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About this chapter

As briefly touched upon in chapter 1, progress in structure determination of G pro-
tein-coupled receptors (GPCRs) has made it possible to apply structure-based drug 
design (SBDD) methods to this pharmaceutically important target class. The quality of 
GPCR structures available for SBDD projects fall on a spectrum ranging from high res-
olution crystal structures (<2 Å), where all water molecules in the binding pocket are 
resolved, to lower resolution (>3 Å) where some protein residues are not resolved, and 
finally to homology models that are built using distantly related templates. Each GPCR 
project involves a distinct set of opportunities and challenges, and requires different ap-
proaches to model the interaction between the receptor and the ligands. In this review we 
will discuss docking and virtual screening to GPCRs, and highlight several refinement 
and post-processing steps that can be used to improve the accuracy of these calculations. 
Several examples are discussed that illustrate specific steps that can be taken to improve 
upon the docking and virtual screening accuracy. While GPCRs are a unique target class, 
many of the methods and strategies outlined in this review are general and therefore ap-
plicable to other protein families.

Introduction

The recent increase in the number of solved G protein-coupled receptor (GPCR) crystal 
structures was enabled by several key experimental breakthroughs, including stabiliza-
tion of GPCR structures using fusion proteins1 and site-directed mutagenesis2-5 coupled 
with the discovery of ligands that have favorable kinetic properties for crystallization. 
In addition, novel crystallization techniques, such as use of the lipidic cubic phase and 
serial femtosecond crystallography,6,7 have made it possible to get good diffraction from 
crystals unsuitable for ordinary structure determination. Since the emergence of the 
b2AR structures in 2007 1, a steady stream of novel structures have expanded coverage 
to many branches of the GPCR phylogenetic tree, with a diverse coverage of the class A 
GPCRs and more recent structures solved for classes B, C and F8 (http://gpcr.scripps.
edu/gpcr_targets.htm). Nonetheless, most targets for which a structure has been solved 
have only a small number of ligands co-crystalized (typically only one), making it nec-
essary to predict the binding mode of other compounds using computational techniques 
such as docking. In some cases, the ligands of interest will be similar to the co-crystallized 
ligand, requiring little structural rearrangement (induced fit) of the receptor, whereas in 
other cases substantial movements of the receptor may need to be taken into account in 
order to achieve accurate docking results. In addition to the need for accurate docking of 
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diverse ligands to crystal structures, docking to homology models is also of critical im-
portance — for each solved GPCR structure one or more close homologues exist that can 
be modeled with relatively high accuracy. Nonetheless, a homology model built based 
on a closely related template does not ensure that the binding site will be accommodating 
to the ligands of interest, thus induced fit must again be considered. Finally, there exists 
a large number of GPCRs for which no closely related homology modeling templates are 
available, adding to the challenge of docking to these targets. Fortunately, strategies can 
be employed to improve the accuracy of docking to homology models of more distant 
targets, although these strategies depend highly on available experimental data and can 
be quite different to the approaches employed for crystal structures and high-quality 
models. In this work we will discuss the various approaches to GPCR docking, begin-
ning with a general overview of docking methodologies, as performed using tools in the 
Schrödinger small-molecule drug discovery suite. For reference, the various tools de-
scribed throughout the manuscript are summarized in Table 2.1. We will describe their 
application to high-resolution crystal structures, but also explore more challenging cases 
involving induced fit and homology models. 

Finally, we discuss how docking and complementary techniques can be used to move 
beyond simple models of binding to explore questions related to activation (agonists, 
antagonists, etc.) and dynamics.

Methods

General docking methodology

Docking of a small molecule into a protein involves sampling a large number (typically 
in the millions) of possible conformations and orientations of the molecule in the protein 
binding site with an objective to identify the ligand poses (conformation and orientation) 
with the most favorable binding free energies. Once one or more viable poses are found, 
the binding energy can be estimated using a scoring function that describes the physics 
of binding using an explicit physics-based approach,9,10 an empirical scoring function that 
relies on some physics,11,12 or a pure knowledge-based scoring function based on fitting 
to experimental data.13-15 Docking scoring functions can be used for i) predicting the most 
likely binding pose of a ligand, and ii) differentiating between ligands that interact with a 
protein with a favorable binding energy (actives) and those with an unfavorable binding 
energy (inactives). 
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Table 2.1 Compendium of tools in the Schrödinger suite used for docking

Category Name Function

Data preparation Protein Preparation

Wizard

LigPrep

Assignment of protein and complex 
bond orders, tautomeric and ioniza-
tion states.

Enumeration of ligand protonation 
and tautomeric states, chirality.

Target preparation

and analysis

Prime

IFD

Homology modeling, loop modeling 
and side chain prediction.

Binding site adaptation.
Docking Glide

IFD

Rigid receptor docking.

Flexible receptor docking.
Scoring GlideScore

MM/GBSA

WaterMap

WM/MM

Virtual screening.

Implicit solvation model for accurate 
scoring of congeneric

and diverse compounds.

Scoring using explicit water, compar-
ing congeneric

compounds only.

Hybrid of MM/GBSA and WaterMap.
Data fusion Shape

Canvas

3D-based comparison of ligands.

2D-fingerprint determination, similar-
ity comparison and

Clustering.
Experimental data Prime

Structural interac-
tion

fingerprints

Local protein structure optimization.

Calculating similarity and clustering 
of binding modes

Auxiliary tools MacroModel

Jaguar

MM-based ligand conformations and 
strain.

QM-based ligand conformations and 
strain, protonation

states



Docking and virtual screening strategies for GPCR drug discovery 33

Different scoring functions are appropriate for these two fundamental tasks. While the 
ligand is almost always treated flexibly, as described below, the protein is often treated 
rigidly or with minimal flexibility (i.e. a few key side chains). The rigid receptor treatment 
greatly reduces the conformational search space of the system, thereby speeding the cal-
culations considerably and making the problem more tractable, but neglects potential in-
duced-fit effects.16 However, docking algorithms that account for protein flexibility exist 
and will be discussed later in this section. The docking program Glide17-19 is amongst the 
most widely used and best performing docking algorithms.20,21 The underlying method-
ology has been described in detail elsewhere, but in short, it involves initial sampling 
and filtering of millions of possible poses using crude geometric and energetic criteria, 
and the evaluation of much smaller sets of poses using scoring functions of increasing 
complexity and accuracy. The protein is kept fixed during the entire protocol, and only 
ligand orientational and torsional space is sampled. Glide uses the so-called “Emodel” 
scoring function to compare poses for the same ligand, while the GlideScore is used to 
compare different compounds based on a rough predicted affinity. The Standard Preci-
sion (SP) GlideScore has been optimized using virtual screening data, and is also used in 
the High Throughput Virtual Screening (HTVS) mode of Glide, while the Extra Precision 
(XP) GlideScore includes a number of penalties and rewards that attempt to capture spe-
cific protein-ligand recognition motifs. The inclusion of penalty terms in the XP scoring 
function, which is important for eliminating false positives (inactives), requires addition-
al sampling, thereby increasing the computational costs. While the HTVS mode typically 
takes 1-2 seconds per ligand and SP takes 10-20 seconds per ligand, XP takes 5-10 minutes 
per ligand, with the range depending primarily on the number of rotatable bonds in the 
ligand.

When there are protein conformational changes associated with ligand binding (side-
chain rotamer changes and backbone relaxation effects), protein flexibility can be tak-
en into account using an approach such as Induced Fit Docking (IFD).22  This protocol 
consists of an initial docking stage with a softened van der Waals potential, followed by 
receptor optimization of an ensemble of initial ligand/protein complexes using the Prime 
protein structure prediction program,23 and finally another round of docking using stan-
dard Glide settings into these optimized protein binding sites. Select side chains can also 
be removed in the initial docking stage to allow for greater exploration of poses within 
the receptor binding site. The method has been shown to correctly model induced-fit 
effects in a large number of cases where rigid receptor docking fails,22 and has also been 
applied to other areas of research, such as modeling off-target binding24 and generat-
ing alternate protein structures for virtual screening.25 The IFD approach is significantly 
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slower than rigid receptor Glide docking, and is typically used for pose prediction and 
generating induced fit receptor structures, not for high-throughput applications such as 
virtual screening.

Accurate prediction of ligand binding modes requires accurate representation of both the 
ligand and the protein. For the former, LigPrep26 is used to generate initial 3D coordinates 
and enumerate the possible stereoisomers of a ligand. Epik is then used to predict acces-
sible tautomers and ionization ionization states.27,28 Importantly, accessibility of the pos-
sible tautomeric and ionization states are captured in a so-called “state penalty”, which 
is used to augment the raw GlideScore to enhance the performance of the algorithm in 
virtual screening.29 Larger state penalties mean that the state is less populated in solution 
and therefore must pay an energetic penalty upon binding to account for the reduced 
apparent concentration of that state of the ligand. The state penalty is computed in units 
of kcal/mol and therefore can be added directly to the GlideScore. 

Preparation of the protein structure is handled using the Protein Preparation Wizard 
in Maestro.29,30 A crucial step of this preparation is the assignment of rotameric states of 
residue with polar hydrogen atoms, such as Ser, Thr, Tyr, Asn, and Gln residues, as well 
as those of water molecules, to optimize the hydrogen bonding network in the protein 
structure. In addition, tautomeric/ionization states of His residues are evaluated using 
the same criteria, and the protonation state of ionizable residues is predicted using the 
PROPKA algorithm.31 Extensive benchmarking studies have shown the importance of 
adequate preparation of the protein structure for accurate virtual screening results.21,29

Accuracy of pose prediction is typically measured in terms of pose RMSD compared to 
a crystal structure. However, other metrics exist to assess pose accuracy and each has 
its own merits. For example, the Real-Space R (RSR) metric takes into account electron 
density and weights inaccuracies in the ligand pose more heavily in regions where the 
electron density is stronger.32 Another approach, Generally Applicable Replacement for 
rmsD (GARD), computes a score for the accuracy of a pose using weights for each atom 
determined from their relative importance to binding.33 Torsion Fingerprint Deviation 
(TFD) is another metric to compare ligand conformations, which compares torsional fin-
gerprints between a query molecule and a set of conformations, and has the advantage 
of being scaled by the number of torsions in a molecule and can be used to compare con-
formational ensembles rather than just pairs of conformations.34 Recent GPCR docking 
benchmarks35-37 have also tried to assess docking accuracy using other parameters such 
as ligand/receptor contact maps.  
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The ability of docking algorithms to distinguish between active compounds (binding 
typical affinity < 10 µM) and inactive compounds (typical affinity > 100 µM) in a virtual 
screen is measured in terms of enrichment. Many metrics exist, but the most widely used 
are EF(n%) (the fraction of actives in the top n% of the data), area under the receiver-op-
erating characteristic curve (AUC), and Boltzmann-enhanced discrimination of receiv-
er-operating characteristic (BEDROC).38 More discussion on this topic is presented in the 
virtual screening section below. In GPCRs, the situation is further complicated by the 
need to consider the functional characteristics of a binding small molecule, which can be 
either a partial or full agonist, an inverse agonist, a neutral antagonist, an allosteric mod-
ulator, or a functionally selective (i.e. biased) agonist.39

Accuracy of docking in GPCRs: pose prediction

The ability of docking algorithms to predict the structure of GPCR-ligand complexes has 
been assessed in several retrospective and prospective benchmarks. In general, Glide 
is able to reproduce the binding mode of poses in cognate GPCR crystal structures (so 
called redocking or self docking) within 1.5 Å in ~80% of cases,17,40 which is consistent 
with the docking accuracy of Glide to other target classes. A more relevant and practical 
test is cross docking of non-cognate ligands into crystal structures. In our comprehen-
sive benchmark, this was shown to be as accurate as redocking for the b1-adrenoceptor 
(β1AR) and β2AR, but highly problematic for a third target (the adenosine A2A receptor 
(A2AR)). In the former case, the limited degree of induced fit observed upon binding and 
a highly conserved binding mode among all studied ligands probably contributed to the 
success.  The A2AR ligands were much more diverse, and the ligand-receptor interactions 
are mediated by several non-conserved water molecules (Figure 2.1B), which were ex-
cluded from the analysis. The role of including these waters in virtual screening against 
the A2AR is discussed in detail later in this chapter. The use of receptor ensembles and 
physics-based post processing has been shown to improve cross-docking accuracy for 
non-GPCR targets42-44 and likely would help with GPCRs as well, although demonstra-
tions of this have not been published. In general, GPCR structures have shown a mod-
erate degree of induced fit upon binding, suggesting that Glide or IFD are suitable tools 
for docking diverse ligands in a majority of cases. Nonetheless, more recently published 
structures have shown dramatic conformational changes for different ligands, and in 
those cases docking will likely fail (Figure 2.1C). 
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Figure 2.1 Structural comparisons between related GPCR structures and their impact on docking. A) Superim-
posed β-adrenoceptors b1AR bound to pindolol (orange, PDB ID: 2VT4) and b2AR bound to carazolol (cyan, PDB ID: 
2RH1) illustrate the case where structures are sufficiently similar that cross docking within the same target class is 
relatively straightforward, and docking into homology models based on highly similar templates is also possible.40 
B) Docking into A2AR structures is complicated due to the presence of non-conserved water molecules. Superim-
posed structures of A2AR bound to inverse agonist ZM241385 (green, PDB ID: 4EIY) and the endogenous agonist 
adenosine (magenta, PDB ID: 2YDO) show clusters of conserved (large CPK on the left) and non-conserved (small 
ball and stick on the right) waters interacting with ligands and/or receptor. A protocol to determine which waters 
to include in docking has been described in detail.41 C) Superimposed structures of the P2Y12 receptor bound to an 
agonist 2MeSATP (yellow, PDB ID: 4PXZ) and inverse agonist AZD1283 (cyan, PDB ID: 4NTJ) show a major induced 
fit effect, involving a large rearrangement of a TM domain, that cannot be addressed with conventional docking 
techniques. 

 

Docking into homology models is an even more difficult challenge, but represents the 
most relevant scenario for drug discovery projects, since most GPCRs still lack crystal 
structures. Methods for generating GPCR homology models have been reviewed in this 
series previously.45 The GPCR Dock assessments35-37 are prospective homology model-
ing/docking exercises on a small number of targets, including the A2AR, dopamine D3 
receptor (D3R), serotonin 5-HT1B receptor (5-HT1BR) and serotonin 5-HT2B receptor (5-HT-

2BR), chemokine receptor CXCR4 (CXCR4), and the smoothened (SMO) receptor. Success 
in predicting poses for these targets has been dependent on the availability of similar 
templates, i.e. largely successful for D3R and 5-HT receptors, while more difficult for the 
A2AR and especially CXCR4 and the SMO receptor. Dependence of pose prediction on the 
availability of similar templates was also identified in a study where we generated a ma-
trix of homology models for all available GPCR structures and tested the ability of Glide 
and IFD to predict binding modes of ligands. 

Highly similar templates such as β1AR/ β2AR and muscarinic M2 and M3 receptors (M2R 
and M3R, respectively) generated highly accurate homology models. RMSDs for dock-
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ing ligands into these models are, on average, equal to those redocked into the crystal 
structures. Sporadic success was seen docking into models from template/target pairs 
with intermediate similarity such as the histamine H1 receptor (H1R) models built us-
ing other aminergic GPCR templates. However, for the majority of models built, blind 
application of the docking algorithm did not produce viable poses. In general, this anal-
ysis suggested a sequence identity threshold of 30% or higher for a homology model 
to have a reasonable chance of producing accurate poses. Results from the GPCR Dock 
assessments have suggested a threshold of 35-40%,36 while a more recent publication 
using the Rosetta suite of programs suggested a threshold of 50%.46These average es-
timates can be misleading, as each case is different and all it can take is a single side 
chain being in the wrong position for a homology model to be essentially useless for 
docking. Nevertheless, accurate pose prediction using models based on distant templates 
has been possible by incorporating information from experiments (e.g., mutagenesis47) 
or other computational approaches (e.g., pharmacophore modeling48). Indeed, the lit-
erature contains several examples, discussed below, of successful docking studies us-
ing distant templates where the use of a non-automated protocol with additional con-
straints was sufficient to obtain poses with reasonable similarity to the crystal structure.   
                                                                                                                                                                  
Virtual Screening against GPCRs

A primary objective in virtual screening is to separate active from inactive compounds 
(i.e. “enrich” a database). There are several metrics to assess the performance of virtu-
al screening tools in retrospective validation studies.49-51 The metrics primarily focus on 
the rank of active compounds relative to inactive compounds; however, the most rel-
evant metric depends on the objectives of the study. In most cases of pharmaceutical 
interest, the objective is to reduce a screening library from millions of compounds to 
a manageable number that can be run through a medium throughput assay (typically 
hundreds or thousands). As such, equally weighting the full receiver-operating char-
acteristic (ROC) curve, as is done when considering the area under the curve (AUC), 
has little relationship to the goal of the virtual screen (i.e. to get a large number of ac-
tives in a tiny fraction of assayed database molecules). For example, a method that finds 
50% of the active compounds at the top of the list but misses the other 50% of the com-
pounds (perhaps because there are multiple receptor conformations that are not being 
considered) would get an AUC of 0.5. This is the same AUC as one gets from a ran-
dom distribution, or worse, for not finding any active compounds until 50% of the da-
tabase has been screened, at which point all of the active compounds are found (AUC 
= 0.5). As such, we focus primarily on early enrichment metrics, such as BEDROC38 
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with a high value of α (typically 160.9, which corresponds to 80% of the score coming 
from the top 1% of the list) or enrichment in the top n%, such as EF(1%). Focusing in 
even earlier parts of the database screen (such as EF(0.1%) or EF(0.01%)) requires larg-
er decoy databases than are typically used in retrospective virtual screening studies.  
 
Since the structure of β2AR receptor appeared in 20071, many examples of prospec-
tive virtual screening using these structures have been published including A2AR52-54, 
CXCR4,55 M2R and M3R,56 H1R,57 κ opioid receptor (KOR),58 D3R,59-61 and β2AR.62 In the 
absence of crystal structures, accurate homology models have proven useful for virtual 
screening.59,60,63-65 These studies have been reviewed in detail elsewhere.66,67 The number 
of hits varies dramatically, depending on the choice of target, docking algorithm, dock-
ing post-processing, screening library, and number of tested compounds. Nonetheless, 
some general conclusions can be drawn about the accuracy of these experiments. The 
success rates for prospective screens on X-ray structures have averaged around 40%, 
while for homology models the average value drops to around 15%, which is still sig-
nificantly higher than one would obtain from an unbiased experimental library screen. 
This suggests a potentially prominent role for structure-based virtual screening in 
GPCR lead identification, not only using X-ray structures but also homology models.63  
 
Compound databases used in prospective and retrospective virtual screening calcula-
tions strongly differ in terms of size and distribution of physicochemical properties. In-
deed, retrospective screening campaigns are often based on compound databases that 
are one or two orders of magnitude smaller than prospective screens, typically con-
taining 104-105 molecules.52,63,68-71 These datasets usually consist of a small fraction of 
known active compounds combined with a large set of commercially available decoy 
molecules with physicochemical properties matching those of active derivatives. As a 
result, the range of properties observed in these databases is strongly influenced by the 
choice of the initial set of active compounds and is often narrower compared to that 
observed in libraries used in prospective studies. Since retrospective screening experi-
ments are usually performed to evaluate the ability of a receptor structure to discrim-
inate between active and decoy compounds, striking differences between the physico-
chemical properties of actives and decoys could favor the identification of the former 
compounds, leading to artificial enrichments.69,71,72 Thus, to ensure a more rigorous 
evaluation of the discriminating ability of GPCR model structures, a novel compound 
library has been recently created by combining an initial set of active GPCR ligands 
with a large dataset of decoy molecules, which were selected to enforce ligand-decoy 
similarity in terms of physicochemical properties whilst retaining structural dissim-
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ilarity.72 Indeed, this novel GPCR-tailored dataset proved to be effective in reducing 
artificial screening performances obtained when using decoy molecules characterized 
by physicochemical properties significantly different from those of active compounds.  
 
As opposed to retrospective screening experiments, prospective virtual screens often 
start from libraries of millions of in-house or commercially available compounds (e.g., 
the “lead-like” or “drug-like” subsets of ZINC or eMolecules)54-56,58,59,62,64,73 to ensure an 
exhaustive exploration of the chemical space and to favor the identification of many 
structurally diverse novel ligands. These large datasets are often pre-filtered on the basis 
of the physicochemical properties of known drugs74,75 or of lead molecules identified in 
previous high-throughput screening studies,76 with the aim of retaining a manageable 
subset of ligands endowed with appropriate characteristics for further optimization and 
development. In some cases, the initial database is further filtered applying stricter cri-
teria, aimed at ensuring the presence of target-specific pharmacophoric features (e.g., 
a basic nitrogen required to bind to aminergic GPCRs57) or at favoring the selection of 
ligands characterized by specific physicochemical properties (e.g. to favor the crossing of 
the blood brain barrier77).  Finally, the screening library may be further reduced in size by 
selecting compounds with similarity to known binders, either using shape-based, or 2D 
fingerprint-based comparisons.

Incorporating experimental information into docking

In many instances the direct, application of a docking program with default settings 
to predict the pose of a ligand to a GPCR will lead to inaccurate pose prediction or 
an inability to separate active and non-active ligands, especially when using homol-
ogy models. Combining docking algorithms with experimental information can be 
helpful to improve accuracy, both in general and when docking to GPCRs.  For GP-
CRs this information typically comes from site-directed mutagenesis experiments, 
where a residue mutation that affects ligand binding is taken as evidence that there is 
direct interaction between the residue and the ligand. While such information can be 
very helpful in reducing the docking search space and improving overall accuracy, 
mutagenesis data can be misleading as well. For example, a residue determined to be 
critical for ligand binding might play a role in the dynamics or conformational flex-
ibility of the receptor and might not be in direct contact with the ligand, making the 
use of such information in docking challenging. Nonetheless, many residues found 
to be important in mutagenesis studies are in contact with ligands, as has been deter-
mined in crystal structures, and thus can be used as powerful constraints in docking.  
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Glide offers the ability to specify constraints in the docking calculation, such as requiring 
certain hydrogen bonds to be made, fixing the ligand core position based on another mol-
ecule, requiring an atom of certain chemistry to be in a particular position, and defining 
the coordination complex geometry to metals. Glide also allows for control over atomic 
van der Waals radii for the ligand and receptor, which can be used to soften the van der 
Waals potential and simulate minor induced-fit effects. More extensive protein confor-
mational rearrangements can be accounted for with IFD. Additional flexibility can be 
attained through sampling of protein hydroxyls to improve hydrogen bonding. Docking 
constraints are an easy way to ensure that poses are consistent with known or suspected 
binding patterns. In Glide and IFD the different constraint types are defined prior to 
docking. Alternatively, experimental information can be used to post process large num-
bers of predicted poses for a given ligand/receptor complex, filtering by specific interac-
tion criteria (i.e. H-bonds, aromatic interactions, etc.) using the “Pose Filter” script in the 
Maestro interface. Finally, the Structural Interactions Fingerprint method (SIFt) provides 
an intuitive way to ensure that predicted poses match an expected binding mode.57,78,79 
SIFt analysis works by representing each protein/ligand interaction as a bit, and concat-
enates all protein-ligand interactions into a bit string. Computational comparison of bit 
strings can be done very efficiently, allowing large numbers of poses to be compared and 
clustered. Practically speaking, it can be used to ensure that predicted poses have simi-
lar binding modes to ligands in a crystal structure or a well-validated homology model.  
From the perspective of the receptor, homology modeling can involve alignment modi-
fication to ensure experimentally observed orientation of known interacting residues to-
wards the binding site. Finally, in many cases co-crystallized ligand structures deposited 
in the Protein Data Bank80 show a strong similarity with small molecule crystal structures 
in the Cambridge Structural Database.81 Especially in the case of small, rigid ligands, it 
can be advantageous to only dock the crystallographic conformation of the ligand. When 
docking larger, more flexible ligands, it can be useful in Glide to define torsional con-
straints to rigidly treat substructures within molecules to be docked while allowing the 
remainder of each molecule to be treated flexibly. 

Prospective examples where these strategies improve pose predictions exist in the lit-
erature. In the GPCR Dock 2008 assessment35 the most accurate solution for the A2AR-
ZM241385 model was found by performing IFD calculations using a constraint with res-
idue Asn253 (6.55), which was correctly predicted to form a hydrogen bond with the 
ligand (residues in parentheses correspond to the Ballesteros-Weinstein numbering sys-
tem82). The most accurate predictions for the CXCR4 model in the 2010 assessment both 
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involved a modification of the template-derived model to optimize the orientation of 
TM2, bringing residue D97 (2.63) into the binding site37. In the same assessment, experi-
mental data indicating which residues were part of the binding site in the D2R/D3R fam-
ily83 were used successfully in the prospective modeling of extracellular loop 2 (EL2) in 
a D3R model. 

Combining docking with additional computational tools

Docking can often be improved by combining results with other computational approach-
es. In the case of pose prediction, differentiating between multiple poses with similar 
scores can be challenging, even when experimental data exists. In that case, additional 
computationally-derived lines of evidence can help with pose selection. In the case of 
virtual screening, post processing using additional scoring functions (i.e. MM-GBSA or 
WaterMap-based scoring84) can substantially increase enrichment.85 Alternatively, data 
fusion by combining docking scores with other metrics, including shape-based, and 2D 
fingerprint based comparisons, can lead to significantly improved results (see below).86 

The ability of Glide to predict binding modes and separate active and non-active ligands 
derives in part from an accurate set of force field parameters that describe the ligand 
internal geometry and its interactions with the protein. The standard version of Glide 
currently uses an approximate method for determining the energetic penalty that a li-
gand needs to pay to adopt the bioactive conformation, which includes only torsions and 
1,4 van der Waals interactions. More accurate strain energies can be computed with the 
“Strain Energy Calculation and Re-scoring” script in Maestro. In that protocol, for each 
ligand pose in the input file, a tightly constrained minimization and an unconstrained 
minimization are performed with MacroModel.87 Resulting strain energies can be used to 
recalculate Glide docking scores. Alternatively, the determination of ligand strain can be 
determined at the QM level, using a program such as Jaguar.88 This requires the determi-
nation of the global minimum energy conformation in solution phase and its associated 
gas-phase energy. 

However, such calculations have inherent problems, since modeling discrete conforma-
tions at a temperature of 0 K in implicit solvent can be a poor surrogate for a full free 
energy calculation in explicit solvent. 
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Treatment of water molecules

The ability of small molecules to differentially displace and retain specific waters in pro-
tein binding sites is a large contributor to their affinity. The WaterMap algorithm89,90 com-
putes the locations and thermodynamic properties of water molecules in protein binding 
sites, and has been used to reveal important aspects of binding sites relating to their 
ability to bind small molecules, both in globular proteins91 and GPCRs.92 The most typical 
application of the methodology is to understand structure activity relationships (SAR) for 
congeneric series where small structural modifications can result in substantial changes 
in activity. For example, the method was able to describe the activity profile of a series 
of triazolylpurine A2AR ligands, which were otherwise difficult to explain using metrics 
such as GlideScore or MM-GBSA.93 As the size of the 2-substituted aliphatic group was 
initially increased to methyl and isopropyl, there was a decrease in potency. However, 
extending the substituent to n-butyl and n-pentyl results in a significant gain in potency. 
This trend could not be readily explained by ligand-receptor interactions, steric effects, 
or differences in ligand desolvation. WaterMap correctly predicts the trend in binding af-
finity for this series based on the differential water displacement patterns. In brief, small 
unfavorable substituents occupy a region in the adenosine A2AR binding site predicted 
to contain stable waters, while the longer favorable substituents extend to a region that 
contains several unstable waters. The predicted binding energies associated with displac-
ing water within these hydration sites correlates well with the experimental activities. In 
that case, it was necessary to first predict the orientation of the ligand substituents in the 
binding site using Glide, and then re-score resulting poses using WaterMap. 

In addition to rationalizing SAR, inclusion of explicit water molecules can help with pose 
prediction. For instance, a relatively large improvement in terms of RMSD has been ob-
served for the A2AR when docking the small molecule ZM241385 with several waters 
present, compared to redocking in the absence of these waters,94 improving the top pose 
from 10.3 Å to 0.9 Å. However, most crystal structures of GPCRs have relatively poor res-
olution, and hence the binding site water molecules are usually not resolved. Until now 
only two GPCR structures with resolution under 2 Å have been published in which the 
vast majority of water molecules in the binding site are presumably visible.95,96 Thus, the 
prediction of the location and orientation of water molecules is important especially for 
lower resolution crystal structures, which constitute the vast majority of currently avail-
able GPCR structures. An exhaustive retrospective study on the high resolution A2AR 
structure has shown that the positions of these water molecules can effectively be pre-
dicted with the WaterMap algorithm. In that study, 19 out of 22 water molecules present 
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in the crystal structure were correctly predicted by WaterMap.41 The comparison of the 
high resolution structure of A2AR (PDB ID: 4EIY) with an earlier structure at lower reso-
lution (PDB ID: 3EML) shows that the main difference is in the number of resolved water 
molecules, not the structure of the protein itself, which is largely similar in the high and 
low resolution structures. This suggests that WaterMap can be used to accurately predict 
water positions in low-resolution structures as well. 

When comparing crystal structures of GPCRs solved with multiple ligands, it is clear that 
the waters that interact with the ligand and/or the protein are not necessarily conserved. 
Certain waters interact only with certain scaffolds and not all waters directly contribute 
to protein-ligand binding. The effect of individual contributions of waters on docking 
was analyzed in detail for the A2AR.41 Hundreds of orientations for both predicted and 
crystal structure waters were generated and the effect of including them in docking was 
assessed using a set of 299 ligands and 17337 decoys.  Based on enrichment, five waters 
were found to be especially important, and, encouragingly, WaterMap predicted waters 
performed equally well or better than crystal structure-derived waters. To address the 
issue of different waters mediating interactions for different scaffolds, an ensemble of 
structures was selected using a machine learning approach (Decision Trees). This Deci-
sion Tree derived a structural ensemble that not only performed better in terms of enrich-
ment but also in terms of the diversity of actives retrieved. 

Additionally, WaterMap hydration site analysis can also be used in pose prediction. For 
example, in the case of the modeling of the D3R/eticlopride complex two poses were 
generated using IFD that could not be distinguished based on docking scores or com-
patibility with experimental data.37 WaterMap was run on the D3 model and poses were 
scored by summing the free energy of hydration over waters that were displaced. Two 
very high-energy hydration sites were detected at the TM5 and TM6 interface. The pose 
ultimately reported in one of the models, but not the other, had a very favorable Water-
Map score due to an effective displacement of these two high-energy waters by the ethyl- 
and chloro-substituents on the aromatic ring of eticlopride. Comparison of the predicted 
pose with the crystal structure showed that the prediction of the displacement of these 
high-energy sites by the ligand was correct. 

Finally, WaterMap analysis can be used to determine regions of the binding site where 
ligand binding is expected to greatly improve ligand affinity. These regions can then be 
used to define positional constraints to be used in virtual screening. 
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Data fusion

While the previous sections in this work have focused on structure-based docking for 
virtual screening, many other virtual screening approaches exist, such as ligand-based 
pharmacophores,97-99 shape-based screening,100,101 fingerprint similarity,102,103 and other 
methods. We do not intend to cover those methods in this work, but it is noteworthy to 
mention that they can be combined with docking to improve the overall database enrich-
ment. Strategies to combine data from multiple methods, typically called “data fusion” 
or “consensus scoring”, have been shown to improve the quality of virtual screening 
methods relative to a single approach.86,104-106 Data fusion works by leveraging differences 
in the individual methods to enhance overall enrichment by having the strengths in one 
complement weakness in another. For example, a docking method may yield very good 
scores for certain compounds that fit well into the receptor conformation being used, but 
might miss compounds similar to known actives that do not fit due to induce-fit effects 
that are not accounted for in docking. However, a 2D fingerprint or 3D shape screen may 
identify the active as being very similar to a known active, and therefore score it highly. 
Conversely, a novel active compound might get a poor fingerprint or shape similarity 
score but could be scored very well by a docking algorithm because it is able to pick up 
key interactions, irrespective of the fact that the molecule is not similar to the co-crystal-
lized ligand. The complementarity of the individual methods can lead to reduction in 
false negatives (active compounds that score poorly) and false positives (inactive com-
pounds that score well). There are many ways to fuse data from multiple methods and 
the references provided above cover the most widely used approaches. Of course, it is 
possible for data fusion to produce worse results than an individual method, especially 
when a poor method is combined with a good method. For data fusion to be successful, 
one needs to combine methods that on their own have a signal and where the signal from 
multiple methods complement each other. 

Optimizing structures and models for docking

The shape and architecture of the binding site of crude, unrefined GPCR homology 
models are often inadequate to accommodate known active ligands.35-37,40 This might be 
due to i) differences in the amino acid composition of the binding site between template 
and model sequences, which can cause binding site collapse if one substitutes large side 
chains with smaller side chains; ii) differences in the relative arrangement of the trans-
membrane (TM) portions between template and modeled receptor; iii) the geometry of 
loop segments, which are often based on the template structure and have a major effect 
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on the shape of the binding site in many GPCRs; and vi) the inclusion of a template ligand 
in the model building, which could induce unusual rearrangements of the binding site re-
gion in the resulting model. Due to these effects, a structural optimization of the binding 
site of the receptor model is often necessary if the model is going to be used to describe 
the recognition of active compounds. The Prime package for homology modeling con-
tains a diverse set of tools for optimizing side chains and loops in models. Alternatively, 
the IFD methodology22 is ideally suited to optimize the arrangements of side chains in 
the GPCR binding site around one or multiple known binders. In particular, IFD can be 
used in the early stages of a virtual screening workflow to reshape the binding cavity of 
the crude model around a potent ligand, yielding dramatic improvements in screening 
performance. For example, an unrefined 5HT2AR model built on the β2AR crystal struc-
ture (PDB ID: 2RH1) showed poor enrichment, with EF(2%) and EF(5%) of the ranked 
database of 2 and 2.8, respectively.70 This was probably due to the presence of a co-crys-
tallized ligand within the template structure, which, being less bulkier compared to the 
5HT2AR ligands, induced a contraction of the binding region that did not allow for a prop-
er accommodation of larger serotoninergic compounds. Therefore, clozapine, a potent 
5HT2AR antagonist, was then docked within the crude receptor model applying the IFD 
protocol with the aim to reshape and enlarge the binding cavity around a rigid and bulky 
scaffold. The final 5HT2AR-clozapine complex was selected on the basis of the consistency 
of modeled receptor-ligand interactions with site-directed mutagenesis data and yielded 
improved with EF(2%) and EF(5%)  of 13.3 and 7.7, respectively. A similar improvement 
in screening performance was observed when comparing a crude M3R- based homology 
model of the muscarinic M1 receptor (M1R) with a ligand-refined model structure.68 The 
initial unrefined M1R model showed only a limited performance in virtual screening, 
with EF(2%) and EF(5%) values of 2.0 and 1.6, respectively. Optimization of the model by 
docking of acetylcholine using IFD improved with EF(2%) and EF(5%) values to 5.9 and 
3.5, respectively. 

The recent boost in GPCR structure determination has allowed a systematic evaluation 
of the effect of template choice and of ligand-induced fit on the screening performance of 
GPCR homology models. The general strategy is to generate multiple models of a GPCR 
using different templates, and/or generate a set of model variants by docking multiple li-
gands into the binding site. Retrospective virtual screening calculations can then be used 
to select the most appropriate model(s) for prospective application. 

For example, homology models of the dopaminergic D1 receptor (D1R) and D2R were 
built using the β2AR as template and different receptor structures were generated by 
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docking twenty potent dopaminergic compounds within each crude D1R and D2R struc-
ture using the IFD protocol.69 Similar to what has been observed for 5HT2AR and for M1R, 
the ligand-refined structures were superior to the unrefined models at identifying active 
compounds, with EF(2%) values for the best ligand-refined D1R and D2R models (22 and 
12, respectively) nearly two-times higher than those obtained for the best crude D1 and 
D2 homology models (6.4 and 8.2, respectively). Interestingly, twenty ligand-refined D2R 
models were built using the closely related D3R crystal structure as template to evaluate 
to what extent a higher sequence homology could improve screening performance. The 
best performing D3R-based D2R model structure showed enrichment values (EF(2%) = 
12) close to those obtained from the β2AR-derived ligand-refined D2R models, indicating 
that a higher degree in sequence similarity does not necessarily lead to an increase in 
screening enrichments. 

Similar conclusions were drawn in a recent study aimed at comparing the screening per-
formances of a crude M3R-based M2R homology model with that of a ligand-optimized 
β2AR M2R model.71 Indeed, although derived from a close sequence template (96% se-
quence identity in the binding site), the former model showed a limited performance 
in virtual screening studies, with EF(2%) and EF(5%) values of 9.6 and 5.9, respectively. 
Conversely, the latter model, which was built basing on a more phylogenetically dis-
tant template and which binding site was reshaped around clozapine by means of IFD, 
showed a much better performance, with calculated EF(2%) and EF(5%) of 11.7 and 11.4, 
respectively. A comparative virtual screening procedure was also conducted on the crys-
tal structure of the human M2R. Intriguingly, the screening performance of the ligand-re-
fined M2R model was close to that obtained with the M2R crystal structure (EF(2%) and 
EF(5%) of 15.9 and 10.9, respectively), confirming the importance of binding site refine-
ment over a sequence-based selection of the template structure to achieve good perfor-
mances in virtual screening. 

We recently performed an exhaustive analysis of the effect of template choice and ligand 
adaptation on the improvement of virtual screening results for the melatonin MT2 recep-
tor (MT2R). The MT2R has a sequence identity lower than 30% with all crystallized GP-
CRs, making its structural prediction particularly challenging. Twelve unrefined MT2R 
homology models were constructed starting from the crystal structures of different GP-
CRs.48 None of the crude MT2R models was able to properly accommodate active com-
pounds within the putative binding crevice, yielding EF(2%) values equal to 0 in most 
cases. To optimize the binding site, twelve representative melatoninergic ligands were 
docked within each unrefined MT2R model using IFD. However, the default IFD pro-
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cedure failed to properly accommodate the melatoninergic ligands within the MT2R, as 
determined by comparison of the resulting poses with experimental data. Indeed, blind 
docking of ligands into models based on distantly related templates is not expected to 
produce viable results, as shown in the pose prediction benchmark described above. To 
address this issue, a customized IFD protocol was set up, in which the twelve representa-
tive compounds were manually positioned within the binding pocket of each crude MT2R 
model in poses consistent with mutagenesis data and structure-activity relationships. The 
resulting complexes were subsequently refined applying the standard IFD protocol. The 
final ligand-optimized receptor models exhibited significant improvements of VS per-
formances compared to the unrefined structures, with the best performing MT2R model 
showing an EF(2%) value of 41.2.

Screening for agonists and inverse agonists

The elucidation of the agonist bound structures for several GPCRs, including β2AR,107 
β1AR,108 A2AR,109 P2Y12 receptor (P2Y12R),110 neurotensin receptor type 1 (NTS1R)111 and 
M2R112 enables a detailed analysis of the conformational differences between GPCRs 
bound to various functional classes of ligands, including inverse agonists, partial and full 
agonists, neutral antagonists, and biased ligands. In some cases, such as the aminergic 
GPCRs and the A2AR, conformational changes appear to be subtle, whereas in the P2Y12R 
case very large differences are observed. An important issue to resolve is to what extent 
structures solved with a ligand of a certain class of functionality can be used in docking 
studies focused on another class. For the β-adrenoceptors, docking of inverse agonists 
into active state structures was found to be problematic, requiring application of IFD for 
necessary expansion of the binding site.40   Vice versa, docking of the smaller partial ago-
nists into the larger inactive state binding site was typically easier. 

A recent example used an active state structure to prospectively identify partial and full 
agonists of β2AR in a virtual screen.73 First, the active state receptor was shown to effec-
tively and selectively retrieve known binders from a set of decoy ligands, and after run-
ning a screen of the ZINC library and testing 22 compounds, six compounds were found 
to be active. In addition, this study attempted to build an active state model of the D2R 
using the active state structure of β2AR as a template. Virtual screening with the active 
D2R model led to hit rates and potencies that were far lower when compared to a screen 
of the active β2AR structure and a similar screen of an inactive D3R model built using the 
inactive β2AR structure.59
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The IFD protocol has also been applied to GPCR crystal structures to optimize the recog-
nition of agonist compounds in virtual screening.113 For example, different crystal struc-
tures of the β2AR were evaluated for their ability to discriminate between agonist and 
antagonist compounds. Results clearly showed that, while inverse agonist- and antago-
nist-bound crystal structures (PDB IDs: 2RH1 and 3NYA) tended to favor the selection 
of antagonists, the active-state crystal structure (PDB ID: 3P0G) prioritized agonists over 
antagonists. With the aim to evaluate the effect of a ligand-induced optimization on the 
receptor’s ability to recognize agonist or antagonist compounds, three β2AR models were 
built by refining the binding site of an inverse agonist-bound structure with three full ag-
onists, i.e. epinephrine, isoproterenol and fenoterol, using IFD. All three agonist-induced 
β2AR models reverted their initial preference, being as effective in prioritizing agonists 
over antagonists as the active-state crystal structure of the β2AR.	

When no active ligand structure is available, it is possible to introduce local conforma-
tional changes into the inactive state structure to model the interaction with agonists. One 
approach is to dock a single agonist into the receptor using a flexible receptor approach, 
and increase the efficiency of the screen by using Structural Interaction Fingerprints to 
ensure hits form key interactions with residues known to be important for agonist recog-
nition.79 Another approach is to use the transformation matrix derived by superposition 
of the inactive and active structures of one receptor, and apply that transformation to a 
different GPCR for which only an active state structure or model is available. This ap-
proach was used to generate an active state model of the D2R, which was then used to 
dock a series of G-protein biased partial agonists.114

A final possible application of docking has been to use receptor flexibility as a tool to 
predict whether a compound is a blocker or a partial agonist, and what conformational 
changes are associated with binding of agonists vs. inverse agonists. IFD in tandem with 
linear discriminant analysis (LDA) was used to generate hypotheses of conformational 
changes induced in the β2AR receptor by agonist binding.115 This analysis suggested ago-
nists induce subtle movements to TM5 of the receptor, in particular around Ser207 (5.46). 
This hypothesis was later confirmed by a crystal structure of the active state of β2AR, 
suggesting that conformational changes associated with agonists binding can be detected 
in other structures with a similar approach as well. 	
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Figure 2.2 Proposed docking workflow for GPCR modeling. Customization of a docking protocol for a specific 
GPCR target depends on the quantity and accuracy of available data, including crystal structures, homology 
modeling templates, known actives, and mutagenesis data. Whenever possible, retrospective validation of the 
model/structure should be performed before prospective application. The programs used in the various stages 
are shown in italic and described in more detail in Table 1 and throughout the text. 
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A workflow for modeling of GPCR-ligand interactions

A GPCR modeling project can be approached with a number of different strategies and 
will involve the application of several of the tools described in this manuscript (see Table 
2.1). The selection and order of the various steps will highly depend on the nature of the 
modeling problem, but some recommendations for a general workflow can be made (see 
Figure 2.2). The first step involves determining the correct structural representation of the 
GPCR to use. In a SBDD program, this involves selection of the correct crystal structure(s) 
(Figure 2.2A) or homology model(s) (Fig. 2.2B) to start from. At this stage the Protein 
Preparation Wizard should be used to select tautomeric and ionization states of residues, 
and which water molecules to include in the docking experiment, if any (Fig 2.2C). Before 
applying this structure to a prospective study, a number of validations and optimization 
steps should be carried out, often in an iterative fashion. In the case of crystal structures, 
a first check of the utility of the structure and chosen docking methodology is the correct 
redocking of the cognate ligand (Figure 2.2D). The next step is the docking of addition-
al active molecules into a given structure or model, either using rigid receptor docking 
with Glide, or flexible receptor docking using IFD (Figure 2.2E). Correspondence of the 
resulting poses with experimental data (additional crystal structures, mutagenesis data, 
etc.) will need to be verified at this stage, and/or can be enforced with the use of docking 
constraints  (Figure 2.2F). At this stage, IFD using selected active compounds can be used 
to modify the binding site to allow correct rigid receptor docking of Glide of a compre-
hensive set of active molecules (Figure 2.2G). Optimization of the structure is monitored 
by measuring both pose accuracy values (Figure 2.2H) and enrichment calculations using 
a small set of actives and decoys (Figure 2.2I) to determine the most appropriate structur-
al variant(s) to go forward with. Data Fusion methods, bringing in results from 2D fin-
gerprint and 3D-shape comparisons with known binders, can help increase the accuracy 
of the virtual screen (Figure 2J). Once this optimization of the project-specific docking 
workflow has been established, prospective application of the workflow, followed by 
experimental validation of the predictions, can proceed (Figure 2.2K and 2.2L). For all 
these steps, the creation of appropriate ligand libraries, including actives and decoys or 
tailored compounds databases to be used in prospective screening experiments is of great 
importance (Figure 2.2M and 2.2N).



Docking and virtual screening strategies for GPCR drug discovery 51

Conclusions and Future Developments

Novel scoring functions that take into account hitherto neglected contributions to the free 
energy of binding, including protein desolvation and protein strain, are currently active-
ly being developed.21 In addition, accurate methods for the prediction of ligand binding 
affinity (i.e. Free Energy Perturbation) are becoming increasingly more accurate and ac-
cessible.116 Together with a continued rise in the number of available structure of GPCRs, 
the application of structure-based approaches in GPCR drug discovery will become more 
frequent in the near future. In the future, as computers continue to grow in power, ab in-
itio prediction of ligand binding through a study of the dynamical properties of proteins 
and ligands might become commonplace.117 In the meantime, the methods outlined in 
this review might serve as a guide to predict binding modes and perform virtual screen-
ing for this important class of targets.
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