Hopf bifurcation is typical for pulses in both the Gierer-Meinhardt equation [6] and

its slowly nonlinear counterpart, see chapter 2, sections 2.4 and 2.5. The associated

Hopf bifurcation has codimension 1.

Henceforth, we assume ±iωH are the only nontrivial central eigenvalues, i.e. that the

central spectrum of L is given by

σ0,H = {±iωH , 0} . (4.20)

Moreover, based our insight in the general pulse destabilisation mechanisms from

chapter 3, we assume that the Hopf bifurcation under consideration is of codimen-

sion 1, such that the Hopf eigenvalues are simple.

To carry out a centre manifold analysis for this central spectrum, one would na-

ively aim for an expansion in the three associated eigenvectors. However, the transla-

tional symmetry (4.16) of (4.1)/(4.2), being the source of the trivial central eigenvalue

λ = 0, induces a transversal structure for the centre manifold, enabling one to effec-

tively ignore the translational eigenmode in the local centre manifold expansion (see

upcoming Theorem 4.8). To set the stage, we first focus on the ambient function

space where the centre manifold will be embedded in.

4.3.1 Choosing a function space

In order to properly set up the centre manifold theory for the pulse Γh at the Hopf bi-

furcation (4.19), we need choose an appropriate function space to work in. Since both

components of the eigenfunction φH are eventually exponentially decreasing (see
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Theorem 4.3), bounded and thus certainly (square) integrable, the space (L2(R,C))2

seems a natural choice. The scale separation between the two eigenfunction com-

ponents forces us to make a choice for the integration variable, be it ξ or x = εξ.

However, this choice cannot be made in a uniform way, as can be seen if we try to

establish the norm of φH by integrating the sum of squares of its components. If we

would choose ξ, the integral over the square of the first component (φH)1 is

∫

R

[

(φH)1 (ξ)
]2

dξ = 2

∫ ∞

ε
− 1

4

[

(φH)1 (εξ)
]2

dξ +

∫ ε
− 1

4

−ε−
1
4

[

(φH)1 (ξ)
]2

dξ

The second term of the above expression will cause the integral to become unbounded

as ε → 0, since in particular, the value of (φH)1 at the boundaries of the fast interval

I f will not vanish.

On the other hand, if we would choose x as our integration variable, the integral over

the square of the second component of φH is

∫

R

[

(φH)1 (x)
]2

dx = 2

∫ ∞

ε
3
4

[

(φH)2 (x)
]2

dx +

∫ ε
3
4

−ε
3
4

[

(φH)2 (
x

ε
)

]2

εd
x

ε
,

which will vanish in the limit ε → 0. This would eliminate the contribution of the

second component of φH to the inner product. Therefore, one would be unable to use

this inner product to succesfully project onto the finite-dimensional subspace spanned

by φH .

To circumvent this problem, we introduce the function space

X = L2(R,C2; µε) (4.21)

with the partly scaled Lebesgue measure µε defined such that the associated inner

product 〈·, ·〉 can be defined as

〈φ, ψ〉 =
∫

R

φT S ψ dξ with S =

(

ε 0

0 1

)

(4.22)

for φ, ψ ∈ X. In other words: the product of the first components is integrated over

x = εξ, the product of the second components over ξ. Note that the norm induced

by the inner product (4.22) is for all ε > 0 equivalent to the ‘standard’ norm on

(L2(R,C))2, making X and (L2(R,C))2 isometrically isomorphic as metric spaces. A

similar norm was introduced in [12].
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4.3 The Hopf centre manifold

4.3.2 Foliation of the centre manifold along the translational

eigenmode

In this section, we show that the influence of the translational eigenmode can be

separated completely from the other eigendirections. We follow the general approach

in [24], section 2.3.3 therein. To make full use of the translational symmetry of (4.2),

we choose local tubular coordinates to separate the perturbation of the stationary

pulse solution Γh into a perturbation along resp. perpendicular to the orbits of the

translation group (Tα)α∈R, as follows:
(

U(ξ, t)

V(ξ, t)

)

= Γ(ξ, t) = Tα(t) (Γh(ξ) + ρ(ξ, t)) , (4.23)

where

〈ρ, d

dξ
Γh〉 = 0. (4.24)

In the tubular coordinates (4.23), the left-hand side of (4.2) yields
(

Ut

Vt

)

=
∂

∂t
Γ =

dα

dt
Tα(t)

(

d

dξ
Γh(ξ) +

∂

∂ξ
ρ(ξ, t)

)

+ Tα(t)

∂

∂t
ρ(ξ, t); (4.25)

multiplication with T−α(t) gives

T−α(t)

(

Ut

Vt

)

=
dα

dt

(

d

dξ
Γh(ξ) +

∂

∂ξ
ρ(ξ, t)

)

+
∂

∂t
ρ(ξ, t). (4.26)

Since the right-hand side of (4.2) is equivariant under the translation Tα(t), using the

tubular coordinates (4.23) and subsequently multiplying with the inverse translation

T−α(t) is equivalent to substitution of Γh(ξ) + ρ(ξ, t):

T−α(t)

(

Ut

Vt

)

= RHS(Γh(ξ) + ρ(ξ, t)) (4.27)

with

RHS(U,V) =

(

1
ε2 Uξξ − (µU − ν1F1(U; ε)) +

ν2

ε
F2(U,V; ε)

Vξξ − V + G(U,V; ε)

)

. (4.28)

Based on the orthogonality condition (4.24), we can project both sides of (4.27) onto

the subspace spanned by d
dξ
Γh to obtain separate dynamical equations for dα

dt
and

∂
∂t
ρ(ξ, t). Introducing the projection

Π0 =
〈·, d

dξ
Γh〉

〈 d
dξ
Γh,

d
dξ
Γh〉

d

dξ
Γh, (4.29)
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we see that projecting (4.26) onto the subspace spanned by d
dξ
Γh yields

Π0 T−α(t)

(

Ut

Vt

)

=
dα

dt

(

1 + 〈 ∂
∂ξ
ρ,

d

dξ
Γh〉

d

dξ
Γh

)

. (4.30)

Combining this with (4.27), we can express dα
dt

as

dα

dt
=

(

1 + 〈 ∂
∂ξ
ρ,

d

dξ
Γh〉

)−1

〈RHS(Γh(ξ) + ρ(ξ, t)),
d

dξ
Γh〉. (4.31)

Note that (4.31) does not depend explicitly on α(t): this is a direct consequence of the

equivariance of (4.2) under the translation group (Tα)α∈R.

The projection onto the orthogonal complement of the subspace spanned by d
dξ
Γh,

given by I − Π0, can be used to obtain a dynamical equation for ρ(ξ, t). Applying

I − Π0 on (4.27) and using (4.31) yields

∂

∂t
ρ(ξ, t) = (I − Π0) RHS(Γh(ξ) + ρ(ξ, t)) − dα

dt
(I − Π0)

∂

∂ξ
ρ (4.32)

= RHS(Γh(ξ) + ρ(ξ, t)) −
(

d

dξ
Γh +

∂

∂ξ
ρ

) 〈RHS(Γh(ξ) + ρ(ξ, t)), d
dξ
Γh〉

1 + 〈 ∂
∂ξ
ρ, d

dξ
Γh〉

.

Up to this point, our analysis only used the translational equivariance of (4.2). It will

become clear that the results on the (specific form of) the eigenfunctions of L (4.9)

as stated in Theorem 4.3 will enable us to drastically simplify (4.31). The following

observation will be important enough in the following to state it as a Lemma:

Lemma 4.5. Let the conditions of Theorem 4.3 be fulfilled, and let λ be an eigenvalue

of L with eigenfunction φ(ξ; λ, ε). Then

〈φ, d

dξ
Γh〉 = 0. (4.33)

Proof. Since the stationary pulse solution Γh is symmetric, it is even as a function of

ξ, see Theorem 4.2. Therefore d
dξ
Γh is odd as a function of ξ. Now, from the definition

ofL (4.9) it is clear thatL(ξ) is invariant under reflection: L(−ξ) = L(ξ). This means

that, if φ(ξ; λ, ε) is an eigenfunction ofLwith eigenvalue λ, then φ(−ξ; λ, ε) must also

be an eigenfunction of L for that same eigenvalue; furthermore, φ(−ξ; λ, ε) is also

bounded. Since the eigenfunction φ(ξ; λ, ε) is determined uniquely (see Theorem

4.3), it follows that φ(−ξ; λ, ε) = φ(ξ; λ, ε). From the observation that the product

of an even function and an odd function is odd, and that the integral of an odd func-

tion vanishes identically, the statement (4.33) follows from the definition of the inner

product (4.22). �
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4.3 The Hopf centre manifold

From Lemma 4.5, we see that every eigenfunction φ as in Theorem 4.3 fulfills the

orthogonality condition (4.24). This motivates us to use the local Ansatz

ρ(ξ, t) = A(t) φ(ξ; λ, ε), (4.34)

with A(t) ∈ C, keeping in mind that we will specify the eigenfunction φ to be the

Hopf eigenfunction φH at a later stage.

Corollary 4.6. For any perturbation of the form (4.34), equation (4.31) simplifies to
dα
dt
= 0.

Proof. Since φ is even as a function of ξ (see the proof of Lemma 4.5), ρ is even as a

function of ξ. The pulse Γh is symmetric (Theorem 4.2), so Γh(ξ)+ ρ(ξ, t) is even as a

function of ξ. That means that RHS(Γh(ξ) + ρ(ξ, t)) (4.28) is even as a function of ξ.

Subsequently, the inner product 〈RHS(Γh(ξ)+ρ(ξ, t)), d
dξ
Γh〉 vanishes identically, since

the translational eigenmode d
dξ
Γh is odd in ξ, see the proof of Lemma 4.5. Hence, the

right-hand side of (4.31) vanishes. �

Since for the Ansatz (4.34) the expression RHS(Γh(ξ) + ρ(ξ, t)) (4.28) lies in the

orthogonal complement of the span of d
dξ
Γh, equation (4.32) drastically simplifies to

∂

∂t
ρ(ξ, t) = RHS(Γh(ξ) + ρ(ξ, t)), (4.35)

or equivalently
dA

dt
φ = RHS(Γh(ξ) + A φ). (4.36)

To state the main result of this subsection, we invoke Theorem 3.19 from chapter 2 in

[24], reformulated here:

Theorem 4.7 (Centre manifolds in presence of continuous symmetry). Let X =
Π0X ⊕ X′ = span

{

d
dξ
Γh

}

⊕ X′, L′ = (I − Π0)L and let σ′
0

be the central spectrum of

L′. Assume that σ′
0

is finite, and let E′
0
⊂ X′ be the associated spectral subspace. Let

U′ ⊂ X′ be a neighbourhood of the origin inX′. Consider the tubular neighbourhood

U = {

Tα(Γh + ρ); ρ ∈ U′, α ∈ R} ⊂ X

of the line of equilibria {Tα Γh, α ∈ R}.
There exists a mapΨ which has the same degree of smoothness as the right-hand side

of (4.2), Ψ : E′
0
→ X′ − E′

0
, with Ψ(0) = 0, DΨ(0) = 0 such that the manifold

M0 =
{

Tα (Γh + ρ + Ψ(ρ)) ; ρ ∈ E′0, α ∈ R
}

⊂ X

has the following properties:
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4. Hopf bifurcations for localised pulses

1. The manifoldM0 is locally invariant under (4.2), in other words, if Γ(ξ, t) =

(U(ξ, t),V(ξ, t)) is a solution of (4.2) satisfying Γ(ξ, 0) ∈ M0 ∩U and Γ(ξ, t) ∈
U for all t ∈ [0,T ], then Γ(ξ, t) ∈ M0 for all t ∈ [0,T ].

2. M0 contains the set of solutions of (4.2) staying in U for all t > 0, in other

words, if Γ is a solution of (4.2) satisfying Γ(ξ, t) ∈ U for all t > 0, then

Γ(ξ, 0) ∈ M0.

The solutions to (4.2) which stay close to the line of equilibria for all t > 0 are of the

form (4.23), with α(t) satisfying (4.31) and ρ(ξ, t) satisfying (4.32).

Based on the above results (which in particular hold for our codimension 1 central

spectrum (4.20)), we can formulate a theorem on the local structure of the centre

manifold associated to the Hopf bifurcation (4.19) and the associated central spectrum

(4.20).

Theorem 4.8. Let the central spectrum ofL be given by (4.20). The associated centre

manifoldM0,H can be foliated along the line of equilibria {Tα Γh, α ∈ R}, and has a

locally trivial product structure:

M0,H = R ×M′0,H .

Moreover, the full dynamics onM0,H can be represented by the reduced dynamics on

M′
0,H

, given by (4.35).

Proof. We adopt the notation of Theorem 4.7. For the central spectrum (4.20), the

reduced spectral subspace E′
0

is spanned by the eigenvectors of the Hopf eigenvalues

±iωH , i.e. E′
0
= span

{

φH , φH

}

. Therefore, any ρ(ξ, t) ∈ E′
0

can be written as ρ(ξ, t) =

A(t) φH(ξ) + A(t) φH(ξ). By Corollary 4.6, we see that (4.31) reduces to dα
dt
= 0, so

α(t) = α0. That means that the full dynamics on M0,H are represented by (4.32),

which in turn can be reduced to (4.35). �

Remark 4.9. Although one would expect, based on the central spectrum (4.20), that

the translational eigenmode d
dξ
Γh in general is excitable, Theorem 4.8 shows that this

is not the case. In other words, the pulse Γh does not move when perturbed under Hopf

bifurcation conditions. Theorem 4.8 therefore enables us to ‘neglect’ the translational

eigenmode in the centre manifold expansion. Moreover, this Theorem analytically

confirms the numerical results on the ‘pinning’ of a periodically oscillating pulse in

chapter 2, section 2.5.
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4.4 Unfolding the Hopf bifurcation

4.4 Unfolding the Hopf bifurcation

In this section, we use the results of the previous section, to perform a direct centre

manifold expansion around the Hopf bifurcation (4.19). Based on Theorem 4.8, we

can choose local coordinates such that a perturbation of the pulse Γh can be written

as
(

U(ξ, t)

V(ξ, t)

)

=

(

Uh(ξ)

Vh(ξ)

)

+ A(t) φH(ξ) + A(t) φH(ξ) (4.37)

with A(t) ∈ C acting as a (small) order parameter, and where φH is the Hopf ei-

genfunction as in Theorem 4.3, obeying (4.19). It is worthwhile to emphasise that,

choosing local coordinates as in (4.37), we indeed not take the ‘irrelevant’ d
dξ
Γh dir-

ection into account in the upcoming weakly nonlinear analysis. Substitution of (4.37)

in (4.2) yields

dA

dt
φH +

dA

dt
φH = L

(

A φH + A φH

)

+ R (Γh|A, φH)

= iωH

(

A φH − A φH

)

+ R (Γh|A, φH) (4.38)

where the remainder terms R (Γh|A, φH) are specified as

R (Γh|A, φH) =

(

ν1NF1 (Uh|A, φH; ε) + ν2

ε
NF2 (Uh,Vh|A, φH; ε)

NG (Uh,Vh|A, φH; ε)

)

. (4.39)

Here, N selects the nonlinear part of the function it is acting on, as follows:

NF1 (Uh|A, φH; ε) = F1

(

Uh + A (φH)1 + A
(

φH

)

1
; ε

)

− F1 (Uh; ε)

− dF1

dU
(Uh; ε)

(

A (φH)1 + A
(

φH

)

1

)

; (4.40a)

NF2 (Uh,Vh|A, φH; ε) = F2

(

Uh + A (φH)1 + A
(

φH

)

1
,Vh + A (φH)2 + A

(

φH

)

2
; ε

)

− F2 (Uh,Vh; ε) − ∂F2

∂U
(Uh,Vh; ε)

(

A (φH)1 + A
(

φH

)

1

)

− ∂F2

∂V
(Uh,Vh; ε)

(

A (φH)2 + A
(

φH

)

2

)

; (4.40b)

NG (Uh,Vh|A, φH; ε) = G
(

Uh + A (φH)1 + A
(

φH

)

1
,Vh + A (φH)2 + A

(

φH

)

2
; ε

)

−G (Uh,Vh; ε) − ∂G

∂U
(Uh,Vh; ε)

(

A (φH)1 + A
(

φH

)

1

)

− ∂G

∂V
(Uh,Vh; ε)

(

A (φH)2 + A
(

φH

)

2

)

. (4.40c)
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4. Hopf bifurcations for localised pulses

The next step is to introduce a projection onto the linear subspace spanned by the

eigenfunction φH , using the inner product (4.22). This projection, or rather the com-

ponent along the span of φH , is given by

ΠH =
〈φH , φH〉〈·, φH〉 − 〈φH , φH〉〈·, φH〉
〈φH , φH〉2 − |〈φH , φH〉|2

, (4.41)

and is chosen such that ΠHφH = 1 and ΠHφH = 0. Applying ΠH on (4.38) yields a

first order ODE for the order parameter A(t):

dA

dt
= iωH A + ΠHR (Γh, A, φH) . (4.42)

To study the nonlinear behaviour of A(t) in detail, we need to expand the nonlin-

ear component of (4.42), ΠHR (Γh|A, φH), in the order parameter A. This –quite

elaborate– enterprise will be carried out in the following subsection.

4.4.1 Normal form reduction

For ease of notation, we specify the (two component) Hopf eigenfunction φH as

φH =

(

(φH)1

(φH)2

)

=

(

uH

vH

)

. (4.43)

By Assumptions 4.1 (A2 - A4), the nonlinear functions F1,2 and G are smooth as a

function of positive U, V . We can therefore use a regular Taylor expansion in the

order parameter A. For the single variable function F1, this yields

F1(Uh + AuH + AuH) =

N
∑

j=0

d jF1

dU j
(Uh)

(

AuH + AuH

) j

=
∑

k+l≥0

1

k!l!
f1,klA

kA
l

(4.44)

with

f1,kl =
dk+lF1

dUk+l
(Uh) (uH)k(uH)l. (4.45)

Using this expansion, the nonlinear component NF1 (Uh|A, φH; ε) (4.40a) can now

readily be expressed as

NF1 (Uh|A, φH; ε) =
∑

k+l≥2

1

k!l!
f1,klA

kA
l
. (4.46)
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4.4 Unfolding the Hopf bifurcation

For the multivariate functions F2 and G, we would like to obtain a similar expression

(here applied to F2):

F2(Uh + AuH + AuH ,Vh + AvH + AvH) =

N
∑

j=1

j
∑

k=0

∂ jF2

∂Uk∂V j−k
(Uh,Vh)(AuH + AuH)k

×(AvH + AvH) j−k

=
∑

k+l≥0

1

k!l!
f2,klA

kA
l
. (4.47)

In order to express the expansion coefficients f2,kl in terms of the components of Γh

and φH , we introduce the following tensor definition:

Definition 4.10. Given a two component function F(U,V), consider the total deriv-

ative of F of order k, DkF, as a linear mapping from
(

C
2
)k

to C. For every pair

of nonnegative integers (m, n) for which m + n = k, we can define the (m, n)-tensor

(Dm+nF) :
(

C
2
)m ×

((

C
2
)n)∗ → C as

(

Dm+nF
) j1··· jm
i1···in =

∂m+nF

∂Xi1 · · · ∂Xim∂X j1∂X jn

(Uh,Vh),

where X = (U,V) and i1 . . . im, j1 . . . jn ∈ {1, 2}. We have

(

Dm+nF
)

: (z1, . . . , zm,w
1, . . . ,wn) 7→ (

Dm+nF
) j1··· jm
i1···in (z1)i1 . . . (zm)im (w1) j1 . . . (w

m) jm ;

where the repeated indices are summed over.

Using Definition 4.10, we can express the coefficients f2,kl in (4.47) as

f2,kl =
(

Dk+lF2

) j1··· jl
i1···ik

(φH)i1 · · · (φH)ik (φH) j1 · · · (φH) jl (4.48)

where (φH)1 = uH , (φH)2 = vH , see (4.43). Analogously, we can expand G as

G(Uh + AuH + AuH ,Vh + AvH + AvH) =

N
∑

j=1

j
∑

k=0

∂ jG

∂Uk∂V j−k
(Uh,Vh)(AuH + AuH)k

×(AvH + AvH) j−k

=
∑

k+l≥0

1

k!l!
gklA

kA
l
, (4.49)

where

gkl =
(

Dk+lG
) j1··· jl

i1···ik
(φH)i1 · · · (φH)ik (φH) j1 · · · (φH) jl . (4.50)
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4. Hopf bifurcations for localised pulses

Now, the remaining (multivariate) nonlinear components NF2 (Uh,Vh|A, φH; ε) and

NG (Uh,Vh|A, φH; ε) ((4.40b) resp. (4.40c)) can be expressed as

NF2 (Uh,Vh|A, φH; ε) =
∑

k+l≥2

1

k!l!
f2,klA

kA
l

(4.51)

NG (Uh,Vh|A, φH; ε) =
∑

k+l≥2

1

k!l!
gklA

kA
l

(4.52)

with the coefficients f2,kl and gkl specified in (4.48) resp. (4.50). The remainder terms

R (Γh|A, φH) (4.39) can now be expanded in A as

R (Γh|A, φH) =
∑

k+l≥2

1

k!l!
RklA

kA
l
, (4.53)

with

Rkl =

(

ν1 f1,kl +
ν2

ε
f2,kl

gkl

)

. (4.54)

Finally, we can expand (4.42) as

dA

dt
= iωH A +

∑

k+l≥2

1

k!l!
ΠHRkl AkA

l
. (4.55)

Equation (4.55) can be brought into normal form via a series of locally invertible

complex coordinate changes. We follow [36] and use Lemma 3.6 therein, restated

here:

Lemma 4.11 (Poincaré normal form for the Hopf bifurcation). The equation

ż = iω z +
∑

2≤k+l≤3

g′klz
kz

l
+ O

(

|z|4
)

,

can be transformed into an equation with only the resonant cubic term:

ẇ = iωw + c1w2w + O
(

|w|4
)

where

c1 =
i

2ω

(

g′20g′11 − 2
∣

∣

∣g′11

∣

∣

∣

2 − 1

3

∣

∣

∣g′02

∣

∣

∣

2

)

+
1

2
g′21. (4.56)

Corollary 4.12. The nonlinear behaviour of z resp. w is determined by the sign of

the first Lyapunov, or Landau, coefficient

ℓ1 =
1

ω
Re c1 =

1

2ω2
Re

(

i g′20g′11 + ω g′21

)

. (4.57)

The Hopf bifurcation is supercritical if ℓ1 < 0 and subcritical if ℓ1 > 0.

158



4.4 Unfolding the Hopf bifurcation

Using Lemma 4.11 and Corollary 4.12, we see that the nonlinear behaviour of

A(t) determined by (4.55) can be characterised by the sign of the associated (first)

Lyapunov coefficient

ℓ1 =
1

2ω2
Re

(

i (ΠHR20) (ΠHR11) + ωΠHR21

)

(4.58)

with Rkl as in (4.54).

4.4.2 Calculating the first Lyapunov coefficient to leading or-

der

The scale separated structure of the eigenfunctions φH as given in Theorem 4.3, com-

bined with the inner product adapted to this scale separation (4.22), can be used to

obtain leading order expressions for ΠHRkl, yielding an explicit leading order expres-

sion for the first Lyapunov coefficient ℓ1 (4.58). This is the key to making the pre-

ceding general approach work in the context of the localised pulse solution of (4.2),

for which we have a leading order expression (see Theorem 4.2). More importantly,

having a leading order expression for the (Hopf) eigenfunctions (see Theorem 4.3),

we are able to come to concrete conclusions about the nature of the Hopf bifurcation.

The way the leading order eigenfunction expressions can be used to obtain explicit

results on the coefficients of the centre manifold expansion is demonstrated below.

Recalling the definition of ΠH (4.41), the first step is to obtain leading order ex-

pressions for the inner products 〈φH , φH〉 and 〈φH , φH〉. Using (4.22), we see that

〈φ, ψ〉 =
∫

R

φT S ψ dξ =

∫

R

(φ)1(ψ)1 d(εξ) +

∫

R

(φ)2(ψ)2 dξ (4.59)

so that, see (4.43),

〈φH , φH〉 =
∫

R

|uH |2 d(εξ) +

∫

R

|vH |2 dξ. (4.60)

Using the leading order expression for φH from Theorem 4.3, we can specify the
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4. Hopf bifurcations for localised pulses

above as

∫

R

|uH |2 d(εξ) =

−ε−
1
4

∫

−∞

|us,−(−εξ; iωH , ε)|2d(εξ) +

ε
− 1

4
∫

−ε−
1
4

|us,−(0; iωH , ε)|2 + O(ε
3
4 ) d(εξ)

+

∞
∫

ε
− 1

4

|us,−(εξ; iωH , ε)|2d(εξ)

=

−ε
3
4

∫

−∞

|us,−(−x; iωH , ε)|2dx +

ε
3
4

∫

−ε
3
4

|us,−(0; iωH , ε)|2 + O(ε
3
4 ) dx

+

∞
∫

ε
3
4

|us,−(x; iωH , ε)|2dx

= 2

∫ ∞

0

|us,−(x; iωH , ε)|2dx + O(ε
3
4 ), (4.61)

while

∫

R

|vH |2 dξ =

−ε−
1
4

∫

−∞

∣

∣

∣C1eC1ξ
∣

∣

∣

2
dξ +

ε
− 1

4
∫

−ε−
1
4

|us,−(0; iωH , ε)vin(ξ; iωH , ε)|2 + O(ε
3
4 ) dξ

+

∞
∫

ε
− 1

4

∣

∣

∣C1e−C1ξ
∣

∣

∣

2
dξ

= |us,−(0; iωH , ε)|2
∫ ∞

−∞
|vin(ξ; iωH , ε)|2 dξ + O(ε

1
2 ), (4.62)

so that

〈φH , φH〉 = 2

∫ ∞

0

|us,−(x; iωH , ε)|2dx + |us,−(0; iωH , ε)|2
∫ ∞

−∞
|vin(ξ; iωH , ε)|2 dξ + O(ε

1
2 ).

(4.63)

Similarly,

〈φH , φH〉 = 2

∫ ∞

0

us,−(x; iωH , ε)2dx + us,−(0; iωH , ε)2

∫ ∞

−∞
vin(ξ; iωH , ε)2 dξ + O(ε

1
2 ).

(4.64)
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The inner product of Rkl with φH resp. φH can be made explicit as well. Using (4.54),

we see that

〈Rkl, φH〉 =
∫

R

ν1 f1,kl uH d(εξ) +

∫

R

ν2

ε
f2,kl uH d(εξ) +

∫

R

gkl vH dξ, (4.65)

〈Rkl, φH〉 =
∫

R

ν1 f1,kl uH d(εξ) +

∫

R

ν2

ε
f2,kl uH d(εξ) +

∫

R

gkl vH dξ. (4.66)

Now, using (4.45), Theorem 4.2 and Theorem 4.3,

∫

R

f1,kl uH d(εξ) =

∫

R

dk+lF1

dUk+l
(Uh) (uH)k(uH)l+1 d(εξ)

= 2

∞
∫

0

dk+lF1

dUk+l
(u∗s(x))

(

us,−(x; iωH , ε)
)k (

us,−(x; iωH , ε)
)l+1

dx

+O(ε
1
2 ). (4.67)

Similarly,

∫

R

f1,kl uH d(εξ) = 2

∞
∫

0

dk+lF1

dUk+l
(u∗s(x))

(

us,−(x; iωH , ε)
)k+1(

us,−(x; iωH , ε)
)l
dx (4.68)

up to O(ε
1
2 ).

The expressions for f2,kl (4.48) and gkl (4.50) are substantially more involved than

that for f1,kl (4.45). However, based on their initial definition as expansion coefficients

(4.47) resp. (4.49), we can determine their behaviour inside and outside the fast

region I f (4.8).

Lemma 4.13. For ξ < I f , both f2,kl and gkl are exponentially small in ξ, i.e. for all

k, l ≥ 0 there are C1,2 > 0 such that

max
{∣

∣

∣ f2,kl

∣

∣

∣ , |gkl|
}

≤ C1 e−C2 ξ for all ξ < I f . (4.69)

Proof. Based on Theorem 4.2 and Theorem 4.3, we see that outside I f , Vh + A vH +

A vH is exponentially small in ξ. By Assumptions 4.1, (A3) resp. (A4), we can infer

that both F2(Uh+AuH+AuH ,Vh+AvH+AvH) and G(Uh+AuH+AuH ,Vh+AvH+AvH)

must be exponentially small as well for ξ < I f . By (4.47) and (4.49), it follows that

both f2,kl and gkl are exponentially small in ξ. �
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4. Hopf bifurcations for localised pulses

From Lemma 4.13, it follows that an integral of the form
∫

R

1
ε

f2,kl uH d(εξ) =
∫

R
f2,kl uH dξ converges, even though both Uh and uH decay asymptotically slowly

outside I f . Therefore, we can conclude that

1

ε

∫

R

f2,kl uH d(εξ)=

∫

R

f2,kl uH dξ (4.70)

=

∞
∫

−∞

(

Dk+lF2, f

) j1··· jl
i1···ik

(φH, f )i1 · · · (φH, f )ik (φH, f ) j1 · · · (φH, f ) jl · (φH, f )1 dξ

up to O(ε
1
2 ), where φH, f = φH |ξ∈I f

, i.e. (see Theorem 4.3)

φH, f =

(

uH, f

vH, f

)

= us,−(0; iωH , ε)

(

1

vin(ξ; iωH , ε)

)

(4.71)

and Dk+lF2, f is the equal to the tensor defined in 4.10 applied to F2, evaluated in

(Uh,Vh) =
(

u∗, v f ,h(ξ, u∗)
)

, see Theorem 4.2. For the same reason,

∫

R

gkl vH dξ =

∞
∫

−∞

(

Dk+lG f

) j1··· jl
i1···ik

(φH, f )i1 · · · (φH, f )ik (φH, f ) j1 · · · (φH, f ) jl · (φH, f )2 dξ,

(4.72)

where φH, f is as in (4.71) and again Dk+lG f is the equal to the tensor defined in 4.10

applied to G, evaluated in (Uh,Vh) =
(

u∗, v f ,h(ξ, u∗)
)

. For completeness, we state

1

ε

∫

R

f2,kl uH d(εξ) =

∞
∫

−∞

(

Dk+lF2, f

) j1··· jl
i1···ik

(φH, f )i1 · · · (φH, f )ik (4.73)

×(φH, f ) j1 · · · (φH, f ) jl · (φH, f )1 dξ + O(ε
1
2 ),

∫

R

gkl vH dξ =

∞
∫

−∞

(

Dk+lG f

) j1··· jl
i1···ik

(φH, f )i1 · · · (φH, f )ik (4.74)

×(φH, f ) j1 · · · (φH, f ) jl · (φH, f )2 dξ + O(ε
1
2 ).

The expressions derived above can be used to calculate the first Lyapunov coefficient

ℓ1 (4.58) explicitly. A systematic approach to obtain all the necessary terms yields
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4.4 Unfolding the Hopf bifurcation

expressions such as

∫

R

g20 vH dξ =

∞
∫

−∞

(

D2+0G f

)

i1 i2
(φH, f )i1 (φH, f )i2 · (φH, f )2 dξ

=

∞
∫

−∞

[

∂2G

∂U2
(U,V) u2

H, f + 2
∂2G

∂U∂V
(U,V) uH, f vH, f

+
∂2G

∂V2
(U,V)v2

H, f

]

(U,V)=(u∗,v f ,h(ξ,u∗))
× vH, f dξ (4.75)

and

∫

R

f2,11 uH dξ =

∞
∫

−∞

(

D1+1F2, f

) j

i
(φH, f )i(φH, f ) j · (φH, f )1 dξ

=

∞
∫

−∞

[

∂2F2

∂U2
(U,V) |uH, f |2 +

∂2F2

∂U∂V
(U,V)

(

uH, f vH, f + uH, f vH, f

)

+
∂2F2

∂V2
(U,V)|vH, f |2

]

(U,V)=(u∗,v f ,h(ξ,u∗))
× uH, f dξ. (4.76)

The above concretisations of the formal expressions from the first part of section

4.4 are summarised in the following key Lemma.

Lemma 4.14. The leading order expression for the first Lyapunov coefficient ℓ1 asso-

ciated to the normal form of Hopf bifurcation (4.19), as given in (4.58), is obtained by

combining (4.67), (4.70) and (4.72) with (4.65), resp. (4.68), (4.73) and (4.74) with

(4.66), and subsequently using the resulting expression combined with (4.63) and

(4.64) in the projection ΠHRkl (4.41) for the integer pairs (k, l) = (2, 0), (k, l) = (1, 1)

and (k, l) = (2, 1).

Although the expressions thus obtained may not be quite insightful in their full

generality, for specific choices of the model functions F1,2 and G, the above approach

yields explicit quantities which can be evaluated directly for a specific Hopf bifurca-

tion. This will the subject of section 4.6, where the explicit eigenfunction expressions

derived in chapter 2, section 2.3 for the slowly nonlinear Gierer-Meinhardt equation

will enable us to obtain (parameter dependent) values for the first Lyapunov coeffi-

cient.
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4.5 An alternative approach

In the ‘direct’ approach followed in section 4.4, which was based on the normal form

transformation referred to in Lemma 4.11, we used the fact that the local coordinates

(4.37) could be used to describe the associated centre manifold. The actual ‘shape’

of the manifold however was never made explicit: the information contained in Ψ

(Theorem 4.7) was hidden in the transformation z 7→ w(z) indicated in Lemma 4.11.

In this section, we again derive an expression for c1 (for its definition, see Lemma

4.11). We follow a less explicit approach compared to that of the previous section:

this upcoming, alternative approach is based on [24], section 3.4.2 therein. The rel-

ative elegance of the obtained expressions (see upcoming Lemma 4.15) comes with

a cost, however: we will need extra information on the adjoint of L. Depending on

the specific choice of the model functions F1,2 and G (4.1), this alternative approach

might be less or more cumbersome to carry out, compared with the previous, direct

approach presented in section 4.4.

4.5.1 Expanding the centre manifold

Based on Theorem 4.7 and Theorem 4.8, we restrict ourselves without loss of gen-

erality to X′ = X − span
{

d
dξ
Γh

}

, i.e. we focus on a single leaf of the foliation of

the entire centre manifold. Dropping the tildes, we see that solutions on the centre

manifoldM0,H can be expressed as

(

U(ξ, t)

V(ξ, t)

)

= Γ(ξ, t) = Γh(ξ) + A(t) φH(ξ) + A(t) φH(ξ) + Ψ(A, A, φH , φH). (4.77)

Also, since we analyse a Hopf bifurcation, we know that the dynamics of A(t) should

obey the normal form equation

dA

dt
= iωH A + c1 A |A|2 + O(|A|4). (4.78)

Adapting the notation from section 4.4, we apply (4.2) on a perturbation of the pulse

Γh. Substitution of (U,V) = Γh + ρ in (4.2) yields

∂ρ

∂t
= Lρ + R(Γh; ρ) (4.79)
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with L as in (4.9), and

R(Γh; ρ) =

(

ν1 F1(Uh + (ρ)1; ε) + ν2

ε
F2(Uh + (ρ)1,Vh + (ρ)2; ε)

G(Uh + (ρ)1,Vh + (ρ)2; ε)

)

−
(

ν1 F1(Uh; ε) + ν2

ε
F2(Uh,Vh; ε)

G(Uh,Vh; ε)

)

+A ρ (4.80)

withA as in (4.10). Substituting

ρ = A φH + A φH + Ψ(A, A, φH , φH) (4.81)

in (4.79), we obtain for its left-hand side

dA

dt

(

φH +
∂

∂A
Ψ(A, A, φH , φH)

)

+
dA

dt

(

φH +
∂

∂A
Ψ(A, A, φH , φH)

)

(4.82)

and for its right-hand side

iωH A φH − iωH A φH +LΨ(A, A, φH , φH)

+ R
(

Γh; A φH + A φH + Ψ(A, A, φH , φH)
)

. (4.83)

Since (U,V) (4.77) are real, Ψ(0) = 0 and DΨ(0) = 0, see Theorem 4.7, we can

expand Ψ(A, A, φH , φH) in powers of A and A as

Ψ(A, A, φH , φH) = h20A2 + h11A A + h20A
2

+h30A3 + h21A2A + h21A A
2
+ h30A

3
+ O(|A|4). (4.84)

Note that h11 is real sinceΨ(A, A, φH , φH) is invariant under complex conjugation, see

(4.77). Moreover, from (4.80) we see that R(Γh; 0) = 0 and DρR(Γh; 0) = 0, so we

can expand R(Γh; ρ) in powers of ρ in a similar way as Ψ was expanded in powers of

A and A, yielding

R(Γh; ρ) = R̂(2)(ρ, ρ) + R̂(3)(ρ, ρ, ρ) + O(|ρ|4), (4.85)

where R̂(2)(·, ·) and R̂(3)(·, ·, ·) are fully symmetric 2- and 3-tensors.
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4. Hopf bifurcations for localised pulses

Using (4.81) and (4.84), we can expand R in powers of A and A as

R
(

Γh; A φH + A φH + Ψ(A, A, φH , φH)
)

=

R̂(2)(φH , φH) A2 + 2 R̂(2)(φH , φH) A A + R̂(2)(φH , φH) A
2

+
[

2 R̂(2)(φH , h20) + R̂(3)(φH , φH , φH)
]

A3

+
[

2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH)
]

A2A

+
[

2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH)
]

A A
2

+
[

2 R̂(2)(φH , h20) + R̂(3)(φH , φH , φH)
]

A
3
+ O(|A|4). (4.86)

Using (4.84) and (4.78) in (4.82) yields

(

iωH A + c1 A2A
)

(

φH + 2h20A + h11A + 3h30A2 + 2h21A A + h21A
2
)

+ c.c.+O(|A|4)

= iωH A φH + 2iωH h20A2 + iωH h11A A + 3iωH h30A3 +
[

2iωH h21 + c1φH

]

A2A

+ iωH h21A A
2
+ c.c. + O(|A|4)

= iωH A φH + 2iωH h20A2 + 3iωH h30A3 +
[

iωH h21 + c1φH

]

A2A + c.c. +O(|A|4).

(4.87)

Similarly, using (4.84) and (4.86) in (4.83) yields

iωH A φH +L
(

h20A2 +
1

2
h11A A + h30A3 + h21A2A

)

+ R̂(2)(φH , φH) A2

+ R̂(2)(φH , φH) A A +
[

2 R̂(2)(φH , h20) + R̂(3)(φH , φH , φH)
]

A3

+
[

2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH)
]

A2A

+ c.c + O(|A|4)

= iωH A φH +
[

Lh20 + R̂(2)(φH , φH)
]

A2 +

[

1

2
Lh11 + R̂(2)(φH , φH)

]

A A

+
[

Lh30 + 2 R̂(2)(φH , h20) + R̂(3)(φH , φH , φH)
]

A3

+
[

Lh21 + 2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH)
]

A2A

+ c.c + O(|A|4). (4.88)

Since (4.87) and (4.88) are the expansions of the left-hand side resp. the right-hand

side of (4.79) in powers of A and A, we can compare their expansion coefficients. The

166



4.5 An alternative approach

first order terms (for A and A) coincide; for the second order terms (in A2, AA and

A
2
), equating the coefficients yields

(L − 2 iωH) h20 = −R̂(2)(φH , φH), (4.89)

L h11 = −2R̂(2)(φH , φH). (4.90)

The central spectrum of L on the foliation leaf under consideration is {± iωH}, so

2 iωH nor 0 is an eigenvalue of L. Therefore, the operators L and L − 2 iωH are

invertible, yielding unique solutions for h20 and h11.

To obtain an equation for c1, the only third order expansion coefficient we need

to consider is that of A2A. Equating the respective coefficients in (4.87) resp. (4.88)

yields

(L − iωH) h21 = c1φH −2 R̂(2)(φH , h11)−2 R̂(2)(φH , h20)−3 R̂(3)(φH , φH , φH). (4.91)

This allows us to formulate the following Lemma:

Lemma 4.15. Let φ∗
H

be the unique bounded solution for which L∗φ∗
H
= iωH φ

∗
H

.

Then c1 (4.78) is given by

c1 =
1

〈φH , φ
∗
H
〉
〈2 R̂(2)(φH , h11) + 2 R̂(2)(φH , h20) + 3 R̂(3)(φH , φH , φH), φ∗

H
〉. (4.92)

Proof. By the Fredholm alternative, (4.91) has a unique solution for h21 if and only if

the right-hand side is orthogonal to the kernel of the adjoint operator (L − iωH)∗. The

spectra ofL andL∗ are each others complex conjugates. SinceL is real, its spectrum

is invariant under complex conjugation. Therefore, if λ is an eigenvalue of L, then λ

is also an eigenvalue of L∗. That means in particular that the central spectrum of L∗
coincides with the central spectrum of L, which is given by the pair ± iωH . Let the

associated adjoint eigenfunctions be denoted as φ∗
H

, φ∗
H

. Since the (one-dimensional)

kernel of (L − iωH)∗ = (L∗ + iωH) is spanned by φ∗
H

, the solvability condition ob-

tained from the Fredholm alternative yields (4.92). �

While this expression for c1 is a lot less involved than the expression derived

in Lemma 4.11, it cannot be calculated directly using the eigenfunction expressions

stated in Theorem 4.3. The expressions for h20 (4.89) and h11 (4.90) are still implicit;

moreover, we have not yet analysed the adjoint operator L∗. Both are the subject of

the next section.
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4. Hopf bifurcations for localised pulses

4.5.2 The coefficient c1 (4.92)

First, we study the adjoint operator L∗. Combining the definition of L (4.9) with that

of the scaling matrix S used in the definition of the inner product (4.22), we see that

L can be written as

L = S −2 d2

dξ2
−A. (4.93)

Now,

〈φ,L∗ψ〉 = 〈Lφ, ψ〉 =
∫

R

(Lφ)T Sψ dξ

=

∫

R

(

S −2 d2

dξ2
φ −Aφ

)T

Sψ dξ

=

∫

R

(

S −2 d2

dξ2
φ

)T

Sψ − (Aφ)T Sψ dξ

=

∫

R

(

d2

dξ2
φ

)T

S −2Sψ − φTAT Sψ dξ

=

∫

R

φT S −2S
d2

dξ2
ψ − φT S S −1AT Sψ dξ

=

∫

R

φT S

















S −2 d2

dξ2
ψ − S −1AT Sψ

















dξ

=

∫

R

φT S

[

S −2
d2

dξ2
− S −1AT S

]

ψ dξ

so

L∗ = S −2 d2

dξ2
− S −1AT S . (4.94)

Using (4.10),

S −1AT S =

(

µ − ν1
dF1

dU
− ν2

ε

∂F2

∂U
− 1
ε
∂G
∂U

−ν2
∂F2

∂V
1 − ∂G

∂V

)
∣

∣

∣

∣

∣

∣

(U,V)=(Uh(ξ),Vh(ξ))

. (4.95)

We see that L∗ has the same scale separated structure as L, with only the roles of

ν2
∂F2

∂V
and ∂G

∂U
reversed. Therefore, we can treat L∗ in a similar way as L, see sub-

section 4.2.2. Since the diagonal entries of A are the same as those of S −1AT S , the

leading order slow and fast linear operators associated to L∗ coincide with those of
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L, i.e. (L∗)s (x) = Ls(x) and (L∗) f (ξ) = L f (ξ), as given in (4.13) resp. (4.12). The

leading order fast nonhomogeneous Sturm-Liouville problem for L∗ is

(

L∗f − λ
)

v = −ν2

∂F2

∂V
(u∗, v f ,h(ξ; u∗)), ξ ∈ R. (4.96)

compare (4.14). Since F2 and G obey equivalent conditions, see Assumptions 4.1,

(A3) and (A4), the theory developed in chapter 3, section 3.3 can be directly ap-

plied to L∗, yielding Hopf eigenfunctions φ∗
H

, φ∗
H

with the scale separated structure

as described in Theorem 4.3. Note that outside I f , the leading order behaviour of φ∗
H

coincides with that of φH , since (L∗)s (x) = Ls(x).

Solving (4.89) and (4.90) for h20 resp. h11 is a lot more cumbersome. In general,

one would approach the problem as follows. First, consider (4.89). Since the oper-

ator L − 2 iωH is invertible, we know there is no nontrivial bounded solution to the

homogeneous problem

(L − 2 iωH) φ = 0. (4.97)

The two-component linear second order differential equation (4.97) can be rewritten

as a four-dimensional first order differential equation

d

dξ
φ̂ = B φ̂, (4.98)

the solution space of which is spanned by four linearly independent solutions
{

φ̂i

}

,

i = 1, . . . , 4. To solve (4.89), which can be written in first order form as

d

dξ
ĥ20 − B ĥ20 =



































0

−ε2
(

R̂(2)(φH , φH)
)

1

0

−
(

R̂(2)(φH , φH)
)

2



































(4.99)

with

B =































0 1 0 0

ε2A11 + 2 iωH 0 ε2A12 0

0 0 0 1

A21 0 A22 + 2 iωH 0































, (4.100)

we use the method of variation of constants and write

h20 =

4
∑

i=1

ci(ξ) φ̂i, (4.101)
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such that (4.99) is transformed into

4
∑

i=1

dci

dξ
φ̂i =



































0

−ε2
(

R̂(2)(φH , φH)
)

1

0

−
(

R̂(2)(φH , φH)
)

2



































(4.102)

or equivalently

Φ̂
dc

dξ
=



































0

−ε2
(

R̂(2)(φH , φH)
)

1

0

−
(

R̂(2)(φH , φH)
)

2



































, (4.103)

where c = (c1, c2, c3, c4)T and Φ̂ is the matrix whose columns are given by the eigen-

vectors φ̂i, i.e.

Φ̂ =
{

φ̂1, φ̂2, φ̂3, φ̂4

}

. (4.104)

Since the trace of B (4.100) vanishes, the determinant of Φ̂ is constant; moreover,

since L − 2 iωH is invertible, we know that det Φ̂ , 0. Therefore, (4.103) can be

solved by inverting Φ̂, yielding

dc

dξ
=

1

det Φ̂
adj Φ̂



































0

−ε2
(

R̂(2)(φH , φH)
)

1

0

−
(

R̂(2)(φH , φH)
)

2



































, (4.105)

where adj Φ̂ is the adjugate matrix of Φ̂. Since h20 = Φ̂ c (4.101), we can integrate

(4.105) to obtain for h20:

h20(ξ) = Φ̂(ξ)

∫ ξ 1

det Φ̂
adj Φ̂(ξ′)



































0

−ε2
(

R̂(2)(φH(ξ′), φH(ξ′))
)

1

0

−
(

R̂(2)(φH(ξ′), φH(ξ′))
)

2



































dξ′. (4.106)

Solving (4.90) for h11 can be done analogously. Solving the four-dimensional first

order differential equation associated to L ĥ11 = −2R̂(2)(φH , φH), the same variation

of constants approach ultimately yields

ĥ11(ξ) = Φ̂0(ξ)

∫ ξ 1

det Φ̂0

adj Φ̂0(ξ′)



































0

−2ε2
(

R̂(2)(φH(ξ′), φH(ξ′))
)

1

0

−2
(

R̂(2)(φH(ξ′), φH(ξ′))
)

2



































dξ′, (4.107)
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where Φ̂0 is the matrix whose columns are given by the four independent solutions

to Lφ0 = 0, when written in its four-dimensional first order form – this would be

equivalent to (4.98), with associated B0 as in (4.99), with ωH = 0. To obtain a result

for the operator L on the reduced space X′ = X − span
{

d
dξ
Γh

}

, we project ĥ11 onto

the orthogonal complement of span
{

d
dξ
Γh

}

(c.f. (4.29)), yielding

h11 = (I − Π0) ĥ11. (4.108)

The expressions for h20 (4.106) and h11 (4.108), together with an encompassing ana-

lysis of the adjoint operatorL (4.94), can now be combined with the result of Lemma

4.15 to obtain an explicit expression for c1 (4.92).

Comparing the approach advocated in this section with the more direct approach

of section 4.4, we see that the (relatively) short expressions culminating in Lemma

4.15 come with a cost of having to analyse three additional equations: one eigenvalue

problem for the adjoint operator L∗φ∗
H
= iωHφ

∗
H

and two inverse problems (4.89)

and (4.90). Depending on model under consideration, i.e. for a specific choice of

F1,2 and G, either approach might be preferable over the other. In the next section,

we apply the theory developed above to such a specific model, the slowly nonlinear

Gierer-Meinhardt equation.

4.6 Application: the slowly nonlinear Gierer-Meinhardt

equation

In chapter 2, the existence and stability of pulse solutions as considered in section 4.2

was established for the slowly nonlinear Gierer-Meinhardt equation (2.7), restated

here:














Ut = Uxx −
(

µU − ν1Ud
)

+
ν2

ε
V2

Vt = ε2Vxx − V + V2

U

. (4.109)

The original Gierer-Meinhardt equation, a canonical model for morphogenesis which

is studied extensively in the context of pattern formation [6, 12, 22, 26, 48, 51], can

be recovered from (4.109) by setting ν1 = 0. The system (4.109) is of the form (4.1)

with

FnGM
1 (U; ε) = Ud, d > 1, FGM

2 (U,V; ε) = V2, GGM(U,V; ε) =
V2

U
. (4.110)

The nonlinearities F2 and G are chosen according to the ‘classical’ Gierer-Meinhardt

model, and are therefore denoted as FGM
2

and GGM. The ‘slow’ nonlinearty F1 is
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4. Hopf bifurcations for localised pulses

absent in the Gierer-Meinhardt model, but was introduced in chapter 2 as Ud, to

study the influence of such a slow nonlinearity on the pulse construction and stability.

The slowly nonlinear term F1 is therefore denoted as FnGM
1

.

4.6.1 Analytical preliminaries

This section summarises the analysis on the slowly nonlinear Gierer-Meinhardt model

(4.109), as derived in chapter 2, sections 2.2 and 2.3.

It can easily be verified that the above choice for F1,2 and G (4.110) satisfies

Assumptions 4.1 (A1 - A4). The reduced fast system (4.4) is realised as

v f ,ξξ = v − 1

u0

v2, (4.111)

which has a homoclinic solution

vGM
f ,h (ξ; u0) =

3u0

2
sech2 1

2
ξ, (4.112)

satisfying Assumptions 4.1, (A5). Using this homoclinic solution, Dp(u0) (4.6) can

be calculated as

DGM
p (u0) =

∫ ∞

∞

(

vnGM
f ,h (ξ; u0)

)2
dξ = 6u2

0, (4.113)

which means that Assumptions 4.1, (A6) is satisfied once the factor 6 is scaled out by

rescaling ν2 → ν̂2 = 6ν2. The choice of F1 realises the reduced slow system (4.5) as

uxx = µ u − ν1ud, (4.114)

which also has an orbit homoclinic to the origin. Therefore, the slow unstable and

stable manifolds of the origin Wu/s
s ((0, 0; ε) coincide and are both described by the

same function

unGM
s (x) =

(

µ(d + 1)

2ν1

sech2 1

2
(d − 1)

√
µ x

)
1

d−1

. (4.115)

The pulse existence condition (4.7) becomes

2ν1

d + 1
ud−1 = µ − 3

2
ν̂2u2, (4.116)

which always has precisely one positive solution for u = u∗, so Theorem 4.2 is valid

for K = 1. From Theorem 4.2, it follows that there exists a pulse solution ΓnGM
h

(ξ),
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4.6 Application: the slowly nonlinear Gierer-Meinhardt equation

which is to leading order given by

ΓnGM
h (ξ) =











































































(

unGM
s (εξ − x∗)

0

)

for ξ < ε−
1
4 ,

(

u∗
vGM

f ,h
(ξ; u∗)

)

for ξ ∈ I f ,

(

unGM
s (εξ + x∗)

0

)

for ξ > ε−
1
4 .

(4.117)

The stability analysis of the pulse ΓnGM
h

yields the fast linear operator (cf. (4.12))

LGM
f (ξ) =

d2

dξ2
−

[

1 − 3 sech2 1

2
ξ

]

, ξ ∈ R, (4.118)

which has eigenvalues λGM
f ,0
= 5

4
, λGM

f ,1
= 0 and λGM

f ,2
= − 3

4
. The slow linear operator

(4.13) is realised as

LnGM
s (x) =

d2

dx2
− µ

[

1 − d(d + 1)

2
sech2 1

2
(d − 1)

√
µ x

]

, x ≥ 0. (4.119)

The solutions of its eigenvalue problem (LnGM
s −λ)u = 0 can be determined explicitly

using associated Legendre functions, see chapter 2, section 2.3. For the nonhomogen-

eous fast problem (4.14), realised as

d2

dξ2
v −

[

1 + λ − 3 sech2 1

2
ξ

]

v =
9

4
sech4 1

2
ξ, (4.120)

the unique bounded solution vin can also be explicitly represented using associated

Legendre functions. These explicit expressions manifest themselves in the leading

order eigenfunction behaviour described in Theorem 4.3.

4.6.2 Hopf bifurcations

As in the general case chapter 3, the eigenvalues for the pulse (4.117) can be deter-

mined using Evans function techniques. In chapter 2, an explicit leading order ex-

pression for the Evans function was found in terms of the leading order eigenfunction

expressions from Theorem 4.3, see Theorem 2.12. This leading order Evans func-

tion can be directly numerically evaluated for different parameter values. In Figure
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Figure 4.2: The pulse eigenvalues to leading order in ε as a function of increasing µ,

indicated by the arrow. Here, ν1 = 2 and ν2 =
1
2

(ν̂2 = 3) are fixed. For d = 2 (left

figure), the pulse undergoes one stabilising Hopf bifurcation for µ = µH = 1.47986 . . .

at λ = iωH = 1.47638 . . . i. For d = 5 (right figure), a second, destabilising Hopf

bifurcation takes place for µ = µH,2 = 5.134 . . . at λ = iωH,1 = 3.78646 . . . i, while

the first Hopf bifurcation is at µ = µH,1 = 0.4173 . . . with λ = iωH,1 = 0.958684 . . . i

for these parameter values.

4.2, the pulse eigenvalues are plotted in the complex plane for fixed ν1,2 and d, while

varying µ. Here, the influence of the slow nonlinear term FnGM
1

(U; ε) = Ud (4.110)

can be clearly seen. For d = 2, the eigenvalue orbit crosses the imaginary axis for

µ = µH = 1.47986 . . . at λ = iωH = 1.47638 . . . i, and it becomes clear that the pulse

is stable for all µ > µH (see chapter 2, Theorem 2.18). However, for d = 5, the eigen-

value orbit exhibits a different behaviour. After a first stabilising Hopf bifurcation for

µ = µH,1 = 0.4173 . . . at λ = iωH,1 = 0.958684 . . . i, the eigenvalue orbit turns around

and undergoes a second, destabilising Hopf bifurcation for µ = µH,2 = 5.134 . . . at

λ = iωH,1 = 3.78646 . . . i.

This turning behaviour is general for d > 3, see chapter 2, Theorem 2.19. That

means that for all d > 1, there is an neighbourhood of (ν1, ν2) = (2, 1
2
) in parameter

space such that there is a (possibly bounded) interval in µ for which the pulse ΓnGM
h

is

stable. At the boundary of this interval, the pulse destabilises through a Hopf bifurca-

tion. Since our parameter space {(µ, ν1, ν2, d)} is four-dimensional, we can determine

the (boundaries of the) stability region by intersecting it with two-dimensional hy-
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4.6 Application: the slowly nonlinear Gierer-Meinhardt equation

perplanes, i.e. by fixing two parameters. In Figure 4.3, the boundary of this stability

region is determined for different values of d and ν1, with µ and ν2 as free parameters.

The two Hopf bifurcation values for d = 5, ν1 = 2, ν2 =
1
2

are indicated on the blue

curve in both figures. The Hopf bifurcations merge into a singular Hopf bifurcation

where the bifurcation curves fold.

In Figure 4.4, left, the Hopf frequencies for d = 5 and ν1 = 2 are plotted as a func-

tion of the parameter ν2. The merging of Hopf bifurcations can again be observed.

For these Hopf eigenvalues, the associated first Lyapunov coefficients ℓ1 (4.58) were

calculated according to Corollary 4.12. It can be seen that the Hopf bifurcations of the

lower branch have a positive –even large– first Lyapunov coefficient, and are there-

fore subcritical (Corollary 4.12). However, for the upper branch of Hopf bifurcations,

it is seen that the sign of the first Lyapunov coefficients can change. Note that this

upper branch corresponds with the destabilising Hopf bifurcation λ = iωH,2 which

is present for all d > 3, see Figure 4.2 (right). A collection of such curves of first

Lyapunov coefficients is shown in Figure 4.5, based on the associated Hopf curves

from Figure 4.3. It is clear that this crossing from sub- to supercriticality is a general

phenomenon, and is therefore not restricted to the specific choice of parameters used

to produce these Figures.

The direct numerical evaluation of the first Lyapunov coefficient, made possible

by the results from Lemma 4.14 and Lemma 4.15, enables us to draw conclusions

about the sub- or supercriticality of the Hopf bifurcations of pulses in the slowly

nonlinear Gierer-Meinhard model (4.109). Based on the curves shown in Figure 4.5,

we can take a well-chosen point in parameter space, e.g. (ν1, ν2, d) = (2, 5
2
, 5), such

that one of the two Hopf bifurcations for this parameter triplet is subcritical, and the

other supercritical. By continuous dependence on parameters, we can then state the

following Theorem:

Theorem 4.16. Let ε > 0 be sufficiently small. There exists an open nonempty neigh-

bourhood V in (µ, ν1, ν2)-parameter space such that the following holds. For any

(ν1, ν2, d) ∈ V, there are two Hopf bifurcation values µH,1(ν1, ν2, d) and µH,2(ν1, ν2, d)

with µH,1 < µH,2 for which the associated pulse eigenvalues are given by λH,1 = iωH,1

resp. λH,2 = iωH,2 with ωH,1, ωH,2 ∈ R. The Hopf bifurcation λH,1 = iωH,1 is subcrit-

ical; the Hopf bifurcation λH,1 = iωH,1 is supercritical.

With these results in mind, it is quite straightforward to obtain a result which

was suggested, but not confirmed, in previous literature on the ‘canonical’ Gierer-

Meinhardt system, i.e. (4.109) with ν1 = 0. In [6], the existence and stability of
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Figure 4.3: Curves of Hopf bifurcation parameter values in the (ν2, µ)-plane. Left,

ν1 = 2; bifurcation curves are plotted for d = 4, 5, 6. Right, d = 5; bifurcation curves

are plotted for ν1 = 1, 2, 3. In both figures, the bifurcation values µH,1 = 0.4173 . . .

and µH,2 = 5.134 . . . for d = 5, ν2 = 2 are indicated. These curves form the boundary

of the region in parameter space for which the pulse ΓnGM
h

is stable.

pulse solutions in Gierer-Meinhardt type systems was established using ideas similar

to those used in chapters 2 and 3. There, it was shown that for µ = µH = 0.36 . . .,

the pulse undergoes a Hopf bifurcation. Numerical simulations [11, 57] suggested

that this Hopf bifurcation is subcritical. This observation is confirmed by direct nu-
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Figure 4.4: In the left figure, the Hopf frequencies are plotted as a function of ν2,

for d = 5 and ν1 = 2. The lower branch, representing ωH,1, is indicated in blue;

the upper branch, representing ωH,2, is indicated in red. In the right figure, the as-

sociated first Lyapunov coefficients ℓ1 are plotted, using corresponding colors. It

can be seen that the first Lyapunov coefficient corresponding to ωH,2 changes sign at

ν2 = ν
∗
2
= 2.2955 . . .; there, the nature of this upper branch Hopf bifurcation changes

from subcritical to supercritical.

merical evaluation of the associated first Lyapunov coefficient, which has the value

ℓ1 = 2900.91 > 0. As a consequence, the following Corollary is a direct result from

numerical evaluations equivalent to those underlying Theorem 4.16:

Corollary 4.17. Let ε > 0 be sufficiently small. The Hopf bifurcation associated to

the classical Gierer-Meinhardt pulse is subcritical.

4.7 Discussion

The research presented in this chapter was inspired by the observation of stable oscil-

lating pulses in the slowly nonlinear Gierer-Meinhardt model, see chapter 2, section

2.5. There, it was shown that numerical simulations of the full PDE system suggested

the existence of breathing pulses (possibly with a dynamically modulated amplitude)

near parameter values for which the stationary pulse undergoes a Hopf bifurcation.

The hypothesis that such a Hopf bifurcation could be the ‘birthplace’ of these breath-

ing pulses is confirmed in the current chapter. A consequence of the supercriticality

of the Hopf bifurcation, established in Theorem 4.16, is that stable periodically mod-

ulated pulse amplitudes (i.e. breathing pulses) can and do indeed exist.
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Figure 4.5: An overview of several Lyapunov curves, corresponding to the Hopf

bifurcation curves shown in Figure 4.3. The color coding coincides. It can be seen

that the transition from sub- to supercriticality is a general phenomenon. However,

for d = 6, this seems not to occur, at least for values up to ν2 = 6 (full range not

shown).
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However, this is not the end of the story. The centre manifold associated to the

Hopf bifurcation has only been expanded up to third order. A fifth order expansion,

near the generalised Bautin point where the Hopf bifurcation transgresses from sub-

to supercriticality (i.e. where the first Lyapunov coefficient ℓ1 vanishes), can in prin-

ciple be done. This would entail performing an analysis analogous to that presented

in section 4.4 or 4.5, to the extended fifth order normal form

dA

dt
= iωH A + c1 A |A|2 + c2 A |A|4 + O(|A|6), (4.121)

compare (4.78) / Lemma 4.11. This way, the first steps towards a more encompassing

description of the dynamically modulated pulse amplitude near Hopf bifurcations can

be taken. Numerical results from chapter 2, section 2.5 suggest that this amplitude

can be quasiperiodically or even chaotically modulated.

It is worthwhile to note that the procedure to obtain explicit expressions for the

Hopf normal form, as presented in this chapter, is not restricted to the stationary

pulse solution, which was analysed in chapters 2 and 3. The procedure is in principle

valid for (multi)pulses and fronts in singularly perturbed reaction-diffusion systems:

as long as one is able to obtain an explicit expression for the stationary pattern (and,

more importantly, for its eigenfunctions), the techniques presented in this chapter can

be used to obtain an explicit expression for the normal form expansion coefficients,

which can be directly numerically evaluated, allowing one to gain more insight in the

dynamical properties of the pattern under consideration.
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Samenvatting

Deze samenvatting is een Nederlandse versie van het eerste deel van de inleiding,

hoofdstuk 1. Net zoals de inleiding is deze samenvatting geschreven voor niet-

wetenschappers: het doel van deze samenvatting is een zo groot mogelijk lezers-

publiek duidelijk te maken waar dit proefschrift over gaat.

De afbeeldingen waarnaar verwezen wordt zijn te vinden in hoofdstuk 1.

Hoe moet ik dit proefschrift lezen?

Een wiskundeproefschrift is voor niet-wiskundigen moeilijk te lezen, om verschil-

lende redenen. Als eerste, natuurlijk, de formules. Een wiskundige brengt een groot

deel van zijn boodschap over door gebruik te maken van symbolen, en de verbanden

tussen die symbolen door formules. Als je niet zo veel ervaring hebt met het gebruik

van symbolen en formules, is het doorworstelen van teksten die daarmee doordrenkt

zijn onbegonnen werk.

Het gebruik van symbolen om wiskunde over te brengen is echter niet alleen handig,

het is ook noodzakelijk. Het stelt de onderzoeker in staat om bepaalde (af en toe

heel abstracte) ideeën over te brengen met maar een paar symbolen, waardoor zijn

redenering goed te volgen blijft – voor medewiskundigen. Als je alle symbolen in

dit proefschrift in woorden zou omzetten, zou de tekst binnen de korste keren on-

leesbaar worden: de zinnen zouden pagina’s lang zijn, het zou onmogelijk worden

een duidelijke zinsbouw te gebruiken, en daarmee zou alle hoop vervliegen op het

begrijpelijk overbrengen van ideeën op de lezer. De beknoptheid en helderheid van

symbolen bewijzen in de wiskunde al eeuwenlang hun nut. Symbolen en formules

stellen je in staat nieuwe verbanden te ontdekken, wat het vervolgens weer mogelijk

maakt om op abstracter niveau over je onderwerp na te denken, wat leidt tot dieper

inzicht – en dat geldt niet alleen voor wiskundigen, maar ook voor alle andere weten-

schappers die de ‘taal van de wiskunde’ gebruiken om hun resultaten samen te vatten.
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Als je symbolen en formules begint te gebruiken, en gaandeweg ervaren wordt in

het lezen ervan, zul je merken dat de symbolen (en de ideeën die ze symboliseren)

tastbaarder worden. Je krijgt meer en meer het gevoel waar het symbool eigenlijk

voor staat, hoe het zich gedraagt, hoe het reageert op andere symbolen, wat het doet.

Vervolgens kun je de symbolen heen en weer gaan schuiven, ze manipuleren, en on-

dertussen nieuwe symbolen introduceren omdat dat de handigste manier is om weer

te geven wat je wil zeggen – en plotseling ben je wiskunde aan het doen.

De tweede reden waarom wiskunde moeilijk te lezen is, is de taal die wordt gebe-

zigd. Als wiskundige is het je doel om objectieve waarheden over te brengen, om een

samenhangend en logisch kloppend verhaal te vertellen. Dat betekent onherroepelijk

dat de taal ook objectief wordt: in de wiskunde is er voor ‘ik’ of ‘jij’ geen plaats,

hoogstens voor ‘wij’. In een wiskundetekst word je door de auteur stap voor stap

meegenomen langs de weg die leidt tot inzicht in een wiskundig onderwerp. Het is

een breed gedragen opvatting dat alles wat maar in de buurt van subjectiviteit komt,

te allen tijde moet worden vermeden. Wiskundige waarheden hangen immers niet af

van degene die ze verkondigt (tenminste, dat zou zo moeten zijn). Bovendien maakt

het formuleren van zinnen in subjectieve vorm je ook vatbaarder voor kritiek: jij zegt

wel dat het zo is, maar dat betekent niet dat ik dat zou moeten geloven.

Hoewel deze aanpak vaak noodzakelijk wordt geacht, doet het de leesbaarheid van

een wiskundige tekst weinig goeds. Zoals je misschien al hebt gemerkt, heb ik voor

deze samenvatting (en voor hoofdstuk 1) gekozen voor een andere stijl. Ik denk dat

het noodzakelijk is om, als je wilt dat je ideeën kunnen worden begrepen door een

groter publiek, deze ideeën over te brengen in een tekst die toegankelijk is voor de

niet-wiskundige, niet-wetenschappelijke lezer – het gevaar ‘niet wetenschappelijk ge-

noeg’ te zijn, neem ik op de koop toe.

Soms is het onvermijdelijk een objectieve stijl te gebruiken, vanwege het onderwerp

dat wordt behandeld. Dit is vooral het geval in het tweede deel van hoofdstuk 1, ‘Me-

thoden’ (sectie 1.3), waarvan alleen een Engelse versie bestaat. Op het moment dat

in hoofdstuk 2 de ‘echte’ inhoud begint, wordt het pas echt aanpoten: op dat moment

verandert de stijl van de directe, subjectieve stijl van het inleidende hoofdstuk 1 naar

een objectieve en wat indirecte ‘wiskundige’ stijl. Dit is dus een noodzakelijke ei-

genschap van wiskundige teksten op onderzoeksniveau.

Tekst is niet alles. Ik heb als wiskundige gemerkt dat dieper inzicht in een fe-

nomeen door middel van symboolmanipulatie samengaat met de vorming van een

bepaald beeld, een bepaalde voorstelling. Omdat de objecten waarmee je werkt vaak

abstract zijn, kan deze voorstelling hoogstens ongeveer kloppen.
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Ik prijs mezelf in dat opzicht gelukkig dat ik een toegepast wiskundige ben. Ik ben

vaker dan in onderzoekers andere, meer fundamentele takken van de wiskunde in de

gelegenheid om de objecten die ik onderzoek daadwerkelijk te laten zien zoals ze

zijn. Waar in het overmatig gebruik van symbolen het gevaar schuilt dat de analyse

onoverzichtelijk wordt, komt het gebruik van afbeeldingen het begrip ten goede. Een

van mijn doelen is daarom de lezer een idee geven wat de afbeeldingen in dit proef-

schrift betekenen. Als je bij het doorbladeren van de wiskunde-hoofdstukken een

afbeelding tegenkomt en denkt ‘Hee! Ik heb zoiets eerder gezien, zou het met elkaar

te maken kunnen hebben?’, dan is dat doel bereikt.

Deze samenvatting is hoofdzakelijk geschreven op basis van de gedachte dat, als

je een proefschrift in de kast hebt staan, je ten minste in staat moet zijn de titel te

begrijpen. Daarvoor moeten eerst een paar concepten worden uitgelegd: dit is het

onderwerp van de nu volgende sectie. De woorden waaruit de titel bestaat wor-

den gaandeweg geïntroduceerd. Zoals gezegd is deze samenvatting, die qua inhoud

samenvalt met sectie 1.2, speciaal bedoeld voor niet-wiskundigen, zelfs voor niet-

wetenschappers. Zoals je kunt zien als je door deze samenvatting bladert, zijn er niet

zoveel formules als je in een wiskundeproefschrift zou verwachten, in het bijzonder

ten opzichte van de hoofdstukken 2, 3 en 4, waar de ‘echte’ wiskunde te vinden is.

Mocht je na het lezen van de samenvatting de smaak te pakken hebben en benieuwd

zijn naar het onderzoek in dit proefschrift, lees dan vooral hoofdstuk 1, in het bijzon-

der sectie 1.3. Daar ga ik wat verder in op wat het onderzoek dat heeft geleid tot dit

proefschrift eigenlijk inhoudt, en wat de resultaten zijn. Ook maak ik duidelijk wat

er nieuw is aan deze resultaten, en waarom ze van belang zijn. Tenslotte geef ik in

sectie 1.4 een overzicht van de inhoud van dit proefschrift.

Wat betekent de titel?

Patronen

Wat is een patroon? Je zou, in de ruimste zin van het woord, een patroon kunnen

kenschetsen als een ‘waarneembare regelmaat’. In de natuur struikel je bijna over

de patronen. De meest voor de hand liggende patronen zijn vlekken en strepen op

dierenvacht, zoals op zebra’s, luipaarden, katten en jonge everzwijnen; ingewikkel-

der patronen komen ook voor, zoals vingerafdrukken, zeeschelpen of slakkenhuizen.

Wanneer je op zoek gaat naar patronen, ‘daar is iets, dan niets meer, dan weer iets,

etc.’, vind je ze overal. Neem een boom: zijn takken, de twijgen aan de takken,
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bladeren aan de twijgen hebben allemaal min of meer dezelfde onderlinge afstand –

zelfs de nerven in de bladeren hebben een vertakkingsstructuur. Op grotere schaal

zijn patronen ook alomtegenwoordig, zelfs op dorre plaatsen als de woestijn: denk

aan golfpatronen in het zand, of zelfs zandduinen die zelf patronen vormen. Aan de

rand van de woestijn groeit de daar aanwezige vegetatie in streep- en vlekpatronen.

Zulke patronen kun je ook zien in de lucht, gevormd door wolken; zie Figuur 1.1 voor

voorbeelden van patronen in de natuur.

In al deze patronen wordt iets herhaald: ze worden gekarakteriseerd door de her-

haling van een bepaald element. De natuur staat bol van zichzelf herhalende proces-

sen: de dagelijkse opkomst en ondergang van de zon, de getijden, de fasen van de

maan, de seizoenswisselingen. Hoewel je geneigd bent deze fenomenen ook ‘patro-

nen’ te noemen (en dat zijn ze in een bepaalde zin natuurlijk ook), heeft de regelmaat

in deze gevallen betrekking tot iets in de tijd en niet zozeer tot iets in de plaats. Dit

is wat ze onderscheidt van de eerder genoemde patronen: wat wiskundigen een ‘pa-

troon’ noemen is dan ook een ruimtelijk patroon, en daartoe zullen we ons vanaf nu

beperken. Dat betekent natuurlijk niet dat verandering (in de tijd) geen rol speelt

– integendeel. De ‘dynamica van patronen’ is een belangrijk onderwerp, waarop in

sectie 1.3, hoofdstuk 1 verder wordt ingegaan.

Een patroon kan, zoals al eerder genoemd, worden gekarakteriseerd door de regel-

matige terugkeer van een bepaald basiselement, zoals een vlek, een streep, een twijg,

een golf, een blad, enzovoort. Dit proefschrift gaat over precies zo’n basiselement,

namelijk een ‘puls’. Deze puls kan gezien worden als bouwsteen voor ingewikkelder

patronen, zie Figuur 1.2. Het ligt voor de hand om, als eerste stap, de bouwstenen

van een patroon te bestuderen. Op het moment dat je dingen te weten bent gekomen

over deze bouwsteen kun je vragen over het totale patroon proberen te beantwoorden,

door te kijken hoe dit basiselement zichzelf herhaalt. Dit laatste valt echter buiten het

bestek van dit proefschrift.

Bij het bestuderen van een patroon zijn er een paar ‘natuurlijke’ vragen die je zou

willen beantwoorden: Wat is het zichzelf herhalende basiselement? En hoe wordt het

herhaald? Beide vragen zijn relevant binnen het meer overkoepelende vraagstuk over

hoe een patroon wordt gevormd. Het onderzoek dat heeft geleid tot dit proefschrift

valt daarom natuurlijkerwijs binnen het wiskundig onderzoeksgebied van ‘patroon-

vorming’, en daarbinnen in het onderzoek naar ‘gelokaliseerde structuren’. De eerder

genoemde puls is een voorbeeld van zo’n gelokaliseerde structuur.

Het basiselement, of de gelokaliseerde structuur, kan afhankelijk van het patroon in
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kwestie meer of minder interessant zijn. Bij een vingerafdruk is het spiraalvormige

patroon veel belangrijker dan de kanaaltjes die het patroon vormen, in het bijzon-

der in forensisch onderzoek. In plantgroei zijn de basiselementen (bladeren, twijgen)

veel interessanter. Een voorbeeld dat daarmee te maken heeft is de ontwikkeling van

ledematen in een embryo, die bestudeerd kan worden in de context van patroonvor-

ming: hier staan de gelokaliseerde structuren (een arm, vingers) centraal. Het proces

dat een groeiend organisme zijn vorm laat ontwikkelen, morphogenese, kan daarom

in de wiskundige context van patroonvorming bestudeerd worden – en dit is slechts

één van de vele toepassingen van patroonvorming als wiskundig onderzoeksgebied.

Dynamische systemen

De wiskundige technieken die in dit proefschrift zijn gebruikt vinden hun oorsprong

in het vakgebied van dynamische systemen, in het bijzonder dat van differentiaalver-

gelijkingen. Het is goed mogelijk om, zonder direct in de wiskunde te duiken, een

idee te geven hoe dynamische systemen werken, en welke ideeën in het onderzoek

naar patroonvorming gebruikt kunnen worden.

Een dynamisch systeem beschrijft hoe een bepaalde grootheid verandert, waarbij

die verandering wordt gestuurd door een aantal voorschriften. Denk bijvoorbeeld aan

de positie van de aarde terwijl zij om de zon cirkelt, de concentratie van chemicaliën

als je deze samenvoegt en met elkaar laat reageren, of de massa van een groeiende

bacteriekolonie. De regels die hier de verandering sturen zijn respectievelijk de wet-

ten van de zwaartekracht, de chemische reacties tussen de chemicaliën en de manier

waarop bacteriën voedsel en/of zuurstof gebruiken om te groeien. Dit soort regels

kunnen worden gegeven in de vorm van zogenaamde evolutievergelijkingen. Een

evolutievergelijking omschrijft hoe een gegeven begintoestand (een beginpositie, een

beginconcentratie) evolueert naarmate de tijd verstrijkt. Hoe zoiets er ‘in abstracto’

uit zou kunnen zien, is te zien in Figuur 1.3.

Zo’n evolutievergelijking is wiskundig gezien een differentiaalvergelijking. Een evo-

lutievergelijking voor een bepaalde grootheid φ is daarom een vergelijking voor zijn

tijdsafgeleide d
dt
φ, ofwel de verandering van φ op een bepaald moment in de tijd:

d

dt
φ = iets (dat afhangt van φ en/of t).

Het symbool φ staat hier voor wat het ook is dat de evolutievergelijking zou moeten

omschrijven, bijvoorbeeld temperatuur, een populatie van een bepaalde diersoort, of

de concentratie van een chemische stof.
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Het ‘iets’-gedeelte is natuurlijk waar al de interessante informatie zit. Op het mo-

ment dat je een keuze maakt wat je precies op de ‘iets’-plaats invult, kies je ervoor

een bepaald gedrag voor te schrijven, en op die manier leg je de evolutie van φ vast.

Als je iets anders invult, ofwel andere evolutieregels voorschrijft, zal φ ook ander dy-

namisch gedrag gaan vertonen – het is zelfs zo dat kleine veranderingen in dit opzicht

grote gevolgen kunnen hebben, zoals we zullen zien in de sectie ‘Verstoringen’.

Evolutievergelijkingen worden gebruikt om bepaalde natuurlijke fenomenen waar

de tijdsevolutie van bepaalde grootheden een rol speelt te modelleren, bijvoorbeeld

om de groei en afname van populaties te omschrijven. Vaak is het nodig om in het

model te kunnen beschrijven hoe de grootheid in kwestie is verspreid, in ruimtelijke

zin. Als de evolutie van een grootheid ook afhangt van de manier waarop deze is

verspreid, dan speelt de ruimtelijke variable x een belangrijke rol in de evolutiever-

gelijking die zo’n proces beschrijft. De tijdsevolutie van zo’n grootheid φ zal van x

afhangen, en op zijn ruimtelijke afgeleiden d
dx
φ en d2

dx2 φ. Zo’n model ziet er daarom

als volgt uit:

∂

∂t
φ = iets dat afhangt van φ,

∂

∂x
φ,

∂2

∂x2
φ, x en/of t.

Het is je misschien opgevallen dat er iets veranderd is aan de manier waarop de af-

geleiden worden weergeven: we gebruiken hier ‘∂’ in plaats van ‘d’. Deze notatie

wordt over het algemeen gebruikt om te benadrukken dat de grootheid φ van twee

variabelen afhangt, in dit geval van zowel x als van t: je kunt ook zeggen dat φ een

functie is van x en t. Om het overzichtelijk te houden beperken we ons hier tot één

ruimtelijke variabele x: je hebt er meer nodig als het voor het fenomeen in kwestie

handig is om te omschrijven hoe de grootheid φ zich verspreidt in de lengte, breedte

en/of hoogte. De gekozen aanpak is vaak volledig hetzelfde als in het geval van één

ruimtelijke variabele.

Reactie-diffusievergelijkingen vormen een belangrijke klasse evolutievergelijkin-

gen waar de ruimtelijke spreiding de evolutie beïnvloedt. In deze reactie-diffusiever-

gelijkingen is er een duidelijk onderscheid tussen de rol van de ruimtelijke afgeleiden

van φ ( ∂
∂x
φ, ∂2

∂x2 φ, enz.) en die van de andere termen. Reactie-diffusievergelijkingen

zien er (daarom) als volgt uit:

∂

∂t
φ =

∂2

∂x2
φ + iets dat afhangt van φ.

Aan de hand van deze structuur kan duidelijk worden gemaakt waar de naam ‘reactie-

diffusie’ vandaan komt. De term ‘diffusie’ betekent ‘het verspreiden door de ruimte’:

192



denk aan een scheutje melk in een kop koffie, waarbij de melk zich (ook zonder te

roeren) door de koffie verspreidt. Een ander alledaags voorbeeld is warmtegeleiding:

als je een pan op het vuur zet, verspreidt de warmte zich door de pan (en, niet onbe-

langrijk, door de inhoud van de pan) door middel van diffusie (zie Figuur 1.4). Wis-

kundig gezien kun je diffusie het meest recht-toe-recht-aan modelleren met de tweede

ruimtelijke afgeleide, in dit geval ∂2

∂x2 φ. Deze term in de reactie-diffusievergelijking

schrijft voor hoe de grootheid φ zich verspreidt door de ruimte terwijl zij evolueert in

de tijd.

De overige termen, ‘iets dat afhangt van φ’, worden de reactietermen genoemd. De

reden voor het gebruik van deze term is het duidelijkst als we niet één, maar twee

reactie-diffusievergelijkingen bekijken – met andere woorden, een ‘reactie-diffusie-

systeem’. Een voorbeeld hiervan is het Gierer-Meinhardtsysteem [22], dat de evolutie

van de grootheden U en V beschrijft:

∂
∂t

U = ∂2

∂x2 U + V2 − U

∂
∂t

V = ∂2

∂x2 V + V2

U
− V

Het is duidelijk te zien dat de evolutie van U, beschreven in de bovenste vergelijking,

wordt beïnvloed door de waarde van V door de aanwezigheid van de term V2. Vice

versa heeft de onderste vergelijking, waar de evolutie van V wordt beschreven, een

term die afhangt van U, namelijk V2

U
. Deze wederzijdse afhankelijkheid kun je inter-

preteren als een reactie tussen U en V , wat de terminologie ‘reactietermen’ verklaart.

Reactie-diffusievergelijkingen kunnen daarom worden gekarakteriseerd als evo-

lutievergelijkingen die de ruimtelijke spreiding van, en de interactie tussen verschil-

lende grootheden omschrijven.

Patronen in reactie-diffusiesystemen

In fenomenen die beschreven worden door reactie-diffusievergelijkingen komen re-

gelmatig allerlei soorten patronen voor. Dit is geen toeval: het verschijnen van iets

dat op een patroon lijkt is voor onderzoekers vaak de aanleiding om te proberen het

fenomeen in kwestie te modelleren met reactie-diffusievergelijkingen. Alan Turing

–wereldberoemd door onder andere zijn bijdrage aan het ontcijferen van de Enigma-

code, zie Figuur 1.5– was de eerste die liet zien hoe en waarom patronen op een na-

tuurlijke manier kunnen ontstaan in systemen van reactie-diffusievergelijkingen. Pa-
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tronen die op deze manier ontstaan worden dan ook vaak Turingpatronen genoemd.

Het mechanisme dat zorgt voor het ontstaan van een Turingpatroon wordt meestal

beschreven aan de hand van een zogenaamd activator-inhibitorpaar. Dit is een paar

(chemische) stoffen waarvan de één (de activator) beide laat groeien, terwijl de ander

(de inhibitor) de groei van beide stoffen probeert af te remmen. Deze beschrijving

van groei en afremming kan door de reactietermen in een reactie-diffusievergelijking

worden gemodelleerd. Turing ontdekte dat als de inhibitor zichzelf veel makkelijker

door de ruimte verspreidt dan de activator, er een soort terugkoppelingsmechanisme

ontstaat. Dit terugkoppelingsmechanisme zorgt ervoor dat de activator en de inhibi-

tor zich niet gelijkmatig verspreiden: hun concentratie fluctueert op een regelmatige

manier van plaats tot plaats, en op die manier vormt zich een patroon.

Over het algemeen wordt aangenomen dat dit activator-inhibitormechanisme, dat ge-

modelleerd kan worden door een reactie-diffusiesysteem, de oorzaak is van een groot

aantal patronen die voorkomen in de natuur, zoals vlekken en strepen op dierenvacht

of vegetatiepatronen aan de rand van de woestijn. In Figuur 1.6 zie je een aantal voor-

beelden van mogelijke patronen in een specifiek reactie-diffusiesysteem (het Gray-

Scottmodel).

Wat is een patroon? In de context van reactie-diffusievergelijkingen zou je kunnen

zeggen dat een patroon iets is met een duidelijke ruimtelijke structuur, iets wat dus

op een specifieke manier van de ruimtelijke variabele x afhangt. Bovendien ligt het

voor de hand om te eisen dat een patroon niet of nauwelijks zou moeten veranderen

in de tijd. Deze laatste eis is echter nogal beperkend. Er zijn genoeg voorbeelden

van dingen die je zeker een ‘patroon’ zou willen noemen, maar die toch bewegen.

Denk bijvoorbeeld aan lopende golven, zoals watergolven, radiogolven, of licht: deze

hebben een duidelijke (ruimtelijk) periodieke structuur, maar ze bewegen ook in een

bepaalde richting. Je kunt natuurlijk zeggen dat, als je meebeweegt met de golf, dat

deze stil lijkt te staan –en dat is precies hoe zulke lopende golven in het algemeen

worden beschreven– maar dat verandert niets aan het feit dat deze golven bewegen.

Er zitten een paar belangrijke voordelen aan je beperken tot stationaire, stilstaande

patronen: omdat het patroon dat je zoekt niet afhangt van de tijd, kun je je voorstellen

dat de analyse in de context van reactie-diffusievergelijkingen een stuk eenvoudiger

wordt. Er is geen wederzijdse beïnvloeding tussen de ruimtelijke en tijdelijke variatie

van het patroon: het patroon evolueert niet. Je kunt dit ook zien als startpunt van de

analyse van patronen die wél veranderen als de tijd verstrijkt. Je kunt vragen gaan

stellen als ‘Als ik de omstandigheden verander, zal het patroon dat ik gevonden heb

ook gaan veranderen? Zal het gaan bewegen? Zal de vorm veranderen?’ Op dit soort

vragen wordt in sectie 1.3.3 verder ingegaan.
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Kort samengevat kan de zoektocht naar een patroon in een reactie-diffusiemodel

beginnen met het vinden van een stationaire, tijdsonafhankelijke oplossing van het

reactie-diffusiesysteem, met een specifieke ruimtelijke structuur. En dat is precies

waar een deel van dit proefschrift over gaat: het vinden van patronen (in het bijzonder,

pulsen) in reactie-diffusiesystemen.

Verstoringen

We gaan een experimentje doen. We zijn benieuwd wat er gebeurt met een bal die we

laten vallen vanaf een bepaalde hoogte, zeg 2 meter. We kunnen bijvoorbeeld meten

hoe lang het duurt voordat de bal de grond raakt. Je kunt je voorstellen dat, als je

dit experiment meerdere keren uitvoert, je niet iedere keer hetzelfde antwoord krijgt.

Deze variatie in meetresultaten kan meerdere oorzaken hebben: misschien liet je de

bal niet iedere keer vanaf precies dezelfde hoogte vallen, misschien was je niet iedere

keer even op tijd met je stopwatch. Deze dingen hebben te maken met de feilbaarheid

van degene die het experiment uitvoert: natuurlijk heeft jouw eigen onnauwkeurig-

heid geen invloed op het daadwerkelijke fenomeen van het vallen van de bal. Omdat

dit tot nu toe toch een gedachtenexperiment is, nemen we vanaf nu aan dat je in staat

bent om de valtijd van de bal precies te meten.

Dan nog zul je niet steeds dezelfde meetresultaten krijgen. Misschien werd de bal

een beetje opzij geblazen door de wind, misschien was de grond niet helemaal vlak,

misschien is de luchtdruk ondertussen een beetje veranderd, of de luchtvochtigheid,

waardoor de luchtweerstand is veranderd; misschien is er een klein stofje aan de bal

gaan kleven, waardoor zijn gewicht is veranderd, misschien kruisde de bal op weg

naar beneden het pad van een nietsvermoedende vlieg, waardoor de bal iets afremde.

Dit zijn oorzaken die je niet kunt controleren, maar die wel invloed kunnen hebben

op de meetresultaten. Natuurlijk kun je daar tegenin brengen dat als je hetzelfde ex-

periment vaak herhaalt in een goed beschermde en gecontroleerde omgeving, je de

invloed van zulke verstoringen minimaliseert en hun netto effect uit zal middelen.

Uiteindelijk zou het, om het fenomeen van de vallende bal te beschrijven, niet uit

moeten maken wie het experiment uitvoert, of hoe laat het is, of het regent of niet, of

ik het experiment uitvoer in Oslo of in Jakarta – maar wacht eens even. Dat laatste

maakt wel uit, al is het maar een beetje. Sinds Newton weten we dat de bal valt door

de wederzijdse aantrekkingskracht tussen de bal en de aarde. Als je de gravitatio-

nele versnelling op verschillende plaatsen op aarde meet (bijvoorbeeld door een bal

te laten vallen), zul je zien dat deze gravitationele versnelling g van plaats tot plaats

verschilt. Bij benadering is g = 9.8 m/s2; in Oslo geldt dat gOslo = 9.825 m/s2, terwijl

in Jakarta gJakarta = 9.777 m/s2. Alle andere dingen die de vallende bal beïnvloedden
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waren willekeurig en hadden niets te maken met de natuurkundige achtergrond van

het fenomeen van de vallende bal. Met de plaats op aarde waar het experiment wordt

uitgevoerd introduceren we een kleine, maar systematische verandering in de meet-

gegevens.

Als een onderzoeker een natuurlijk fenomeen bestudeert probeert hij of zij vast te

stellen welke processen of wetten werkelijk ten grondslag liggen aan het fenomeen,

en welke processen ruis introduceren en zo de metingen alleen maar verstoren. Als je

een model voor de vallende bal op zou schrijven in de vorm van een vergelijking, zou

je dingen als hoe laat het is of welke kleur je ogen hebben niet in het model stoppen,

omdat je weet dat dit soort dingen geen invloed hebben. Je zou ook de aanwezigheid

van wind of de luchtvochtigheid niet mee laten wegen, omdat je weet dat die niet

te maken hebben met de fundamentele oorzaken van de vallende bal. Hoewel ze de

beweging van de bal een beetje kunnen beïnvloeden, is dat niet waarin je uiteindelijk

geïnteresseerd bent. Met andere woorden, je wil je model (je vergelijking, je natuur-

wet) zo eenvoudig, zo zuiver mogelijk hebben. Dat is één van de redenen waarom

het zo moeilijk is als wetenschapper een goed model op te schrijven: je hebt een

hoop kennis over en ervaring met het te bestuderen fenomeen nodig om te kunnen

beoordelen welke processen werkelijk invloed hebben op het fenomeen dat je wilt

beschrijven.

In het geval van de vallende bal kunnen we met behulp van de tweede wet van New-

ton een formule opschrijven, die alleen maar afhangt van de zwaartekracht. Als we

de valtijd t noemen en de gravitationele versnelling g, dan krijgen we (voor een val-

hoogte van 2 meter, waarbij we de eenheden even vergeten):

t =
2
√

g

Omdat de waarde van de gravitationele versnelling van plaats tot plaats verandert, ver-

schilt de valtijd ook van plaats tot plaats. Als we alleen maar de valtijd ongeveer zou-

den willen weten, zouden we altijd de ‘benaderde’ waarde van g kunnen gebruiken;

zelfs al is dit niet de ‘echte’ waarde van g (en geeft daarom niet de echte waarde van

t), het zit er toch niet ver vanaf. Als we de gemiddelde waarde ggemiddeld = 9.81 m/s2

gebruiken, krijgen we tgemiddeld = 0.64s. Nu kunnen we de daadwerkelijke waarden

van de gravitationele acceleratie in Oslo en Jakarta vergelijkigen met de gemiddelde

waarde: gOslo = ggemiddeld + 0.015 m/s2 en gJakarta = ggemiddeld − 0.033 m/s2. Op deze

manier kunnen we de gravitationele accelaratie waar dan ook op aarde schrijven als

g = ggemiddeld + ε, waar de waarde van ε afhangt van waar je bent. Bovendien is ε be-

hoorlijk klein ten opzichte van ggemiddeld, zoals we hebben gezien. Als we dit nieuwe
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gegeven invullen in onze formule voor de valtijd, krijgen we

t =
2

√
ggemiddeld + ε

Deze formule, die de valtijd van een bal losgelaten op 2 meter hoogte waar dan ook

op aarde beschrijft, is een voorbeeld van een model met een verstoring. Op deze ma-

nier kun je direct een aantal karakteristieke aspecten van het vallende bal-fenomeen

aflezen. Als je bijvoorbeeld de kleine variaties in de waarde van g verwaarloost door

ε = 0 te kiezen, kun je direct zien hoe je de benaderde, gemiddelde valtijd tgemiddeld

uitrekent, namelijk als

tgemiddeld =
2

√
ggemiddeld

Bovendien kun je afleiden dat, zolang de verstoring ε klein blijft, de valtijd niet veel

van de gemiddelde valtijd zal verschillen, zie Figuur 1.7. Deze laatste eigenschap,

dat kleine veranderingen in het model een kleine invloed op de uitkomsten hebben, is

de definiërende eigenschap van zogenaamde reguliere verstoringen.

Voor singuliere verstoringen geldt het tegenovergestelde: hier kunnen kleine ver-

storingen in het model een grote invloed hebben op de grootheden die door het model

worden beschreven. Dit klinkt tegenstrijdig, maar er zijn alledaagse voorbeelden

waar singuliere verstoringen een belangrijke rol spelen.

Singuliere verstoringen hebben bijna altijd te maken met plotselinge veranderingen,

of snelle overgangen. Warmtegeleiding is een goed voorbeeld hiervan: we zijn warm-

tegeleiding al eerder tegengekomen, als illustratie van de term ‘diffusie’.

Als je een pan op het vuur zet, verspreidt de warmte van het fornuis zich heel snel

door metaal van de pan: dit metaal is een goed warmtegeleider. Als de pan van por-

selein zou zijn, zou er iets compleet anders gebeuren: omdat keramische materialen

goede hitte-isolatoren zijn, zou de pan erg langzaam opwarmen, omdat de warmte

van het fornuis zich nauwelijks door de pan zou verspreiden. Het verschil tussen een

metalen en een porseleinen pan in termen van warmtegeleiding is duidelijk zichtbaar

als je Figuren 1.8 en 1.9 met elkaar vergelijkt. In het porselein is de verwarmde plek

in het midden niet zo uitgespreid als in het metaal. Er is daarom een scherpe over-

gang zichtbaar tussen de verwarmde plek en zijn omgeving: aan de rand van de plek

die wordt verwarmd is er een plotselinge temperatuurdaling. Als we het model dat

warmtegeleiding in verschillende materialen beschrijft beter bekijken, wordt duide-

lijk waarom dit fenomeen alles te maken heeft met singuliere verstoringen.

197



Samenvatting

Warmte verspreidt zich door materialen door middel van diffusie. De manier

waarop warmte zich door een materiaal verspreidt kan worden beschreven door een

heel eenvoudige evolutievergelijking, beter bekend als de ‘warmtevergelijking’:

∂

∂t
φ = α

∂2

∂x2
φ

In dit geval is φ de temperatuur op een bepaalde plaats in het materiaal, op een be-

paald moment. De warmtevergelijking is een hele basale reactie-diffusievergelijking,

of eigenlijk alleen maar een diffusievergelijking omdat er geen reactietermen in voor-

komen (zie de vorige sectie). De letter α is de warmtegeleidingscoëfficient: het is

een constante die afhangt van het materiaal dat je bekijkt. Een materiaal dat warmte

slecht geleidt heeft een heel kleine warmtegeleidingscoëfficient.

Laten we, om aan te sluiten bij het vorige voorbeeld, deze kleine warmtegeleidings-

coëfficient ‘ε’ noemen, zodat de warmtevergelijking voor een heel goed isolerend

materiaal er als volgt uitziet:

∂

∂t
φ = ε

∂2

∂x2
φ

Net zoals in het voorbeeld van de vallende bal kun je je afvragen wat er gebeurt

als we de kleine ε-term verwaarlozen, ofwel ε = 0 kiezen. In dit geval leidt dit

tot een drastische versimpeling van de warmtevergelijking. We houden de volgende

vergelijking over:
∂

∂t
φ = 0

Met andere woorden: de temperatuur verandert niet. Dat betekent dat de overgang

van de verwarmde plek naar zijn omgeving echt een abrupte overgang is: de ver-

warmde plek blijft warm, omdat het omringende isolerende materiaal de warmte op

haar plek houdt. Het materiaal in de omgeving warmt niet op, en blijft dus koud.

Natuurlijk is dit niet helemaal realistisch: in het echt zal de warmte zich langzaam

verspreiden, en de verwarmde plek zal langzaam afkoelen. Toch geeft deze zoge-

naamde ‘singuliere limiet’ een behoorlijk goede omschrijving van wat er in het echt

zal gebeuren – zolang je er even niet over nadenkt of een perfect isolerend materiaal

wel zou kunnen bestaan.

De limiet ε = 0 wordt ‘singulier’ genoemd omdat het een onderdeel van het mo-

del weggooit dat cruciaal is voor de beschrijving van het fenomeen in kwestie, in

dit geval warmtediffusie. Deze neiging van singuliere limieten om zich te ontdoen

van termen die een belangrijke rol spelen, is iets dat zich regelmatig voordoet in het

onderzoek naar singuliere verstoringen. De onderzoeker kan hier vaak zijn of haar

voordeel mee doen, omdat het tot gevolg heeft dat het model een stuk eenvoudiger
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wordt. Je kunt het zien als een soort compromis: in de singuliere limiet, als je ε = 0

kiest, wordt het opeens mogelijk om bepaalde vergelijkingen op te lossen omdat het

aanvankelijk complexe systeem behoorlijk is versimpeld. Aan de andere kant heb je

ook een hoop informatie weggegooid: het is vaak onduidelijk hoe je de resultaten die

behaald zijn in de singuliere limiet kunt vertalen naar het geval dat ε niet nul is (maar

wel heel klein). In het bovenstaande voorbeeld over warmtegeleiding wisten we al

hoe de ‘volledige’ vergelijking zich gedroeg, omdat we het fenomeen dat werd be-

schreven snapten: op basis daarvan konden we de resultaten van de singuliere limiet

interpreteren. In andere toepassingen is dit vaak niet zo eenvoudig.

We hebben gezien dat er, in het geval van zeer trage warmtegeleiding, een scherpe

overgang in temperatuur is tussen de verwarmde plek en zijn omgeving. In het echt is

deze overgang niet zo plotseling als in de singuliere limiet, maar de overgang is wel

heel snel. Om beter te begrijpen wat er in deze overgang gebeurt is het een goed idee

om in te zoomen op het gebied waar de overgang plaatsvindt. Als je dat doet, zul je

een geleidelijke overgang zien van hoge naar lage temperatuur – maar wel geleidelijk

op een erg kleine lengteschaal. Je zou de temperatuurverdeling in een porseleinen

pan het best als volgt kunnen beschrijven:

1. Begin ver weg van de verwarmde plek, waar de temperatuur laag is. Als je in

de richting van de verwarmde plek begint te ‘lopen’, verandert er weinig: de

temperatuur blijft hetzelfde.

2. Plotseling maakt de temperatuur een grote sprong: je bent nu aan de rand van de

verwarmde plek. Als je nauwkeuriger wil zien wat hier gebeurt, zul je even pas

op de plaats moeten maken en moeten inzoomen op het overgangsgebied. Je

zult zien dat de temperatuur op deze kleine lengteschaal geleidelijk toeneemt.

3. Na de sprong ben je beland in het verwarmde gebied. Hier verandert er weer

weinig: overal is min of meer dezelfde (hoge) temperatuur.

Een situatie waarin er een schaalverschil optreedt, en waar het dus het handigste is

om sommige gebieden op een andere (kleinere) schaal te bekijken dan andere gebie-

den, is typisch voor een model met singuliere verstoringen. In zulke situaties is de

algemene aanpak dus om het probleem op verschillende schalen te bekijken, en de re-

sultaten van deze afzonderlijke analyses aan elkaar te plakken om zo een totaalbeeld

te krijgen. Deze aanpak wordt in sectie 1.3.1 in meer detail toegelicht.
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Waar gaat dit proefschrift over?

Inmiddels zijn we genoeg te weten gekomen om de titel van dit proefschrift te be-

grijpen: ‘Pulsen in singulier verstoorde reactie-diffusiesystemen’. Dit proefschrift

gaat over de analyse van een bepaald specifiek patroon, namelijk een puls, in de con-

text van een bepaalde klasse modellen, namelijk reactie-diffusiesystemen. Bovendien

hebben deze reactie-diffusiesystemen een belangrijke, zeer bruikbare eigenschap: ze

zijn singulier verstoord. Wat deze afzonderlijke termen betekenen, is uitgelegd in de

voorgaande secties.

Zoals ik al heb gezegd aan het begin van deze samenvatting: mocht je benieuwd

zijn naar de onderzoekstechnieken die zijn gebruikt in dit proefschrift, en vraag je je

af hoe je de analyse van zo’n puls eigenlijk aanpakt, lees dan verder in hoofdstuk 1.

De inhoud van het eerste deel komt overeen met deze samenvatting, maar vanaf sectie

1.3 begint er iets nieuws. Als de overgang van Nederlands naar Engels een probleem

is, zal het ongetwijfeld helpen af en toe terug te bladeren naar deze samenvatting.
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