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ABSTRACT RuO2 catalysts exhibit record activities towards the oxygen evolution reaction 

(OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the 

RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most 

active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 
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electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these 

oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented 

RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not 

exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the 

correlation of activity with the number of active Ru-sites calculated by DFT, where more active 

facets bind oxygen more weakly. This new understanding of the active sites provides a design 

strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering. 

TOC GRAPHIC 

 
Efficient catalysis of the oxygen evolution reaction (OER) is critical for the storage of 

renewable energy by hydrogen evolution or CO2 reduction.1-3 The rutile phase of ruthenium 

dioxide has remarkable OER activity, serving as a benchmark material for the reaction in either 

acidic4 or alkaline media.5-6 Despite notable experimental and theoretical work in RuO2-

catalyzed OER,7-8 with catalysts ranging from nanoparticles5, 9 to single crystals,10 the 

mechanism remains unclear.11 Some ambiguities exist about the coordination of ruthenium in 

RuO2 active sites and about the role of lattice oxygen in OER. Regarding the Ru active sites, the 

different coordination of surface Ru atoms on each crystallographic facet bears ramifications on 

their redox potential,12 in turn affecting the activation energy of charge-transfer steps in the OER. 
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With regard to the lattice oxygen involvement in OER, design parameters instead focus on more 

bulk-like descriptors such as the oxygen 2p-band energy level.13  

Four types of mechanisms have been suggested in the literature for the OER in RuO2 (Figure 

S1): (1) four concerted proton-electron transfers occurring on a single (undercoordinated Ru) 

site,7 supported by density functional theory (DFT) calculations,  (2) a sequence of two 

electrochemical steps followed by two chemical steps between neighboring Ru sites,14 due to 

differences in Tafel relations with tortuosity, (3) decomposition of high valence Ru oxides,15-16 

based on thermodynamic parameters, and (4) a mechanism involving the exchange of catalyst´s 

lattice oxygen during the OER from isotopic labeling studies.17-18 Understanding the nature of 

the active sites and the involvement of lattice oxygen in the OER is fundamental to reconcile the 

existing OER mechanism or propose a new one, and this is the key in developing appropriate 

activity descriptors and parameters for rational design of RuO2 catalysts.  

In this work, we examine the activities and the degree of oxygen exchange on four 

crystallographic orientations of RuO2 to probe the nature of active sites for OER, employing 18O-

labelling and OLEMS. The results will be discussed in the light of our recent work showing that 

the OER activity of rutile RuO2 (110) is lower than that of RuO2 (100),6 along with the historic 

studies reporting oxygen exchange during OER on RuO2 in acidic media.17-18 We report that for 

the oriented surfaces of (100), (110), (101), and (111), oxygen exchange was not observed to 

coincide with the OER, regardless of orientation in either acid or base. Moreover, dense sputter-

deposited rutile films (annealed at 300 °C) and crystalline RuO2 nanoparticles of ~50 nm in size 

did not exhibit notable exchange. The lack of oxygen exchange is supported by DFT results 

probing the adsorption of oxygen on different orientations, identifying the number of active Ru 

sites on the four surfaces, which scales with the experimental activity. These findings provide a 
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design strategy to enhance the OER activity of RuO2 nanoparticles through facet engineering for 

practical use. 

Rutile films of (100), (110), (101), and (111) orientation were grown by pulsed laser 

deposition (PLD), as reported previously6 and detailed in the Experimental Methods 

(Supplemental Information). The orientation was confirmed by X-ray diffraction (Figure S2). All 

films are comparably smooth by atomic force microscopy (AFM, Figure S3), with low root-

mean-square roughness ∼1 nm. Polyoriented films were grown by reactive sputter deposition on 

Si (Figure S4), as reported previously,19 and nanoparticles (Figure S5, S6) were purchased 

commercially. 

We first establish the uniqueness of film orientations and their dense structure by considering 

the surface redox behavior and cathodic pseudocapacitive charge (q*cathodic) measured in Ar-

saturated electrolyte.20-21 The capacitive features differ notably for each orientation in 0.1 M 

KOH (Figure 1A, see Figure S7 for 0.1 M HClO4), and scale with the density of 

undercoordinated Ru-bonds on each projected ideal surface, as shown in Table S1 (Figure 1B, 

Figure S8). As q*cathodic has been found to increase directly with surface area,14 its agreement 

with that expected from a flat surface leads us to conclude that the oriented thin films are not 

only smooth but also dense, lacking the porosity and corresponding defects typically associated 

with polycrystalline films or nanoparticles. 
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Figure 1. (A) Cyclic voltammetry of RuO2 of noted orientation in Ar-saturated 0.1 M KOH at 50 

mV/s in the voltage window from 0.3 to 1.25 V versus RHE. The cathodic charge in the 

voltammogram was used to calculate the charge density, q*cathodic, as suggested by previous 

work.21 The current density from nanoparticles (NP) is multiplied by 5 to show on the same 

scale. (B) q*cathodic (and corresponding number of electrons transferred) versus the number of 
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undercoordinated Ru bonds at the surface counted from the noted crystal facets (Figure S8, Table 

S1). The dashed line guides the eye for 1:1 correlation. (C) Tafel plot of OER activity in O2-

saturated 0.1 M KOH, measured by cyclic voltammetry at 10 mV/s (averaged forward and back, 

line) and potentiostatic measurements (constant applied voltage, points). (D) OER activity at 

1.53 V vs. RHE corresponds to the integrated charge from the Ru redox located at ~1.35 V vs. 

RHE preceding the onset of OER (Figure S10). (100) and (110) data adapted from Ref. 6. 

The specific OER activities (normalized by geometrical surface area) of the different crystal 

orientations differ notably, with (100) being the most active in 0.1 M KOH. The OER activities 

measured by cyclic voltammetry (CV) and potentiostatic measurements (see Experimental 

Methods) provide comparable results (Figure 1C). AFM measurements after cycling show 

negligible changes in surface roughness (Figure S9), pointing to material stability over the ~1 

hour of measurements. The OER activity scales with the integrated Ru redox peak at ~1.35 V vs. 

RHE (Figure S10),6 preceding the onset of OER, for all orientations.  

We next assess the potential involvement of lattice oxygen by OLEMS measurements.22 The 

films were held potentiostatically at OER potentials (1.7 V) in 0.1 M KOH or galvanostatically 

at low current densities in 0.1 M H2SO4 or KOH (Figure S11), where the electrolyte was 

prepared with 18O-labeled water. After rinsing and replacing the electrolyte with that prepared 

from DI water (16O), the masses of evolved oxygen were measured during OER. 

We begin by considering the most stable (110) facet in 0.1 M KOH, on which numerous DFT 

calculations have considered a reaction mechanism involving adsorption on a single 

undercoordinated Ru-site,7 not involving lattice oxygen. We first performed OER at 10 µA 

(~1.55 V vs. RHE) in H2
18O-0.1 M KOH, where the oxide would become ‘labeled’ by 18O if 

lattice oxygen is involved (Figure S11). The electrolyte was then thoroughly rinsed and replaced 
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with H2
16O-0.1 M KOH, and OER again measured. In concert with the measured oxidation 

current, notable 32O2 (16O + 16O) gas evolution was observed (Figure 2A), and negligible 

formation of 34O2 (18O + 16O) and of 36O2 (18O + 18O) was detected, where the ratio of 34O2 to 

32O2 detected as a function of applied potential is comparable to that of the natural enrichment of 

DI water in 16O and 18O isotopes, within experimental uncertainty (Figure 2A bottom panel, 

Figure S12). Comparable results were obtained by potentiostatic holding at 1.7 V in H2
18O-0.1 M 

KOH (Figure S12). This observation is in contrast to the detection of oxygen exchange on a 

polycrystalline gold disk polarized to 2 V (gold´s onset for OER)23 and from oxide powders13 of 

comparable surface area to the RuO2 electrodes using an identical setup.   

 
Figure 2. Online electrochemical mass spectrometry (OLEMS) measurements at 2 mV/s (see 

Experimental Methods for details). Shown is the current as a function of applied voltage, along 

with the mass signals collected in parallel for 36O2, 34O2 (18O16O), and 32O2 for a film 
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galvanostatically polarized in H2
18O to potentially ‘label’ it, measured in H2

16O electrolyte (dark 

color first sweep, light color second). The ratio of the mass 34 to mass 32 signal, which is 

independent of applied potential and overtop the same ratio measured after aggressive 

polarization to remove any exchanged oxygen (black/gray sweeps), indicates any 34O2 arises 

from background 18O. (A) (110)-RuO2 in 0.1 M KOH, (B) (100)-RuO2 in 0.1 M H2SO4, and (C) 

sputter-deposited polyoriented polycrystalline (PC) RuO2 in 0.1 M H2SO4.  

No involvement of lattice oxygen exchange was detected during OER in 0.1 M KOH on more 

active (100) (Figure S13-14) or (101) (Figure S15-16), or more undercoordinated (111) (Figure 

S17-18) by either galvanostatic or potentiostatic labeling approaches. Moreover, we performed 

OLEMS in 0.1 M H2SO4, where these oriented films also do not exhibit oxygen exchange during 

OER (Figures 2B, S14, S16, S18). The lack of oxygen exchange on these oriented RuO2 films in 

either basic or acidic environments in this study is in contrast to the observation of lattice 

involvement for polycrystalline RuO2 RF sputtered onto a membrane17 and nanocrystalline 

particles;18 the discrepancy is not understood. Here, we postulate that the involvement of oxygen 

exchange in OER is not associated with rutile RuO2, but potentially rather with RuO2-based 

amorphous or nanocrystalline phases with undercoordinated edge-sites presented in these 

previous studies.17-18  This hypothesis is supported by lack of oxygen exchange (Figure 2C, 

Figure S19) during OER on polyoriented, polycrystalline RuO2 (prepared by reactive sputter 

deposition at 300 °C in 3 mTorr of 5:2 Ar:O2) in acid,
19 having comparable charge associated 

with the peak at ~1.35 V vs. RHE (Figure 1D) and OER activity (Figure 1D) comparable to 

oriented surfaces. Moreover, no oxygen exchange was detected on rutile RuO2 nanoparticles 

(Figure S20) of ~50 nm in size (Figure S6), having a slightly lower activity and a lower charge 
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associated with the redox peak at ~1.35 V (Figure 1D) normalized to Brunauer–Emmett–Teller 

(BET) surface area.  

In the context of previous work, these new findings suggest that lattice oxygen is involved in a 

secondary mechanism only in less-crystalline ruthenium oxide or at low-coordinated 

nanoparticle surfaces with large surface area to bulk ratios. This difference suggests the 

importance of defect sites or other variations in surface crystallinity influenced by synthesis 

method.24 Furthermore, the geometry of the RF-sputtered RuO2 electrode in previous studies17 is 

likely characterized by a degree of surface roughness and porosity due to its deposition on a 

polymer membrane, which can potentially trap isotopically labelled water during the exchange 

experiment, convoluting results. The exchange of lattice oxygen may be possible in low-

coordinated surface sites of less-crystalline but yet electrochemically active catalysts having 

nominal “RuO2” stoichiometry, with such a difference in reaction mechanism likely bearing 

ramifications on stability as well. Fortunately, such exchange is not necessary to achieve high 

catalytic activity in oriented films. 

To help better quantify the number of active sites on the surface, we performed DFT 

calculations (see Experimental Methods) on the four experimentally studied RuO2 facets. We 

assume that these surfaces do not undergo reconstruction; thus the surface orientation is 

commensurate with that of the overall film. To this end, we calculated the oxygen adsorption 

energies for sites linked to the different types of Ru atoms on the surface. We observe the 

possibility to adsorb in various positions onto the different adsorption sites with varied energies. 

However, we find a common trend in the onset of the transition of the stoichiometric surface to 

the oxidized surface. We observe the Gibbs free energies per O atom for the oxygen adsorption 

on the Ru-sites labeled as ‘active’ undercoordinated sites to be 1.90 eV on the (100) surface, 2.01 
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eV for the (101) surface, 1.77 eV for the active site on the (110) surface and 1.59 eV for the 

(111) surface. Here, the adsorption energy is defined as the last, sequential addition of oxygen, 

which stabilizes the surface with the highest oxygen coverage at the pre-OER potentials under 

investigation here. Greater Gibbs free energies of adsorption correspond to higher potentials for 

the Ru redox peak preceding the onset of OER (Figure S10), and higher OER activity (Figure 3). 

The relative stability of the surfaces are found to be in good agreement with previous 

computational work on RuO2 surfaces and nanoparticles,12, 25 but with the interesting addition of 

a new oxygen rich termination on the open (111) surface, where the active Ru-site is 

tetrahedrally coordinated to oxygen, see Figure 3D and S21.  

The additional oxygen atoms that cause the transitions with similar adsorption energies as the 

active coordinatively undersaturated (CUS) site on the (110) surface are shown in Figures 3A-D. 

For the (100) (Figure 3A) and (101) (Figure 3B) facets, we find that all surface Ru atoms are 

active (i.e. have similar oxygen adsorption energy), while for the (110) surface (Figure 3C) only 

the CUS sites are active and for the (111) facet (Figure 3D) only every third surface Ru atom is 

active. From this, we observe a trend for the density of the undercoordinated Ru sites, which is 

shown in Figure 3E. 
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Figure 3. (A-D) RuO2 surfaces viewed from the side (top) and from above (bottom), where O-

atoms are in red, inactive Ru atoms are in brown, and active undercoordinated sites are marked 

with a larger sphere in gold with silver atoms marking the location of the oxygen atom adsorbed 

on the active site. All images are on the same scale. (E) The OER activity at 1.53 V vs. RHE 

(right axis, black) scales with the number of active undercoordinated sites per area from DFT 

calculations (left axis, gray) for the four studied RuO2 orientations. A weaker Gibbs free energies 

per O atom (∆GO, in eV) also corresponds to higher activity. 

Given the experimental observation that high OER activity correlates with greater Ru redox 

preceding OER (Figure 1D), we hypothesize that these undercoordinated Ru are active for OER. 
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Indeed, the OER activity correlates not with the overall Ru density on each facet, but with the 

DFT-calculated density of undercoordinated Ru (Figure 3E), where the most active (100) and 

(101) surfaces have the highest density of undercoordinated Ru and also bind O the weakest. 

This clearly indicates the involvement of active Ru sites in the reaction mechanism, which 

involves their ability to be oxidized and reduced. Comparison of the charge associated with the 

redox feature proceeding the onset of OER (Figure 1D, S10) with the density of active Ru atoms 

on each orientation indicates that the (100) surface also has the highest utilization of surface Ru 

atoms (Table S2). Our findings, where RuO2 does not exhibit oxygen exchange and activity 

trends with the number of active Ru sites and their O binding strength, supports previously 

proposed mechanisms involving an undercoordinated active Ru site,7 however we cannot assess 

the role of lateral interactions24, 26 or active valence state at this time. Ongoing work concerns the 

balance between proton-electron transfer and pH effects in the reaction mechanism. The 

correlation of activity with metal sites and not the exposed lattice oxygen density on different 

crystallographic facets suggests that active, stable catalysts should maximize the exposure of 

(100) and (101) facets in engineered nanoparticles.   

In this study, we report that rutile RuO2 (100) and (101) surfaces are more active for the 

oxygen evolution reaction (OER) than their (110) and (111) counterparts in alkaline solution, 

where activity scales with Ru oxidation. Oxygen isotope studies employing OLEMS do not 

evidence appreciable oxygen exchange during the OER on well-crystallized, oriented thin films 

in either acidic or basic media. Furthermore, measurements of dense polycrystalline films and 

commercial nanoparticles also suggest no oxygen exchange, in contrast to previous studies.17-18 

DFT calculations suggest undercoordinated Ru atoms on crystallized facets are active sites for 

the OER, the density of which correlates with activity on the four RuO2 orientations. Our work 
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highlights the importance of understanding the surface atomic structure of oxides to tune 

catalytic activity and possibly the reaction mechanism, and such work can open up new design 

strategies to engineer nanoparticles with enhanced OER activity. 

 

Supporting Information. Experimental methods, additional characterization, electrochemical 

testing, and OLEMS. The following files are available free of charge. 

Supporting information (PDF) 
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Figure 1. (A) Cyclic voltammetry of RuO2 of noted orientation in Ar-saturated 0.1 M KOH at 50 mV/s in the 
voltage window from 0.3 to 1.25 V versus RHE. The cathodic charge in the voltammogram was used to 

calculate the charge density, q*cathodic, as suggested by previous work.
21 The current density from 

nanoparticles (NP) is multiplied by 5 to show on the same scale. (B) q*cathodic (and corresponding number of 
electrons transferred) versus the number of undercoordinated Ru bonds at the surface counted from the 

noted crystal facets (Figure S8, Table S1). The dashed line guides the eye for 1:1 correlation. (C) Tafel plot 
of OER activity in O2-saturated 0.1 M KOH, measured by cyclic voltammetry at 10 mV/s (averaged forward 
and back, line) and potentiostatic measurements (constant applied voltage, points). (D) OER activity at 1.53 
V vs. RHE corresponds to the integrated charge from the Ru redox located at ~1.35 V vs. RHE preceding the 

onset of OER (Figure S10). (100) and (110) data adapted from Ref. 6.  
Figure 1  
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Figure 2. Online electrochemical mass spectrometry (OLEMS) measurements at 2 mV/s (see Experimental 
Methods for details). Shown is the current as a function of applied voltage, along with the mass signals 

collected in parallel for 36O2, 
34O2 (

18O16O), and 32O2 for a film galvanostatically polarized in H2
18O to 

potentially ‘label’ it, measured in H2
16O electrolyte (dark color first sweep, light color second). The ratio of 

the mass 34 to mass 32 signal, which is independent of applied potential and overtop the same ratio 
measured after aggressive polarization to remove any exchanged oxygen (black/gray sweeps), indicates any 

34O2 arises from background 18O. (A) (110)-RuO2 in 0.1 M KOH, (B) (100)-RuO2 in 0.1 M H2SO4, and (C) 
sputter-deposited polyoriented polycrystalline (PC) RuO2 in 0.1 M H2SO4.  

Figure 2  
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Figure 3. (A-D) RuO2 surfaces viewed from the side (top) and from above (bottom), where O-atoms are in 
red, inactive Ru atoms are in brown, and active undercoordinated sites are marked with a larger sphere in 
gold with silver atoms marking the location of the oxygen atom adsorbed on the active site. All images are 

on the same scale. (E) The OER activity at 1.53 V vs. RHE (right axis, black) scales with the number of 
active undercoordinated sites per area from DFT calculations (left axis, gray) for the four studied RuO2 
orientations. A weaker Gibbs free energies per O atom (∆GO, in eV) also corresponds to higher activity.  

Figure 3  
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