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Abstract

Explanations in mathematics are not yet well understood. I discuss Steiner’s theory 
of mathematical explanation, then attempt to improve it by assimilating its core 
intuitions to Woodward’s counterfactual theory of explanation. The  theory that 
results deals successfully with many cases, but it fails to handle certain types of 
explanatory asymmetry. To fix this, I draw on Woodward’s interventionist theory 
of causation and develop a quasi-interventionist theory of mathematical explanation. 
According to this theory, the asymmetry of mathematical explanations is subjective 
in the sense that it does not depend on the objective structure of mathematics itself; 
but I argue that this is not a problem, since the same subjectivity can be found in 
causal explanation.
Keywords:  mathematical explanation, causal explanation, counterfactual, quasi-
interventionism, explanatory asymmetry

1.  Introduction

Philosophers of mathematics have been interested in mathematical explana-
tion for a long time (see the overview in Mancosu 2001), but the topic has 
often been ignored by theorists working on scientific explanation. Given 
that most theories of scientific explanation depend either on the concept of 
law of nature or on that of causation, neither of which has an obvious appli-
cation in mathematics, this lack of interest is easy to understand. The con-
ceptual gap suggests that if there is explanation in mathematics, it must be 
something very different from explanation in the physical sciences. Thus, 
in developing what is perhaps the most influential theory of mathematical 
explanation, Steiner (1978) does not attempt to reuse any of the central 
ideas of the already existing philosophy of scientific explanation, but comes 
up with the new fundamental notion of a ‘characterising property’.

An important exception to this rule is Kitcher (1989), who argues that his 
unificationist theory of explanation captures both causal and mathematical 
explanation. However, Kitcher’s unificationism faces severe technical prob-
lems (see Gijsbers 2007; for problems with its application to mathematics, 
see also Tappenden 2005, Hafner & Mancosu 2008). The unificationist 
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theory defended by Schurz (1999) overcomes some of the technical prob-
lems, but it is far from clear that it can be applied to mathematics, since it 
is based on a distinction between data and hypotheses that (again) has no 
obvious application in the a priori science of mathematics. Unificationism 
has thus not (yet) brought us the sought-after unification of mathematical 
and scientific explanation.

Kitcher’s general strategy is nevertheless commendable. For it would 
surely be surprising if there are two things called explanation – scientific 
explanation and mathematical explanation – and they then turn out to be 
wholly distinct. The unity of all explanation is an excellent working hypoth-
esis; and a good strategy for making sense of mathematical explanation is 
to attempt to generalise or adapt one of the existing theories of scientific 
explanation in such a way that it comes to encompass mathematics as well.

Among these theories, there are three reasons to single out Woodward’s 
(2003) theory, which consists of a counterfactual account of causal explana-
tion and an interventionist account of causation. First, Woodward’s theory 
has been at the centre of philosophical attention during the past decade, and 
is often seen as the most promising research project in the philosophy of 
explanation. Second, there is – as will become clear later in this article and 
as was already hinted at by Woodward himself (2003, p. 220-221) – a sug-
gestive similarity between Steiner’s theory of mathematical explanation and 
Woodward’s theory of causal explanation. The intuitions underlying these 
two theories turn out to be of the same ilk and therefore might be easy to 
assimilate to each other. Third, several other authors, including Rice (2015) 
and Reutlinger (2015), have already suggested ways of applying or adapting 
some of Woodward’s ideas to forms of non-causal explanation, including, 
in Reutlinger’s case, to mathematical explanation.

The paper will proceed as follows. I will start by presenting Steiner’s 
theory in section 2, and will discuss why it is not by itself satisfactory. 
In section 3, using the work of Weber and Verhoeven (2002) and Woodward 
(2003), I will lay out a counterfactual theory of mathematical explanation. 
This theory, which is similar to the proposals of Reutlinger (2015) and Frans 
& Weber (2014), is a good step on the way to characterising mathematical 
explanation.

However, I then argue in section 4 that this counterfactual theory does 
not capture all aspects of mathematical explanation. In particular, it fails to 
capture certain forms of explanatory asymmetry. I show how we can rem-
edy this by adapting Woodward’s interventionist theory of causation in such 
a way that it becomes applicable to mathematics. The resulting quasi-inter-
ventionist theory implies that mathematical explanations are subjective in 
a sense that causal explanations do not seem to be. In section 5, I will argue 
that this does not invalidate the idea of mathematical explanation: the same 
kind of subjectivity, I contend, can also be found in certain unproblematic 
types of non-mathematical explanation.
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2.  Steiner’s Theory of Mathematical Explanation

Steiner (1978) develops what is probably the most discussed theory of 
mathematical explanation. He recognises that while all proofs of a theorem 
establish its truth, some proofs also give insight into why the theorem holds, 
while others do not. The aim of his theory is to elucidate this distinction 
between explanatory and non-explanatory proofs. (Steiner does not claim 
that only proofs can explain, but he offers no account of other types of 
mathematical explanation.)

We will look at Steiner’s main example. Let S(n) be the sum of all natural 
numbers from 1 to n, that is, S(n) = 1 + 2 + 3 + … + n. Then the following 
theorem holds for all n:

S(n) =  n(n + 1)
2  .

We can give two different proofs of this theorem. The first is a proof using 
mathematical induction. We first notice that the theorem holds for n = 1, 
since 1 = 1 * (1 + 1) / 2. We then show that if the theorem holds for n = k, 
it also holds for n = k + 1:

S(k + 1)  =  S(k) + (k + 1) = k(k + 1)
2  + (k + 1) = k(k + 1)

2  + 2(k + 1)
2  = (k + 1) (k + 2)

2  .

By mathematical induction, the theorem thus holds for all n.
The second proof proceeds in a radically different way. By the commu-

tativity of addition, we know that

1  +  2  +  …  +  (n  –  1)  +  n

equals
n  +  (n  –  1)  +  …  +  2  +  1.

So if we add these two sums, we get S(n) + S(n) = 2 S(n). Now, notice that 
the first term on the top and the first term on the bottom add up to n  +  1, 
that the second terms on both sides also add up to n  +  1, and that in fact all 
n pairs of terms add up to n  +  1. This means that the total sum of the two 
sums is n (n  +  1), and the theorem follows immediately.

According to Steiner, the first proof is not explanatory, while the second 
is. He offers the following theory to explain the difference:

My proposal is that an explanatory proof makes reference to a characterizing 
property of an entity or structure mentioned in the theorem, such that from the 
proof it is evident that the result depends on the property. It must be evident, 
that is, that if we substitute in the proof a different object of the same domain, 
the theorem collapses; more, we should be able to see as we vary the object 
how the theorem changes in response. (Steiner 1978, p. 143.)
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Applied to our example, Steiner’s theory yields the following judgements:

[The explanatory proof] that the sum of the first n integers equals n(n + 1)/2 
proceed[s] from characterizing properties: … by characterizing the symmetry 
properties of the sum 1 + 2 + … + n. … By varying the symmetry … we obtain 
new results conforming to our scheme. The proof by induction [on the other 
hand] does not characterize anything mentioned in the theorem. Induction, it is 
true, characterizes the set of all natural numbers; but this set is not mentioned 
in the theorem. (Steiner 1978, pp. 144-145.)

In this passage, Steiner nicely captures the intuitive reason that the second 
proof is explanatory: it makes us aware of a symmetry of S(n), and of how 
this symmetry is in a sense “responsible” for the truth of the theorem. The 
competent reader will be able to see how the theorem will change “as we 
vary” this property: e.g., what would happen if we construct a series such that 
the terms form pairs that do not add up to n + 1 but to, say, n + 2 or to 17.

Steiner’s reason to dismiss the inductive proof as non-explanatory is less 
convincing. His claim that this proof does not explain because the set of all 
natural numbers is not mentioned in the theorem cannot be accepted, since 
a more formal version of the proof would have started with “∀n ∈ ℕ: …”. 
In this presentation, then, the set of natural numbers would have been men-
tioned. But writing down the proof in a more formal way would not make 
it explanatory.

Luckily, Steiner’s theory can account for the non-explanatory nature of 
the first proof without making this dubious claim. What we need to empha-
sise is the fact that the first proof does not show us how we can vary the 
result by varying a property of the sequence. The formula n (n  +  1)  /  2 is 
taken as a given; we are not shown how we ourselves could have reached 
it, if we had just been given the sequence and not the theorem to be proven. 
But this means that when we come to understand the first proof, we do not 
thereby learn how to handle similar cases.

Take the following sequence:

R(n) = 1 + 3 + 5 + … + (2n  –  1).

What is the general formula for R(n)? Grasping the first proof does not tell 
us. But grasping the second proof certainly does; for the method that under-
lies the second proof can be easily applied to this sequence as well. Make 
a pair-wise addition of the terms of R(n) and its reverse, and we end up 
with n terms all equal to 2n. Hence, R(n) = n2.

If “the object” is the sequence of which we are determining the sum, then 
the second proof beautifully exemplifies Steiner’s idea that we have an 
explanation when we are “able to see as we vary the object how the theo-
rem changes in response”. Or does it? For it seems that we need something 
more than just the proof. We need to grasp a general recipe of which this 
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proof is only an example; but the recipe itself is not part of the proof. We 
will return to this issue shortly.

Is Steiner’s theory of mathematical explanation satisfactory? Not accord-
ing to Resnik & Kushner (1987) and Hafner & Mancosu (2005), who pro-
pose counterexamples to the theory. A detailed discussion of these would 
take us beyond the limits of this paper.1 And that discussion would be bound 
to be inconclusive anyway, since everything depends on what exactly we 
take Steiner to mean with a “characterizing property”. Steiner defines it as

a property unique to a given entity or structure within a family or domain of 
such entities or structures (p. 143),

but that definition is both vague – what counts as the relevant family or 
domain? – and also apparently too strict. For instance, the sequence of the 
first n natural numbers is not the unique sequence that has the symmetry 
property used in the second proof.

I propose that we drop all talk about characterising properties, and focus 
on the more successful part of Steiner’s theory: the idea that an explanatory 
proof shows us how the theorem changes as we vary the object. We can 
explicate this further using the ideas of Weber & Verhoeven (2002) and 
Woodward (2003), and that is what we will do in the next section.

3.  The Counterfactual Theory

As indicated in the previous section, a proof by itself does not have explan-
atory power. (Steiner himself seems to have recognised this, since he speaks 
of the necessity of a “proof-idea” (p. 147); but he doesn’t explicate this 

1 B ut it may nevertheless be useful to say at least a little about the counterexample pro-
posed by Hafner and Mancosu, since it might also serve as a counterexample to the theory of 
mathematical explanation that will be developed below. Hafner and Mancosu argue that the 
arbitrary sequences of positive numbers which feature in Kummer’s convergence test have 
(because of their very arbitrariness) no characterising properties that could be varied. There-
fore, Steiner cannot account for explanations of the validity of Kummer’s convergence test.

Against this, I hold that it is not true that Kummer’s sequences have no characterising proper-
ties. What is true is that no varying of any finite set of numbers in a sequence would make a 
difference to its usability in Kummer’s convergence test. But there is a property of the sequence 
which can be varied and which does make a difference: the property of consisting (after a certain 
point) of only positive numbers. Sequences that have this property can be used to test conver-
gence, but other sequences, like 1, –1, 1 –1, …, cannot. So the answer to “Why can we use 1, 2, 
3, 4, … in Kummer’s convergence test?” will mention that this sequence belongs to the class of 
sequences that, after some arbitrary number of elements, consist of only positive numbers. Stein-
er’s theory can capture this, and so can the theory to be developed below.

If, in some context, the question were to arise why all (now completely arbitrary) 
sequences share a certain property, then Steiner and I would have to admit that the only 
possible explanations of this would lie in the difference between sequences (as such) and 
some class of non-sequences. But this too seems reasonable enough.
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notion.) This has also been noticed by Weber and Verhoeven (2002), who 
argue that “proofs can become parts of answers, but they don’t answer 
the [explanatory] question [of why the theorem is true] in their own right” 
(p. 300). After all, a proof by itself doesn’t show how varying the mathe-
matical object that the proof is about will change the theorem. For that, we 
need a contrast; we need not only the current proof, but also something else 
that shows what happens when the object is varied. 

Weber and Verhoeven propose an improved version of Steiner’s theory. 
The explanandum consists of the two contrasting claims that (a) mathemat-
ical objects of class X have property Q, and (b) mathematical objects of 
class Y have an incompatible property Q. The explanation itself then con-
sists of a proof of (a) and a proof of (b). Furthermore, the two proofs should 
‘run parallel’ in the following way: they use the same axioms, premises and 
logical rules; and one of the proofs should use a defining property of X 
while the other uses a defining property of Y. (The term “defining property” 
seems to inherit some of the vagueness of Steiner’s “characterizing prop-
erty,” but I take it that these properties should at least distinguish X ’s from 
Y’s.) That the proofs are parallel in this way assures that the explanatory 
proof can be “deformed … into a proof of a related theorem” (p. 303), or, 
to remain closer to Steiner’s words, that we can see how the theorem 
changes as we vary the object from an X to a Y.

One might object to Weber and Verhoeven that in Steiner’s example of 
an explanatory proof, only a single proof was given, so that this example 
shows that one does not need two proofs. But any competent reader was 
able to come up with the contrastive proof herself; and the single proof 
would not have been explanatory if the reader had not had this competence. 
In other words, the contrasting proof will often be left implicit, but that 
doesn’t mean that it is not an essential part of the explanation.

Weber and Verhoeven (perhaps for reasons of space) limit their theory 
to two proofs that contrast with each other. This is too narrow a conception 
of mathematical explanation. We saw in Steiner’s example that grasping his 
explanatory proof allows us to set up a limitless number of new theorems. 
Rather than having a class X of sums whose outcome is n (n + 1)/2 and 
contrasting it with a class Y of sums with some other outcome, we gain 
insight into sums with all kinds of outcomes. When we grasp Steiner’s 
example, we do not merely grasp two proofs; we rather grasp a proof recipe 
with an unlimited number of applications.

In Steiner’s example the proof recipe is something like this:
Theorem. L et O be a sequence of n terms with the property that the sum of 
term k and term n + 1 – k is C for all n. Let S be the sum of all terms of O. 
Then S = nC/2.
Proof.  We add O term-to-term to its reverse O. Each sum of two terms will be 
C, and there will be n such sums. Therefore, the total sum of O and O is nC. 
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Since the total sum of O is equal to the total sum of O, it follows immediately 
that S = nC/2.

By “grasping” the recipe I mean not only that we come to know its validity, 
but also that we gain the ability to apply it to simple cases. If someone were 
to claim that he had understood Steiner’s explanatory proof recipe, but then 
turned out to have no clue how to find the sum of the first n odd numbers 
(1 + 3 + 5 + … + (2n – 1)), we would come to the conclusion that he had 
in fact not understood the recipe.

Our generalised version of Steiner’s theory, then, claims that to explain 
a mathematical theorem, we need to give a proof recipe that allows us to 
prove the theorem, and that also allows us to see how the theorem would 
change if the input of the proof recipe is changed. To those who have stud-
ied theories of non-mathematical explanation, this will sounds much like a 
counterfactual theory, such as the theory defended by Woodward (2003). 
Woodward writes:

“[E]xplanation is a matter of exhibiting systematic patterns of counterfactual 
dependence. [Explanations include generalisations that] locate their explananda 
within a space of alternative possibilities and show us how which of these 
alternatives is realized systematically depends on the conditions cited in the 
explanans. They do this by enabling us to see how, if these initial conditions 
had been different or had changed in various ways various of these alternatives 
would have been realized instead.” (2003, p. 191)

Although some of the terms used by Woodward – such as “initial condi-
tions” – are not directly applicable to mathematics, Woodward’s underlying 
intuition about explanation is identical to Steiner’s: to explain is to show 
how the explanandum would have changed if the input of the explanation 
had been different. We may therefore hope to use the technical details of 
Woodward’s counterfactual theory to flesh out our theory of mathematical 
explanation. To do so, let us start by looking at the first half of Woodward’s 
definition of explanation:

Suppose that M is an explanandum consisting in the statement that some 
variable Y takes the particular value y. Then an explanans E for M will consist 
of (a) a generalization G relating changes in the value(s) of a variable X (where 
X may itself be a vector or n-tuple of variables Xi) and changes in Y, and 
(b) a statement (of initial or boundary conditions) that the variable X takes the 
particular value x. (Woodward 2003, p. 203)2

Crucially, for Woodward an explanandum is not a single fact taken in com-
plete isolation, but a fact of the form Y = y, where Y is a variable that can 

2  Weber and Verhoeven use the letters X and Y to denote two classes of mathematical 
objects. Woodward uses X and Y to denote variables. From this point onwards, we will adopt 
Woodward’s usage.
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also take values different from y within a certain specified range. The 
explanandum thus comes with a dimension of variation, and the explanans 
has to invoke a generalisation G that relates variation in another variable 
(or set of variables) X to that variation in Y. G shows us how the value of 
Y changes as we vary the value of X.

Thus, causal explanations and mathematical explanations both use gen-
eralisations: causal generalisations in the first case, proof recipes in the 
second. And while these may seem to be rather different things – causal 
generalisations are claims about the world, proof recipes are sets of 
instructions – their role in explanations is in fact exactly similar. What 
they do is link two properties to each other: the speed of the ball to the 
breaking of the window; the symmetry property of the series to its sum. 
Both tell us how to deduce the value of one variable from the value of 
another variable.

We nevertheless do need to make some changes to Woodward’s theory 
if we want to adapt it to mathematical explanation. The most crucial differ-
ence between physical objects and mathematical objects may be that phys-
ical objects have many contingent properties, whereas mathematical objects 
have none. If a ball hit a window and broke it, it makes sense to think about 
what would have happened to the breaking if we had varied the speed of 
the ball. But it makes no sense to wonder what would happen to the sum 
of the series S = 1 + 2 + 3 + … + n if we had varied its symmetry property; 
for the series cannot have any other symmetry properties than those that it 
has and the sum cannot be different than it is. In Woodward’s causal formal-
ism, it makes sense to think of a variation of the property of an object. 
But for mathematical explanation, this doesn’t make sense. Instead, we 
need to talk – as Steiner does – about varying the object itself. We cannot 
change the symmetry property of S, but we can choose a different series S.

In a mathematical explanation, then, the explanandum is that for object 
o, variable Y takes on value y; that is, Y(o) = y. To explain this, we first 
identify a domain of objects, O, on which variable Y and a variable (or set 
of variables) X take a value for every object. We then give a proof recipe 
G that allows us to prove, given that an object is in O and that X takes a 
certain value for that object, that Y takes a certain value for that object. 
Finally, we perform the proof for object o, showing that X(o) = x, and that 
X(o) = x implies Y(o) = y.

In Steiner’s example, o is the sum 1 + 2 + 3 + … + n. Y is the outcome 
of a sum, and y = n(n + 1)/2. The domain O is the set of all sums with the 
symmetry property that pair-wise addition of the sum to its reverse gives 
the same result for every pair. X is the value of this result, with x being 
n + 1. The proof recipe G is the proof recipe given above, which shows that 
if X = x, Y = nx/2. The explanation is completed by showing that X(o) = n + 1 
and then using G to prove that Y(o) = n(n + 1) / 2.
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The main structure of Woodward’s counterfactual theory thus remains 
intact; the mathematical case is just slightly more complicated because we 
need to mention both a variation of the object and a variation of the explain-
ing properties of that object. Let us now look at the second half of Wood-
ward’s definition of explanation, which specifies several further conditions:

A necessary and sufficient condition for E to be (minimally) explanatory with 
respect to M is that (i) E and M be true or approximately so; (ii) according 
to G, Y takes the value y under an intervention in which X takes the value x; 
(iii) there is some intervention that changes the value of X from x to x where 
x ≠ x, with G correctly describing the value y that Y would assume under this 
intervention, where y≠ y. (Woodward 2003, p. 203)

Here (i) guarantees that the explanans is (at least approximately) true, which 
Woodward requires because he believes we cannot explain the world with 
false theories. (There have been some challenges to this assumption recently, 
for instance by De Regt (2015), but for reasons that probably do not extend 
to the realm of mathematics.) Woodward’s requirement (ii) guarantees that 
generalisation G actually links up the actual initial condition X (o) = x with 
the explanandum Y(o) = y; while his (iii) guarantees that the value of X is 
relevant to the value of Y, since intervening on X can change Y.

How do these conditions relate to mathematics? We need to change con-
dition (i) in two ways. First, we require strict truth, not approximate truth – 
a notion that is out of place in mathematics. Second, since a proof recipe 
is not true or false, we do not require that G is true, but instead that all 
applications of G are logically valid.

Requirements (ii) and (iii), while important, have to be reworded in such 
a way that the term ‘intervention’ drops out, since Woodward’s causal 
notion of intervention cannot be applied to mathematics. Requirement 
(ii)  then becomes “for all p in O such that X(p) = x, G generates a proof 
that Y(p)  =  y”. We need this requirement to ensure that G allows us to 
prove what we need to prove. 

Stripped of the notion of intervention, requirement (iii) becomes “there 
is at least one o in O such that X(o) = x’ where x ≠ x, and G generates a 
valid proof that Y(o) = y, where y ≠ y.” To illustrate the need for (iii), let 
us look at an example. Suppose that we try to explain why 17 is divisible 
by 1. Here the object o is the number 17, and Y is a boolean variable with 
the possible values “is divisible by 1” and “is not divisible by 1”. Now let 
O be the domain of all natural numbers, and X be a boolean variable taking 
the values “is a prime” and “is not a prime”. We can then set up a proof 
recipe which allows us to deduce that if an object is a prime, it is divisible 
by 1; and that if it is not a prime, it is (also) divisible by 1. But of course, 
being a prime doesn’t explain why 17 is divisible by 1. Varying X doesn’t 
change Y, that is, varying whether a number is prime doesn’t change 
whether it is divisible by 1. Requirement (iii) excludes such cases, and 



56	 Victor Gijsbers

ensures that X is relevant to Y, that it is a difference maker for Y, and that 
therefore the actual value of X can explain the actual value of Y.

With these simple changes, Woodward’s counterfactual theory of causal 
explanation can be adapted to mathematical explanation. It incorporates the 
intuitions of Steiner’s theory as well as the further explications of Weber 
and Verhoeven; while adding the technical precision and detail needed to 
exclude certain types of non-explanations.

In the next section, I will argue that the one major respect in which 
we did not follow Woodward’s lead – namely, by removing the notion of 
intervention from the theory of explanation – leads to problems for our 
counterfactual theory, problems which we need to solve by reintroducing 
something akin to the notion of intervention. But before we go there, it will 
be useful to compare our counterfactual theory with two other recent 
attempts at formulating a theory of mathematical explanation that explicitly 
invoke Woodward: Reutlinger (2015) and Frans & Weber (2014).

Reutlinger (2015) defends the claim that a counterfactual theory of 
explanation can encompass both causal and non-causal explanation; but 
more specifically he argues that a counterfactual theory can deal with two 
mathematical explanations – Euler’s explanation of the Königsberg bridge 
problem and renormalisation group theory explanations of universality. For 
this purpose, Reutlinger reformulates Woodward’s counterfactual theory 
while dropping the notion of intervention, just like we have done. While he 
gives slightly less technical detail than I have given above, it is fair to say 
that any differences between Reutlinger’s theory and the counterfactual 
account we have just developed are bound to be small.

Frans & Weber (2014) develop a theory of mathematical explanation that 
takes its cue not from Woodward’s counterfactual theory, but from the theo-
ries of mechanistic explanation descended from Machamer, Darden & Craver 
(2000). Frans and Weber define the basic ideas as follows: “A mechanistic 
explanation of a capacity is a description of the underlying mechanism. […] 
A mechanism is a collection of entities and activities that are organized such 
that they realize the capacity” (p. 6). They then proceed to apply this idea 
to mathematics by identifying capacities with mathematical dependencies 
and activities with difference-makers; the result being that one explains a 
mathematical dependency by showing that the difference-makers are organ-
ised in such a way that the theorem stating the dependency is established.

At this point, Frans and Weber appeal to Woodward’s notion of an inter-
vention, a notion which they, in distinction to the counterfactual account 
developed in the current section, include in their theory of mathematical 
explanation. They identify intervention with the imaginary manipulation of 
a mathematical entity, writing:

The proof also identifies which entities and properties are relevant in order 
to explain why the theorem holds, since imaginary manipulation of an entity 
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shows how the system, of which a dependency between an input and output 
is described in the theorem, changes in response. An entity and a property are 
relevant if changing the property would change the outcome of the proof. (p. 12).

The theory Frans and Weber thus arrive at has obvious similarities with the 
counterfactual theory proposed here. Both claim that a mathematical expla-
nation explains by allowing us to see how the explanandum would be dif-
ferent if some properties of the mathematical objects were different. Frans 
and Weber believe it is important that they take the bottom-up approach of 
starting with entities that can be manipulated, rather than the top-down 
approach of starting with generalisations; but whether that is a difference 
that makes a difference – and thus, more generally, whether there is a deep 
difference between mechanisms and systems of linked regularities – is 
something we cannot go into here.

Frans and Weber’s use of Woodward’s terms of manipulation and inter-
vention in the context of mathematics is interesting, but they say little about 
how exactly we have to think of these concepts. Suppose, for instance, that 
I have an equilateral triangle with sides 1. Presumably, we can explain the 
fact that it has area √3/4 by pointing to the angles and the length of the 
sides. But what happens to the area of the triangle when I manipulate one 
of the sides such that its length becomes 2? There doesn’t seem to be an 
obvious answer to that, since it depends on what other things we keep 
fixed  – the angles, the length of the other sides, or even the area itself. 
Before we can use Woodward’s idea of an intervention in mathematics, we 
would need to say more about how to understand such scenarios – and I 
hope to provide that something more in later parts of this paper. In this way, 
the current article could be read as a friendly extension of the account of 
Frans and Weber. (Though, because of the previous point, Frans and Weber 
would probably not read it that way).

4.  Asymmetry and the Quasi-Interventionist Theory

Let us return to the counterfactual theory without interventions, as pre-
sented in the previous section. Is anything wrong with it? More specifically, 
did we sacrifice anything of importance when we dropped interventions 
from Woodward’s account?

In Woodward’s theory of causal explanation, interventions are needed to 
deal with certain explanatory asymmetries. Why does the length of the 
flagpole explain the length of the shadow, but not the other way around? 
Because intervening on the pole will change the length of shadow, while 
intervening on the shadow will leave the pole unchanged. Introducing inter-
ventions into our theory of explanation allows us to handle this kind of 
case.
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Do such asymmetries exist in mathematical explanation? Reutlinger 
(2015) writes:

Finally, having the notorious flagpole-shadow scenario in mind […], one 
may wonder whether [this theory] accounts for the explanatory asymmetry 
in the case of non-causal explanations. This is one of the deepest puzzles of 
the current philosophy of explanation […] and it is an open research question 
as to how one can capture the explanatory asymmetry in the non-causal cases. 
It is even possible that non-causal explanations do not generally display such 
an asymmetry. (p. 7)

It is my aim in this section to argue that mathematical explanations do 
indeed display explanatory asymmetries; to show that the counterfactual 
theory outlined above fails to do justice to these asymmetries; and to indi-
cate how we can deal with them using mathematical quasi-interventions 
that are analogous to Woodward’s interventions.

Consider the question why ℕ2 is countable. We can explain this with a 
proof recipe that shows, using Cantor’s pairing function, that if a set has 
the property of being countable, then its Cartesian product with itself is also 
countable. More formally:

Let O be a sufficiently rich class of sets (in particular, we will assume that O 
contains both ℕ and R). Let X be the boolean variable that tracks whether an  
object p in O is countable; and let Y be the boolean variable that tracks whether p2 
is countable. Let there also be a proof recipe G that allows us to prove, using 
Cantor’s pairing function, for any countable set that its Cartesian product with 
itself is countable; and that allows us to prove for any uncountable set that its 
Cartesian product with itself is uncountable. (We here omit the details of the proofs.)
Then we can explain why ℕ2 is countable by pointing out that ℕ is countable, 
and using G to prove that ℕ2 is countable as well.

This is a completely unobjectionable mathematical explanation, and prob-
ably the one given by a mathematician when she is asked to explain the 
countability of ℕ2. But the following is also a good explanation according 
to the counterfactual theory outlined above:

Let O be a sufficiently rich class of sets of the form Q2 (in particular, we will 
assume that O contains both ℕ2 and R2). Let X be the boolean variable that 
tracks whether an object p in O is countable; and let Y be the boolean variable 
that tracks whether another set s, with s2 = p, is countable. Let there also be a 
proof recipe G that allows us to prove that if X is true, Y is true; and that allows 
us to prove that if X is false, Y is false. (We here omit the details of the proofs.)
Then we can explain why ℕ is countable by pointing out that ℕ2 is countable, 
and using G to prove that ℕ is countable as well.

But no mathematician asked to explain why ℕ is countable would give us 
this story. It doesn’t make sense to explain the countability of ℕ from 
the countability of ℕ2. To explain why there are countably many natural 
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numbers, we instead need to point out that by definition any subset of ℕ is 
countable, and that ℕ is of course a subset of itself. ℕ2 and its properties 
are irrelevant.

Why is ℕ2 countable? Because ℕ is countable, and because ℕ2 can be 
brought in one-to-one correspondence with ℕ, and because any set that can 
be brought in one-to-one correspondence with a countable set is countable. 
Reversing that order, and pointing out that ℕ must be countable because it 
can be brought in one-to-one correspondence with the countable set ℕ2, 
gets something wrong – even though the argument is logically valid.

We here have an example of asymmetry that seems to be akin to the 
flagpole and the shadow. Properties of the flagpole can be invoked to 
explain properties of the shadow, but not the other away around, even 
though there are valid arguments in both directions. That same relation 
holds between ℕ and ℕ2. How can we capture this in our theory of math-
ematical explanation? In the flagpole and shadow example, we introduce a 
causal relation that can be recognised by considering the effects of physical 
interventions. My suggestion is that we attempt to follow Woodward as 
closely as possible; and that in our example, we introduce a quasi-causal 
relation that can be recognised by considering the effects of mathematical 
quasi-interventions. These quasi-interventions reveal asymmetries inherent 
not in the mathematical proofs, but in our mathematical practice. It is the 
choices that we make when we are doing mathematics that generate explan-
atory asymmetries, especially where choices about definition are concerned.

As an example, let us look at the definition of countability. The standard 
definition is that a countable set is any set with the same cardinality as some 
subset of ℕ. However, one can also define a countable set as any set with 
the same cardinality as some subset of ℕ2. These definitions are equivalent, 
so the mathematician – or the community of mathematicians – can freely 
choose one or the other.

But this choice immediately generates an explanatory asymmetry. If the 
first definition is chosen, then ℕ’s countability is trivial; it is countable by 
definition. The countability of ℕ2, on the other hand, is far from trivial, 
and is to be explained by showing that ℕ2 has the same cardinality as ℕ. 
On the other hand, if we had chosen the second definition of countability, 
then the countability of ℕ2 would have been trivial; while the countability 
of ℕ would then have been explained by showing that we can bring ℕ in 
one-to-one correspondence with ℕ2 or one of its proper subsets.

Thus, the definitions we choose can be crucial to the order of explana-
tion. In particular, definitions which grant a property P to a certain set of 
objects O directly and then recursively grant it to other objects indirectly if 
they bear relationship R to an object that has P, set up an explanatory asym-
metry where:

•  if the object o is in O, we explain P(o) by pointing out that o is in O;
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•  �if the object o is not in O, we explain P(o) by showing that o is related 
by R (perhaps in several steps) to some object in O.

It is useful to compare this proposal to Marc Lange’s (2009) argument that 
inductive proofs of ∀n : P(n) are generally not explanatory. Lange argues 
that in inductive proofs, we can almost always construct both an ‘upward’ 
and a ‘downward’ proof, that is, both a proof that shows that P(i) → 
P(i  +  1) and a proof that shows that P(i) → P(i –1) (for i  >  0). He then 
shows that this allows us to take any natural number as the starting point 
for our inductive ‘explanations’. For instance, P(0) can be used to explain 
P(5), but P(5) can also be used to explain P(0). Since Lange believes that 
explanation has to be asymmetric, and so no two facts can appear in each 
other’s explanans, it follows that inductive proofs cannot count as real 
explanation: they fail the test of asymmetry.

According to our proposal, however, at least some inductive explana-
tions, namely, explanations of properties whose definition is recursive, will 
have the asymmetry Lange requires. To take a simple example, we might 
wonder why in Peano arithmetic zero is a natural number; and also why 
S(S(S(S(0)))) – that is, four – is a natural number. Now in this case, there 
is a clear asymmetry. Zero’s status as a natural number must be explained 
by pointing to the axiom which states that zero is a natural number. Four’s 
status as a natural number must be explained through a recursive argument 
starting from zero and using the axiom that the successor of a natural num-
ber is a natural number. The fact that zero is a natural number is thus part 
of the explanation of the fact that four is a natural number, but not the other 
way around. Of course, with different axioms this asymmetry might flip; 
yet that doesn’t show that there is no inductive explanation, but only that 
mathematical explanations have to be evaluated against the background of 
the definitions used by the mathematician.

In general, if a mathematical object or property A is part of the definition 
of mathematical object or property B, this generates an explanatory asym-
metry from A to B: facts about B can be explained by facts about A, but 
not the other way around. Thus, if we define ℕ in terms of the Peano axi-
oms, we can then explain properties of ℕ in terms of properties of the 
axioms, but not the reverse. If we define ℕ2 as the Cartesian product of ℕ 
with itself, this means that properties of ℕ2 are to be explained in terms of 
properties of ℕ, and not the other way around (unless the property itself is 
given to ℕ2 by definition). 

Now as soon as we have any such asymmetry in mind, we can start look-
ing at mathematical objects or properties in a way that is analogous to the 
way that the Woodwardian interventionist looks at objects or properties that 
are causally related. Thus, when the Woodwardian thinks of this asymmetry

height of flagpole → length of shadow
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she interprets this as indicating that an intervention on the height of the 
flagpole changes the length of the shadow, but not the other way around. 
Analogously, when faced with this asymmetry

Peano axioms → ℕ

we can interpret it as indicating that an ‘intervention’ on the axioms will 
‘change the properties’ of ℕ. Of course, we cannot really intervene on the 
axioms, nor can the properties of ℕ really change. But we can keep the 
connection between the axioms and the set constant (it is, in this case, the 
connection of “being the set that satisfies the axioms”) and consider what 
set we end up with when slightly different axioms are chosen. What we are 
doing, then, is we keep the asymmetrical links laid down by our definitions 
fixed, then vary one of our mathematical objects or properties, and observe 
what must change downstream if the definitions remain fixed. Let us call 
this process mathematical quasi-intervention; it is the mathematical ana-
logue of causal intervention. We call it a ‘quasi’ intervention because it is 
not, of course, an intervention in Woodward’s causal sense.

Introducing the concept of a quasi-intervention allows us to accommo-
date the asymmetry of mathematical explanation in a way analogous to how 
Woodward accommodates the asymmetry of causal explanation. Remember 
that the two specifically interventionist requirements in his theory were the 
following:

(ii) according to G, Y takes the value y under an intervention in which X takes 
the value x; (iii) there is some intervention that changes the value of X from x 
to x where x ≠ x, with G correctly describing the value y that Y would assume 
under this intervention, where y ≠ y. (Woodward 2003, p. 203)

In the counterfactual theory of section 3, we reformulated these requirements 
so that they no longer spoke of interventions, as follows:

(ii) for all p in O such that X (p) = x, G generates a proof that Y(p) = y; (iii) there 
is at least one o in O such that X(o) = x where x ≠ x, and G generates a valid 
proof that Y(o) = y, where y≠ y.

But if we want to do justice to the asymmetries of mathematical explana-
tion, this does not quite work, as we have seen. These two requirements are 
too permissive; we need to make sure that mathematical quasi-interventions 
on X(p) can lead to changes in Y(p). Condition (iii) captures this idea in so 
far that it identifies a change of object which changes the value of X and 
which allows us to prove that the value of Y is then also changed; but by 
appealing to proof rather than quasi-intervention, it fails to ensure that the 
X → Y direction follows the direction required by the explanatory asym-
metries of the definitions. The easiest way to fix this is to simply strengthen 
the requirement:



62	 Victor Gijsbers

(iii) there is at least one o in O such that (a) X(o) = x where x ≠ x, and 
(b) G generates a valid proof that Y(o) = y, where y ≠ y, and (c) the quasi-
intervention of changing x to x leads to the change of y to y.

We thus end up with a quasi-interventionist theory of mathematical expla-
nation that is as close as possible – given the inherent differences between 
causal and mathematical objects – to Woodward’s interventionism. I submit 
that this theory leads to the correct results for the examples we have been 
discussing. Of course, whether it also works for other examples of mathe-
matical explanation needs to be investigated further; and this is especially 
needful in the light of Hafner & Mancosu’s (2005) argument that mathe-
matical explanation is a highly varied phenomenon, which may lead us to 
worry that the examples discussed in this case – all of them rather simple 
cases from number theory – might not represent that full variety.

However, instead of embarking on that project now, I want to raise and 
dispel a worry of a different kind: the worry that the quasi-interventionist 
theory turns mathematical explanation into something that is too subjective 
to really be about mathematics.

5.  Explanatory Asymmetry and Subjectivity

The quasi-interventionist theory introduces the subject or the community 
into assessments of mathematical explanation. Quasi-interventions cannot 
be defined purely in terms of the mathematical objects themselves; we also 
need the definitions chosen by the mathematician. This suggests that the 
asymmetry of mathematical explanation does not reflect an objectively real 
asymmetry in the subject matter of the explanation.

In this, mathematical explanations would seem to differ sharply from 
causal explanations. Causal asymmetries are objectively real: there are 
causal laws that ensure that we really cannot manipulate the shadow by 
intervening on the flagpole. (Van Fraassen 1980 famously disagreed, but 
few have followed him). But the asymmetries of mathematical explanation 
only exist when we first choose certain definitions and then keep them 
fixed, as if they were unbreakable laws. But this is only an as if. Nothing 
stops us from choosing other definitions.

Why would this be a problem? On the one hand, mathematical explana-
tions are mirroring the asymmetry of a practice, not that of the mathematical 
objects themselves. But on the other hand, they purport to explain facts about 
the objects, not about the practice: we explain the countability of ℕ2, and not 
some fact about ourselves as mathematicians. There seems to be a tension 
here. If what we want to understand are the mathematical objects, how can 
considerations about ourselves as mathematicians influence which explana-
tions are acceptable? Do such explanations really explain mathematical facts?
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Within the context of the quasi-interventionist theory, there are two ways 
to deal with these questions; one of them, which I prefer, leaves what has 
been said up till now intact and argues that causal explanations too can have 
asymmetries which are practice-dependent and that this is therefore a feature 
of explanation in general; while the other argues that, contrary to what I 
have been claiming, the asymmetries of quasi-intervention are in fact objec-
tively real facts about mathematics. This second way can claim support from 
a recent trend in the philosophy of mathematics – discussions of grounding 
– and is thus worth a brief look before I develop my own argument.

It has been essential for my claim that asymmetries are practice-depend-
ent that there is no objective way to stipulate which mathematical objects 
or properties or facts are prior to others; that this is a matter of choice for 
the practising mathematician. However, several authors have recently 
attempted to provide us with an objective explanatory order in mathematics 
by connecting it with Bolzano’s concept of grounding (Tatzel 2002; Betti 2010; 
Rumberg 2013). Can this literature be invoked to defend the objectivity of 
the asymmetries in mathematical explanation? I don’t believe so. Some 
explanatory asymmetries are clearly not objective, and no account of ground-
ing should claim them to be so, as I want to illustrate now with a simple 
example.

Consider the following case. We start with the sequence of positive num-
bers S: {1, 5, 28, 3, 2, 47, 3}. From this, we define a new sequence, T, 
where Ti is the sum of the first i terms of S. Thus, T is {1, 6, 34, 37, 39, 
86, 89}. Why is the sequence T positive and strictly increasing? Because S 
consists of only positive numbers (for brevity’s sake, we leave much of the 
explanation implicit). That is a fine explanation. And the opposite explanation 
fails: it is not the case that S consists of only positive numbers because T 
is positive and strictly increasing.

Now consider the following case. We start with a sequence of positive, 
strictly increasing numbers T: {1, 6, 34, 37, 39, 86, 89}. From this, we 
define a new sequence S such that S1 = T1 and for all i > 1, Si = Ti – Ti –1. 
This means that S is {1, 5, 28, 3, 2, 47, 3}. Why does S contain only posi-
tive numbers? Because T is positive and strictly increasing. And again, the 
explanation the other way around does not work.

But the two cases are of course identical, except that the order of defini-
tion was different. So if my assessment of what explains what is correct, it 
turns out that the explanatory order is dependent on entirely contingent and 
subjective choices in how we define our mathematical objects. If we get 
T from S, then the properties of S explain those of T. If we get S from T, 
then the explanations go the other way around.

I take it that we do have intuitions about explanatory asymmetry in these 
cases, and that it is also obvious that there is no objective way to prefer 
one of the definitions over the other. If that is so, then at least some of the 
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asymmetries in mathematical explanation are wholly dependent on subjec-
tive choices. So even if the grounding strategy would work in some cases, 
we’d still need another strategy for dealing with the remaining ones.

The other way of dealing with the tension between the objective and the 
subjective aspect of mathematical explanation is to notice that some causal 
explanations also exhibit an asymmetry that depends on our practices. Take, 
for instance, the ideal gas law, PV=NkT. Given the values of three of the 
four variables in the law, we can deduce the value of the fourth. What is 
more, in most systems we could intervene on any of the four variables, keep 
two others fixed, and see the changes in the system. E.g., given a container 
of gas, we can heat it (changing T), crush it (changing V), pump more gas 
into it (changing N), or open it and let it come into equilibrium with a 
(much larger) container with a different pressure (changing P), all while 
keeping one or two of the other variables fixed. So this is not a case like 
the flagpole and shadow, where we just cannot change the flagpole by inter-
vening on the shadow. There are no objective causal asymmetries here.

And yet, in certain circumstances, there are explanatory asymmetries. 
Take a pressure cooker.3 It makes sense to explain the pressure in the pres-
sure cooker by pointing out how it would change under interventions on the 
temperature when the volume and the number of particles are fixed; that is 
what we would do when we were asked to explain the basic workings of a 
pressure cooker. But would it make sense to explain the volume of the pres-
sure cooker by pointing out how it would change under interventions on any 
of the other three variables? No. Instead we would explain the volume by 
talking about the manufacturing process in the factory, or the intentions of 
the manufacturers. Why? Perhaps the reason is that interventions that allow 
the volume of the cooker to change while two of the other variables are held 
fixed, are rather exotic and far from everyday life; they would, for instance, 
involve weakening an area of the pan in such a way that it could bulge out 
when under sufficient pressure. But note that the exoticness of an interven-
tion can only be assessed against the background of our practices. It is not 
an objective fact about the physics of pressure cookers.

We would also never explain the pressure in the pressure cooker by 
pointing out how the pressure would change under interventions on the 
volume. This is an especially interesting case because we don’t have to 
depart from everyday life. Indeed, nothing is easier than increasing the 
pressure by decreasing the volume: all one needs is a firm blow with a 
hammer to the side of the cooker while it is cooking. But because deform-
ing pressure cookers with hammers is not one of our usual practices, while 
heating pressure cookers on a stove is, we consider it explanatory to explain 

3 I  am indebted to an anonymous referee for this example.
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the pressure from interventions on the temperature but non-explanatory to 
‘explain’ the pressure from interventions on the volume.

There is of course more to be said about the role that practices play in 
causal explanatory asymmetries. For our current purposes, however, it is 
enough to notice that practice-dependence is not a special feature of math-
ematical explanations. It exists even in the paradigmatic realm of causal 
explanations. This means that it can hardly threaten the cogency of our 
theory of mathematical explanation. 

6.  Conclusion

I have argued that mathematical explanations should be understood as 
quasi-interventionist explanations. By adapting Woodward’s counterfactual 
theory of causal explanations and his interventionist criteria for causation, 
we were able to not only improve on the accounts of Steiner and Weber & 
Verhoeven, but to also tackle the problem of explanatory asymmetry in 
mathematics, which until now had been mostly neglected. The resulting 
theory is, I hope, a serious contender for the best theory of mathematical 
explanation currently available.

Several questions and areas of research remain, however. First, it is 
necessary to test the quasi-interventionist theory against a wider array of 
examples of mathematical explanation. Second, it is necessary to assess in 
more detail whether theories of grounding can account for explanatory 
asymmetries in mathematics and, if so, for how many of them. And finally, 
the practice-dependence of explanatory asymmetries bears further investi-
gation. We have our work cut out for us.
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