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Traditional Chinese medicine-based subtyping of early-stage type 2 diabetes

Abstract

Ethnopharmacological relevance: The prevalence of type 2 diabetes mellitus
(T2DM) is increasing rapidly worldwide. Because of the limited success of generic
interventions, focus has shifted toward personalized strategies, particularly in early
stages of the disease. Traditional Chinese medicine (TCM) is based on a systems
view combined with personalized strategies and has improved our knowledge with
respect to personalized diagnostics. From a systems biology perspective, this
understanding can be improved in order to yield a biochemical basis for such
strategies, for example using metabolomics combined with other system-based
diagnostic methods such as ultra-weak photon emission (UPE). In this respect,
UPE has been used successfully to support TCM-based subtyping. Combining
these technologies will further support TCM-based subtyping of diseases such as
T2DM.

Aim of the study: The aim of this study was to investigate the feasibility of using
plasma metabolomics to stratify the following TCM-based subtypes: Qi-Yin
deficiency, Qi-Yin deficiency with dampness, and Qi-Yin deficiency with
stagnation. Furthermore, we studied the relationship between plasma metabolomics
and UPE with respect to TCM-based subtyping in order to obtain biochemical

information for further interpreting disease subtypes.

Materials and methods: Plasma samples obtained from 44 subjects were extracted
and analyzed using both liquid chromatography/tandem mass spectrometry and gas
chromatography/tandem mass spectrometry. We then profiled various classes of
metabolites, including amine metabolites, organic acids, sugars, and
lysophosphatidic acid—derived metabolites, as well as lipids, including

sphingomyelin phosphatidylcholine, phosphoethanolamine, lyso-
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phosphatidylcholine, lyso-phosphoethanolamine, , cholesterol esters and
triglycerides. Multivariate analysis (principal component analysis and orthogonal
projections to latent structures discriminant analysis) was used to analyze the
metabolomics profiles and to study TCM-based stratification. Finally, Spearman’s
rank correlation-based networks were used to correlate the metabolites with the

UPE parameters.

Results and discussion: Principal component analysis of plasma metabolites
revealed differences among the TCM-based pre-T2DM subtypes. Relatively high
levels of lipids (e.g., triglycerides and cholesterol esters) were important
discriminators of two of the three subtypes and may be associated with a higher
risk of cardiovascular disease. Correlation networks revealed that plasma
metabolomics and UPE yielded similar TCM-based subtypes. Finally, plasma
metabolomics data indicate that the lipid profile is an essential component captured
by UPE with respect to stratifying subtypes of T2DM.

Conclusions: Metabolic differences exist among different TCM-based subtypes of
pre-T2DM, and profiling plasma metabolites can be used to discriminate among
these subtypes. Plasma metabolomics provides biochemical insights into system-

based UPE measurements.

Key words: Type 2 diabetes mellitus, plasma metabolites, disease subtypes, ultra-

weak photon emission, correlation networks
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Traditional Chinese medicine-based subtyping of early-stage type 2 diabetes

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic, devastating complex disease. T2DM
is characterized by increased fasting plasma glucose levels, impaired postprandial
insulin secretion, decreased insulin sensitivity, and impaired pancreatic beta-cell
function [1]. In addition, patients with T2DM have increased levels of
inflammatory factors such as TNFa, IL-6, IL-8, and reactive active species [2], [3],
altered levels of hormones, peptides, proteins, and enzyme activity, as well as other
metabolic perturbations [4]. Striking, nearly all of these metabolic changes are
often present years before the patient presents with clinical symptoms leading to a
diagnosis of T2DM [5], [6].

Based on epidemiology studies, an estimated 285 million individuals are
affected by diabetes worldwide, and this number continues to increase [7].
Furthermore, this number is likely an underestimate, as many individuals are not
diagnosed in an early stage due to insufficient knowledge regarding the multi-
symptom relationships at a systems level [8], [9]. Receiving a diagnosis only in a
later stage of diabetes—together with the severe complications associated with
disease progression—can lead to high costs and can reduce the efficacy of
treatment [10]. For example, long-term dysglycemia increases the risk of severe
complications such as hypertension, blindness, renal failure, and cardiovascular
disease [11], [12]. These complications reduce quality of life and are a major cause
of morbidity, hospitalization, and mortality among patients with diabetes. Current
diagnostic tests are based primarily on a single screening tool such as the oral
glucose tolerance test or measuring fasting plasma glucose. Understanding the
symptoms that develop in an early stage of the disecase and developing indicators of
disease progression would likely contribute to improving both prevention and
treatment strategies, including strategies based on changes in lifestyle. Moreover,
treatments based on generic observations—which have led to the notion of one

drug-one target-one disease (or one-size-fits-all)—are extremely limited,
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particularly in early stages of the disease. Therefore, system-based approaches are

needed in order to achieve personalized approaches.

Integrative holistic forms of medicine such as traditional Chinese medicine
(TCM) provide descriptions of disease syndromes and subtypes at a systems level,
including descriptions that can be used to diagnose early syndromes of chronic
diseases. Such descriptions can be used as a guide or reference in order to achieve
personalized medicine. In this respect, TCM has provided descriptions of pre-
T2DM syndromes, indicating its potential for helping develop personalized
medicine [13], [14]. To bridge TCM with Western medicine, evidence-based
scientific data is needed at the biochemical level. Thus, modern systems biology
research—including metabolomics—is a promising approach for exploring the

biochemistry underlying TCM subtyping.

Metabolic disorders are often present for years before the appearance of clinical
disease, and metabolomics is a widely used technique for predicting and
diagnosing disease [15]. Metabolomics provides a comprehensive profile of small
molecular metabolites in biological systems and can be used as a readout of the
organism’s physiological status [16]. In principle, this approach is well suited to
studying complex TCM-based diagnostics. Metabolomics is generally performed
on fluids such as blood, urine, and cerebrospinal fluid. Urine is commonly used for
metabolomics, as it easily obtained, contains information regarding the excretion of
products, and can reflect how metabolic processes change during the disease
process. Several studies have used urine metabolomics to explore TCM-based
diagnostics and T2DM syndrome subtypes [17], [18]. In addition to urine, blood
also contains information regarding the body’s regulatory status and dynamics.
Thus, performing metabolomics on different fluids can provide complementary
information, thereby improving our understanding of T2DM. An explorative study
at TNO (https://clinicaltrials.gov/ct2/show /NCT00469287) was designed in which
44 pre-T2DM subjects received a diagnosis by a panel of three TCM-trained
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physicians [17], and we explored these TCM-based subtypes using plasma

metabolomics.

Recently, a sensitive, non-invasive technique has been proposed for supporting
TCM-based diagnostics [19]. This technique, called ultra-weak photon emission
(UPE), is used to measure spontancous photon emissions from the skin’s surface
[20]. Because UPE reflects the body’s physiological and pathological status, it
represents a promising tool for use in clinical diagnostics at a systems level [21],
[22]. The underlying biochemistry of UPE is related to metabolism and is
correlated with reactive oxygen species in oxidative metabolic processes [23]-[26].
Although the use of UPE properties for characterizing TCM-based diagnostics has
been summarized previously [19], [20], [27], further understanding of the
molecular basis of UPE is needed. Therefore, combining metabolomics with TCM-
based diagnostics can be used to investigate the biological meaning of UPE and to
explore the added value of each technology. Importantly, UPE was used previously
to subtype the same cohort of 44 subjects with pre-T2DM [27], thereby enabling us

to study the correlation between UPE and plasma metabolomics.
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2. Materials and Methods

2.1 Inclusion criteria for the selection of pre-diabetic subjects and the diagnosis

of syndrome subtypes based on TCM
The recruitment of subjects and the diagnosis of pre-T2DM subtypes by TCM-

trained physicians were described previously [17]. In brief, clinical parameters
were obtained from 44 male Dutch subjects who met the following inclusion
criteria: 30-70 years of age, body mass index of 26-35 kg/m?, and a fasting glucose
level of 6.1-6.9 mmol/L. No other clinical abnormalities or evidence of diabetic
complications were detected. The subjects were then diagnosed separately in a
blinded study by three TCM-certified physicians with at least five years of training
in TCM and at least ten years of clinical experience. Three categories were based
on TCM-based diagnostic terms, and 85% consensus was reached among the three
CM physicians with respect to diagnosing the subjects. These three categories are
defined as follows: QYD (Qi-Yin deficiency, n=15 subjects), QYD Damp (Qi-Yin
deficiency with dampness, n=20 subjects), and QYD_Stag (Qi-Yin deficiency with
stagnation, n=9 subjects). Blood samples were collected after overnight fasting and
used for the metabolomics study. In addition, UPE was measured from the palmar

and dorsal surfaces of both hands.

2.2 Ethics statement

This explorative study was designed and conducted by TNO (Zeist, the
Netherlands; https://clinicaltrials.gov/ct2/show/NCT00469287) and was approved
by the Medical Ethics Committee of Tilburg (METOPP).

2.3 Data acquisition

2.3.1 Plasma metabolomics profiling
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Metabolic profiles were measured by the Netherlands Organization for Applied
Scientific Research (TNO, Zeist, the Netherlands). Heparinized blood samples
were collected, and plasma was obtained by centrifugation (2000xg at 4°C for 15
min). The plasma samples were aliquoted and stored at -20°C prior to metabolite

extraction and mass spectrometry.

Using a gas chromatography/mass spectrometry (GC-MS) platform, a large
variety of metabolic classes were measured, including amine metabolites, organic
acids, sugars, and lysophosphatidic acid (LPA)-derived metabolites. The details of
the extraction and the GC-MS analysis protocol have been published previously
[28]. In brief, 100-ul aliquots of plasma were spiked with a mixture of internal
standards (ISTDs) and deproteinized with methanol. After centrifugation, the
supernatant was transferred to a new sample vial for evaporation and two-step
derivatization. The derivatized extracts were then analyzed using an Agilent 6890
gas chromatograph on a DB5-MS capillary column (30 m x 250 um i.d., 0.25-um
film thickness; J&W Scientific, Folsom, CA) coupled to an Agilent 5973 mass
selective detector; helium was used as the carrier gas at a flow rate of 1.7 ml/min
for temperature-programmed gradient chromatographic separation. The raw data
were pre-processed and exported using ChemStation G1701CA software (version
D.01.02, Agilent), providing response ratios to the appropriate internal ISTD for

each metabolite; these ratios were used for further statistical analysis.

For liquid chromatography/tandem mass spectrometry (LC-MS) lipid
measurements, seven classes of lipids, including both polar lipids—such as
phosphatidylcholine, phosphoethanolamine, lyso-phosphatidylcholine, lyso-
phosphoethanolamine, and sphingomyelin —and non-polar lipids—such as
cholesterol esters and triglycerides—were investigated using targeted analysis as
reported previously by van Wietmarschen et al. [29] and Draisma et al. [30]. In
brief, 10-ul aliquots of plasma were deproteinized by the addition of isopropanol
containing a mixture of ISTDs. The lipids were separated and analyzed using a

TSQ Quantum Discovery Triple Quad mass spectrometer coupled to a Surveyor
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MS HPLC system on an Alltech Prosphere C4 300A column (150 x 3.2 mm,
particle size of 5 pm; Alltech, Lexington, KY) in combination with a Symmetry
300 C4 guard column (2.1 x 10 mm, particle size of 3.5 um; Waters, Milford, MA)
in positive ionization mode. The peak areas of the target lipids were integrated, and
raw data were exported using LCQuan software (version 2; Thermo Fisher
Scientific, Waltham, MA), yielding response ratios to the appropriate internal

ISTD for each metabolite; these ratios were used for further statistical analysis.

During the GC-MS and LC-MS experiments, quality control (QC) samples were
prepared by pooling equal amounts of plasma from each sample, then dividing the
pooled samples into aliquots; these QC samples were used to check the
performance of the LC-MS platform as well as to identify temporal trends in the
acquired data. The relative standard deviation (RSD) of each target peak in the QC
samples was used to confirm the quality of the data acquired from each analytical

platform.
2.3.2 UPE measurements

UPE signals were measured from the same cohort of 44 subjects. A photomultiplier
system (provided by Meluna Research B.V., Geldermalsen, the Netherland) with
two detecting heads located at the top of a dark chamber was used to measure UPE.
Each detecting head contains a 9558QB photomultiplier tube within a spectral
sensitivity range of 190-650 nm (Electron Tubes Enterprises Ltd., Ruislip, UK) and
an electronically controlled shutter. The dark chamber was maintained at 20+1.0°C.
The settings used to measure UPE have been described previously [31], [32]. All
measurements were controlled automatically via computer-driven software. UPE
signals were measured at the following four hand surfaces: left dorsal (LD), right
dorsal (RD), left palm (LP), and right palm (RP).

2.4 Data preprocessing and statistical analysis
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2.4.1 Metabolomics data processing and analysis

Before performing a statistical analysis on the metabolomics data, the log-
transformed dataset was processed using various scaling options (i.e., autoscaling,
range scaling, and pareto-scaling) using the online software package

MetaboAnalyst 3.0 (http:/www.metaboanalyst.ca/) [33]. The pareto-scaling

approach (mean-centered and scaling by the square root of the standard deviation
of each variable) was chosen because it provided the best grouping performance,
consistently explaining the largest variabilities when considering the same number
of principal components (both 2D and 3D) [34]-[36]. Preliminary selection of
variables prior to multivariate analysis is needed in order to: i) limit the dataset of
variables for reliably separating the sample groups; ii) remove irrelevant and/or
confounding variables; and iii) decide which variables to retain for the multivariate
analysis; however, this selection is not needed in order to identify potential
biomarkers, which has been applied in metabolic profiling studies [37], using p-
values obtained from a one-way analysis of variance (ANOVA) (p<0.1) in GC-MS
and LC-MS. Multiple comparisons, including principal component analysis (PCA)
and orthogonal projections to latent structures discriminant analysis (OPLS-DA),
were conducted using MetaboAnalyst 3.0, which provides standard validation
information, including cross-validation and a permutation test to prevent over-fit of
the models to the data [33].

2.4.2 Acquisition of UPE data and derived parameters

From a 50-ms bin, the following ten UPE properties were calculated from all four
hand surfaces: strength, FFO, FF1, FF2, alpha, gamma, theta, phi, SSI, and SSR
[31], [32], [38]. Thus, a total of 40 UPE parameters were obtained from each

subject.
2.4.3 Correlation analysis

The statistics software package R (version 3.0.3) was used to calculate Spearman’s

rank correlation coefficient in order to examine the relationship between the
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metabolites and UPE parameters. A graphical overview of the correlation networks
was created using CytoScape version 3.3.0 (http://www.cytoscape.org) with the
MetScape plugin [39], [40]. Positive and negative correlations are indicated by

positive and negative values of r, respectively.
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3. Results and Discussion
3.1 Subtyping based on plasma metabolomics

TCM-based diagnostics is based on several standard diagnostic steps, including
inspection, listening and smelling, inquiry and question, and palpation. The
outcomes from these steps are combined to create an individual profile, which is
used to establish a diagnosis. In this study, 26 variables were determined using
TCM-based diagnostics [17]. From this exploratory study, plasma samples were
used to obtain evidence-based information that was used to help subtype the pre-
T2DM subjects.

We used two validated metabolomics methods based on GC-MS and LC-MS.
GC-MS yielded 147 untargeted metabolites, and LC-MS yielded 110 targeted
metabolites; all of these metabolites were included in the total metabolomics
profile. The metabolites detected by GC-MS included various metabolic classes,
but primarily included amine metabolites, organic acids, sugars, and fatty acids
such as LPA and LPA-derived metabolites. The metabolites detected by LC-MS
included seven classes of lipids, including both polar lipids such as
phosphatidylcholine, phosphoethanolamine, lyso-phosphatidylcholine, lyso-
phosphoethanolamine, and sphingomyelin and non-polar lipids such as cholesterol
esters (ChEs) and triglycerides (TGs). Given the relatively small number of
subjects (44) compared to the large number of total variables (257), a first step in
selecting variables was required before proceeding with a multivariate analysis;
this step allowed us to optimize the variable/object ratio for discriminant type
approaches, and it allowed us to remove potential irrelevant and/or confounding
variables [37]. A total of 32 preliminary variables were selected based on an
ANOVA analysis (p<0.1); these variables included 14 plasma metabolites
identified by GC-MS and 17 plasma lipids identified by LC-MS. These variables
were then used for subsequent multivariate analyses, including PCA, Partial least
squares discriminant analysis (PLSDA), and OPLS-DA (see S-table 1 and S-fig. 1).
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The first step in our analysis focused on investigating whether plasma
metabolomics could be used to discriminate between the three TCM-based
syndrome subtypes of pre-T2DM (i.e., QYD vs. QYD Damp, QYD vs. QYD _Stag,
and QYD Damp vs. QYD Stag). A 3D PCA plot was used to visualize the natural
distribution of the three groups in 3-dimensional space [37], [41]. The first three
principal components analyzed described 66.5% of the total variance in the plasma
metabolome (Fig. 1). We found no large distance between the three subtypes
reflected by PCA, which is not surprising given that their TCM-based diagnostic
patterns are all-linked (interrelated) and TCM-based syndromes subtypes are not
independent but with dynamic changes towards different direction [13], [14].
However, we did observe tendency of clusters within the subtypes, with minor

overlap in the PCA analysis.

10 [T 1]
L1 EEE
P11 | [ ]]
11 111
1 117
| 1]
%R 11
[ ] Legend
I 11 ® O'D_Damp
65 3.2 - ® QYD_Stag
- 1.5
43 1 '| 0.75
5 il ek
2 W s
= p
g oW I
2V T [ 11
PC1 (48.9%)

Fig. 1: 3D PCA score plot based on plasma metabolite profiling, acquired and integrated from
GC-MS and LC-MS, for visualizing clusters of the three pre-T2DM subtypes (QYD,
QYD_Damp and QYD_Stag).
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Next, we used supervised models, including LDA, PLSDA, and OPLS-DA, in
order to identify relevant plasma metabolites (S-fig. 2). The OPLS-DA model
provided the highest R? and Q? values and was therefore used to identify the most
relevant variables based on score plots [42][43]. Furthermore, permutation tests
with 1000 iterations (p<0.05) showed a good performance of the model. Fig. 2
shows the OPLS-DA score plots for the first two principal components between

each pair of subtypes (see also S-fig. 3).

c)

ssssssssss

a) b)

“Parniftation: p=0.001

Fig. 2: OPLS-DA score plots of plasma metabolite profilling (integrated from LC-MS and GC-
MS) for comparing differences between each pair of subtypes. a) QYD vs. QYD _Damp; b) QYD
vs. QYD_Stag; and ¢) QYD _Damp vs. QYD_Stag.

Table 1 summarizes the relevant metabolites (defined as the combination of
covariance |p[1]/>0.7 and correlation coefficient |p(corr)[>0.3[43]) for each pair of
groups, together with their contribution between each pair of subtypes (QYD vs.
QYD_Damp, QYD vs. QYD_Stag, and QYD_Stag vs. QYD_Damp). As shown in
Table 1, 15 of the 18 metabolites that contributed to the differentiation between
QYD and QYD_Damp are long-chain non-polar lipids (11 TGs and 4 ChEs); these
metabolites were higher in the QYD _Damp group than in the QYD group.
Fourteen of these same metabolites (10 TGs and 4 ChEs) were also higher in the
QYD Stag group than in the QYD group. Thus, we conclude that an increase in
long-chain non-polar lipids is associated with the QYD Damp and QYD Stag

groups.
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The physiological mechanisms that underlie the early phases of T2DM have
been linked to lifestyle issues such as the consumption of a diet high in fat and
calories [44]-[47], which is similar to chronic fatigue syndrome and/or mild
inflammatory status [17]. Triglycerides are the precursors of phospholipids, which
are the building blocks of cell membranes and play an important role in energy
homeostasis. Cholesterol esters are a stored form of cholesterol that is normally
exported as a high-density lipoprotein (HDL) and returned to the liver. High levels
of cholesterol and triglycerides (hypercholesterolemia and hypertriglyceridemia,
respectively) are associated with fat accumulation, atherosclerosis, and
cardiovascular disease [48], [49]. Therefore, patients in the pre-T2DM subgroups
QYD Damp and QYD Stag may have an increased risk of developing

atherosclerosis and/or cardiovascular disease in a later disease stage.

Table 1: List of relevant metabolites identified by OPLS-DA

QYD_Damp. vs. QYD QYD_Stag. vs. QYD QYD_Stag. vs. QYD_Damp.
Metabolite Change Metabolite Change Metabolite Change
C52 5 TG 1 C22 5 ChE 1 Beta-Alanine 1
C54 6 TG 1 C54 7 TG 1 6926ukx10* !
C54 5 TG 1 C54 6 TG 1 1-Methylhistidine % 10227\01.03 uk x 45* !
C54 7 TG 1 €58 10 TG 1 31944uk05* !
C56 8 TG 1 €52 6 TG 1
C56 7 TG 1 C56 8 TG 1
€56 9 TG 1 CI8 3 ChE 1
C58 8 TG 1 €52 5 TG 1
1-Methylhistidine % 10227\01.03 uk x 45* 1 22 6 ChE 1
C58 9 TG 1 C56_7_TG 1
C52 6 TG 1 €56 9 TG 1
C18 3 ChE 1 20 3 ChE 1
C16 0 ChE 1 C54 5 TG 1
(22 6 ChE 1 C58 9 TG 1
(20 3 ChE 1 31944uk05 1
Creatinine 1
1-Palmitoyl-L-alpha-lysophosphatidic acid 1
1-Stearoyl-sn-glycero-3-phosphocholine 1

1, increase; |, decrease.
* Structural unidentified metabolites in GC-MS untargeted measurement.
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Although TGs and ChEs were increased in both the QYD Damp and
QYD _Stag groups relative to the QYD group, these two groups had several
metabolic differences (Table 1). The relatively lower levels of amine metabolites in
the QYD _Stag group (and/or the relatively higher levels in the QYD Damp group)
may suggest that the difference between the QYD Stag and QYD Damp subtypes
is based primarily in differences in the TCA cycle and/or muscle catabolism
processes [50]. In summary, 23 metabolites contribute to the stratification of pre-
T2DM subtypes. Thus, different subtypes of pre-T2DM may be discriminated
based on differences in plasma metabolomics, including plasma lipids and amine

metabolites.

Previously, Wei, et al. reported that urine metabolomics can be used to reflect
changes in carbohydrate metabolism and renal function in patients with QYD Stag
syndrome; specifically, two of the three TCM-based subtypes could be stratified
[17]. In contrast, plasma metabolomics provides stratification among the three
subgroups, which is likely due to the use of a lipidomics platform, which measures
a class of compounds that cannot be measured using urine metabolomics. This
finding suggests that measuring lipid metabolomics is important for accurately

subtyping pre-T2DM.

3.2 Correlation between metabolomics and UPE

We also measured UPE in our cohort of subjects with pre-T2DM. Stratification of
the three TCM-based syndrome subtypes using 16 UPE parameters has been
studied previously [27]. Given that both plasma metabolomics and UPE can stratify
subjects into pre-T2DM subgroups, plasma metabolomics data may be used to
obtain biochemical insight into UPE [51]-{53]. To explore the relationship
between these two approaches, we used Spearman’s rank correlation coefficient to

establish a correlation-based metabolite-to-UPE network. Such a correlation
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network may provide additional information that may further stratify disease

subtypes and may provide a biochemical interpretation of UPE parameters.

We generated correlation networks between the 23 metabolites and 16 UPE
parameters that contributed to the stratification of subtypes in order to visualize the
most relevant correlations related to the three subtypes (Figure 3). These networks
revealed clearly distinct distributions of UPE-to-metabolite correlations between
the three subtypes. Specifically, the QYD Damp subtype contained relatively few
correlations, whereas the QYD and QYD _Stag subtypes contained relatively more
positive and negative correlations, respectively. Moreover, although clear links are
visible between UPE parameters and specific classes of metabolites (e.g., TGs and
ChEs), the correlations differ among the subtypes. The differences between the
three networks provide a clear distinction between the subgroups and might serve

as an additional diagnostic tool.
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4. Conclusions and perspectives

Here, we report that plasma metabolomics can be used to stratify the three TCM-
based subtypes of early-stage type 2 diabetes, providing better stratification than
urine metabolomics. Specifically, increased levels of plasma lipids such as TGs
and ChEs may indicate a relatively higher risk of developing cardiovascular
disease among patients with specific subtypes. In addition, we used UPE as a non-
invasive method for subtyping pre-T2DM, and the UPE parameters were correlated
with specific plasma metabolites—primarily lipid metabolites—and these
correlations differed among the three subtypes. Thus, combining UPE and plasma
metabolomics provides additional insight into the diagnosis of disease and the

underlying biochemistry of UPE from a systems biology perspective.

The ability to identify the pre-T2DM syndrome subtype based on TCM is
essential for achieving a personalized treatment plan, thereby significantly
improving patient care. These results provide a window of opportunity for
combining metabolomics with UPE in order to achieve personalized medicine and
improve the early diagnosis of disease. Nevertheless, metabolomics platforms do
not necessarily cover the entire metabolome, and choices must be made based on
the metabolomics platforms that are currently available. Given the difficulties
associated with obtaining comprehensive information regarding the dynamic
changes reflected by measuring metabolomics, linking metabolomics to UPE under
the guidance of TCM-based diagnostics is particularly attractive, promoting the
carly diagnosis of T2DM. Additional research is needed in order to expand the
correlation networks between metabolites and UPE parameters. In addition, current
approaches for stratifying T2DM are based on various criteria, which must be
consistent for further clinical diagnosis. Therefore, additional research is needed in

order to understand TCM-based concepts such as disease syndromes and subtypes.
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Supplementary information

S-table 1. Preliminary variables in the MS data identified by ANOVA (p<0.1)

Compounds p-value Post-hoc test(Fisher's LSD) between groups
Metabolites in GC-MS
Citric acid 0.018 QYD - QYD_Damp; QYD _Damp - QYD_Stag
Creatinine 0.019 QYD - QYD_Damp; QYD_Damp - QYD_Stag
L-Threonine 0.028 QYD - QYD_Damp; QYD - QYD_Stag
Beta-Alanine 0.039 QYD _Damp - QYD_Stag
D-Ribulose or D-Xylulose 0.049 QYD - QYD_Damp
31944 uk 05 0.052 QYD - QYD_Stag; QYD_Damp - QYD_Stag
1-Stearoyl-sn-glycero-3-phosphocholine 0.054 QYD - QYD_Damp; QYD - QYD_Stag
1-Methylhistidine % 10227\01.03 uk x 45 0.054 QYD _Damp - QYD_Stag
VP9pl uk17 0.054 QYD - QYD_Damp; QYD - QYD_Stag
unknown 39d 0.06 QYD _Damp - QYD_Stag
Myo-inositol-1,2-cyclicphosphate % unknown 0.065 QYD_Damp- QYD_Stag
6926 uk x 10 0.068 QYD_Damp - QYD_Stag
31944 uk 04 0.073 QYD_Damp- QYD_Stag
1-Palmitoyl-L-alpha-lysophosphatidic acid 0.091 QYD - QYD_Damp; QYD - QYD_Stag
Metabolites in LC-MS
C56 9 TG 0.005 QYD - QYD_Damp; QYD - QYD_Stag
C54 6 TG 0.024 QYD - QYD_Damp; QYD - QYD_Stag
C58 10 TG 0.027 QYD - QYD_Damp; QYD - QYD_Stag
C54 5 TG 0.031 QYD - QYD_Damp; QYD - QYD_Stag
C54_7_TG 0.035 QYD - QYD_Damp; QYD - QYD_Stag
C52 5 TG 0.044 QYD - QYD_Damp; QYD - QYD_Stag
C18_3 ChE 0.050 QYD - QYD_Damp; QYD - QYD_Stag
C20_3 _ChE 0.056 QYD - QYD_Damp; QYD - QYD_Stag
C58 9 TG 0.056 QYD - QYD_Damp
C52_6_TG 0.061 QYD - QYD_Damp; QYD - QYD_Stag
C22_6_ChE 0.070 QYD - QYD_Damp; QYD - QYD_Stag
C58 8 TG 0.081 QYD - QYD_Damp
C38 3 PC 0.085 QYD - QYD_Damp; QYD - QYD_Stag
C16_0_ChE 0.085 QYD - QYD_Damp; QYD - QYD_Stag
C56_7_TG 0.086 QYD - QYD_Damp; QYD - QYD_Stag
C40_5_PC 0.091 QYD - QYD_Stag
C56 8 TG 0.092 QYD - QYD Damp
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S-fig. 1: Box plots summarizing the 32 preliminary variables (plasma metabolites detected by
LC-MS and GC-MS, identified by ANOVA (p<0.1)) in pre-T2DM subjects. Individual metabolite
(peak area ratio between target metabolites and relevant internal standard) for the three groups are
illustrated using boxplots after logarithmic transformation and pareto-scaling for data normal
distribution. The metabolites which differed significantly based on ANOVA (p<0.05) were then
followed by a post-hoc analysis (Fisher’s least significant difference method) to show between which
two groups the differences are significant (*).
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QYD vs. QYD_D ‘ ’ QYDvs. QYD_S ‘ ’ QYD_D vs. QYD_S

a)

c)

) OPLS-DA | |~

S-fig. 2: Performance comparison between three supervised multivariate analysis models (LDA,
PLSDA, and OPLS-DA), based on metabolite profiling in plasma of pre-T2DM subjects
detected and integrated by LC-MS and GC-MS. A Permutation test with 1000 iterations (p<0.05)
as well as the R2 and Q2 showed that the OPLS-DA model performed best.
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