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1. Introduction 

Drug discovery and development programs are still driven by optimizing the target 

binding affinity and selectivity of the respective candidate. However, although 

Manuscript
Click here to view linked References

http://ees.elsevier.com/drudis/viewRCResults.aspx?pdf=1&docID=4073&rev=0&fileID=85770&msid={6E9DFBE6-D55E-408D-88F0-62B3431503E8}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

tremendous technological and methodological progress has been made, both in 

experimental and computational techniques, attrition rates remain disappointingly 

high. Besides unexpected toxicity, we often observe a lack of in vivo efficacy for 

many compounds. Such compounds appear promising in early drug discovery 

programs, but fail in later clinical trials. One of the reasons for this is the increasing 

evidence that kinetic parameters seem to correlate much better with efficacy than 

affinity does [1–4]. Considering that a considerable amount of all approved drugs 

exhibit non-equilibrium characteristics, it has been advocated that drug residence 

time may be more important for in vivo efficacy than in vitro equilibrium binding 

affinity. Furthermore, there is an increasing number of reports linking drug selectivity 

to the kinetic profile of the compound. Besides the well-known example of Tiotropium 

and the subtype selectivity profile at the five different subtypes of the muscarinic 

receptor [5,6], there was a recent report outlining the role of on-kinetics for the 

SERT/DAT selectivity of methylphenidate [7]. A correlation of in vivo efficacy with 

residence time has already been demonstrated for selected GPCRs, such as CCR5 

[8], the β-2-adrenergic receptor [9], and the A2A adenosine receptor [10]. In the 

kinase family, the dual tyrosine kinase inhibitor Lapatinib showed a long residence 

time that could be correlated with efficacy [11]. Another example is the ABL inhibitor 

Nilotinib [12]. 

Data such as these prompted David Swinney to state “These observations indicate 

that for the majority of drug targets, mass action driven equilibrium binding alone is 

not sufficient for maximal therapeutic utility” [13]. For most targets, a long residence 

time is desired. Certain proteins, however, show on-target toxicity with longer 

duration of the molecule bound to the receptor. For the D2 receptor (D2R), 

compounds possessing fast off-rates are ideal, as side effects increase drastically 

when residence time is prolonged [14,15]. Thus, the role and influence of on- and 

off-kinetics should be analyzed on a case-by-case basis.  

 

1.1. The Drug Residence Time Concept 

Since it was introduced in the scientific community in 2006, the drug-target residence 

time concept has gained in popularity [16]. In traditional in vitro methods, drug–target 

interactions have mostly been treated in terms of affinity measures or by means of 

static crystal structures of the bound complex [17]. The residence time concept, 

however, also takes into account the conformational dynamics of the protein, which 

affect drug binding and unbinding. Thus, it considers the residence time of the drug-

target complex rather than the binding affinity per se as the major contribution to in 

vivo pharmacological activity [16]. 

The binding kinetics of a drug on its protein target is characterized by the bimolecular 

association rate constant (kon), which is the rate the drug binds, and the dissociation 

rate constant (koff), which is the rate of unbinding. The sum of many effects 

determine these two rate constants: (i) ligand specific induced fit [18], (ii) a 
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conformational adaptation by the system [19], (iii) water rearrangements and 

changes in water networks [20,21], and (iv) shielded hydrogen bonds [22].  

Furthermore, apart from the pharmacokinetic half-life of the drug, receptor 

degradation can have an important effect on residence time in the system [23]. 

Most of the work pursued so far has focused on the dissociation kinetics of the 

ligands. However, there is increasing evidence, that the association rate should also 

be considered. A recent study of all data uploaded so far into the K4DD database 

revealed that only 0,4% of the compounds show a diffusion controlled on-rate, when 

defining diffusion control by a Kon value greater than 107 M-1s-1 [24,25]. Kon plays an 

important role for the in vivo translation, especially in terms of the phenomena of 

drug rebinding [26]. There are also studies on how to boost the drug-target 

association rate, e.g. by introducing polar moieties into a ligand [27]. 

 

2. K4DD – a Public Private Partnership 

The fundamental hypothesis behind the drug residence time concept is very 

appealing: A detailed understanding of the kinetics of association and dissociation of 

a target-ligand complex can provide crucial insight into the molecular mechanism of 

action of a compound. This deeper understanding might help to improve decision 

making in drug discovery, thus leading to a better selection of interesting compounds 

to be profiled further. When an initial core group of scientists from pharmaceutical 

companies decided to further explore the concept, it was soon obvious that quite a 

number of open questions needed to be addressed. These comprise the important 

aspect of small molecule optimization by analyzing molecular aspects of drug 

binding kinetics, by providing data-driven guidelines for future drug discovery, and by 

enabling rapid and robust generation of structure-kinetic data in the design-make-

test-analyze (DMTA) cycle. As these tasks go across all pharmaceutical companies 

which might consider the drug residence time concept relevant for their daily work, it 

perfectly fits the precompetitive collaboration concept of the Innovative Medicines 

Initiative (IMI) [28]. With this idea in mind, an IMI project was initiated: K4DD 

(Kinetics for Drug Discovery, www.k4dd.eu). The 5 year project with a budget of 

21M€ started in November 2012. 20 partners (9 academic institutes, 7 large 

pharmaceutical companies and 4 SMEs) from 6 European countries work closely 

together on targets that have been selected by the consortium. The approach is truly 

collaborative: Several partners contribute to the work on each target and we share 

our results in regular meetings including bi-annual meetings of the entire consortium. 

K4DD focuses on how drug binding kinetics can be influenced and how therefore 

compounds can be optimized in terms of residence time (Figure 1).  

From the outset of K4DD, it was decided to work on three scientific work packages 

(WPs) in parallel. The combination of the three formed the integrated framework and 
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starting point for the research in this IMI consortium. When the proposal was drafted, 

it was realized that target binding kinetics are not considered sufficiently in the 

current drug discovery process, stemming from a lack of knowledge in three 

domains, which were subsequently redefined as the work packages driving the 

K4DD consortium. WP1 is aimed at gaining a molecular understanding of kinetic 

characteristics to aid the development of predictive kinetic analyses. Partners in 

WP2 evaluate and develop technologies to enable the rapid and robust assessment 

of compounds’ kinetic characteristics. The WP3 team sees to the translation of in 

vitro data (as in WP1 and WP2) to in vivo effects, moving from intact cells to whole 

animals and men. In all cases, the consortium’s focus is on both membrane-bound 

and soluble drug targets, particularly G protein-coupled receptors, and kinases and 

proteases, respectively. The consortium has defined a target list at the very 

beginning of the five years program to ensure synergy between multiple partners that 

have actively exchanged methods and materials to speed up the research. Finding 

overall guidelines of how target interaction kinetics can be altered in the drug 

discovery process, will lead to a different approach - moving away from affinity driven 

strategies towards implementing kinetic studies at an early stage of drug discovery. 

3. New Experimental Approaches  

Reproducible and accurate experiments constitute the basis for hypothesis-driven 

research. There is a broad range of biological and biophysical assays available for 

assessing the affinity of a ligand to a macromolecule. The data generated quite often 

serve as input for computational approaches, which have become an indispensable 

tool in drug discovery and development. With the increasing amount of data 

available in the public domain, data quality, standardization, and comparability 

across different assay types have become an issue [30]. In the case of binding 

kinetics, several assays have been established and are routinely used across 

industry and academia. However, due to the need for time-resolved data collection, 

the assay panel available is limited. Furthermore, as most of the drug targets of 

current interest are membrane-bound, this poses an additional layer of complexity. 

Thus, one of the aims of K4DD is to develop new assays and to assess their 

reproducibility and comparability across different laboratories.  

3.1. Brief Overview of Existing Methods  

Although kinetic binding rate constants are increasingly accepted as important drug-

optimization metrics, respective experimental implementation has not been trivial. In 

contrast to IC50 values and other affinity based metrics, the kinetic binding rate 

constants can only be determined by measuring across multiple incubation times. 

Conventional binding measurement techniques are often not suitable for doing this in 

an efficient way, since only a single time-point is quantified per binding reaction. 

Therefore, most methods described below focus on the continuous measurement of 

binding. 
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Over the years, Surface Plasmon Resonance (SPR) has proven to be a powerful 

approach to analyze kinetic binding rate constants of soluble drug targets. However, 

throughput is still limited, since ligands are mostly measured in series. Moreover, the 

need for purified protein, which has to be stably bound to a chip, can sometimes be 

limiting for the applicability of this approach. Especially for membrane-bound drug 

targets, purification out of the lipid environment is often difficult, making SPR 

analysis impossible. For GPCR targets, low-throughput radioligand binding 

techniques have therefore been the method of choice. Below, new advances in 

obtaining stably purified proteins and alternative methods for the continuous 

measurement of ligand binding are discussed and compared. Moreover, techniques 

are discussed in terms of usability for drug discovery. 

3.2. The Challenge of Membrane Proteins - GPCRs as a Use Case 

G-protein coupled receptors (GPCRs) represent a diverse group of membrane 

receptors that play a very important role as therapeutic targets. They are involved in 

a broad range of diseases, including diabetes, cancer, inflammation, obesity, central 

nervous system disorders and cardiovascular and respiratory diseases [31]. 

Although around 30% of all marketed drugs are directed towards GPCRs [31], there 

is still a strong need for new molecules. Especially targeting “undrugable” receptors, 

which represent valuable GPCR targets for which it has not been possible to 

discover drug candidates [32], and “orphan” receptors, whose ligands and biology 

are as yet uncharacterized [33], is of high interest. However, measurement of the 

binding kinetics of ligands to GPCRs is hampered by the difficulty of obtaining pure 

and active membrane-free receptors. 

Surface Plasmon Resonance (SPR) is a label-free technique, which requires a low 

amount of protein and is able to generate kinetics data in real time. SPR has been 

used with detergent solubilized GPCRs for kinetic profiling of compounds and for 

screening fragment libraries [34,35]. However, it is now possible to produce 

membrane proteins in reconstituted high density lipoprotein (rHDL) particles. rHDLs 

are a new technology that enables the reconstitution of membrane proteins into a 

lipidic environment close to the cell membrane making the reconstituted receptor 

very stable and highly soluble [36]. 

Within the K4DD consortium two groups have successfully reconstituted the thermo-

stabilized adenosine A2A receptor into rHDL particles and immobilized it on a SPR 

sensor chip [37,38]. Both groups compared the SPR kinetics results for the receptor 

reconstituted into rHDLs with the receptor solubilized in detergent or embedded in its 

native membrane. Bocquet et al. [38] tested different immobilization procedures 

whereas Segala and colleagues [37] focused on a large set of ligands with affinities 

ranging from 50 pM to 2 µM. These two successful studies showed that this new 

approach represents a valuable opportunity to obtain affinities and kinetics from low 

molecular weight compounds binding to GPCRs. It thus allows the characterization 

of the interaction in a detergent-free environment avoiding problems of ligands 
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partitioning into detergent micelles. In addition, this system can be used to study the 

binding of ligands to GPCRs in the presence of other components such as G 

proteins. 

One of the challenges of studying binding kinetics for membrane-bound proteins is 

that it requires the removal of the proteins from their native membrane environment. 

For membrane proteins like GPCRs, the lipids within the membrane and adaptor 

proteins can have allosteric effects on the affinity and efficacy of selected ligands 

and therefore their kinetics may also be influenced [39]. Radioligand binding studies 

do not require removal of the protein from the membrane but can be time consuming 

to execute. Therefore, researchers have been looking towards new technologies to 

enable the kinetics of GPCRs to be studied in a higher throughput manner. The 

basis of these new technologies has been the development of fluorescent ligands for 

many different GPCRs and technologies that utilize them [40]. Kinetics have been 

studied either by directly monitoring the binding of the fluorescent ligand using 

confocal microscopy or by using an energy transfer based technique such as 

bioluminescence energy transfer (BRET) or time resolved fluorescence energy 

transfer (TR-FRET). Microscopy based techniques are also time consuming but do 

have the multiple advantages of using living cells, allowing dissociation kinetics to be 

measured under conditions of infinite dilution and uniquely at the single cell level. 

Binding kinetics of fluorescent ligands and allosteric influences of receptor-receptor 

interactions have been studied at the adenosine A1 and A3 receptors [41,42] and 

β­1-adrenoceptor [43] using confocal microscopy. A recently described BRET based 

assay utilizing a luciferase from a deep sea shrimp, NanoLuc, and fluorescent 

ligands has been used to investigate kinetics of a fluorescent ligand in live cells 

expressing the adenosine A1 receptor [44] and in membranes expressing free fatty 

acid receptor 1 [45]. Although to date the kinetics of unlabeled ligand have not been 

studied, this method can be used to study kinetics in living cells and membranes and 

has the potential to be a useful addition to the tool box of assays to measure binding 

kinetics of GPCRs. The TR-FRET based assay has been successfully applied to 

measure the kinetics of both labelled and unlabeled ligands at the histamine H1 

receptor [46], gonadotropin-releasing hormone (GnRH) receptor [47] and the 

dopamine D2 receptor (D2R) [48]. The study on the GnRH receptor is discussed in 

detail below (Section 3.3). For the D2R, kinetic studies using the TR-FRET assay 

were central in demonstrating that the kinetic profile of ligands may be the basis of 

bias in intracellular signaling observed [48]. The use of fluorescent ligands for 

GPCRs is thus an important new development for understanding the role of kinetics 

in receptor-drug interactions and intracellular signaling. 

In line with their importance, the structural biology of GPCRs has also been quite 

useful to visualize receptor-ligand interactions and to boost drug discovery. However, 

tThe structural basis of binding kinetics is difficult to understand and predict. An 

industry-academia collaboration within the K4DD consortium pursued by Heptares 

Therapeutics and Leiden University has given insights into why some ligands have a 
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long residence time at the A2A receptor [49]. This recent study used crystallography 

and computational chemistry to investigate the dissociation rates of ligands from the 

adenosine A2A receptor. Five ligands with high affinities for the human A2A, but a 

100-fold range of dissociation rate constants were studied [50]. Five high resolution 

structures of the receptor in complex with each of these antagonists were generated, 

with a resolution ranging from 1.7 Å to 2.2 Å. Superposition of the five structures 

shows that they are identical except for a different interaction with His264 in the third 

extracellular loop (Figure 2). This histidine is involved in a salt bridge with Glu169. 

Molecular dynamics and metadynamics simulations revealed that the residence time 

of the ligands correlate with the energy required to break the salt bridge His264 - 

Glu169. Long residence time ligands appear to stabilize the Glu-His ionic interaction, 

while fast off-rate ligands were shown to destabilize this salt bridge. These results 

highlight a key determinant of the ligand-receptor binding that can be used to 

optimize receptor residence time. 

 

3.3. Comparing Different Methods - A Case Study 

The gonadotropin-releasing hormone (GnRH) receptor is involved in numerous 

hormone-dependent diseases and multiple drugs are on the market to treat e.g. 

prostate cancer [51]. The GnRH receptor is one of the targets which was accepted 

by the K4DD consortium, it served for a comparison of three different assays for 

binding kinetics. Firstly, equilibrium and kinetic binding parameters of 12 well-known 

GnRH peptide agonists were determined using a radiolabeled GnRH analogue 

displacement assay (Figure 3A) [47]. Affinity (Ki) values ranged from 13 nM for 

GnRH to 0.1 nM for Buserelin. Kinetic binding parameters were equally diverse with 

association rate constants ranging from 0.02 nM-1 min-1 for Fertirelin to 0.8 nM-1 min-1 

for Nafarelin and dissociation rate constants ranging from 0.009 min-1 for Buserelin to 

0.2 min-1 for Goserelin. Secondly, these results were compared to data obtained with 

a novel time-resolved fluorescence energy transfer (TR-FRET) assay (Figure 3B) 

and both the affinity and dissociation rate constants were highly correlated between 

both assays (R2 = 0.5, P < 0.05 for pKi values and R2 = 0.7, P < 0.0005 for pkoff 

values) [47]. Lastly, the kinetic binding parameters from both assays were translated 

to functional effects in vitro using a label-free morphological assay [52]. The 

activation profiles of endogenous GnRH (a fast dissociating agonist), and a well-

known marketed analogue Buserelin (a slow dissociating agonist) were examined. It 

was shown that Buserelin had a much higher potency than GnRH, i.e. 0.46 nM vs 17 

nM respectively. Interestingly, persistent GnRH receptor activation was observed for 

both agonists. Wash-out experiments (Figure 3C) resulted in more than 70% loss of 

signal for fast dissociating agonist GnRH, while for slow dissociating Buserelin less 

than 30% of the original response was abolished [52]. 

The use of these different protocols allowed for the first time to compare three 

diverse assays investigating qualitative and quantitative binding kinetics of a set of 

compounds to one receptor. Radioligand binding studies and TR-FRET assays 
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provided highly comparable kinetic data which in turn could be translated to wash-

out resistant receptor responses. 

3.4. Kinetic Probe Competition Assay 

Indirect kinetic binding assays measure, in real time, the competition/displacement of 

labelled tracer compounds by unlabeled test compounds in solution. The binding 

kinetic constants of the tracer have to be previously determined in direct kinetic 

measurements so that the kinetic rate constants, kon and koff, of the unlabeled 

compounds can be calculated with a suitable mathematical model [53]. In the course 

of the project, the group of Amaury Fernandez-Montalvan at Bayer Pharma AG 

developed a time-resolved fluorescence energy transfer (TR-FRET) based 

homogenous kinetic probe competition assay (kPCA) that uses proteins and tracers 

labelled with TR-FRET donors and acceptors, respectively [46]. It uses microtiter 

plate readers equipped with the necessary optics to measure TR-FRET, and a 

pump-based injection system to enable fast sample mixing and immediate signal 

acquisition. If a suitable tracer is available, kon and koff parameters can be obtained 

for many compounds with high throughput and kinetic resolution at relatively low 

costs. The principle is applicable to many target classes, including kinases and 

GPCRs [46,47]. 

3.5. Transition State Analysis of the Drug-Target Binding Process 

One of the major challenges associated with predicting binding kinetics is the 

molecular understanding of the interactions between the drug and the receptor in the 

transition state, which has the highest free energy and is therefore difficult to 

characterize. One of the methods applied to study the transition state energies of the 

binding event is the temperature dependence of drug-target association and 

dissociation rate constants. By applying the linear Eyring equation (Equation 1), this 

method gives the entropic and the enthalpic contribution to the activation energy of 

the transition state and therefore constructs a detailed thermodynamic signature for 

the binding of drugs to their targets. 

There have been relatively few studies describing this type of analysis. Klein et al. 

have studied the influence of the DFG flip in FGFR1 kinase on the binding kinetics of 

selected type I (PDA) and type II (Ponatinib) inhibitors [54]. Kinetic analysis revealed 

that although both inhibitors have comparable binding affinities (KD= 7.9 nM for 

Ponatinib and KD = 5.7 nM for PDA), Ponatinib has extremely slow association and 

dissociation rates in contrast to the fast kinetic rate constants of PDA. In addition, the 

thermodynamic signatures for both inhibitors were very dissimilar, with the binding of 

PDA being mostly enthalpically driven, in contrast to the highly entropically driven 

interaction for Ponatinib. By measuring the temperature dependence of the kinetic 

association and dissociation rate constants for PDA and Ponatinib and applying the 

Eyring equation, the authors were able to dissect the thermodynamic signature of the 

binding of both inhibitors to FGFR1. Their structural and dynamic approaches 

suggest that the key factor for the strikingly different binding modes between type I 
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and type II inhibitors on FGFR1 might be due to the significantly high free-energy 

barrier between DFG-in and DFG-out states. 

Kwon et al. reported a transition state analysis on the biotin and bio-5´-AMP 

dissociation from E. coli biotin holoenzyme synthetase [55]. Mutations in the "glycine-

rich” loop region resulted in impairment of dissociation rates of the complexes. 

Analysis of the temperature-dependence of the rate of biotin dissociation by the 

Eyring method revealed that for the G115S mutant the decrease in the residence 

time was mainly due to a reduction of 6.8 kcal/mol in the enthalpic barrier to 

dissociation compensated by an increase of 3.0 kcal/mol in the entropy change. In 

contrast, the drop of the residence time for the R118G mutant is primarily due to a 

reduction of the transition state entropy. 

The studies described here highlight that a deep understanding of the free energy 

landscape for the binding/unbinding process between a drug and a receptor is 

central to the rational optimization of drug binding kinetics.  

4. Standardizing Data – the K4DD Database 

One of the tasks of K4DD is to develop predictive in silico models for binding 

kinetics. This requires sets of standardized high quality data. When looking into the 

public domain, only small amounts of data on binding kinetics are available. 

Furthermore, mostly only kon, koff and KD values are provided without structured 

information on the respective assay. As outlined above, several different 

experimental methods (assay types) to measure drug target kinetics are available. 

While all of them reveal values for kon, koff and KD, there are also method-specific 

outputs for each of those methods, which need to be considered when using them 

for modelling. The consortium thus agreed to set up a database, which is accessible 

to all project members via a web-based interface (https://db.k4dd.eu). Adding new 

kinetic data to the database is a two-step process. At first, a web form is used to 

enter the experimental conditions and properties of the assay itself (e.g. temperature 

or pH). In a second step, experimentally measured bioactivity endpoints based on 

that assay are entered into a standardized spreadsheet template and then uploaded 

to the web server. This upload also has to include the structures of the chemical 

compounds that were investigated in the experiment (either in SDF or SMILES 

format). Several processing steps transform the uploaded structures into a 

chemically normalized form. This is necessary because the uploaded data is 

automatically linked to already existing compounds and targets in the database. 

Also, this allows sophisticated search queries and makes it easier to integrate data 

into existing third-party data stores. 

For this procedure to work smoothly, standardized upload formats were established 

for a variety of assay types. Until now, such formats have been developed for SPR, 

ATR-FTIR, ITC, radioligand binding, kPCA and enzyme activity assays in close 

collaboration with the respective experimentalists. This is definitely a major step 

https://db.k4dd.eu/
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forward in standardizing kinetic assays, since those are the first data models for 

kinetic assays agreed on and used both by public and private institutions. Also, this 

allows the direct comparison of experimental results from different sources within the 

consortium. Currently, the K4DD database contains more than 8000 individual 

endpoints. 

Since the project focuses on a small number (less than 20) of target proteins, the 

database holds many data points per target. This allows the influence of specific 

experimental factors on kinetics to be studied. For example, it is possible to compare 

the differences in kinetics resulting from the same target being measured at two 

different temperatures or using different chemical buffers. For some targets, the 

database contains experimental data for the same compounds obtained from 

different assay types (e.g. SPR and radioligand binding). This is interesting if 

someone wants to compare different assay types with each other. 

In funded projects, one of the major concerns regarding data management is the 

sustainability of the data. There are numerous examples of databases which were 

set up with grant money and then disappeared once the funding was finished. The 

K4DD consortium decided that integration into an already established and actively 

maintained bioactivity database such as ChEMBL [56] would be the best option to 

guarantee sustainability. ChEMBL is an open, large-scale bioactivity database 

containing millions of bioactivity data points for thousands of targets. ChEMBL also 

constitutes the main source for compound-pharmacology associations in the Open 

PHACTS Drug Discovery Platform (https://www.openphacts.org) [29]. Although its 

focus is currently not on kinetic data, the underlying database schema is, after small 

adaptions, suitable for such data points. Thus, the data format has been extended 

for some method-specific experimental parameters that are reported and otherwise 

could not be modelled. Since a prefilled version of ChEMBL was used as a basis for 

the K4DD database, most of the relevant targets are already correctly annotated. 

Therefore, it is possible to effortlessly link kinetic data with other structural and 

bioactivity data from ChEMBL. At the end of the project, the data in K4DD will be 

made publicly available, most probably via donation to ChEMBL. 

 

5. Structure Kinetic Relationships 

With the increasing knowledge about the importance of binding kinetics for the drug 

discovery and development process, attempts to develop computational models for 

predicting kon and koff values have also been initiated. The first thorough analysis of 

kinetic parameters of small, drug like molecules was undertaken by Miller et al. in 

2012 [57]. He provided distributional statistics of physicochemical properties of 

slow/fast compounds by examining kinetic data from the public domain, and an 

unpublished internal dataset of Pfizer. Apart from this, matched pair analysis for 

understanding structure kinetic relationships of drug-like molecules have been 

https://www.openphacts.org/
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reported [22,94,95]. These matched pairs studies showed that small changes, like 

introducing methylene linkers [94], halogens [95], bulky hydrophobic groups [96] or 

simple methyl groups [22,97], can drastically change the kinetic profile of an inhibitor. 

Nonetheless, no pattern could be generalized for future guidance from these 

findings. The role of hydrophobicity was recently strengthened by Gaspari et al. [58]. 

With respect to Quantitative Structure Kinetic Relationship (QSKR) first insights were 

obtained from analyzing the influence of structural variations of peptides on kinetic 

parameters. In 2006, Andersson et al. established predictive QSKR models for 

dissociation and association rate constants for peptides binding to the recombinant 

antibody Fab 57P isolated from TMVP (tobacco mosaic virus protein) [59,92]. Clear 

differences between the linear regression models for kon and koff values could be 

observed using physicochemical descriptors like hydrophobicity, size and electronic 

characteristics. As the equations for kon and koff differed significantly in descriptor 

contributions, they hypothesized that different driving forces are involved in formation 

of the ligand receptor complex and in the unbinding of the ligand from its binding site. 

Furthermore, they highlighted the necessity of considering kinetic parameters apart 

from affinity to trigger biological response. Another study on therapeutic peptides 

was conducted by Magotti et al in 2009 (ref). They analyzed the kinetic variations of 

Compstatin analogues binding Complement component 3 (C3). By modifying certain 

residues in the Compstatin peptide, complex stability was improved. They identified 

that increased hydrophobicity of a particular residue was the main contributing factor 

to prolonged dissociation rate. Nevertheless, Magotti et al. noticed that individual 

increases in association rate were often compensated by increased dissociation rate. 

In this context, they pointed to the widely known phenomenon of entropy-enthalpy 

compensation that was supported by their biophysical measurements [93]. 

In a recent study, Vilums et al. reported a 56-fold increase in residence time within a 

congeneric series of cyclopentylamines inhibiting chemokine receptor 2 (CCR2) [98]. 

The selection of structural variations was led by observed structure kinetic 

relationships. In addition, they discovered that changes in chirality had a big impact 

on kinetic rates. 

Despite these recent activities, knowledge is restricted to small congeneric series or 

matched pairs on certain targets. The scientific community is lacking thoroughly 

validated, predictive QSKR models for prospective design of drug-like molecules in 

terms of kinetic parameters. One contribution to this current scenario might be the 

absence of appropriate kinetic datasets for the deployment of high level QSKR 

methodologies. The K4DD consortium noticed this gap and is generating appropriate 

kinetic datasets for relevant drug targets. Computational partners within the 

consortium conduct QSKR studies on these datasets in order to identify general 

relationships between structural and/or physicochemical properties and kinetic 

parameters. The resulting QSKR models should guide the medicinal chemist in their 

quest of optimizing kinetic parameters. 
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6. Mechanistic Simulation Approaches to drug binding kinetics 

Another approach to computing drug-protein binding kinetics, recently reviewed in 

[62], is to use molecular dynamics (MD) and Brownian dynamics (BD) simulation 

techniques. 

Recent advances in computer technology, such as the use of programmable 

graphics processor units (GPUs), volunteer distributed computing initiatives [63] and 

dedicated computing architectures [64], have increased the speed of conventional 

MD simulations with classical all-atom models into the millisecond timescale and 

contributed to the growing feasibility of ’brute-force’ simulation of the binding of low 

molecular weight compounds to a macromolecular target [65]. Statistical counting of 

association events can be used to estimate kon values [20]. Simulation of ligand 

unbinding is more computationally demanding and has only been achieved with 

conventional MD for weak binders (0.2 and 20 mM) [66]. 

Accurate drug-protein binding/unbinding kinetic constants can be formally obtained 

by the construction of kinetic network models, also called Markov state models 

(MSMs), of the kinetically meaningful metastable states and their transition 

probabilities during the binding process [67]. This approach requires simulations of 

both binding and unbinding events and has only been demonstrated for small 

molecules with relatively fast kon (> 107 M⁻1s⁻1) and koff (> 102 s⁻1) values [63,67] and 

for targets whose binding site can practically be considered rigid. There are several 

reasons for this. Firstly, the aggregate simulation time required to estimate 

association events is at least the timescale of the corresponding process under 

standard conditions. Therefore, given that a small-sized MD simulation system 

consisting of one small globular protein, for example HIV-1 protease, and one ligand 

in a solvated cubic box of 55x55x55 Å³ (50,000 atoms) has a concentration of ~0.01 

M, a single binding event with kon ~ 10⁶ M⁻1 s⁻1 would only be expected to be 

observed after a time of about τ = 100 µs. The generation of multiple events from 

which a kon value could be statistically estimated would require at least one order of 

magnitude greater sampling (τ =1 ms).  

This problem can be partially overcome by adaptive sampling methods by which the 

MSM is iteratively computed with re-initiation of simulations into less well explored 

regions of the collective variable (CV) space [65]. This leads to more efficient 

sampling of the space and thus faster convergence of the computed kinetic 

parameters. Similarly, identification of the CV space corresponding to slow timescale 

motions [68] can reduce the required simulation time, taken together, by an order of 

magnitude. However, simulation timescales still remain computationally prohibitive 

for single drug-protein calculations let alone multiple drug screens. Moreover, 

increasing system size, as required when simulating larger proteins, such as 

kinases, or membrane proteins, such as GPCRs [69], substantially increases 

computational demand. This problem is compounded by the fact that such targets 

are not rigid, exhibit significant slow conformational fluctuations that can modulate 
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both the binding kinetics and the shape of the active site [70] and often themselves 

require sizeable drugs with substantially greater degrees of freedom (more rotamers, 

increased conformational flexibility) than so far simulated by conventional MD to 

compute kinetic parameters. 

Given that such targets are predominant in drug discovery and relevant binders have 

kon values that are often in the range of 10⁴ – 10⁵ M-1s-1 [71], conventional MD 

methods are still several orders of magnitude away from routine calculation of drug-

binding kinetics for clinically relevant inhibitors; rather they remain more suited to 

high throughput fragment screens (Figure 4) [72]. 

Brownian dynamics (BD) simulations provide an alternative path to calculating the 

kinetics of drug-protein association by offering a number of simplifying assumptions. 

The drug binding process can be considered in terms of two sub-processes: the 

formation of a metastable diffusional encounter complex followed by an induced fit of 

both receptor and ligand conformations towards the final bound state. When the 

reaction is diffusion-limited [74], simulating the first step is sufficient to compute kon 

[62]. In this regime, the internal motion of the solutes can often be neglected and the 

solutes treated as rigid bodies diffusing in implicit solvent (IS). The kon value can be 

computed by performing a large number of simulations of receptor-ligand association 

to calculate the probability that an encounter complex is formed [75]. Furthermore, 

by exploring the spatial distribution of the ligand around the receptor, BD simulations 

can be used to estimate the relative residence time of encounter, which gives insight 

into the binding mechanism and the determinants of the ligand residence time [76]. 

Such approaches offer a computationally efficient way to calculate even slow 

association rates but major challenges in BD approaches are how to define 

formation of encounter complexes and how to treat the effects of internal motion. 

Furthermore, specific interactions by individual water molecules and/or ions can also 

influence binding kinetics [22,77,78], and are not accounted for in IS models. 

In order to bridge the gap between the current capabilities of all-atom MD and slower 

kinetic regimes, several methods are being explored. 

 

6.1. Multiscale Methods Coupling BD to MD 

Combining rigid-body BD with flexible all-atom MD is a promising approach to 

explore slow conformational gating. Early work by Luty et al. [79] imposed coupling 

at small ligand-receptor (L-R) distances, whereas more recent approaches assume 

discrete conformational changes of either L or R [80,81], whilst the 'BDflex' algorithm 

[82] separates internal and external ligand regions but uses a coarse-grained, CG, 

representation of molecules  to achieve computational feasibility. Another approach, 

based on the original spatial separation of Luty et al., couples BD to an MD region 

that is further partitioned according to 'milestoning' theory [83]. Milestoning is an 
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alternative to MSMs for calculating transition probabilities [84]. The first hitting point 

distribution rather than the equilibrium distribution is used as the starting phase of 

spatial points for the milestoning trajectories. This approach is promising but so far 

has only been applied to idealized small systems like sodium ion binding [83]. 

Furthermore, the milestone surfaces are rather simple – usually concentric spheres, 

and their compatibility with the complexity of ligand structure and dynamics remains 

to be determined. 

 

6.2. Enhanced Sampling Techniques 

Enhanced sampling techniques aim to reduce computational effort by accelerating 

sampling over the relevant degrees of freedom. Methods include metadynamics [85], 

conformational flooding [86], accelerated MD [69,87], and potential-scaled MD [88]. 

All such methods impose a potential bias on the system enabling it to visit less 

energetically favorable states with higher frequency. Whilst the free energy 

landscape can be recovered, such methods distort time thus preventing direct 

retrieval of the kinetic parameters. However, recently a method has been 

implemented that determines the acceleration factor [89], thus enabling recovery of 

kinetics. One challenge is that care has to be taken when recovering the kinetics 

because deposited potentials close to the transition barrier can adversely affect the 

dynamics and thus the transition probabilities. Another drawback of this class of 

methods is that knowledge of the relevant CV subspace is required in advance, in 

order to apply the biasing potential(s). If the CV subspace is not known, it still has to 

be chosen - then a priori, there is no guarantee that the chosen subspace captures 

the relevant kinetic transitions. Recently, however, a CV-independent method has 

been put forward based on potential-scaled MD simulations [90]. Introducing the 

software Biki (www.bikitech.com), the method is aimed at prioritizing compounds 

according to their residence time using multiple replica simulations and statistical 

analysis. Its application is, however, limited to targets whose binding site can be 

considered as rigid, since the protein motion is restrained in order to prevent protein 

unfolding. Recently, Cavalli et al have applied potential-scaled MD simulations to a 

series of glucokinase activators. Results indicate that the ligand shape might 

influence induced fit and thereby have an impact on the residence time. Additionally, 

specific residues influencing residence time were identified [91]. 

A combination of data-based approaches using machine learning techniques with 

structure-based mechanistic modelling might provide a new strategy for prediction of 

drug binding kinetic rates. MD-based methods can reveal particular protein residues 

and protein-ligand contacts that affect association and dissociation barriers, and 

thereby provide kinetics-specific descriptors for QSKR models. Furthermore, the 

development of reliable mechanistic simulation methods might extend the variety of 

compounds used for training of QSKR models.   
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7. Translating in vitro to in vivo 

A detailed study that highlights the complexity of binding kinetics and links them to in 

vivo effects was recently published by Ayaz and colleagues. They analyzed the 

binding of a series of Roniciclib analogues to different CDKs to assess their 

structure-kinetics relationships [60]. Variation of the substituent at the 5-position of 

the pyrimidine scaffold resulted in changes of up to three orders of magnitude in the 

drug–target residence time (Figure 5). Trifluoromethyl substituted compounds show 

three times longer residence times on CDK2/Cyclin A than on CDK9/Cyclin T in the 

range of hours. X-ray crystal structures revealed that the introduction of the apolar 

trifluoromethyl group into the aminopyrimidine scaffold induces a rearrangement of 

the hydration network. This seems to be accompanied by a conformational adaption 

of the DFG loop, likely giving rise to the prolonged pCDK2/cyclin A residence time of 

Roniciclib which is almost one order of magnitude greater than that of the 5-bromo 

analogue. The trifluoromethyl substituted compounds show superior efficacy in tumor 

growth inhibition relative to the corresponding 5-bromo analogues despite their 

similar in vitro kinase inhibition activity and cell proliferation IC50 values [61]. In 

tumor cells, the prolonged residence time of Roniciclib on CDK2 is reflected in a 

sustained inhibitory effect on retinoblastoma protein phosphorylation, indicating that 

the target residence time on CDK2 may contribute to sustained target engagement 

and antitumor efficacy. Hence, it appears likely that for antitumor efficacy driven by 

CDK inhibition, an increased target residence time on CDK2 and CDK9 positively 

contributes to efficacy by sustained inhibition of CDK signaling. 

However, to understand the impact of in vivo drug-target binding kinetics on the time-

course of target occupancy and drug effect, one should realize that drug-target 

binding is only one aspect of the causal chain from drug dosing to drug effect [99]. 

Other aspects include: 

 The concentration profile of the free drug in plasma and at the target site 

(pharmacokinetics, rebinding) [26,100] 

 Non-specific binding in plasma and target tissue [101] 

 The concentration of the target [26] 

 Competition between drug and endogenous ligand binding [14,15] 

 Target turnover [23], [102] 

 Signal transduction [103] 

 

These factors can all influence the ultimate importance of drug-target binding 

kinetics, thus putting the binding kinetics in the in vivo context. Therefore, these 

factors need to be taken into account in the translation from in vitro to in vivo target 

binding [104]. 

The best way to get information on the relevant factors in the in vivo context is to 

perform in vivo experiments. Not all of the factors summarized above can be 
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determined this way but in vivo experiments allow for the measurement of free and 

total drug concentration-time profiles in plasma and in target tissue. This is especially 

important when the target is located in a tissue protected by restrictive barriers, such 

as the blood-brain barrier. The distinction between total drug concentration in a 

reference tissue without the drug target and the respective target tissue provides 

information on the specific target binding. To that end, experiments should include 

the measurement of drug concentration at steady state conditions (extent of 

distribution) and at different equilibration times (rate of distribution). Microdialysis is 

the best possible technique to measure the free concentration-time profiles at the 

target tissue in individual animals (or humans; except for brain), while post-mortem 

tissue homogenate (at multiple time points, using multiple animals) can be used to 

measure total tissue concentration (being the sum of specific target binding and non-

specific binding to other cellular components). Quantification of drug concentrations 

can then be performed with radioactivity-based or non-radiolabeled, LC-MS based 

methods [104]. The data obtained from the in vivo experiments can be further used 

in mathematical modelling to derive the target occupancy as a function of time. The 

group of Liesbeth de Lange at Leiden University has applied this methodology to 

unravel the relationship between pharmacokinetics, drug-target binding kinetics and 

target occupancy of non-radiolabeled dopamine D2 antagonists and agonists (Figure 

6). Based on the in vivo drug concentration-time profiles in different brain 

compartments and in vitro kon and koff values at the D2 receptor, a mechanistic model 

incorporating these three factors is required to assess the impact of binding kinetics 

on the brain D2 receptor occupancy-time profile. 

Another approach is to get insight into the binding kinetics use modelling in an in vivo 

context is to use mathematical modelling and simulations. Especially the insight into 

the rate limiting step in the time-course of in vivo target occupancy is of high value. 

Predictions of in vivo target occupancy made on the basis of such simulations should 

then be validated by performing specific in vivo experiments. Deviations from 

predictions can be used to improve the model and the insight. For example, in a 

simplified situation with only elimination, distribution and target binding of the free 

drug, target binding of the free drug, the duration of target occupancy is determined 

by elimination rate of the drug from plasma, the distribution of the drug from tissue to 

plasma or by drug-target dissociation rate. When the rate of all these processes is 

known, the duration of target occupancy can be predicted by taking into account that 

the slowest of these processes is most influential in determining the duration of 

target occupancy. 

As commonly acknowledged, the time course of target occupancy is influenced by 

the free plasma concentration, as it drives drug-target binding.  However, drug-target 

association also decreases the free plasma concentration, whereas drug-target 

dissociation increases the free plasma concentration. This influence of binding on 

free drug concentrations in plasma has been described for many biologics and a few 

small molecules as so-called “Target-Mediated Drug Disposition models” [105,106] , 
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and has been clearly illustrated for a series of small-molecule HSP90 inhibitors [107]. 

The influence of this mutual interaction between target binding and free 

concentrations is influenced by: 

 the amount of target available for binding 

 the drug-target binding kinetics (kon, koff) and affinity (KD) 

 the elimination rate of the drug from the plasma 

Further analysis of this interaction reveals an important role for the value of kon to 

determine both the duration of target occupancy and the concentration profile of free 

drug near the target. This influence of kon for high affinity drugs can be clearly seen 

in the simulations in Figure 7, where kon is the only changing parameter between the 

different simulations (line colors). 

If target binding occurs in a separate (sub)tissue, the interaction between target 

binding and free drug concentrations in the tissue leads, for high values of kon, to a 

slower decrease of drug concentrations in the tissue, compared to the decrease of 

plasma concentrations. A longer duration of target occupancy, also for fast 

dissociating drugs, should be expected for drugs with high values of kon. This 

influence of target binding on the free drug concentration near the target has also 

been described in terms of “rebinding” [26]. An integrated analysis of the influence of 

drug-target binding kinetics, plasma pharmacokinetics and local drug concentrations 

has recently revealed the role of binding kinetics on target occupancy duration from 

a comprehensive analysis of the rate-limiting step in this system [108]. This analysis 

shows both the need and the opportunities for an integrated analysis of the relevant 

determinants of target occupancy and effect, including drug-target binding kinetics. 

 

8. Residence Time as a Decision Criterion 

It is often necessary to measure for long periods of time to determine the residence 

time of drugs, which substantially reduces throughput. However, it may not be 

necessary to determine the exact residence time of drugs. In addition, experimental 

assay formats that do not attempt to measure the exact residence time but rather the 

relative residence time of ligands have much higher throughput. By doing this in a 

pseudo-quantitative way, this could still give a lot of information. Therefore it might 

be useful to change the assay format by establishing a cut off value and divide drug 

candidates into fast and slow dissociating ligands. In terms of prolonged occupancy, 

which is considered a benefit of long residence drugs, the limiting factor will be that 

at some point drugs stay bound for the entire lifespan of a protein. Re-synthesis of 

unbound receptor will therefore determine how long the drug has an effect after 

elimination of the unbound drug from the body [23].  

As discussed, there is often limited throughput in which ligand binding kinetics for a 

drug target can be measured (as mentioned in section 3.1). A popular approach to 
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deal with low throughput is to use a limited set of time points [109,110]. As a trade-

off for this increased throughput, the exact dissociation rate can no longer be 

determined and instead arbitrary metrics are used to quantify the relative differences 

in binding kinetics. Therefore, the comparison with other datasets is limited and this 

can only be partially solved by including reference compounds in the test-set to 

obtain comparative data. 

For example, more than 1800 antagonists were evaluated for their relative 

dissociation rates from the D2R [110]. To do so, membranes expressing the receptor 

were pre-incubated with antagonist. Consecutively, membranes were separated from 

unbound ligands using filtration and membranes were then incubated with 

radioligand. The rate of dissociation from the D2R of the unlabeled ligands 

determines the available receptors for binding the radioligand, which is evaluated 

after a 5 min incubation time. The amount of radioligand is therefore an indirect 

measure, distinguishing between unlabeled ligands with various degrees of 

dissociation within this 5 min incubation time. However, theoretically, the incubation 

time could be easily tailored to reflect the differences in residence time for any 

relevant timespan. 

A major drawback of such an approach is the required knowledge of the optimal 

drug-target residence time. If it was known what drug-target residence time would be 

required to elicit an in vivo response, it would be an excellent incubation time in the 

above example for ranking the relative drug-target residence times. However, 

research describing the effects of the respective drug-target residence time in vivo is 

lacking, making it often unclear what the desired residence time would be. 

A popular rationale for increasing the residence time in the literature is to retain a 

prolonged receptor occupancy after the clearance of unbound drug [2,3,111]. As 

mentioned above, a long duration of drug-action in vivo is not just dependent on the 

drug-target residence time. However, in cases in which drug-target residence time 

could increase the therapeutic window, effectiveness would also depend on the rate 

at which new unbound drug target is synthesized and degraded, subsequently 

lowering the occupancy of the total receptor population. For example, it was shown 

in vitro and in vivo that the inhibitor of BTK1, despite its 167 hours residence time 

had a >50% reduction in occupancy within a day due to re-synthesis of the kinase 

[112]. Increasing the drug-target residence time far beyond the time needed for re-

synthesis of the target will therefore not lead to an increasing therapeutic window. 

Another example where drug-target residence time could make a difference is for 

drug-targets that can be antagonized in an insurmountable fashion. This can occur 

when the presence of the agonist is transient (e.g. neuronal signaling), enabling the 

long-residence time antagonist to outlast the presence of the agonist while bound to 

the target [15]. In this way, signaling will be blocked by the antagonist even when 

there are very high concentrations of agonist. However, once an antagonist would 

already have a full and insurmountable inhibition of the agonist in vivo by outlasting 
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the pulse of agonist exposure, a further increase in residence time will not improve 

the in vivo activity, unless the agonist pulse is repetitive and the elimination of 

unbound drug is faster than the dissociation. Pinpointing the required residence time 

is not just dependent on the timing and frequency of the agonist pulse but also on 

the number of receptors and transduction efficiency, which will be cell type 

dependent [113]. Therefore, determining the minimum residence time for complete 

insurmountable antagonism might not be as straightforward. 

In conclusion, long residence time drugs might have a kinetic advantage in vivo, but 

if this advantage is at some point limited by the biological system, a further increase 

of the residence time would be worthless. Hence, the relation between the kinetics of 

drugtarget binding and its imposed effect in vivo requires much more attention. 

Breakthroughs here will not only help in establishing selection criteria in early drug 

discovery, but as discussed it could also enhance the throughput with which 

information can be obtained by using arbitrary metrics describing the underlying 

drug-target binding rate constants. This would also make it easier to use functional 

assays for drug optimization in which it is difficult to quantitatively determine the 

binding rate constants of drugs, but easier to measure the relative effects on 

signaling [52,114]. Moreover, when using functional assays to measure the duration 

of action of a test-set of ligands, this could already capture some of the biological 

limits, which arguably could be more valuable information for drug optimization then 

just the drug-target residence time. 

Summary and Outlook 

For decades, drug discovery and development has been focused on optimizing 

binding affinity while essentially neglecting drug binding kinetics. In recent years, it 

has become evident that in vitro information on drug target binding kinetics is of 

utmost importance in candidate compound selection. However, in vitro information 

should be accompanied by information on the in vivo context in which the drug 

needs to exert its ultimate effect. While target degradation/internalization, the 

concentration of the target, and endogenous competition might be difficult to assess, 

important insights into the role of binding kinetics can be obtained by investigating in 

vitro binding kinetics (kon, koff). This can be done in conjunction with measuring the 

free and total concentration-time profile of the drug in plasma and (sub)tissue(s) the 

binding rate constants can identify the rate limiting step in the target occupancy 

profile. Due to the complexity of the factors determining drug binding kinetics, a 

multilevel approach is necessary with both in vitro and in vivo experiments as well as 

computational modelling. Public-private partnerships, such as the K4DD project, are 

well suited to targeting drug binding kinetics in a holistic way and to providing new 

insights which will allow better decision making for selecting drug candidates.  
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Figure 1: A combination of experimental and computational approaches are used in the in 

the K4DD consortium to study drug binding kinetics and learn about structure-kinetics 

relationships [28] 

 

Figure 2: View of five antagonists in the binding site of the A2AR receptor. ZM241385 and 

compound 12x have a long residence time at the A2A receptor and stabilize the salt bridge 

His264-Glu169 (Adapted from [49] Segala J. Med. Chem. 2016) 

 

Figure 3: Schematic representation of the three kinetic assays. A) radioligand binding 

studies. Assay requirements are cell membrane preparations and a high affinity radiolabeled 

tracer. Over time, the unlabeled ligand of interest will displace the radiolabeled tracer and 

from this the kon, koff and residence time (RT) values of the unlabeled ligand can be 

calculated. B) TR-FRET™ assay. Assay requirements are whole cells with a SNAP-tagged 

receptor and a high affinity fluorescent tracer. When the fluorescent tracer and tagged 

receptor are in close proximity, a FRET signal can be detected, over time the unlabeled 

ligand of interest will displace the fluorescent tracer and from this the kon, koff and RT values 

of the unlabeled ligand can be calculated. C) label-free xCELLigence assay. Assay 

requirements are whole cells, no tracer or labeling necessary. Receptor activation can be 

followed over time by monitoring the cell morphology through impedance. Purple circle is a 

fast dissociating ligand, pink circle is a slowly dissociating agonist 

 

Equation 1: Linear Eyring equation, where h and kB are the Planck and Boltzmann 

constants, k is either the association rate constant (kon) or the dissociation rate constant 

(koff). ΔH# and ΔS# are the changes in enthalpy and entropy of the transition state, 

respectively. T is the absolute temperature and R is the gas constant 

 

Figure 4: A) Kinetic landscape showing the timescale gap between computationally 

accessible (blue) small molecules (based on conventional molecular dynamics of fragment 

binding to Trypsin [73]) and clinically relevant (red) compounds (in this case, several FDA 

approved and trial inhibitors of HIV-1 protease [71]). B) Different strategies required for 

improvement of KD, kon, and koff values (yellow, orange, and red arrows, respectively) 

 

Figure 5: Residence time of 5-substituted Roniciclib analogues; a) Modification of the R5-

group on the sulphonamides. b) Residence time (Τ) of compounds 6-10 on pCDK2/cyclin A 

and pCDK2/cyclin E (SPR experiment at 25°C). c) Substitution at the 5-position on the 

aminopyridine (van der Waals volumes with corresponding topological nonpolar surface 

areas (TNSA)) 

Reprinted from “Conformational Adaption May Explain the Slow Dissociation Kinetics of 

Roniciclib (BAY 1000394), a Type I CDK Inhibitor with Kinetic Selectivity for CDK2 and 
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CDK9”, ACS Chem Biol 2016, 11, 1710−1719;  Ayaz P, Andres D, Kwiatkowski DA, Kolbe 

C-C, Lienau P, Siemeister G, et al.; With permission of ACS. 

 

Figure 6: LC-MS based approach for exploring in vivo target occupancy-time profile, using 

dopamine D2 receptor ligands as paradigm compounds. After dosing the animal with the 

ligand, plasma, tissues and microdialysate ligand concentrations are quantified by LC-MS. 

The difference in ligand concentrations between target tissue and reference tissue 

represents the specific ligand-target binding. Alternatively, target occupancy could also be 

estimated from the unbound ligand concentration at the target site (obtained from continuous 

microdialysis sampling) and the kon and koff values obtained from in vitro studies. A 

mechanistic computational model can then be constructed to predict the impact of binding 

kinetics and other factors (e.g. ligand dosing regimen) on target occupancy-time profile. 

Assessment of target pharmacokinetics and occupancy using LC-MS based approach offers 

several advantages over radioligand-based imaging approaches like PET and SPECT  [104]. 

Most importantly, it provides higher throughput for drug screening and preclinical 

development, and the interferences due to radioactive metabolites and the anesthetic 

procedures during imaging could be avoided. PK, pharmacokinetics; TO, target occupancy 

 

Figure 7: Model simulations demonstrating that increasing affinities result in higher free drug 

concentrations (lower panel) and longer target occupancies (upper panel), while koff is 

constant. In these simulations, the first-order elimination rate constant kel = 1 h-1, koff = 36 h-1 

and the target concentration is 1 nM. The simulated drug dose is relative to the KD. Right: 

schematic representation of the applied model structure 
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