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Abstract

Wide beams can exhibit subcritical buckling, i.e. the slope of the force-displacement
curve can become negative in the postbuckling regime. In this paper, we cap-
ture this intriguing behaviour by constructing a 1D nonlinear beam model,
where the central ingredient is the nonlinearity in the stress-strain relation of
the beam’s constitutive material. First, we present experimental and numerical
evidence of a transition to subcritical buckling for wide neo-Hookean hypere-
lastic beams, when their width-to-length ratio exceeds a critical value of 12%.
Second, we construct an effective 1D energy density by combining the Mindlin-
Reissner kinematics with a nonlinearity in the stress-strain relation. Finally,
we establish and solve the governing beam equations to analytically determine
the slope of the force-displacement curve in the postbuckling regime. We find,
without any adjustable parameters, excellent agreement between the 1D theory,
experiments and simulations. Our work extends the understanding of the post-
buckling of structures made of wide elastic beams and opens up avenues for the
reverse-engineering of instabilities in soft and metamaterials.
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1. Introduction1

Recent years have seen an upsurge of interest in the instabilities and postinsta-2

bility behaviour of flexible structures. Rather than seeing instabilities as failure,3

they recently have been leveraged to achieve novel functional (meta)materials4

and structures (Reis, 2015; Reis et al., 2015). As such, materials and struc-5

tures featuring snapping (Holmes and Crosby, 2007; Florijn et al., 2014), wrin-6

kling (Terwagne et al., 2014; Danas and Triantafyllidis, 2014), fingering (Biggins7

et al., 2013) or buckling (Mullin et al., 2007; Shim et al., 2012; Coulais et al.,8

2015) have been created. Collectively they constitute a promising route to de-9

velop mechanical devices for sensing (Brenner et al., 2003; Coulais et al., 2016),10

actuation (Wang et al., 2012; Li et al., 2013; Terwagne et al., 2014; Overvelde11

et al., 2015) or soft robotics (Autumn et al., 2000; Shepherd et al., 2011).12
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These structures harness postinstabilities and their constituents undergo13

large deformations. A theoretical description of this regime, where as we will14

show nonlinearities are key, is not well developed yet. On the one hand, the de-15

scription of postbuckling behaviour has been widely investigated, but for models16

in which the constitutive material is assumed to be linearly elastic under small17

deformations (Hutchinson and Koiter, 1970; Budiansky, 1974; Davies et al.,18

1994; Magnusson et al., 2001; Vaz and Silva, 2003; Mazzilli, 2009; Bažant and19

Cedolin, 2010; Humer, 2013). On the other hand, much attention has been20

devoted to characterizing the instabilities of nonlinear elastic cellular materi-21

als (Geymonat et al., 1993; Lopez-Pamies and Castañeda, 2006b,a; Michel et al.,22

2007) or structures (Goriely et al., 2008), but only for the onset of instability,23

and not for the postinstability regime.24

Euler buckling, known as the phenomenon where an elastic beam will buckle25

under a sufficiently large compressive axial load, is perhaps the simplest and the26

most widespread instability (Euler, 1774). Much theoretical attention has been27

devoted to describing it using the classical (Timoshenko and Gere, 1961; Reiss,28

1969), extensible and shearable (Antman, 1972) elastica problem. Further in-29

depth studies have focused on the onset of buckling, the structure of buckled30

states (Antman and Rosenfeld, 1978; Antman and Pierce, 1990), closed form31

solutions (Goto et al., 1987, 1990; Pflüger, 2013), large deformations (Simo32

and Vu-Quoc, 1988; Wang, 1997; Irschik and Gerstmayr, 2009) and three-33

dimensional (Reissner, 1973; Simo, 1985; Simo and Vu-Quoc, 1986, 1991) defor-34

mations. In this paper we investigate the postbuckling regime of wide beams,35

where strains are necessarily large. A salient feature of buckling of slender36

beams is that the postbuckling compliance increases tremendously after buck-37

ling, yet remains positive. However, in recent work we showed that wide beams38

that buckle and undergo large deformations can exhibit a negative postbuckling39

compliance (Coulais et al., 2015). Although negative compliance is commonly40

observed in buckling of shells (Bažant and Cedolin, 2010), pipes (Hutchinson41

and Koiter, 1970) and the wrinkling of membrames (Pocivavsek et al., 2008;42

Diamant and Witten, 2011; Audoly, 2011), it has not been reported for beam43

buckling, and to the best of our knowledge is not predicted by existing beam44

models.45

Here we develop a 1D nonlinear beam model, that without adjustable param-46

eters, describes the postbuckling slope of wide neo-Hookean beams. In partic-47

ular, this model allows to analytically capture the onset of subcritical buckling48

(postbuckling slope < 0) for widths larger than approximately 15%, in good49

agreement with experiments and FEM simulations. In Section 2 we expand on50

our previous experimental and numerical findings to show that for neo-Hookean51

beams, the postbuckling compliance becomes negative when the beam width-52

to-length ratio t exceeds approximately 12% (Coulais et al., 2015). In Section 353

we construct an effective 1D energy density by combining the Mindlin-Reissner54

kinematics (Reissner, 1972) with a nonlinearity in the stress-strain relation and55

establish the governing beam equations. We then solve the beam equations to56

obtain the variation of the postbuckling slope with t and find that, without any57

adjustable parameters, our model is in excellent agreement with experiments58
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and simulations. Our work thus unambigously unravels the link between stress-59

strain nonlinearity and postbuckling behaviour. While we focus on the buckling60

of wide neo-Hookean beams, we note that we only need to include quadratic61

corrections to the stress-strain relation to correctly capture the physics. Hence,62

for materials with other nonlinear constitutive laws, including metamaterials as63

explored in Coulais et al. (2015) and Coulais (2016), our description is also valid.64

Our analytical description can be used to rationally design the postbuckling be-65

haviour of beams, and we hope that it can inspire work to capture and describe66

postinstability behaviours of other elastic systems. More widely, our work may67

impact the design of compliant devices, which harness instabilities (e.g. buck-68

ling, snapping, wrinkling) to convey mechanical functionalities that are of use69

in soft robotics (Autumn et al., 2000; Shepherd et al., 2011), sensors (Brenner70

et al., 2003; Coulais et al., 2016) and actuators (Wang et al., 2012; Li et al.,71

2013; Terwagne et al., 2014; Overvelde et al., 2015).72

2. Phenomenology: Subcritical Buckling73

In this section, we present and expand the findings from our previous work74

on subcritical buckling of wide beams (Coulais et al., 2015). First, we discuss75

both the experimental and numerical protocols to study buckling of rectangular76

beams to determine the force-displacement relation. We consider both the nu-77

merical protocol for 3D FEM simulations with boundary conditions that closely78

model the experimental conditions, and 2D simulations with simplified bound-79

ary conditions. Second, we analyze the onset of buckling and the postbuckling80

compliance of beams of varying width-to-length ratio t. We then show that for81

both experiments and numerics the postbuckling compliance varies systemati-82

cally with t, and becomes negative for t & 0.12.83

2.1. Experiments and FEM simulations84

In the analysis below, we consider beams of the width-to-length ratio t = w/`85

and depth d, under load F and corresponding uniaxial displacement u, where86

u, F > 0 correspond to a compressive deformation (Fig. 1a and b).87

2.1.1. Experiments88

To perform buckling experiments, we mold 12 solid rectangular beams of rest89

length ` = 45 mm, depth d = 35 mm and widths ranging from w = 1.55 mm to90

w = 12.85 mm (Fig. 1(a)) out of a well-characterized silicon rubber (Zhermarck,91

Polyvinyl Siloxane double elite 8, density 1.15 × 103 kg/m
3
, Young’s modulus92

E = 250 kPa, Poisson’s ratio ν ≈ 0.5). The extremities of the beams are glued93

on plexiglass plates that are attached to the uniaxial testing device (Instron94

5965) in order to approximate clamped-clamped boundary conditions, and we95

perform the experiments in a water bath in order to limit the effects of gravity.96
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2.1.2. 3D simulations97

We simultaneously carry out a nonlinear analysis using the commercial finite el-98

ement package Abaqus/Standard on beams with the exact same geometry as99

in the experiments. We determine the buckling point using a specific algorithm100

in our finite element code that does not require seeding the initial geometry101

with imperfections (Coulais et al., 2015), allowing to obtain a 0.1% accuracy on102

the buckling onset.103

Material model — The rubbers used in our experiments are well described
by the incompressible neo-Hookean formulation of nonlinear elasticity (Boyce
and Arruda, 2000). We therefore use a neo-Hookean strain energy density (Og-
den, 1997) of the form

W =
G

2

(
det(F)−2/3tr(FFT)− 3

)
+
K

2
(det(F)− 1)2, (1)

where G is the shear modulus, K the bulk modulus and F ≡ ∂x/∂X is the104

deformation gradient tensor from the undeformed coordinates X to the deformed105

coordinates x. In the numerical analysis, we use the moduli G = 83 kPa and106

K = 42 GPa, which models accurately the E = 250 kPa nearly-incompressible107

rubber used in the experiments.108

Boundary conditions — We numerically impose clamped-clamped bound-109

ary conditions to resemble the experiments where the endpoints of the beam110

are glued on plexiglass plates.111

2.1.3. Simplified 2D FEM simulations112

In addition, we carry out 2D plane stress simulations (Abaqus element type113

CPS4) using the same material model, yet with simplified slip boundary con-114

ditions at both endpoints of the beam, which allows for free lateral expansion115

at the clamped-clamped endpoints to avoid barreling effects (Narayanasamy116

et al., 1988). The choice for plane stress over plane strain conditions is a priory117

not obvious because our beams are intermediate between the plane stress limit118

(w � d), and plane strain limit (w � d). We therefore used our 3D simula-119

tions to investigate the 3D stresses and strains for beam thicknesses where the120

postbuckling slope changes sign (t ≈ 0.1). We found that in this case there121

are significant out of plane strains, but that the out of plane stresses are small122

(ratio between the lateral and uniaxial stresses < 0.1) – this motivates us to123

focus on the plane stress case. The plane stress condition, which is nontrivial in124

finite-strain elasticity, is implemented by requiring that the yy-component of the125

true (Cauchy) stress is zero, which necessitates the iterative computation of the126

deformation gradient component Fyy to satisfy this condition (Doghri, 2013).127

Altogether, these assumptions ensure that more complex 3D and boundary ef-128

fects can be neglected and allow us to carry out the analysis in the simplest129

setting where subcritical buckling can be observed, and will be used later to130
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Figure 1: Buckling of wide neo-Hookean beams. (a) Sketch of a beam in its initial undeformed
state, for which the beam has a rest length `, width w and depth d. (b) Applying a compressive
displacement u, leads to compression and eventually buckling of the beam. (c-d). Frontview
snapshots of (c) the experiment and (d) the simulation for a beam of length ` = 45 mm, depth
d = 35 mm and width w = 11.95 mm, at compressive displacements (from left to right) u = 0,
u = 0.5 uc, u = 0.99 uc, u = 1.1 uc and u = 1.2 uc. (e-f) Scaled compressive force F/(Ewd)
vs. compressive displacement u/` for beams of different width for (e) the experiments (solid
lines) and 3D simulations (dashed lines) and (f) the simplified 2D simulations. As the effects of
gravity are negligible in the experiments and absent in simulations, the choice of the Young’s
modulus E is immaterial and we trivially scale the forces by E.

pinpoint the physical mechanism at stake in the postbuckling behaviour of wide131

beams.132

2.2. Buckling and Subcritical Buckling133

In Fig. 1(c-d) we simultaneously display 5 frontview snapshots of experiments134

and 3D simulations for a beam with t = 0.23 (w = 10.20 mm) at different com-135

pressive displacements, which are in very good qualitative agreement. Moreover,136
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we plot the obtained force-displacement curves for the complete range of beam137

widths in Fig. 1(e), which illustrates that 3D simulations and experiments are138

also in very good quantitative agreement. Hence, the neo-Hookean material139

model describes the buckling of wide beams well. For all curves, we observe140

a near-linear increase until the onset of buckling, at which the slope abruptly141

changes. For thin beams, the force increases after buckling, while for thick142

beams, the force decreases. For buckling experiments under controlled force of143

a sufficiently wide beam, the postbuckling branch would thus be unstable and144

the pitchfork instability would be subcritical. Therefore, we refer to this type of145

instability as Subcritical Buckling. The 2D simulations, albeit considerably sim-146

pler, display qualitatively similar behaviour (Fig. 1(f)), which demonstrates that147

subcritical buckling does originate neither from boundary-induced singularities148

nor from 3D effects. To the best of our knowledge, although subcritical buckling149

is fairly common in other settings such as the wrinkling instability (Moon et al.,150

2007; Huang et al., 2007; Cao and Hutchinson, 2011) and the wrinkle-to-fold151

transition (Pocivavsek et al., 2008; Diamant and Witten, 2011; Audoly, 2011),152

such sign change is not predicted by any theory as of now for the Euler buckling153

of wide beams for realistic aspect ratios. Note that Magnusson et al. (2001)154

predicted such transition from supercritical to subcritical postbuckling, yet for155

overly large aspect ratios (t=0.24), and for which the validity of the extensible,156

non-shearable elastica is not guaranteed.157

We now retrieve the onset of buckling uc and the postbuckling slope S,
using the relation between the load F and the compressive displacement u in
the postbuckling regime:

F − Fc
Fc

= S
(u− uc)

`
+ O

(
(u− uc)2

)
, (2)

with Fc the critical buckling force. In Fig. 2(a) we display the onset of buckling158

as a function of the beam width-to-length ratio t, for the experiments, 3D FEM159

simulations and the 2D FEM simulations, and observe quantitative agreement160

with the prediction of Euler’s elastica for clamped-clamped boundary condi-161

tions, ueulerc /` = t2π2/3 (Bažant and Cedolin, 2010). While the onset shows162

quantitative agreement with Euler’s prediction, the results in Fig. 2(b) show163

the postbuckling slope S strongly deviates from Euler’s prediction S = 1/2 as t164

increases, and becomes negative for t & 0.12. Importantly, Fig. 2(b) illustrates165

that subcritical buckling of wide beams is a robust phenomena: Even with the166

simplifications made in the 2D simulations, the differences in the postbuckling167

slope between 2D and 3D simulations are modest.168

The emergence of subcritical Euler buckling is, as we will show, readily169

related to nonlinearity in the stress-strain relation (Coulais et al., 2015). In the170

following, we will rationalize such behaviour by constructing a 1D model that171

encompasses such a stress-strain nonlinearity.172
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Figure 2: Critical compressive displacement and postbuckling slope as function of the beam
width-to-length ratio, for Euler’s elastica (solid blue), experiments (orange diamonds), 3D
FEM simulations (black crosses) and 2D plane stress FEM simulations (solid black). (a) The
onset of buckling, uc, in experiments and simulations qualitatively follows Euler’s elastica.
(b). The postbuckling slope S in experiments and simulations progressively deviates from the
Euler limit S = 1/2 for large t. Subcritical buckling (S < 0) occurs for t & 0.12, indicated by
the shaded region.

3. 1D nonlinear beam model173

In this section we formulate a 1D nonlinear model to describe the postbuckling174

of wide beams. Our model assumes (i) that the kinematics of the 1D model are175

captured by the Mindlin-Reissner strains, namely axial strain, curvature and176

shear (Reissner, 1972); (ii) that axial stress and strain are related nonlinearly.177

Based on these assumptions, we derive an expression for the 1D energy density178

as well as the governing equations for the mechanical equilibrium of wide beams.179

We then analytically solve the governing equations and find excellent agreement180

with 2D simulations for the postbuckling behaviour, without any adjustable181

parameters. Finally, we refine our beam model using extensive 2D simulations182

and show that distortions from Mindlin-Reissner kinematics have a negligible183

effect on the predictions by the model.184

3.1. Mindlin-Reissner beam with a nonlinear stress-strain185

relation186

Mindlin-Reissner kinematics describe beams that can be compressed, bent and
sheared. These three deformation modes are quantified by a compressive ε̃0(s),
curvature ε1(s) ≡ θs(s) and shear strain γ0(s), as function of the curvilinear
coordinate s along the beam’s central axis, with θ the deflection angle of the
beam’s axis with respect to the vertical. Therefore the total elastic energy of
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these beams is a functional of the form

E [ε̃0(s), θ(s), ε1(s), γ0(s)] =

∫ `

0

ds ε [s, ε̃0(s), θ(s), ε1(s), γ0(s)] , (3)

where the 1D energy density of the beam ε [s, ε̃0(s), θ(s), ε1(s), γ0(s)] exclusively187

depends on these strains.188

The second key assumption is that stress and strain are related nonlinearly.
To describe the vicinity of postbuckling, we set up an expansion of the nominal
stress σ around the buckling strain εb up to quadratic order, which yields:

σ − σb
Eb

= (ε− εb) + η (ε− εb)2
+ O (ε− εb)3

, (4)

where Eb and σb are the effective Young’s modulus and nominal stress at buck-189

ling. In the case of neo-Hookean materials under plane stress conditions, the190

coefficients of this expansion can be determined analytically and read η =191

−1 + O (εb) and Eb = E + O (εb) (See Appendix A.3 for a demonstration).192

In the case of plane strain conditions, not considered here, it can be shown that193

η = −3/2 + O (εb) (See SI in Coulais et al. (2015)). The nonlinearity of the194

above stress-strain relation stems from the combination of large deformations195

and incompressibility and can qualitatively be understood from the fact that196

upon compression (tension) the cross-sectional area increases (decreases) and197

the stress-strain curve is therefore effectively stiffening (softening). In addition,198

we assume a linear relation between the nominal shear stress τ and shear strain199

γ, τ = Gγ in agreement with the elasticity of neo-Hookean materials (Ogden,200

1997).201

Based on these two assumptions, we find that the 1D energy density describ-
ing postbuckling reads:

ε [ε0(s), ε1(s), γ0(s)] =EbAεb ε0 +
1

2
EbAε

2
0

+ EbI

(
1

2
+ η ε0

)
ε2

1

+
GA

2
γ2

0 ,

(5)

with ε0(s) = ε̃0(s) − εb, A = wd (the cross-sectional area) and G is the shear202

modulus. Crucially, the nonlinear correction proportional to η introduces a203

nonlinear coupling between the compression strain and the curvature ε0ε
2
1, and204

such coupling is absent in previous linear beam models (Magnusson et al., 2001;205

Humer, 2013).206

To establish the governing beam equations, the total elastic energy E has to
be minimized under the geometrical constraint set by the boundary conditions.
In the case of Euler buckling, a uniaxial displacement is applied along the ver-
tical axis of the beam and is associated to the following geometrical constraint:

Π = F

(
u−

(
`−

∫ `

0

ds ((1 + εb + ε0) cos θ − γ0 sin θ)

))
, (6)
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where F is the Lagrange parameter associated with the axial displacement u
that corresponds to the external axial force applied on the beam. We use the
fact that ε1 ≡ θs to apply the Euler-Lagrange formulation (Marion, 2013) on
the energy functional including the constraint:

Ẽ [ε0(s), θ(s), ε1(s), γ0(s)] =

∫ `

0

ds ε−Π, (7)

which yields the governing equations of the beam:

EbIθss + F {(1 + εb + ε0) sin θ + γ0 cos θ}+ 2ηEbI (θsε0)s = 0, (8a)

F cos θ + EbA (εb + ε0) + ηEbIθ
2
s = 0, (8b)

GAγ0 − F sin θ = 0. (8c)

This set of three coupled equations determine the beam’s central axis in the207

postbuckling regime of wide beams. We will refer to this set of equations as the208

1D nonlinear beam model, since it includes the nonlinearity η.209

Please note that in the limit of linear materials (η = 0, Eb = E), Eqs. (8)210

correspond to the equations for a shearable and extensible beam derived by211

(Humer, 2013). If additionally the beam is assumed non-shearable, γ0(s) = 0212

and Eq. (8c) drops out, leaving us with a simpler model derived by (Magnusson213

et al., 2001). Finally, for inextensible beams ε0(s) = εb = 0, Eq. (8b) drops out,214

and we recover Euler’s elastica EIθss + F sin θ = 0 (Euler, 1774). Our beam215

model thus correctly captures all these linear models.216

3.2. Solutions to the 1D nonlinear beam model217

In this section we solve the 1D nonlinear beam model given in Eqs. (8) and218

show that the postbuckling slope is dramatically changed and the compressive219

Mindlin-Reissner strain significantly improved, when incorporating a nonlinear-220

ity η.221

3.2.1. Dimensionless form222

The results below will be presented in dimensionless form and we introduce the
following dimensionless quantities:

s̄ =
s

`
; F̄ =

F`2

EbI
; Λ−2 =

I

A`2
. (9)

The quantities s̄ and F̄ represent the dimensionless curvilinear coordinate and
force respectively, and Λ ∼ `/w can be recognized as the slenderness ratio (Bažant
and Cedolin, 2010). Using the dimensionless quantities, the set of scaled beam
equations given in Eqs. (8) reads:

θs̄s̄ + F̄ {(1 + εb + ε0) sin θ + γ0 cos θ}+ 2η(θs̄ ε0)s̄ = 0, (10a)

ε0 = −
(
F̄Λ−2 cos θ + ηΛ−2θ2

s̄ − εb
)
, (10b)

γ0 = F̄Λ−2Eb
G

sin(θ). (10c)
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In the remainder of the paper we drop the overbars, unless if noted otherwise.
For convenience, we additionally define:

r ≡ Eb
G

= 2 (1 + ν) + O (εb(t)) , (11)

where ν is the Poisson ratio.223

In Eqs. (10) we use Euler’s prediction for εb, that accurately describes the224

onset of buckling, even for wide beams (see Fig. 2(a)). Furthermore, all the225

parameters Eb, r and η can be determined theoretically to leading order in226

the beam width-to-length ratio t. In what follows we use these predictions as227

input parameters and solve Eqs. (10) to obtain a closed-form expression for the228

postbuckling slope as function of and to leading order in t.229

3.2.2. Closed-form expression for the postbuckling slope as a function230

of t.231

Here we derive our main result, namely the postbuckling slope as a function
of beam width-to-length ratio t. In deriving the postbuckling slope, we are
interested only in the mechanical response of the beam infinitesimally beyond
buckling. Therefore, we only need to solve Eq. 10 for small (θ(s)� 1), yet
nonlinear beam deflections. As a first step, we expand the governing beam
equations up to the cubic order in θ, and substitute Eqs. (8b-8c) into Eq. (8a)
to obtain:

0 = θss

(
1 − 2η

(
FΛ−2 + εb

)
− 6θ2sΛ

−2η2
)

+ θ

(
F + (r − 1)F 2Λ−2

)
− θ3

(
1

6
F +

2

3
(r − 1)F 2Λ−2

)
+ θ5

(
1

12
F 2Λ−2 (r − 1)

)
+

(
θ2θss + θθ2s +

1

6
θ3θ2s

)
FΛ−2η.

(12)

We now solve this linearized equation using a perturbative expansion that is
consistent with the symmetry of Eq. (12), which only contains odd powers in θ,
and that matches the imposed clamped-clamped boundary conditions, θ(0) =
θ(1) = 0:

θ(s) = α sin 2πs+ β sin 6πs. (13)

Here, α and β physically correspond to the maximum deflection angle of the first232

and third harmonic of the Fourier series which describe the beam shape θ(s).233

To see how α and β are coupled, we substitute the perturbative expansion for234

θ(s) in Eq. (12). By collecting all terms proportional to sin(6πs), and setting235

the sum of their coefficients to zero, we found that β is coupled to a higher236

power of α, specifically β ∼ α3. Therefore, since α � 1, β � α, and in the237

following we set β = 0.238
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Under the assumption β = 0, Eq. (12) leads to an explicit equation relating
the force F to the deflection α. Expanding F (α) for small deflection α, yields
the shape of the pitchfork bifurcation (Guckenheimer and Holmes, 1983):

F (α,Λ, η, r) = Fc + κα2 + O(α4), (14)

where κ is the curvature of the pitchfork. To connect this excess force to the
axial displacement u, we establish the relation between the deflection angle α
and the axial displacement using the geometrical relation

u/` = 1−
∫ 1

0

ds {(1 + εb + ε0) cos θ − γ0 sin θ} , (15)

which upon small deflections, can be expanded to obtain the desired relation
u(α, F,Λ, η, r). We then invert this relation to α(u, F,Λ, η, r) and substitute it
in Eq. (14), resulting in an equation that needs to be solved for F (u,Λ, η, r).
The final step is then to expand the solution for F in the limit u→ u+

c , which
leads to an equation of the form as in Eq. (2), with the postbuckling slope S
equal to:

S =
1

2
−
(

1

12
+ 2η2

)
π2 t2 + O(t4). (16)
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Figure 3: Postbuckling slope S as function of the beam width-to-length ratio t, for five
different models. In the Euler limit S = 1/2, while in 2D simulations (open circles) S varies
with t. Solutions to our model given in Eq. (16) are shown for η = 0 (dashed blue) and η = −1
(solid red). Finally, we also show data for an extension of our model discussed in Section 3.3
(dashed red). (a-b) Panel (a) shows a closeup for 0 < t < 0.10 and panel (b) shows a wider
range of width-to-length ratio (0 < t < 0.25). The shaded region indicates the cross-over to
subcritical buckling (S < 0) for the 2D simulations.
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This result confirms that Euler’s elastica prediction (S = 1/2) is recovered in the239

limit of slender beams (t→ 0) and shows that the leading order correction to the240

postbuckling slope S is quadratic in t. Notice that such correction comprises the241

stress-strain nonlinearity η. Does this correction bring an improvement for the242

prediction of the postbuckling slope? To check this, we compare the value of the243

postbuckling slope S obtained from 2D simulations to the prediction of Eq. (16),244

where the value of η is independently determined using the neo-Hookean model245

under the simplifying assumption that the neo-Hookan material is uniaxially246

compressed (see Appendix A.3). The comparison shown in Fig. 3 shows excellent247

agreement between the simulations and our prediction in Eq. (16), namely the248

quadratic correction matches the data very well for small t and remains accurate249

up to t ≈ 0.1 (see Fig. 3(a)). Although we should not expect our prediction250

to be accurate for wider beams, it remains in qualitatively agreement with the251

simulations and succeeds in predicting subcritical buckling at a critical width-252

to-length ratio t ≈ 0.15 (see Fig. 3(b)).253

Beyond the success of our asymptotic approach, a closer inspection of the254

quadratic correction to the postbuckling slope S in Eq. (16) allows us to infer255

three important conclusions. First, the quadratic correction is independent of256

the ratio of moduli r, given in Eq. (11). Since r sets the magnitude of shear257

deformations with respect to uniaxial compression, we conclude that shear is258

subdominant in the lowest order terms of S(t). Second, the coefficient of the259

quadratic correction is quadratic in η (see Fig. 5), suggesting the sign of the260

nonlinearity does not play a role. This is consistent with earlier simulations261

and experiments (Coulais et al., 2015) where we designed metabeams for which262

η > 0, in contrast to the neo-Hookean stress-strain nonlinearity for which η < 0,263

and found that also in this case S decreases with t. Third, the coefficient of264

the quadratic correction confirms our initial hypothesis that the stress-strain265

nonlinearity is the crucial ingredient to capture S(t) correctly: the magnitude266

of this coefficient is entirely determined by the nonlinearity parameter η. In267

the absence of η the magnitude of the coefficient is much smaller, and S(t)268

would be only weakly decreasing with t (see Fig. 3). We thus conclude that269

the nonlinearity η ensures that our theoretical prediction in Eq. (16) is able to270

capture the subcritical buckling at realistic aspect ratios, in contrast to earlier271

linear theories (Reissner, 1972; Magnusson et al., 2001; Humer, 2013).272

3.2.3. Mindlin-Reissner strains in the nonlinear beam model273

We will now illustrate that the prediction for the compressive Mindlin-Reissner274

strain ε0(s) is significantly improved by the nonlinearity η. In Fig. 4(a-c) we275

plot the compressive, bending and shear Mindlin-Reissner strain for the 2D sim-276

ulations and the beam model in Eq. (8). First, panel (a) shows a significant277

qualitative difference in the Mindlin-Reissner strain ε0(s) between the linear278

and nonlinear beam model. In contrast to the linear beam model, the nonlinear279

beam model is in good qualitative agreement with the FEM simulations and the280

prefactors of the sinusoidal modulations all carry the same sign, albeit with a281

slightly smaller amplitude. This confirms our earlier assertion that the nonlin-282
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Figure 4: Mindlin-Reissner strains as a function of s, for 4 different models. We consider
a wide (t = 0.1) beam which is compressed to an axial displacement of u/uc = 1.06. We
show results for 2D simulations (solid black), and compare them to numerical solutions to
our beam model in Eqs. (8) for η = 0 (dashed blue) and η = −1 (solid red). Finally, we
also show numerical solutions to an extension of our beam model in Eqs. (20) discussed in
Section 3.3 (dashed red). (a-c) We have respectively plotted the compressive, bending and
shear Mindlin-Reissner strain along the beam.

earity η is the crucial factor to capture correctly the large deformations of wide283

neo-Hookean beams. Finally, panel (b) and (c) show that the Mindlin-Reissner284

strains ε1(s) and γ0(s) remain essentially unchanged due to the nonlinearity and285

the model shows excellent agreement with the 2D simulations.286

3.3. Distortions from Mindlin-Reissner kinematics with non-287

linear stress-strain relation288

The previous derivation of the 1D nonlinear beam model in Eqs. (8) is simple289

and directly follows from the use of two basic assumptions. In particular, using290

Mindlin-Reissner kinematics is a customary yet not controlled assumption. In291

this section, we investigate the validity of such a choice by using extensive nu-292

merical simulations and demonstrate that distortions from the Mindlin-Reissner293

kinematics systematically occur, modifying the 1D energy density and governing294

equations, albeit with a subdominant effect.295

To explore deviations from Mindlin-Reissner strains, we investigate system-
atically the stress and strain profiles in Appendix A. In particular, we find that
the axial strain profile at the center of the beam takes the form:

ε(x)− εb = ε̃0 + ε1x+ ε2x
2 + ε3x

3 + · · · , (17)

where x ∈ [−w2 ,
w
2 ] is the transverse coordinate across the beam width. ε̃0 and296

ε1 are Mindlin-Reissner strains introduced in Section 3.1 and εi (with i ≥ 2)297

correspond to distortions from a linear axial strain profile. In Appendix A we298

have also performed a similar systematic analysis for the shear profile.299

Following the extensive simulations and thorough asymptotic analysis pro-
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cedure in Appendix A, we find that the 1D energy density takes the form:

ε [ε0(s), ε1(s), γ0(s)] =EbAεb ε0 +
1

2
EbA (1 + ζ2(η)) ε2

0

+ EbI

(
1

2
(1 + ζ1(t)) + η ε0

)
ε2

1

+
GA

2
γ2

0

(
k1 + k2γ

2
0

)
,

(18)

where the coefficients Eb, η, ζ1(t), ζ2(η), G, k1 and k2 can be determined numer-
ically. Note that in the limit when ζ1, ζ2 and k2 are zero, we recover Eq. (5). Eq.
(18) is very similar to Eq. (5) and the numerical values of the coefficients Eb, η,
and G match the values that come from the neo-Hookean material model (Og-
den, 1997) (see Appendix A). In addition we see that the differences associated
to distortions from the Mindlin-Reissner kinematics can be captured by the co-
efficients ζ1(t), ζ2(η), k1 and k2. While k1 = 0.67± 0.15 is a classical coefficient
known as the shear correction factor (Timoshenko, 1921; Timoshenko and Good-
ier, 1970) whose value quantitatively matches Timosenko’s prediction (Cowper,
1966; Hutchinson, 2000), ζ1(t), ζ2(η), and k2 are undocumented and correspond
to higher order distortions of the strain profiles. They have been determined in
Appendix A as:

ζ1 (t) = 6
(
t2 + t4

)
, (19a)

ζ2 (η) = −0.2− 0.15η, (19b)

k2 (t) = 0.0013t−4. (19c)

Note that even though k2(t) is singular for t→ 0, γ0 scales as t4, such that the300

product k2γ
4
0 that arises in Eq. (18) is regularized for t→ 0. Nonetheless, we see301

that the distortions in Eqs. (19) introduce minor modifications of the prefactors302

in Eq. (18) and in what follows we show that they do not play a major role in303

the model.304

We now carry out the same Euler-Lagrange approach as previously and find
the refined governing equations:

ζ1(t)EbIθss + F {(1 + εb + ε0) sin θ + γ0 cos θ}+ 2ηEbI (θsε0)s = 0,
(20a)

F cos θ + EbA (εb + ζ2(η)ε0) + ηEbIθ
2
s = 0, (20b)

GAγ0

(
k1 + 2k2γ

2
0

)
− F sin θ = 0. (20c)

This set of equations is the equivalent of the previously established Eqs. (8a-8c)
and has been determined through a well defined and rigorous set of assump-
tions. Unfortunately, the coefficients ζ1(t), ζ2(η) and k2 have to be determined
numerically. Following the procedure in Section we linearize and solve Eqs. (20)
and find that

S =
1

2
+

(
−3 + 2 (1 + ζ2(η))− 24η2

)
π2

12 (1 + ζ2(η))
t2 + O(t4), (21)
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which reduces to Eq. (16) by setting ζ2 = 1. We have plotted Eq. (21) in Fig. 3305

and see that the corrections ζ1, ζ2 and k2 result in a minor improvement to the306

postbuckling prediction. Finally, we numerically solved Eqs. 20 to obtain the307

Mindlin-Reissner strains and plotted the result for η = −1 in Fig. 4. Again,308

we find that the corrections result in a minor improvement to the postbuckling309

prediction. Altogether, this illustrates that the corrections ζ1, ζ2 and k2 have a310

subdominant contribution to the postbuckling behaviour.311

4. Conclusions and discussion312

We have presented a thorough investigation of the postbuckling of nonlinear313

elastic beams, using experiments, finite element simulations and theory. In par-314

ticular we have focussed on subcritical buckling, where, for neo-Hookean beams,315

the slope of the force-displacement curve becomes negative beyond buckling316

when the beam width-to-length ratio exceeds 12%. The main result of this pa-317

per is a 1D nonlinear beam model that includes a material nonlinearity η. We318

constructed the model by building the beam’s energy density using Mindlin-319

Reissner kinematics with a nonlinearity in the stress-strain relation, and demon-320

strated that this nonlinearity is crucial to accurately capture the postbuckling321

behaviour of wide beams and in particular to predict subcritical buckling. In322

contrast with previous works that have reported a significant effect of the ra-323

tio E/G on the flexure response (Goto et al., 1990) and the critical buckling324

force (Humer, 2013) of extensible and shearable beams, we found that E/G has325

a subdominant effect on the postbuckling slope.326

Though our model has been established in the case of neo-Hookean mate-327

Figure 5: Postbuckling slope as a function of the nonlinearity η. Using Eq. (16) we have
plotted S(η) for t = 0.01, t = 0.1 and t = 0.15. The curves show that the postbuckling slope
is quadratic in η and that the postbuckling slope does not exceed S = 1/2.
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rial nonlinearity (η < 0), our findings could be generalized to a wider class of328

nonlinear elastic materials, such as cellular materials with nonlinear effective329

properties (Gibson and Ashby, 1997; Castañeda, 1991; Coulais, 2016). We ex-330

pect this generalization to hold provided that the leading nonlinearity of the331

elastic material is quadratic in nature and that the material strains do not sig-332

nificantly deviate from the Mindlin-Reissner strain decomposition (as is shown333

in Section 3.3 for 2D plane stress beams). For example, in recent work by334

Coulais et al. (2015), beams patterned with a periodic 2D pattern of pores were335

shown to exhibit positive, geometrically induced nonlinearity (η > 0). They336

found that a sufficiently strong nonlinearity leads to subcritical buckling, even337

when the beam width-to-length ratio is small. Such a transition to subcritical338

buckling for η > 0 is in qualitative agreement with our theory that predicts that339

the postbuckling slope essentially decreases quadratically in η with its maximum340

at η = 0 (see Fig. 5). The present work rationalizes those findings and provide341

strong guidelines for the design of postinstability regimes in soft structures and342

architected materials (Ashby and Brechet, 2003), where arbitrary values of η343

can be achieved (Coulais, 2016). We envision in particular that our description344

could be of interest for the design of compliant hierarchical cellular materials,345

which often rely on the buckling instability for their functionality (Cho et al.,346

2014; Yang et al., 2016).347

In addition, we note that other types of material nonlinearities could be348

explored and addressed within our framework, for instance, plasticity, stress-349

relaxation, swelling Yoon et al. (2010); Holmes et al. (2011); Kim et al. (2012);350

Pezzulla et al. (2015); Na et al. (2016) or even growth and activity, which are351

ubiquitous in biological solids (Gladman et al., 2016; Sharma et al., 2016)352

Finally, while our work could be of great use for the engineering of systems353

that draw on Euler buckling for their functionality (Wang et al., 2014; Shim354

et al., 2012), a plethora of compliant architected material harness the snapping355

instability (Brenner et al., 2003; Holmes and Crosby, 2007; Shim et al., 2012;356

Nasto et al., 2013; Florijn et al., 2014; Overvelde et al., 2015; Frenzel et al., 2016;357

Raney et al., 2016; Coulais et al., 2017). In order to understand the role of ma-358

terials nonlinearity on such instability and devise mechanical design guidelines,359

our present framework should be generalized to pre-curved geometries, such as360

curved beams and shells.361
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Appendix A. Asymptotic Analysis of 2D FEM367

simulations368

In this appendix, we use 2D FEM simulations to illustrate and quantify the369

role of nonlinearities in the stress-strain relation, set up a systematic series370

expansion for the spatial variation of stress and strain across the beam, and use371

the numerical results to determine the dominant terms in this expansion. Our372

findings will allow us to unambiguously establish a well defined expression for373

the 1D energy density of the beam and to compare it with standard limits such374

as Euler’s elastic, Timoshenko beams and Mindlin-Reissner beams.375

Appendix A.1. Series expansion of the axial nominal stress376

and strain377

First, we perform a systematic expansion of the nominal stress and strain profiles378

in the beam’s transverse coordinate x/w, the beam width-to-length ratio t and379

the excess displacement ∆u ≡ (u− uc) /uc, and determine all prefactors and380

scaling exponents using our FEM results.381

382

Standard beam theories such as Mindlin-Reissner theory assume that the
nominal stress and strain profiles are linear in x. In wide 2D neo-Hookean
beams, the deformation field is more complex and we analyze deviations from
a linear profile by expanding the nominal strain and stress around the buckling
strain (εb) and stress (σb), as function of the (scaled) transverse coordinate x/w,
at the middle of the beam:

ε
(
t,∆u,

x

w

)
− εb =

∑
n=0

Cn (t,∆u)
( x
w

)n
, (A.1a)
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Figure A.6: Expansion of the nominal strain and stress profiles obtained by FEM simulations,
according to Eqs. (A.2a-A.2b). We plot the postbuckling profile coefficients Cn and Dn in
each order as a function of ∆u and t. In black, blue, green and red we have plotted Cn (solid
lines) and Dn (dashed lines), corresponding to the order n = 0, n = 1, n = 2 and n = 3
respectively. (a-b). We have plotted |Cn| and |Dn| as function of ∆u for (a) a slender beam
(t = 0.02) and (b) a thick beam (t = 0.15). (c). Dependence of Cn and Dn on the beam
aspect ratio t.
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∆u t

n βn τn αn ρn

0 1.03 ± 0.1 1.05 ± 0.1 4.06 ± 0.4 4.09 ± 0.4

1 0.51 ± 0.03
[
1
2

]
0.51 ± 0.03

[
1
2

]
2.00 ± 0.1 [2] 1.99 ± 0.1 [2]

2 1.03 ± 0.1 1.02 ± 0.1 4.02 ± 0.4 4.00 ± 0.4

3 0.51 ± 0.05 0.51 ± 0.05 4.00 ± 0.4 3.99 ± 0.4

4 1.0 ± 0.15 1.01 ± 0.15 6.05 ± 0.9 6.00 ± 0.9

5 0.51 ± 0.15 0.52 ± 0.16 6.20 ± 1.9 5.82 ± 1.7

Table A.1: Postbuckling profile scaling exponents of ∆u and t, for the expansion of the nominal
strain and stress profiles as defined in Eqs. (A.1a-A.2b). Each row corresponds to a different
order of n and values within the square brackets represent analytical results as predicted by
Euler’s elastica for clamped-clamped boundary conditions.

and

σ − σb
E

(
t,∆u,

x

w

)
=
∑
n=0

Dn (t,∆u)
( x
w

)n
, (A.1b)

where Cn and Dn are the coefficients of the expansion in x/w of order n. We
refer to these coefficients as the postbuckling profile coefficients. At buckling
(∆u = 0), Cn = Dn = 0, so it is natural to assume that the postbuckling profile
coefficients Cn and Dn grow as power laws in t and ∆u in the postbuckling
regime. Therefore, we postulate:

Cn (t,∆u) = C̄nt
αn∆uβn , (A.2a)

and

Dn (t,∆u) = D̄nt
ρn∆uτn . (A.2b)

Here, αn, βn, ρn and τn are postbuckling profile scaling exponents and C̄n and383

D̄n are the postbuckling profile prefactors which we will now determine up to384

the order n = 5 from our numerical simulations.385

To determine all the constants, we use the numerical protocol described in386

Section 2.1.3 and perform N = 102 simulations for beams with a logarithmically387

spaced width-to-length ratio in the range from t = 0.01 up to t = 0.25, and388

with an excess strain that is increased from ∆u = 10−3 up to ∆u = 1 in389

3 × 102 subsequent steps. For each simulation we extract the spatial shape390

of the nominal stress and strain as function of x/w across the middle of the391

beam at s = `/2 and fit ε(x) and σ(x)/E to polynomials of order n = 5, by392

which we obtain the postbuckling profile coefficients Cn(t,∆u) and Dn(t,∆u)393

for each specific set of parameter values t and ∆u. From these quantities we394

subsequently deduce the postbuckling profile scaling exponents and prefactors395

up to order n = 5.396
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n C̄n D̄n C̄n/D̄n

0 72.0 ± 25 38.3 ± 13 1.88 ± 0.9

1 21.3 ± 3.2
[
4π2
√
3
≈ 22.8

]
21.1 ± 3.2

[
4π2
√

3
≈ 22.8

]
1.01 ± 0.2 [1]

2 −116 ± 41 −553 ± 194 0.21 ± 0.1

3 320 ± 112 254.9 ± 89 1.26 ± 0.6

4 −6.1 · 103 ± 2.4 · 103 −1.4 · 104 ± 5.6 · 103 0.42 ± 0.2

5 1.1 · 104 ± 5.5 · 103 1.2 · 104 ± 6 · 103 0.99 ± 0.7

Table A.2: Postbuckling profile prefactors C̄n and D̄n and their ratio, for the expansion of
the nominal strain and stress profiles as defined in Eq. (A.1a-A.2b). Each row corresponds
to a different order of n and values within the square brackets represent analytical results,
predicted by Euler’s elastica for clamped-clamped boundary conditions.

The results of this fitting procedure, shown in Fig. A.6 and Tables (A.1-A.2))397

confirm the validity of the polynomial asymptotic decomposition Eqs. (A.1a-398

A.2b). In the following, we carry out a similar analysis for shear deformations.399

400

Appendix A.2. Series expansion of the nominal shear stress401

and strain402

Second, we investigate shear effects using a similar expansion as above in the
beam transverse coordinate x/w, the beam width-to-length ratio t and the ex-
cess displacement ∆u ≡ (u− uc) /uc, and determine all prefactors and scaling
exponents using our FEM results. Standard beam theories such as Mindlin-
Reissner theory assume that the nominal shear stress and strain profiles are
constant across the beam. In wide 2D neo-Hookean beams, the deformation
field is more complex and we analyze deviations from a constant profile by ex-
panding the nominal shear strain and stress around the buckling strain and
stress. Following a similar series expansion as in Eqs. (A.1a-A.2b), we expand
the nominal shear strain and stress profiles as:

γ
(
t,∆u,

x

w

)
=
∑
n=0

Jn (t,∆u)
( x
w

)n
, (A.3a)

and

τ

G

(
t,∆u,

x

w

)
=
∑
n=0

Kn (t,∆u)
( x
w

)n
, (A.3b)

where Jn and Kn are the postbuckling profile coefficients of the expansion at
order n. Note that prior to buckling, the beam simply undergoes uniform uni-
axial compression and has not developed any curvature yet. Therefore, unlike
the uniaxial nominal strain and stress which are constant across the beam in
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Figure A.7: Dependence of the spatial nominal shear strain and stress profiles on ∆u and
t, obtained by FEM simulations. In black, blue and green we have plotted the postbuckling
profile coefficients Jn (solid lines) and Kn (dashed lines), corresponding to order n = 0, n = 1
and n = 2 respectively. (a-b). We have plotted |Jn| and |Kn| as function of ∆u for (a) a
slender beam (t = 0.02) and (b) a thick beam (t = 0.15). (c). Dependence of Jn and Kn on
the beam’s aspect ratio t.

the prebuckling regime, the shear stress and strain are strictly zero for ∆u ≤ 0.
Similarly to the postbuckling profile coefficients Cn and Dn (Eqs. (A.2a-A.2b)),
we use that Jn = Kn = 0 at buckling, and we assume that the postbuckling pro-
file coefficients Jn and Kn grow as power laws in t and ∆u in the postbuckling
regime:

Jn (t,∆u) = J̄nt
ξn∆uΞn , (A.4a)

and

Kn (t,∆u) = K̄nt
υn∆uΥn . (A.4b)

403

Here, ξn, Ξn, υn and Υn are the postbuckling profile scaling exponents, and404

J̄n and K̄n are the postbuckling profile prefactors which we determine from405

numerical simulations.406

∆u t

n Ξn Υn ξn υn

0 0.49 ± 0.02 0.49 ± 0.02 3.02 ± 0.15 3.01 ± 0.15

1 1.03 ± 0.05 1.06 ± 0.05 3.98 ± 0.20 3.98 ± 0.20

2 0.50 ± 0.03 0.50 ± 0.03 3.02 ± 0.15 3.01 ± 0.15

3 1.02 ± 0.26 0.93 ± 0.23 5.93 ± 1.48 5.70 ± 1.43

Table A.3: Postbuckling profile scaling exponents of ∆u and t, for the expansion of the
nominal shear strain and stress profiles as defined in Eq. (A.3a-A.4b). Each row corresponds
to a different order of n and results are provided up to cubic order (n = 3).
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n J̄n K̄n J̄n/K̄n

0 −18.9 ± 1.9 −18.8 ± 1.9 1.0 ± 0.14

1 −45.3 ± 4.5 −45.3 ± 4.5 1.0 ± 0.14

2 205.9 ± 20.6 204.3 ± 20.4 1.0 ± 0.14

3 −4.4 · 103 ± 1.8 · 103 −3.7 · 103 ± 1.5 · 103 1.2 ± 0.68

Table A.4: Postbuckling profile prefactors J̄n and K̄n and their ratio, for the expansion of the
nominal shear strain and stress profiles as defined in Eqs. (A.3a-A.4b). Each row corresponds
to a different order of n and results are provided up to cubic order (n = 3).

To determine all the constants, we use the same set of N = 102 FEM sim-407

ulations as before, from which we now extract the spatial shape of the nominal408

shear stress and strain as function of x/w along a cross section at one quarter409

of the beam, s = `/4, and fit γ(x) and τ(x)/G to polynomials of order n = 3.410

From the resulting fits we then obtain the postbuckling profile coefficients Jn411

and Kn for a specific set of parameter values t and ∆u. From these quantities we412

subsequently deduce the postbuckling profile scaling exponents and prefactors413

up to order n = 3. The results of this fitting procedure, shown in Fig. A.6 and414

Tables (A.1-A.2)) confirm the validity of the polynomial asymptotic decompo-415

sition Eqs. (A.1a-A.2b). In the following, we discuss the implications of such416

asymptotic analysis for the formulation of 1D models.417

418

Appendix A.3. Effective stress-strain relations419

In this appendix we set up the appropriate stress-strain relations for both the420

uniaxial and shear stress-strain relation.421

Appendix A.3.1. Nonlinear Uniaxial stress-strain relation422

From Table A.2 we see that the coefficients C̄n and D̄n are not equal, thus
evidencing a nonlinearity in the stress-strain relation. Because the postbuckling
slope (Eq. 2) is defined in the vicinity of the buckling point, the starting point
is to write a Taylor series for the normal stress around the buckling strain εb up
to quadratic order, which yields

σ − σb
Eb

= (ε− εb) + η (ε− εb)2
+ O (ε− εb)3

. (A.5)

We can calculate Eb and η analytically by evaluating the expansion in Eq. (A.5)
using the stress-strain relation for uniaxially compressed neo-Hookean materials
(Ogden, 1997). This yields:

Eb (εb) =
E

3

(
1 +

2

(1 + εb)
3

)
, (A.6a)
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and

η (εb) = − 3

2 (1 + εb) + (1 + εb)
4 . (A.6b)

Eq. (A.6a) and Eq. (A.6b) show that as εb becomes increasingly negative, both
the effective stiffness Eb and the magnitude of nonlinearity parameter η increase.
In particular, we find, by expanding Eqs. (A.6a-A.6b) for small εb, that the
leading order corrections to Eb and η are linear in εb:

Eb/E = 1− 2εb + O
(
ε2
b

)
, (A.6c)

η = −1 + 2εb + O
(
ε2
b

)
. (A.6d)

Furthermore, note that as εb → 0, we retrieve Eb/E = 1 and η = −1, in
agreement with the small strain limit of uniaxally compressed neo-Hookean
materials (Ogden, 1997). Finally, Eq. (A.6d) is also consistent with the value
that we can calculate from the numerical constants Cn and Dn using Table A.2,
namely:

η =
D2 − C2

C2
1

≈ 1 (A.7)

Appendix A.3.2. Linear shear stress-strain relation423

In addition, we have seen from Table A.4 that the coefficients J̄n and K̄n are
equal, therefore the nominal shear strain and stress are linearly related, hence
we can assume

τ(x) = Gγ(x), (A.8)

which is the result as predicted by Ogden (1997) in the case of simple shear424

for neo-Hookean materials. We will use this linear constitutive equation for the425

shear in the remainder of this paper.426

Appendix B. Construction of the 1D energy den-427

sity comprising stress-strain nonlin-428

earity429

In this appendix, we construct the energy density based on Mindlin-Reissner430

kinematics and a nonlinear stress-strain relation and take into account distor-431

tions to the Mindlin-Reissner kinematics. This 1D energy density is the base of432

our models, presented in Section 3 of the main text.433

We start by expressing the total increase of the elastic energy beyond buck-
ling. This increase follows from an integral of the respective products of stress
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and strain, integrated over the surface area of the beam, that is,

E/d =

∫
ds dx

(∫ εxx

0

dε′xxσxx +

∫ εyy

0

dε′yyσyy +

∫ εzz

εb

dε′zzσzz

+

∫ εxy

0

dε′xyσxy +

∫ εyz

0

dε′yzσyz +

∫ εxz

0

dε′xzσxz

)
.

(B.1)

Even though we consider 2D beams, we keep a factor d (the depth) here to434

facilitate comparison to 3D beam results. For 2D beams, the ‘yy’, ‘xy’ and435

‘yz’ contributions are zero. Moreover, since the beam can freely expand along436

the x direction without any barrelling effects near the boundaries, we expect437

that σxx ≈ 0 at each point of the beam, an assumption which we have verified438

numerically in our 2D simulations. As a result, we are left with the ‘zz’ and ‘xz’439

terms, which correspond to the uniaxial and shear deformations, respectively.440

Our aim is to set up an energy functional using the Mindlin-Reissner strains —441

1D fields describing the shape of the beam along the curvilinear coordinate s.442

Therefore we define a linear energy density ε(s) as follows:

E =

∫ `

0

ds ε(s), (B.2a)

where

ε(s)

d
=

∫ w
2

−w
2

dx

∫ ε(x)

εb

σ (ε′) dε′ +

∫ w
2

−w
2

dx

∫ γ(x)

εb

τ (γ′) dγ′, (B.2b)

with ε ≡ εzz and γ ≡ εxz. Here, ε(s) represents the linear energy density that443

captures the amount of energy in a cross sectional area of the beam per unit444

length of the curvilinear coordinate s.445

Appendix B.1. 1D energy density including distortions from446

Mindlin-Reissner kinematics447

Here we present the energy density comprising distortions from the Mindlin-
Reissner strains and built with the aid of the numerical results. To this end,
we substitute the respective stress-strain relations (Eq. (A.5) and Eq. (A.8)) to
carry out the integration with respect to the nominal strains ε and γ. Second,
we integrate with respect to x by using the expansions of the uniaxial and shear
strain profiles up to cubic order (Eqs. (A.1a) and (A.3a)). This yields:

ε

EbA
=

{
C̄2

1

24

}
∆u t4

+

{
C̄1C̄3

80
+ C̄0C̄B +

C̄2C̄B
12

+
G

Eb

(
1

2
J̄2

0 +
1

12
J̄0J̄2 +

1

160
J̄2

2

)}
∆u t6

+

{
C̄2

3

896
+

(
C̄2

0

2
+
C̄0C̄2

12
+
C̄2

2

160
+ η

C̄0C̄
2
1

12
+ η

C̄2
1 C̄2

80
+

G

24Eb
J̄2

1

)
∆u

}
∆u t8

+ O
(
∆u2t10

)
.

23



(B.3)

We have now established carefully the beam’s energy density up to second order448

in excess strain and eighth order width-to-length ratio, O
(
∆u2t8

)
. The above449

analysis identifies and quantifies precisely how nonlinearity in stress-strain laws450

and distortions to Mindlin-Reissner kinematics alter the 1D energy density for-451

mulation. While the order O(∆u t4) corresponds exactly to Euler’s elastica, the452

order O(∆u t6) comprises the classical Timenshenko beam contribution as well453

as distortions from the linear bending profile. The order O(∆u t8) contains the454

nonlinearity η as well as further distortions for bending and shear.455

After a few manipulations which we explain hereafter, it can be shown that
Eq. (B.3) can be converted in terms of the Mindlin-Reissner strains as:

ε

Eb
= Aεb ε0 +

1

2
Aζ2(η)ε2

0+I

(
1

2
ζ1(t) + η ε0

)
ε2

1

+
GA

2Eb
γ2

0

(
k1 + k2γ

2
0

)
,

(B.4a)

where the coefficients ζ1(t) and ζ2(η) are given by

ζ1(t) = 1 + 2

(
C̄2C̄B
C̄2

1

+
3

20

C̄3

C̄1

)
t2 +

3

112

(
C̄3

C̄1

)2

t4, (B.4b)

ζ2(η) = 1 +
1

6

C̄2

C̄0

(
1 +

3

40

C̄2

C̄0
+

3

20
η
C̄2

1

C̄0

)
, (B.4c)

and where k1 and k2 are given by

k1 = 1 +
1

6

J̄2

J̄0
+

1

80

(
J̄2

J̄0

)2

, (B.4d)

and

k2(t) =
1

12

J̄2
1

J̄4
0

t−4. (B.4e)

To obtain the above results we have used the fact that there is a clear pattern in456

the scaling exponents of the higher order corrections of the uniaxial and shear457

strain profiles with the excess displacement ∆u, which alternate between 1/2 or458

1 (see Tables A.1 and A.3). Consequently, we can factorize the ∆u dependence459

and express the higher order corrections in terms of the Mindlin-Reissner strains.460

For example, the quadratic postbuckling profile coefficient of the axial strain461

profile, C2 = C̄2∆u t4, can be expressed in terms of ε0 ≡ C0 = C̄0∆u t4 as462

C2 =
(
C̄2/C̄0

)
ε0.463
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