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Abstract. Despite the enormous research efforts that have been put into the development
of central nervous system (CNS) drugs, the success rate in this area is still disappointing. To
increase the successful rate in the clinical trials, first the problem of predicting human CNS
drug distribution should be solved. As it is the unbound drug that equilibrates over
membranes and is able to interact with targets, especially knowledge on unbound
extracellular drug concentration-time profiles in different CNS compartments is important.
The only technique able to provide such information in vivo is microdialysis. Also, obtaining
CNS drug distribution data from human subjects is highly limited, and therefore, we have to
rely on preclinical approaches combined with physiologically based pharmacokinetic (PBPK)
modeling, taking unbound drug CNS concentrations into account. The next step is then to
link local CNS pharmacokinetics to target interaction kinetics and CNS drug effects. In this
review, system properties and small-molecule drug properties that together govern CNS drug
distribution are summarized. Furthermore, the currently available approaches on prediction
of CNS pharmacokinetics are discussed, including in vitro, in vivo, ex vivo, and in silico
approaches, with special focus on the powerful combination of in vivo microdialysis and
PBPK modeling. Also, sources of variability on drug kinetics in the CNS are discussed.
Finally, remaining gaps and challenges are highlighted and future directions are suggested.

KEY WORDS: brain extracellular fluid (brainECF); central nervous system (CNS); cerebrospinal fluid
(CSF); mastermind research approach; physiologically based pharmacokinetic (PBPK) model.

INTRODUCTION

There is a huge unmet medical need for central nervous
system (CNS) disease therapies because of the growing of
chronic and complex diseases associated with aging. However,
development of CNS drugs is one of the most challenging tasks
for the pharmaceutical industry (1). Actually, drug development
for CNS drugs has suffered a higher attrition rate compared to
that of other therapeutic areas drugs; it has been reported that
only around 8–9% of CNS drugs that entered phase 1 were
approved to launch (2). And around 50% of the attrition of
potential CNS drugs has resulted due to a lack of efficacy and

safety issues in phase 2 (2, 3). Knowledge of human CNS drug
concentrations forms the basis for understanding exposure-
response relationships; therefore, the lack of appropriate
consideration of these target concentrations is one of the factors
contributing to this high degree of attrition.

Obtaining the target site concentrations of CNS drugs is
not straightforward because plasma concentrations do not
adequately reflect CNS exposure, primarily due to the
presence of the blood-brain barrier (BBB) and the blood-
cerebrospinal fluid barriers (BCSFB), and additional specific
physiological characteristics of the CNS. Furthermore, signif-
icant variation in the rate and extent of mechanisms that
govern target site pharmacokinetics (PK), target engagement,
and signal transduction is known to exist, due to differences
in system conditions such as species, gender, genetic back-
ground, age, diet, disease, and drug treatment (4). Moreover,
with regard to CNS drug action, there is a lack of sufficiently
established clinical biomarkers and proof-of-concept (5).
Thus, it is clear that there is a need for more predictive
approaches. These predictive approaches have to be inter-
connected to the system conditions and must be performed
using adequate (including bound and unbound drug)
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concentrations. Also processes should preferably not be studied
in isolation and then combined, but instead studied in conjunc-
tion with each other as this will provide insight about the
interdependencies of these processes (4). Since measurements
on CNS target site concentration in the clinical setting are highly
restricted, we have to develop an approach based on integrated
preclinical data that is translatable to human.

Even though drug properties have been investigated
well, information of CNS system properties (CNS physiology
and biochemistry) is sparse and has a large variability. CNS
pharmacokinetics of drugs is determined by their interaction.
System properties depend on the condition of the system,
which means that we have to use approaches to distinguish
between system and drug properties, as this would allow us to
translate the model to other species and also other disease
conditions, by using physiologically based pharmacokinetic
(PBPK) modeling.

Currently, many more or less complex semi-PBPK
models have been published for CNS drug distribution. At
present, four preclinical translational models have been
validated with human CNS concentration profiles (6–9). In
these models, however, the parameters were estimated using
in vivo data to describe CNS distribution of individual drug in
animals. Ultimate goal of the PBPK modeling is to build a
generic PBPK model in which the parameters are derived
from in vitro and/or in silico data. To achieve this, in vivo data
is needed to validate the generic PBPK model. Furthermore,
an investigation is needed on the relationship between drug
physicochemical properties and CNS distribution.

In this review, system properties and small-molecule
drug properties that together govern CNS drug distribution
are summarized, followed by currently available approaches
on prediction of CNS pharmacokinetics, including in vitro,
in vivo, ex vivo, and in silico approaches, with special focus
on the powerful combination of in vivo microdialysis and
PBPK modeling. Also, sources of variability on drug
kinetics in the CNS are discussed. Finally, remaining gaps

and challenges will be discussed and future directions will
be provided.

INTERACTION BETWEEN CNS SYSTEM AND DRUG
PROPERTIES

Many CNS system properties and drug specific proper-
ties are known to influence drug kinetics in the brain, as
shown in Fig. 1. Here, we focus on the relevant factors from
each that contribute to the drug kinetics and summarize their
function.

CNS SYSTEM PROPERTIES

Physiological Compartments, Flows, and pH

The CNS is a complex system composed of many
physiological components and flows (Fig. 2): Physiological
compartments are the BBB, the BCSFB, brain extracellular
fluid (brainECF), cerebral blood, brain parenchymal cells, and
the cerebrospinal fluid (CSF) in the ventricles, the cisterna
magna, and the subarachnoid space (4). There are pH
differences among the compartments (10–16). Then, there
are the CNS fluid flows that include the cerebral blood flow
(CBF), brainECF bulk flow, and CSF flow. All relevant
physiological parameter values are summarized in Table I.

Active Transporters

The localization of transporters and their expression
level are also important factors to determine drug distribu-
tion in the brain. Transporters are present at the BBB and
at the BCSFB, also on the membrane of brain parenchyma.
Active transporters on the BBB and BCSFB consist of
facilitated transport and ATP-dependent transport. The
solute carrier (SLC) family, such as organic anion-
transporting polypeptide (OATP) and organic anion

Fig. 1. System and drug properties which govern drug kinetics in brain. Figure is modified from de Lange (4)
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transporters (OATs), is categorized as a facilitated transport,
while ABC transporters, such as P-glycoprotein (P-gp),

multidrug resistance protein (MRPs), and breast cancer-
resistant protein (BCRP) are categorized as an ATP-

Fig. 2. Brain physiological components and flow. Figure is modified from de Lange (4)

Table I. Values of CNS system properties for rat and human

Parameter Human Refs Rat Refs

Volumes BBB volume 8.25 mL (calculated using thickness
endothelial cell of 550 nm)

(17) 5.02 μL (18)

BCSFB volume 107.25 mL (calculated using
thickness 14.3 μm of endothelial cell)

(19) 37.5 μL (18)

Brain volume 1400 g (20) 1.8 g, 1880 μL (21,22)
BrainECF volume 240–280 mL (23,24) 290 μL (25)
BrainICF volume 960 mL (24) 1440 μL (24)
CSF volume 130-150 mL (26,27) 250 μL (21)
CSFLV volume 20–25 mL (26,28) 50 μL (29,30)
CSFTFV volume 20–25 mL (26,28) 50 μL (29,30)
CSFCM volume 7.5 mL (31,32) 17 μL (31,32)
CSFSAS volume 90–125 mL (26,28) 180 μL (33,34)

Flows cerebral blood flow 610–860 mL/min (35–37) 1.1–1.3 mL/min (38,39)
brainECF flow 0.15–0.2 mL/min, (50% of CSF production) (27) 0.00018–0.00054 mL/min (40)
CSF flow 0.3–0.4 mL/min (27) 0.0022 mL/min (25,41)

Surfaces BBB SA 12–18 m2 (17) 155–263 cm2 (42,43)
BCSFB SA 6–9 m2 (17) 25–75 cm2 (42,44)

(assumed 50% of BBB SA) (assumed 50% of BBB SA)
brain ECF/ICF SA 228 m2 Calculated a) 3000 cm2 (18)
brain ICF/lysosome SA 12 m2 Calculated a) 162 cm2 Calculated a)

pH Plasma 7.4 (13) 7.4 (10)
BrainECF NA 7.3 (11)
BrainICF 7.0 (14) 7.0 (11)
lysosome 4.5-5.0 (15) 5.0 (11)
CSF 7.3 (13) 7.3 (12)

brainECF, brain extracellular fluid compartment, brainICF brain intracellular fluid compartment, CSFLV compartment of cerebrospinal fluid in
lateral ventricle, CSFTFV compartment of cerebrospinal fluid in the third and fourth ventricle, CSFCM a compartment of cerebrospinal fluid in
the cisterna magna, CSFSAS compartment of cerebrospinal fluid in the subarachnoid space, SA surface area
aCalculation was performed based on an assumption that the brain cells and lysosome are spherical
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dependent transport (45). Table II summarizes an overview
of transporters with their localization and their endogenous
and exogenous substrates.

Metabolic Enzymes

Presence and localization of enzymes in the brain are
also important factors to determine drug kinetics in the brain.
In the brain, the following enzymes are found: oxidoreduc-
tases such as cytochrome P450 (CYPs) and monoamine
oxidase (MAO), membrane-bound and soluble catechol-O-
methyltransferase (COMT), and transferases such as uridine
5-diphospho (UDP) -glucuronosyltransferases (UGTs) and
phenol sulfotransferase (PST) (68). In Table III, an overview
is provided of the different enzymes with their localization
and examples of their endogenous and exogenous substrates.

SMALL-MOLECULE DRUG PROPERTIES AND
INTERACTION WITH THE CNS SYSTEM

A combination of CNS system properties and drug
properties determines the pharmacokinetics of a drug in the
CNS, including the CNS target site. Important physicochem-
ical properties for determination of drug CNS pharmacoki-
netics are summarized in Fig. 1.

Physicochemical properties of a drug, such as lipophilic-
ity, size, charge, hydrogen binding potential and polar surface
area (PSA), are important determinants for pharmacokinetics
of a drug. Many studies have investigated the influence of
individual physicochemical properties on the BBB penetra-
tion in isolation. However, as physicochemical properties are
highly inter-correlated, it is more appropriate to consider
these properties in combination.

First of all, it should be noted that it is the unbound and
neutral form of a drug molecules that is able to diffuse across
barriers like the BBB and BCSFB, depending on the
concentration gradient of the unbound and neutral form of
the drug on either side of a membrane. Lipophilicity relates
to the BBB permeability, as transcellular diffusion rate
(93,94). Furthermore, as a rule of thumb, higher lipophilicity
increases CNS tissue binding. Molecular size is an important
factor for paracellular drug diffusion rate and also has an
impact on transcellular diffusion rate at the BBB (93, 95, 96).
The degree of ionization depends on the pKa of the drug and
actual pH in a body compartment. Thus, the BBB perme-
ability rate is influenced by lipophilicity, size, and pKa of a
drug (93, 97). Using quantitative structure-activity relation-
ship (QSAR) modeling, it has been shown that the descrip-
tors for the prediction of BBB penetration are different for
different charge classes (98). As there are pH differences
between plasma, brainECF and CSF (Fig. 2), charge is an
important factor for CNS drug disposition (99).

The hydrogen bonding potential reflects the necessary
energy for a molecule to move out of the aqueous phase into
the lipid phase of a membrane. Recent studies have shown
that the relationship between chemical structure and
Kp,uu,brain (the ratio of the unbound concentration in the
brain over that in plasma at equilibrium which measures the
extent of CNS distribution) was dominated by hydrogen
bonding (100).

PSA is generally defined as the sum of the van der Waals
surface areas of oxygen and nitrogen atoms. Therefore, PSA
of a compound can be related to its hydrogen bonding
potential. Some studies have shown that PSA is highly
correlated with the permeability coefficient (Pc) of mem-
branes (94,101,102). A recent study for Kp,uu,brain has been
shown that PSA is one of the important factors to predict the
Kp,uu,brain for each compound (103).

BBB and BCSFB Transport

Protein Binding. It is generally accepted that unbound
drug in plasma is able to cross the BBB and BCSFB. Twomajor
proteins in plasma are albumin and α1-acid glycoprotein (104).
For passive diffusion, the free concentration gradient between
plasma and brain determines the rate of transport. The extent of
BBB and BCSFB transport are investigated using Kp,uu,brain:
If there is only diffusion, Kp,uu,brain is 1. If there is active
transport processes, then Kp,uu,brain is larger than 1 (active in)
or Kp,uu,brain is smaller than 1 (active out).

Ionization of the Drug in Plasma and in the Brain. There
are similar pH differences among the CNS physiological
compartments in human and in rat (Table I). Because of the
pH differences, the ratio of neutral form of a compound
among the compartments is different. It is generally accepted
that neutral form can pass barriers; therefore, ionization that
is determined by the pKa of a compounds and pH in the
physiological compartments will have an impact on drug
disposition in the brain.

Cerebral Blood Flow—Flow Versus Permeability-Limited
Transport Rate. Lipophilic compounds usually have a large
permeability coefficient; therefore, a permeability surface
area product (PA), which is determined by the permeability
coefficient and surface area of tissue, becomes large. If the PA
is larger than the physiological cerebral blood flow, then the
physiological cerebral blood flow determines the transport
rate of the compound.

Modes of BBB Transport—Different Modes. The combi-
nation of transport modes at the BBB, BSCFB, and
membrane of brain parenchyma determines the rate and
extent of drug exchange at the BBB, BCSFB and membrane
of brain parenchyma (105,106). Therefore, the operative
transport mechanism(s) may differ for each drug. Each
transport mode is summarized in Table IV.

Active Transporter Function. Active transporters medi-
ate influx and efflux of drug transport. The magnitude of
interaction of active transport is drug- and species-dependent
(107). The functions of individual transporters are summa-
rized in Table II.

Brain Distribution and Elimination

Extra-intracellular Distribution. Once having crossed the
BBB, the drug is distributed by brainECF bulk flow into the

Yamamoto et al.
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CSF compartments. At the same time, the drug in brainECF is
transported to brain parenchymal cell intracellular fluid
(brainICF). It should be noted that also on the brain
parenchyma cell membranes active transport may occur
(106).

Tissue Binding. Tissue binding can occur as being
specific at the target or non-specific to tissue components.

Lysosomal Trapping. In the brain parenchyma cells,
there is a physiological pH gradient between the intracellular
compartment (cytoplasm) and the lysosome compartment
(Fig. 2). Especially basic compounds are known to be trapped
in the lysosomes (11).

Drug Dispersion Within CSF. Some studies have shown
that intrathecally administered drugs distribute faster than
what can be accounted only by molecular diffusion (108,
109). Thus, it is thought that molecular diffusion makes only
a small contribution to the total drug dispersion within CSF.
This leads to the need to take into account also the
convection due to oscillatory CSF flow to adequately
explain this dispersion (110). Recently, the drug dispersion
has been considered to be enhanced by the CSF pulsatility
(heart rate and CSF stroke volume), and it leads to high
inter- and intra-patient variability in drug distribution in the
brain (110, 111).

Elimination from the Brain. Apart from transport across
the BBB and BCSFB as discussed earlier, drug may leave the
brain via the BBB, but also via CSF reflux into the blood
stream at the level of the arachnoid villi.

Metabolism. In the brain, several metabolic enzymes are
present. Enzyme interaction with drugs is important informa-
tion not only on the drug PK profile but also the drug
pharmacological effect in the brain since it may create active
metabolites. Presence and localization of several enzymes
have been reported in the brain (Table III), although their
activity is reported to be relatively small compared to the
liver (68, 87).

CURRENT APPROACHES TO INVESTIGATE CNS
DRUG DISTRIBUTION

Since obtaining a human drug target site concentration in
the brain is not feasible in most of the clinical studies,
quantitative prediction of target site concentration is impor-
tant. To achieve this, we need information from in vitro,
ex vivo, in vivo, and in silico approaches. Here, we summarize
the current approaches to obtain the necessary information to
predict human drug target site concentration.

IN SILICO APPROACHES

For decades, QSAR studies have been performed using
Kp,brain (total concentration ratio of the brain to plasma) or log
BB, either of which may not reflect the relevant drug exposure in
the brain to assess the efficacy of the drug since this efficacy is
influenced by binding of compounds to plasma proteins and brain
tissue. Eventually, log BB was replaced by the PA, as an estimate
of the net BBB influx clearance (112). However, it has been
argued that the PA cannot predict the unbound drug concentra-
tion in the CNS by itself. Recently, the most relevant parameter
Kp,uu,brain has been used, with QSAR being conducted to
model this parameter (100,103,113,114). Other than Kp,uu,brain,
physiological meaningful parameter, Vu,brain (the volume of
distribution of the unbound drug in the brain) or Kp,uu,cell
(unbound concentration ration between brainECF and brainICF)
are also reported using molecular descriptors (103).

IN VITRO APPROACHES

In vitro approaches to investigate the BBB permeability
have been conducted using BBBmodels (115). BBBmodels can
be classified into non-cell based surrogate models, such as
parallel artificial membrane permeability assay (PAMPA), and
cell-based models such as primary cultures cells, immortalized
brain endothelial cells, or human-derived stem cells (116).
Although primary cultured cells from human tissue have been
reported, acquiring human brain tissue is difficult as it can be

Table IV. Blood-brain barrier main modes of transport and their characteristics

BBB/BCSFB transport
mode

Characteristics Concentration-
dependent transport
kinetics?

Drug
concentration-
gradient
dependent?

Consumes
energy?

Paracellular Passive; No Yes No
Between tight junctions of the BCEC and the CPEC

Transcellular Passive; No Yes No
Across the membranes of the BCEC and the CPEC

Facilitated Passive; Yes Yes No
Active influx Active; Yes No Yes
Active efflux Active; Yes No Yes
Transcytosis Receptor (specific, low capacity) or absorptive

mediated (non-specific, high capacity)
No No Yes

BCEC brain capillary endothelial cells, CPEC choroid plexus epithelial cells
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obtained postmortem and should be fresh enough (117).
Therefore, alternative models based on immortalized brain
endothelial cells or human-derived stem cells are also used
(118,119). Even though some models have been developed for
measuring the BBB permeability, an ideal cell culture model of

the BBB is yet to be developed. Furthermore, reliable
in vitro-in vivo correlation data is needed to enable the use of
in vitro results for the prediction of in vivo permeability.
However, in vitro results have not been consistent in their
ability to predict in vivo permeability, probably because of
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different in vitromodels and different sets of compounds used in
the in vitro studies (120).

Currently, the biopharmaceutics classification system
(BCS) and biopharmaceutics drug distribution classification
system (BDDCS) are used for CNS drugs. The BDDCS is a
modification of BCS that utilizes drug metabolism to predict
drug disposition and potential drug-drug interactions in the
brain (121). However, this classification approach needs to be
further investigated because of inconsistencies. For example,
it was proposed that 98% of BDDCS class 1 drugs would be
able to get into the brain even though the drugs were P-gp
substrates based on in vitro studies (122), while it has also
been reported that the in vitro efflux ratio reflects the in vivo
brain penetration regardless of the class in BDDCS (123).

EX VIVO APPROACHES

As mentioned before, it is the unbound drug molecules
that are able to pass membranes and to interact with the
target (21). Thus, measuring unbound drug concentrations is
very important. Vu,brain or Fu,brain (the unbound fraction in
the brain) is used to investigate unbound fraction of drugs in
the brain. Fu,brain can be derived from brain homogenate
(124), and Vu,brain can be obtained from the brain slice
technique (125). The brain slice method is more

physiologically relevant because the cell-cell interactions, pH
gradients, and active transport systems are all conserved
(114).

IN VIVO APPROACHES

Microdialysis can be considered as a key technique to time-
dependent information regarding unbound drug concentrations.
Withmicrodialysis, both the rate and extent of drug transport and
distribution processes can be determined (126,127). Thus, it can
be used to obtain Kp,uu,brain in conjunction with the rate of
transport processes. Moreover, this can be done at multiple
locations, and this feature has shown that even for a drug like
acetaminophen that is not subjected to any active transport,
substantial differences in pharmacokinetic profiles exist in
different brain compartments (6). While there is some limit to
use this water-based technique for the highly lipophilic drugs, lots
of microdialysis experiments have contributed to a boost in the
understanding on drug exchange across the BBB (126,128,129).
Especially the use of microdialysis at multiple brain locations has
provided insight into the relative contribution of CNS distribution
and elimination processes to the local (differences in) pharmaco-
kinetics of a compound (6, 7, 130). It has paved the way to the
development of a generic multi-compartmental CNS distribution
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Table V. Sources of variability in CNS pharmacokinetics

Parameter Location Source of variability Effect Refs

Protein binding Aging Lower (139)
Pathophysiological
condition

Higher with disease induced evaluation of plasma protein (140,141)

Cerebral blood flow Aging Lower (142)
Pathophysiological
condition

Lower in the multi-infarct group (143)

Diurnal variation Change (144)
BBB Membrane lipid Aging Change (145)

Diet Change (146)
Pathophysiological
condition

Change in several disease conditions, such as
Alzheimer’s disease (AD) and schizophrenia

(147–149)

Paracellular diffusion Stress Increase with hypoxic stress (150)
Pathophysiological
condition

Increase (due to loose of tight junctions) see below

Tight junction Pathophysiological
condition

Disruption of the tight junctions by ischaemic brain stroke (151)
Opening of the tight junctions in AD patients (152)
Opening of tight junctions in multiple sclerosis patients (153)

Facilitated transport Diet Decreased in hypoglycemia condition (154)
Pathophysiological
condition

Upregulation in the brain tumor (155)

Vesicle-based
transport

Pathophysiological
condition

Increase in experimental autoimmune encephalomyelitis (156)

Active transporters Pathophysiological
condition

See below see below

BrainECF Pathophysiological
condition

Volume is enlarged in the patient with vasogenic type
of brain

(157)

Blockade of brain ECF flow in AD patient (41)
Brain parenchyma Aging Shrunk (158)
BCSFB Aging Thinner (159)

Pathophysiological
condition

Decrease in Alzheimer patients (159)

CSF Aging Decrease in CSF production, increase in CSF outflow
resistance

(160)

Pathophysiological
condition

Decrease in CSF production, CSF Turnover and increase
in CSF volume in AD patients

(161)

Increased resistance to CSF absorption and CSF pressure
in the patients with
normal‐pressure hydrocephalus

(162)

Brain metabolic
enzymes

Aging Increase in the CYP2D6 enzyme level (163)
Gender Higher MAO activity in women (83)
Pathophysiological
condition

Higher MAOB activity in AD patients (164)

Difference of COMT expression in schizophrenia patients (78)
Gene Deficiency of CYP2D6 enzyme (75)

Change of COMT function (165,166)
Smoking and alcoholism Change of CYP2B6 and CYP2E1 levels (73,167)

Transporter Aging Decrease in P-gp activity (168)
Decrease in glucose transporter activity (169)

Pathophysiological
condition

Upregulation of P-gp and MRPs in epileptogenic brain (170)

Upregulation of P-gp and MRP1 in the brain tumor (171)
Alteration of the levels of glutamate transporter in the
various brain disorders, including cerebral ischemia,
amyotrophic lateral sclerosis, AD, AIDs,
traumatic brain injury, schizophrenia, and epilepsy
(seizure)

(172,173)

Diurnal variation Change in P-gp activity (174)
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model (Fig. 3), with some validated human CNS predictions that
will be discussed later in this review.

Then, positron emission tomography (PET) is a valuable
non-invasive in vivo monitoring technique that can be used to
visualize drug CNS distribution in living animals and human.
However, the PET technique cannot distinguish parent com-
pounds from their metabolites or bound and unbound drug.
Furthermore, it may also encounter difficulties in obtaining
useful data when a very high non-specific binding (NSB) to non-
target proteins and phospholipid membranes occurs (131).
Recently, a novel lipid membrane binding assay (LIMBA) was
established as a fast and reliable tool for identifying compounds
with unfavorably high NSB in the brain tissue (132).

COMBINATORY MAPPING APPROACH

Combinatory mapping is an approach that combines three
compound-specific parameters obtained from in vitro, ex vivo,
and in vivo data: Kp,brain, Vu,brain, and Fu,plasma, for
calculation of Kp,uu,brain (133). This approach also can be
used to obtain not only Kp,uu,brain but also to understand
unbound drug disposition in the cell cytosol and the lysosomes.
Recently, this approach has been extended to predict drug
exposure in different brain regions such as frontal cortex,
striatum, hippocampus, brainstem, cerebellum, and

hypothalamus, in which also the impact of transporters and
receptors in each region was taken into account (134). Although
this approach is useful to support the selection of potential CNS
drugs in drug discovery, it has two limitations. The first limitation
is that it can only predict the parameters at steady-state. The
second limitation is that the approach cannot be translated to
predict the parameters, for instance, inter-species or inter-
disease conditions because the processes to obtain the param-
eters in this approach are not connected with system properties
which will be changed in these conditions.

CONDITION DEPENDENCY AND PBPK MODELING

Condition Dependency

Drug distribution into and within the brain depends on the
interaction between system and drug properties. Drug proper-
ties remain the same, whatever the species and conditions are in
which the drug has been administered. This indicates that
interspecies variability in drug distribution into and within the
brain is the result of differences in physiological and biochemical
parameters. Factors which cause variation in drug pharmacoki-
netics include genetic background, species differences, gender,
age, diet, disease states, and drug treatment (4). Factors which
cause variation in drug pharmacodynamics include seasonal

Table VI. Currently published (semi-) PBPK model for CNS drugs

The green boxes represent which physiological compartments were taken into account in each model structure. The blue boxes show which
compartment data was used for each modeling if in vivo data was used. The red boxes explain what translational research was performed with
each model if applicable
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effect (135), age (136), gender (137), and species (138).
Influences of these conditions on CNS system properties are
summarized in Table V.

(Semi-) PBPK Modeling

PBPK models need to be informed on system and on
drug properties to model the interaction and predict the
PK in different compartments. Especially as obtaining
pharmacokinetic data from the human brain is highly
restricted, working in the PBPK model framework is
valuable as it can be translated to predict the target site
concentrations in inter-species and inter-disease situations
(4). Some translational studied have been reported by
using an animal (semi-) PBPK model for CNS drugs but
they are relatively sparse and range from simple to more
advanced (Table VI).

Recently, a generic multi-compartmental CNS distribu-
tion model structure has been proposed, that could success-
fully describe the pharmacokinetics in plasma and different
CNS compartments (brainECF, CSF in the lateral ventricle
(CSFLV) and CSF in the cisterna magna (CSFCM)), using
microdialysis data for 9 paradigm compounds with substantial
differences in physicochemical properties (9) (Table VI,
Fig. 3). These compounds are acetaminophen, atenolol,
methotrexate, morphine, paliperidone, phenytoin, quinidine,
remoxipride, and risperidone. This is the first model that can
nicely predict human brainECF and CSF time concentration
profiles which were obtained from physiologically Bclose to
normal^ brain for morphine and acetaminophen (9).

For remoxipride, Stevens et al. have shown that brainECF
pharmacokinetics, as measured with microdialysis, repre-
sented the target site concentrations, because these concen-
trations could be directly linked to the effect of remoxipride
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Fig. 4. Simulation of time concentration profiles of brainECF, CSFLV, CSFCM

and CSFSAS in rat and human for the 9 compounds. Differences in the time
concentration between rat and human reflected the differences of the rate and
extent of drug distribution in brain between in rat and in human since identical
plasma exposure was used as an input
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on plasma prolactin levels in an advanced mechanism-based
model (185). After scaling to human, this indeed could also
be concluded for human CNS remoxipride effects on human
plasma prolactin levels. This underscores the importance of
having information on pharmacokinetics at the CNS target
region.

Using our generic multi-compartmental CNS distribu-
tion model, we can provide predictions of human CNS
pharmacokinetics for all the nine compounds. For a direct
comparison of rat and human pharmacokinetics in the
different CNS compartments in response to plasma
pharmacokinetics, the same plasma exposure was used
for individual compound. In Fig. 4, it can be seen that, in
general, human CNS pharmacokinetics, especially that in
the CSF in the subarachnoid space (CSFSAS), which is
including the lumbar CSF is typically slower than that in
the rat. This provides important information on the
relationship between brainECF (which often is the target
site) pharmacokinetics and the lumbar CSF concentrations
that are often used as biomarker of brain target site
concentrations. Also, it can be seen that the differences in
the pharmacokinetics at the more early time points of the
different CNS compartments is larger in human than in
the rat. With time, these differences fade out. The
consequences for drug-target interaction kinetics (186)
and further processes towards CNS drug effects remain
to be determined.

Remaining Gaps and Challenges on PBPK Modeling,
Towards a Generic PBPK Model

The ultimate aim is to have a CNS PBPK model that
can predict human brain compartment concentrations on
the basis of the physicochemical properties of a com-
pound, which can be determined by in vitro measure-
ments, or in silico prediction. Thus, in the overview in
Table VI, it can be seen that we still have a number of
gaps in the currently available (semi-) PBPK models of
CNS drugs. Most of the models require in vivo data on
the compound(s), and most of the predictions have not
been validated on human data. Even the most compre-
hensive model (9), with validated prediction of human
CNS drug distribution (for acetaminophen and morphine),
still requires in vivo data for individual compound
predictions. Thus, it can be seen that there is a need for
further development of a generic, fully PBPK model for
CNS drug distribution (187–189).

To have a PBPK model that would predict CNS drug
distribution, based the physicochemical properties of an
individual drug, for different species and in different condi-
tions, a number of challenges remain:

& Having a PBPK model structure with all relevant
compartment/parameters, as physiological parameter
values reported are sparse and variable (see Table I).

& Having drug physicochemical parameter values
from in vitro, and/or in silico, or even some in vivo
measurements, which may not necessarily be correct.
For example, in vitro or in vivo data may depend on
the experimental setting, while in silico information

really depends on the data availability, used to obtain
the equation.

& Having human data sets for validation of predic-
tion by the model, with typically limited availability.

& Having information on pathophysiological
changes in human CNS properties in (the many)
disease conditions. For example, BBB characteristics
may change in Alzheimer’s disease, multiple sclerosis,
and pharmacoresistant epilepsies (190).

DISCUSSION AND CONCLUSION

Pharmacokinetics of drugs in the CNS is governed by a
combination of CNS system physiology and drug properties.
This means that variability in CNS system physiological
parameters (condition dependency) may lead to variability
of CNS pharmacokinetics. Therefore, it is important to
explicitly distinguish between system physiology and drug
properties, either by changing conditions and investigating
the pharmacokinetics of one drug, or investigating the
pharmacokinetics of different drugs in the same condition.

PBPK models make this distinction; however, being
based on total drug plasma and total tissue concentrations
at equilibrium (SS), while more recent PBPK models
include, at best, unbound plasma SS concentrations.
However, as body processes are based on the interaction
with the unbound drug and are time-dependent, it is crucial
to include measuring the unbound drug in each compart-
ment as a function of time (Mastermind Research Approach
(MRA)) (4), for which microdialysis has been proven the
key technique. Using the MRA, microdialysis has provided
lots of valuable data that pave the way towards a semi-
physiological generic CNS drug distribution model, yet
applicable for nine compounds with highly different phys-
icochemical properties with excellent description of the rat
data for all these compounds, and adequate prediction of
human CNS data that were available for acetaminophen
and morphine (9).

One microdialysis experiment in a single freely moving
animal can provide a lot of data points, obtained under the
same experimental condition of the animal, and thereby
revealing the interrelationships of processes. With this
microdialysis has already contributed to reduction and
refinement in the use of animals. Furthermore, all this
information can further be Bcondensed^ into a generic
PBPK model and will thereby help in the reduction in the
future use of animals (replacement) (191).

So, in order to be able to predict CNS drug effects in
human, next steps would be a development of a full PBPK
CNS drug distribution model, and combine it with target
binding kinetics, receptor occupancy, and signal transduction
(186,192), and include system changes by human disease
condition.
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