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Abstract 

Ethnopharmacological relevance: The prevalence of type 2 diabetes mellitus 

(T2DM) is increasing rapidly worldwide. Because of the limited success of generic 

interventions, focus has shifted toward personalized strategies, particularly in early 

stages of the disease. Traditional Chinese medicine (TCM) is based on a systems 

view combined with personalized strategies and has improved our knowledge with 

respect to personalized diagnostics. From a systems biology perspective, this 

understanding can be improved in order to yield a biochemical basis for such 

strategies, for example using metabolomics combined with other system-based 

diagnostic methods such as ultra-weak photon emission (UPE). In this respect, 

UPE has been used successfully to support TCM-based subtyping. Combining 

these technologies will further support TCM-based subtyping of diseases such as 

T2DM. 

Aim of the study: The aim of this study was to investigate the feasibility of using 

plasma metabolomics to stratify the following TCM-based subtypes: Qi-Yin 

deficiency, Qi-Yin deficiency with dampness, and Qi-Yin deficiency with 

stagnation. Furthermore, we studied the relationship between plasma metabolomics 

and UPE with respect to TCM-based subtyping in order to obtain biochemical 

information for further interpreting disease subtypes. 

Materials and methods: Plasma samples obtained from 44 subjects were extracted 

and analyzed using both liquid chromatography/tandem mass spectrometry and gas 

chromatography/tandem mass spectrometry. We then profiled various classes of 

metabolites, including amine metabolites, organic acids, sugars, and 

lysophosphatidic acid‒derived metabolites, as well as lipids, including 

sphingomyelin phosphatidylcholine, phosphoethanolamine, lyso-
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phosphatidylcholine, lyso-phosphoethanolamine, , cholesterol esters and 

triglycerides. Multivariate analysis (principal component analysis and orthogonal 

projections to latent structures discriminant analysis) was used to analyze the 

metabolomics profiles and to study TCM-based stratification. Finally, Spearman’s 

rank correlation-based networks were used to correlate the metabolites with the 

UPE parameters. 

Results and discussion: Principal component analysis of plasma metabolites 

revealed differences among the TCM-based pre-T2DM subtypes. Relatively high 

levels of lipids (e.g., triglycerides and cholesterol esters) were important 

discriminators of two of the three subtypes and may be associated with a higher 

risk of cardiovascular disease. Correlation networks revealed that plasma 

metabolomics and UPE yielded similar TCM-based subtypes. Finally, plasma 

metabolomics data indicate that the lipid profile is an essential component captured 

by UPE with respect to stratifying subtypes of T2DM.  

Conclusions: Metabolic differences exist among different TCM-based subtypes of 

pre-T2DM, and profiling plasma metabolites can be used to discriminate among 

these subtypes. Plasma metabolomics provides biochemical insights into system-

based UPE measurements. 

Key words: Type 2 diabetes mellitus, plasma metabolites, disease subtypes, ultra-

weak photon emission, correlation networks



Traditional Chinese medicine-based subtyping of early-stage type 2 diabetes  

127 

1. Introduction 

Type 2 diabetes mellitus (T2DM) is a chronic, devastating complex disease. T2DM 

is characterized by increased fasting plasma glucose levels, impaired postprandial 

insulin secretion, decreased insulin sensitivity, and impaired pancreatic beta-cell 

function [1]. In addition, patients with T2DM have increased levels of 

inflammatory factors such as TNFα, IL-6, IL-8, and reactive active species [2], [3], 

altered levels of hormones, peptides, proteins, and enzyme activity, as well as other 

metabolic perturbations [4]. Striking, nearly all of these metabolic changes are 

often present years before the patient presents with clinical symptoms leading to a 

diagnosis of T2DM [5], [6]. 

Based on epidemiology studies, an estimated 285 million individuals are 

affected by diabetes worldwide, and this number continues to increase [7]. 

Furthermore, this number is likely an underestimate, as many individuals are not 

diagnosed in an early stage due to insufficient knowledge regarding the multi-

symptom relationships at a systems level [8], [9]. Receiving a diagnosis only in a 

later stage of diabetes—together with the severe complications associated with 

disease progression—can lead to high costs and can reduce the efficacy of 

treatment [10]. For example, long-term dysglycemia increases the risk of severe 

complications such as hypertension, blindness, renal failure, and cardiovascular 

disease [11], [12]. These complications reduce quality of life and are a major cause 

of morbidity, hospitalization, and mortality among patients with diabetes. Current 

diagnostic tests are based primarily on a single screening tool such as the oral 

glucose tolerance test or measuring fasting plasma glucose. Understanding the 

symptoms that develop in an early stage of the disease and developing indicators of 

disease progression would likely contribute to improving both prevention and 

treatment strategies, including strategies based on changes in lifestyle. Moreover, 

treatments based on generic observations—which have led to the notion of one 

drug-one target-one disease (or one-size-fits-all)—are extremely limited, 
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particularly in early stages of the disease. Therefore, system-based approaches are 

needed in order to achieve personalized approaches. 

Integrative holistic forms of medicine such as traditional Chinese medicine 

(TCM) provide descriptions of disease syndromes and subtypes at a systems level, 

including descriptions that can be used to diagnose early syndromes of chronic 

diseases. Such descriptions can be used as a guide or reference in order to achieve 

personalized medicine. In this respect, TCM has provided descriptions of pre-

T2DM syndromes, indicating its potential for helping develop personalized 

medicine [13], [14]. To bridge TCM with Western medicine, evidence-based 

scientific data is needed at the biochemical level. Thus, modern systems biology 

research—including metabolomics—is a promising approach for exploring the 

biochemistry underlying TCM subtyping. 

Metabolic disorders are often present for years before the appearance of clinical 

disease, and metabolomics is a widely used technique for predicting and 

diagnosing disease [15]. Metabolomics provides a comprehensive profile of small 

molecular metabolites in biological systems and can be used as a readout of the 

organism’s physiological status [16]. In principle, this approach is well suited to 

studying complex TCM-based diagnostics. Metabolomics is generally performed 

on fluids such as blood, urine, and cerebrospinal fluid. Urine is commonly used for 

metabolomics, as it easily obtained, contains information regarding the excretion of 

products, and can reflect how metabolic processes change during the disease 

process. Several studies have used urine metabolomics to explore TCM-based 

diagnostics and T2DM syndrome subtypes [17], [18]. In addition to urine, blood 

also contains information regarding the body’s regulatory status and dynamics. 

Thus, performing metabolomics on different fluids can provide complementary 

information, thereby improving our understanding of T2DM. An explorative study 

at TNO (https://clinicaltrials.gov/ct2/show /NCT00469287) was designed in which 

44 pre-T2DM subjects received a diagnosis by a panel of three TCM-trained 
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physicians [17], and we explored these TCM-based subtypes using plasma 

metabolomics. 

Recently, a sensitive, non-invasive technique has been proposed for supporting 

TCM-based diagnostics [19]. This technique, called ultra-weak photon emission 

(UPE), is used to measure spontaneous photon emissions from the skin’s surface 

[20]. Because UPE reflects the body’s physiological and pathological status, it 

represents a promising tool for use in clinical diagnostics at a systems level [21], 

[22]. The underlying biochemistry of UPE is related to metabolism and is 

correlated with reactive oxygen species in oxidative metabolic processes [23]–[26]. 

Although the use of UPE properties for characterizing TCM-based diagnostics has 

been summarized previously [19], [20], [27], further understanding of the 

molecular basis of UPE is needed. Therefore, combining metabolomics with TCM-

based diagnostics can be used to investigate the biological meaning of UPE and to 

explore the added value of each technology. Importantly, UPE was used previously 

to subtype the same cohort of 44 subjects with pre-T2DM [27], thereby enabling us 

to study the correlation between UPE and plasma metabolomics.  
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2. Materials and Methods 

2.1 Inclusion criteria for the selection of pre-diabetic subjects and the diagnosis 

of syndrome subtypes based on TCM 

The recruitment of subjects and the diagnosis of pre-T2DM subtypes by TCM-

trained physicians were described previously [17]. In brief, clinical parameters 

were obtained from 44 male Dutch subjects who met the following inclusion 

criteria: 30-70 years of age, body mass index of 26-35 kg/m2, and a fasting glucose 

level of 6.1-6.9 mmol/L. No other clinical abnormalities or evidence of diabetic 

complications were detected. The subjects were then diagnosed separately in a 

blinded study by three TCM-certified physicians with at least five years of training 

in TCM and at least ten years of clinical experience. Three categories were based 

on TCM-based diagnostic terms, and 85% consensus was reached among the three 

CM physicians with respect to diagnosing the subjects. These three categories are 

defined as follows: QYD (Qi-Yin deficiency, n=15 subjects), QYD_Damp (Qi-Yin 

deficiency with dampness, n=20 subjects), and QYD_Stag (Qi-Yin deficiency with 

stagnation, n=9 subjects). Blood samples were collected after overnight fasting and 

used for the metabolomics study. In addition, UPE was measured from the palmar 

and dorsal surfaces of both hands.   

 

2.2 Ethics statement 

This explorative study was designed and conducted by TNO (Zeist, the 

Netherlands; https://clinicaltrials.gov/ct2/show/NCT00469287) and was approved 

by the Medical Ethics Committee of Tilburg (METOPP).  

 

2.3 Data acquisition 

2.3.1 Plasma metabolomics profiling 
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Metabolic profiles were measured by the Netherlands Organization for Applied 

Scientific Research (TNO, Zeist, the Netherlands). Heparinized blood samples 

were collected, and plasma was obtained by centrifugation (2000×g at 4ºC for 15 

min). The plasma samples were aliquoted and stored at -20ºC prior to metabolite 

extraction and mass spectrometry. 

Using a gas chromatography/mass spectrometry (GC-MS) platform, a large 

variety of metabolic classes were measured, including amine metabolites, organic 

acids, sugars, and lysophosphatidic acid (LPA)-derived metabolites. The details of 

the extraction and the GC-MS analysis protocol have been published previously 

[28]. In brief, 100-μl aliquots of plasma were spiked with a mixture of internal 

standards (ISTDs) and deproteinized with methanol. After centrifugation, the 

supernatant was transferred to a new sample vial for evaporation and two-step 

derivatization. The derivatized extracts were then analyzed using an Agilent 6890 

gas chromatograph on a DB5-MS capillary column (30 m × 250 µm i.d., 0.25-µm 

film thickness; J&W Scientific, Folsom, CA) coupled to an Agilent 5973 mass 

selective detector; helium was used as the carrier gas at a flow rate of 1.7 ml/min 

for temperature-programmed gradient chromatographic separation. The raw data 

were pre-processed and exported using ChemStation G1701CA software (version 

D.01.02, Agilent), providing response ratios to the appropriate internal ISTD for 

each metabolite; these ratios were used for further statistical analysis. 

For liquid chromatography/tandem mass spectrometry (LC-MS) lipid 

measurements, seven classes of lipids, including both polar lipids—such as 

phosphatidylcholine, phosphoethanolamine, lyso-phosphatidylcholine, lyso-

phosphoethanolamine, and sphingomyelin —and non-polar lipids—such as 

cholesterol esters and triglycerides—were investigated using targeted analysis as 

reported previously by van Wietmarschen et al. [29] and Draisma et al. [30]. In 

brief, 10-µl aliquots of plasma were deproteinized by the addition of isopropanol 

containing a mixture of ISTDs. The lipids were separated and analyzed using a 

TSQ Quantum Discovery Triple Quad mass spectrometer coupled to a Surveyor 
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MS HPLC system on an Alltech Prosphere C4 300Å column (150 x 3.2 mm, 

particle size of 5 μm; Alltech, Lexington, KY) in combination with a Symmetry 

300 C4 guard column (2.1 × 10 mm, particle size of 3.5 μm; Waters, Milford, MA) 

in positive ionization mode. The peak areas of the target lipids were integrated, and 

raw data were exported using LCQuan software (version 2; Thermo Fisher 

Scientific, Waltham, MA), yielding response ratios to the appropriate internal 

ISTD for each metabolite; these ratios were used for further statistical analysis. 

During the GC-MS and LC-MS experiments, quality control (QC) samples were 

prepared by pooling equal amounts of plasma from each sample, then dividing the 

pooled samples into aliquots; these QC samples were used to check the 

performance of the LC-MS platform as well as to identify temporal trends in the 

acquired data. The relative standard deviation (RSD) of each target peak in the QC 

samples was used to confirm the quality of the data acquired from each analytical 

platform.  

2.3.2 UPE measurements 

UPE signals were measured from the same cohort of 44 subjects. A photomultiplier 

system (provided by Meluna Research B.V., Geldermalsen, the Netherland) with 

two detecting heads located at the top of a dark chamber was used to measure UPE. 

Each detecting head contains a 9558QB photomultiplier tube within a spectral 

sensitivity range of 190-650 nm (Electron Tubes Enterprises Ltd., Ruislip, UK) and 

an electronically controlled shutter. The dark chamber was maintained at 20±1.0°C. 

The settings used to measure UPE have been described previously [31], [32]. All 

measurements were controlled automatically via computer-driven software. UPE 

signals were measured at the following four hand surfaces: left dorsal (LD), right 

dorsal (RD), left palm (LP), and right palm (RP). 

 

2.4 Data preprocessing and statistical analysis 
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2.4.1 Metabolomics data processing and analysis 

Before performing a statistical analysis on the metabolomics data, the log-

transformed dataset was processed using various scaling options (i.e., autoscaling, 

range scaling, and pareto-scaling) using the online software package 

MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) [33]. The pareto-scaling 

approach (mean-centered and scaling by the square root of the standard deviation 

of each variable) was chosen because it provided the best grouping performance, 

consistently explaining the largest variabilities when considering the same number 

of principal components (both 2D and 3D) [34]–[36]. Preliminary selection of 

variables prior to multivariate analysis is needed in order to: i) limit the dataset of 

variables for reliably separating the sample groups; ii) remove irrelevant and/or 

confounding variables; and iii) decide which variables to retain for the multivariate 

analysis; however, this selection is not needed in order to identify potential 

biomarkers, which has been applied in metabolic profiling studies [37], using p-

values obtained from a one-way analysis of variance (ANOVA) (p<0.1) in GC-MS 

and LC-MS. Multiple comparisons, including principal component analysis (PCA) 

and orthogonal projections to latent structures discriminant analysis (OPLS-DA), 

were conducted using MetaboAnalyst 3.0, which provides standard validation 

information, including cross-validation and a permutation test to prevent over-fit of 

the models to the data [33]. 

2.4.2 Acquisition of UPE data and derived parameters 

From a 50-ms bin, the following ten UPE properties were calculated from all four 

hand surfaces: strength, FF0, FF1, FF2, alpha, gamma, theta, phi, SSI, and SSR 

[31], [32], [38]. Thus, a total of 40 UPE parameters were obtained from each 

subject.  

2.4.3 Correlation analysis 

The statistics software package R (version 3.0.3) was used to calculate Spearman’s 

rank correlation coefficient in order to examine the relationship between the 
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metabolites and UPE parameters. A graphical overview of the correlation networks 

was created using CytoScape version 3.3.0 (http://www.cytoscape.org) with the 

MetScape plugin [39], [40]. Positive and negative correlations are indicated by 

positive and negative values of r, respectively. 
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3. Results and Discussion 

3.1 Subtyping based on plasma metabolomics  

TCM-based diagnostics is based on several standard diagnostic steps, including 

inspection, listening and smelling, inquiry and question, and palpation. The 

outcomes from these steps are combined to create an individual profile, which is 

used to establish a diagnosis. In this study, 26 variables were determined using 

TCM-based diagnostics [17]. From this exploratory study, plasma samples were 

used to obtain evidence-based information that was used to help subtype the pre-

T2DM subjects.  

We used two validated metabolomics methods based on GC-MS and LC-MS. 

GC-MS yielded 147 untargeted metabolites, and LC-MS yielded 110 targeted 

metabolites; all of these metabolites were included in the total metabolomics 

profile. The metabolites detected by GC-MS included various metabolic classes, 

but primarily included amine metabolites, organic acids, sugars, and fatty acids 

such as LPA and LPA-derived metabolites. The metabolites detected by LC-MS 

included seven classes of lipids, including both polar lipids such as 

phosphatidylcholine, phosphoethanolamine, lyso-phosphatidylcholine, lyso-

phosphoethanolamine, and sphingomyelin and non-polar lipids such as cholesterol 

esters (ChEs) and triglycerides (TGs). Given the relatively small number of 

subjects (44) compared to the large number of total variables (257), a first step in 

selecting variables was required before proceeding with a multivariate analysis; 

this step allowed us to optimize the variable/object ratio for discriminant type 

approaches, and it allowed us to remove potential irrelevant and/or confounding 

variables [37]. A total of 32 preliminary variables were selected based on an 

ANOVA analysis (p<0.1); these variables included 14 plasma metabolites 

identified by GC-MS and 17 plasma lipids identified by LC-MS. These variables 

were then used for subsequent multivariate analyses, including PCA, Partial least 

squares discriminant analysis (PLSDA), and OPLS-DA (see S-table 1 and S-fig. 1).  
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The first step in our analysis focused on investigating whether plasma 

metabolomics could be used to discriminate between the three TCM-based 

syndrome subtypes of pre-T2DM (i.e., QYD vs. QYD_Damp, QYD vs. QYD_Stag, 

and QYD_Damp vs. QYD_Stag). A 3D PCA plot was used to visualize the natural 

distribution of the three groups in 3-dimensional space [37], [41]. The first three 

principal components analyzed described 66.5% of the total variance in the plasma 

metabolome (Fig. 1). We found no large distance between the three subtypes 

reflected by PCA, which is not surprising given that their TCM-based diagnostic 

patterns are all-linked (interrelated) and TCM-based syndromes subtypes are not 

independent but with dynamic changes towards different direction [13], [14]. 

However, we did observe tendency of clusters within the subtypes, with minor 

overlap in the PCA analysis.  

 

Fig. 1: 3D PCA score plot based on plasma metabolite profiling, acquired and integrated from 
GC-MS and LC-MS, for visualizing clusters of the three pre-T2DM subtypes (QYD, 
QYD_Damp and QYD_Stag). 
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Next, we used supervised models, including LDA, PLSDA, and OPLS-DA, in 

order to identify relevant plasma metabolites (S-fig. 2). The OPLS-DA model 

provided the highest R2 and Q2 values and was therefore used to identify the most 

relevant variables based on score plots [42][43]. Furthermore, permutation tests 

with 1000 iterations (p<0.05) showed a good performance of the model. Fig. 2 

shows the OPLS-DA score plots for the first two principal components between 

each pair of subtypes (see also S-fig. 3).  

 

Fig. 2: OPLS-DA score plots of plasma metabolite profilling (integrated from LC-MS and GC-
MS) for comparing differences between each pair of subtypes. a) QYD vs. QYD_Damp; b) QYD 
vs. QYD_Stag; and c) QYD_Damp vs. QYD_Stag. 

Table 1 summarizes the relevant metabolites (defined as the combination of 

covariance |p[1]|>0.7 and correlation coefficient |p(corr)|>0.3[43]) for each pair of 

groups, together with their contribution between each pair of subtypes (QYD vs. 

QYD_Damp, QYD vs. QYD_Stag, and QYD_Stag vs. QYD_Damp). As shown in 

Table 1, 15 of the 18 metabolites that contributed to the differentiation between 

QYD and QYD_Damp are long-chain non-polar lipids (11 TGs and 4 ChEs); these 

metabolites were higher in the QYD_Damp group than in the QYD group. 

Fourteen of these same metabolites (10 TGs and 4 ChEs) were also higher in the 

QYD_Stag group than in the QYD group. Thus, we conclude that an increase in 

long-chain non-polar lipids is associated with the QYD_Damp and QYD_Stag 

groups.  
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The physiological mechanisms that underlie the early phases of T2DM have 

been linked to lifestyle issues such as the consumption of a diet high in fat and 

calories [44]–[47], which is similar to chronic fatigue syndrome and/or mild 

inflammatory status [17]. Triglycerides are the precursors of phospholipids, which 

are the building blocks of cell membranes and play an important role in energy 

homeostasis. Cholesterol esters are a stored form of cholesterol that is normally 

exported as a high-density lipoprotein (HDL) and returned to the liver. High levels 

of cholesterol and triglycerides (hypercholesterolemia and hypertriglyceridemia, 

respectively) are associated with fat accumulation, atherosclerosis, and 

cardiovascular disease [48], [49]. Therefore, patients in the pre-T2DM subgroups 

QYD_Damp and QYD_Stag may have an increased risk of developing 

atherosclerosis and/or cardiovascular disease in a later disease stage. 

Table 1: List of relevant metabolites identified by OPLS-DA 

QYD_Damp. vs. QYD QYD_Stag. vs. QYD QYD_Stag. vs. QYD_Damp. 

Metabolite Change Metabolite Change Metabolite Change 

C52_5_TG ↑ C22_5_ChE ↑ Beta-Alanine ↓ 

C54_6_TG ↑ C54_7_TG ↑ 6926ukx10* ↓ 

C54_5_TG ↑ C54_6_TG ↑ 1-Methylhistidine % 10227\01.03 uk x 45* ↓ 

C54_7_TG ↑ C58_10_TG ↑ 31944uk05* ↓ 

C56_8_TG ↑ C52_6_TG ↑ 
  

C56_7_TG ↑ C56_8_TG ↑ 
  

C56_9_TG ↑ C18_3_ChE ↑ 
  

C58_8_TG ↑ C52_5_TG ↑ 
  

1-Methylhistidine % 10227\01.03 uk x 45* ↑ C22_6_ChE ↑ 
  

C58_9_TG ↑ C56_7_TG ↑ 
  

C52_6_TG ↑ C56_9_TG ↑ 
  

C18_3_ChE ↑ C20_3_ChE ↑ 
  

C16_0_ChE ↑ C54_5_TG ↑ 
  

C22_6_ChE ↑ C58_9_TG ↑ 
  

C20_3_ChE ↑ 31944uk05 ↓ 
  

Creatinine ↑ 
    

1-Palmitoyl-L-alpha-lysophosphatidic acid ↓ 
    

1-Stearoyl-sn-glycero-3-phosphocholine ↓ 
    

↑, increase; ↓, decrease.  
*, Structural unidentified metabolites in GC-MS untargeted measurement. 
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Although TGs and ChEs were increased in both the QYD_Damp and 

QYD_Stag groups relative to the QYD group, these two groups had several 

metabolic differences (Table 1). The relatively lower levels of amine metabolites in 

the QYD_Stag group (and/or the relatively higher levels in the QYD_Damp group) 

may suggest that the difference between the QYD_Stag and QYD_Damp subtypes 

is based primarily in differences in the TCA cycle and/or muscle catabolism 

processes [50]. In summary, 23 metabolites contribute to the stratification of pre-

T2DM subtypes. Thus, different subtypes of pre-T2DM may be discriminated 

based on differences in plasma metabolomics, including plasma lipids and amine 

metabolites.  

Previously, Wei, et al. reported that urine metabolomics can be used to reflect 

changes in carbohydrate metabolism and renal function in patients with QYD_Stag 

syndrome; specifically, two of the three TCM-based subtypes could be stratified 

[17]. In contrast, plasma metabolomics provides stratification among the three 

subgroups, which is likely due to the use of a lipidomics platform, which measures 

a class of compounds that cannot be measured using urine metabolomics. This 

finding suggests that measuring lipid metabolomics is important for accurately 

subtyping pre-T2DM. 

 

3.2 Correlation between metabolomics and UPE  

We also measured UPE in our cohort of subjects with pre-T2DM. Stratification of 

the three TCM-based syndrome subtypes using 16 UPE parameters has been 

studied previously [27]. Given that both plasma metabolomics and UPE can stratify 

subjects into pre-T2DM subgroups, plasma metabolomics data may be used to 

obtain biochemical insight into UPE [51]–[53]. To explore the relationship 

between these two approaches, we used Spearman’s rank correlation coefficient to 

establish a correlation-based metabolite-to-UPE network. Such a correlation 
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network may provide additional information that may further stratify disease 

subtypes and may provide a biochemical interpretation of UPE parameters. 

We generated correlation networks between the 23 metabolites and 16 UPE 

parameters that contributed to the stratification of subtypes in order to visualize the 

most relevant correlations related to the three subtypes (Figure 3). These networks 

revealed clearly distinct distributions of UPE-to-metabolite correlations between 

the three subtypes. Specifically, the QYD_Damp subtype contained relatively few 

correlations, whereas the QYD and QYD_Stag subtypes contained relatively more 

positive and negative correlations, respectively. Moreover, although clear links are 

visible between UPE parameters and specific classes of metabolites (e.g., TGs and 

ChEs), the correlations differ among the subtypes. The differences between the 

three networks provide a clear distinction between the subgroups and might serve 

as an additional diagnostic tool.  
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4. Conclusions and perspectives 

Here, we report that plasma metabolomics can be used to stratify the three TCM-

based subtypes of early-stage type 2 diabetes, providing better stratification than 

urine metabolomics. Specifically, increased levels of plasma lipids such as TGs 

and ChEs may indicate a relatively higher risk of developing cardiovascular 

disease among patients with specific subtypes. In addition, we used UPE as a non-

invasive method for subtyping pre-T2DM, and the UPE parameters were correlated 

with specific plasma metabolites—primarily lipid metabolites—and these 

correlations differed among the three subtypes. Thus, combining UPE and plasma 

metabolomics provides additional insight into the diagnosis of disease and the 

underlying biochemistry of UPE from a systems biology perspective.  

The ability to identify the pre-T2DM syndrome subtype based on TCM is 

essential for achieving a personalized treatment plan, thereby significantly 

improving patient care. These results provide a window of opportunity for 

combining metabolomics with UPE in order to achieve personalized medicine and 

improve the early diagnosis of disease. Nevertheless, metabolomics platforms do 

not necessarily cover the entire metabolome, and choices must be made based on 

the metabolomics platforms that are currently available. Given the difficulties 

associated with obtaining comprehensive information regarding the dynamic 

changes reflected by measuring metabolomics, linking metabolomics to UPE under 

the guidance of TCM-based diagnostics is particularly attractive, promoting the 

early diagnosis of T2DM. Additional research is needed in order to expand the 

correlation networks between metabolites and UPE parameters. In addition, current 

approaches for stratifying T2DM are based on various criteria, which must be 

consistent for further clinical diagnosis. Therefore, additional research is needed in 

order to understand TCM-based concepts such as disease syndromes and subtypes. 



Traditional Chinese medicine-based subtyping of early-stage type 2 diabetes  

143 

5. Acknowledgement 

Min He is supported by the Chinese Scholarship Council (CSC) during her PhD 

study at Leiden University in Netherlands (Scholarship File no. 20108220166). 

Therefore the authors would like to give thanks for the support program from CSC. 

The authors thank Herman van Wietmarschen for providing support information of 

this study.  



Chapter 6 

144  

6. References 

[1] M. Virally, J.-F. Blicklé, J. Girard, S. Halimi, D. Simon, and P.-J. Guillausseau, “Type 
2 diabetes mellitus: epidemiology, pathophysiology, unmet needs and therapeutical 
perspectives,” Diabetes Metab., vol. 33, no. 4, pp. 231–244, 2007. 

[2] E. Wright, J. L. Scism-Bacon, and L. C. Glass, “Oxidative stress in type 2 diabetes: the role 
of fasting and postprandial glycaemia.,” Int. J. Clin. Pract., vol. 60, no. 3, pp. 308–314, 2006. 

[3] S. I. Ahmad, Ed., Diabetes: An Old Disease, a New Insight. Nottingham: Springer Science & 
Business Media, 2013. 

[4] C. D. Munhoz, J. O. Martins, G. A. Cerchiaro, C. Scavone, R. Curi, P. Sannomiya, D. 
Imunologia, and F. De Medicina, “Neutrophil function and metabolism in individuals with 
diabetes mellitus,” vol. 40, pp. 1037–1044, 2007. 

[5] A. Gonzalez-franquesa, A. M. Burkart, and E. Isganaitis, “What Have Metabolomics 
Approaches Taught Us About Type 2 Diabetes ?,” 2016. 

[6] A. G. Tabak, M. Jokela, T. Akbaraly, E. J. Brunner, M. Kivimäki, and D. R. Witte, 
“Trajectories of glycemia, insulin sensitivity and insulin secretion preceding the diagnosis of 
type 2 diabetes: the Whitehall II study,” Lancet, vol. 373, no. 9682, pp. 2215–2221, 2009. 

[7] J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, “Global estimates of the prevalence of diabetes 
for 2010 and 2030,” Diabetes Res. Clin. Pract., vol. 87, no. 1, pp. 4–14, 2010. 

[8] L. Chen, D. J. Magliano, and P. Z. Zimmet, “The worldwide epidemiology of type 2 diabetes 
mellitus—present and future perspectives,” Nat. Rev. Endocrinol., vol. 8, no. 4, pp. 228–236, 
Nov. 2011. 

[9] Centers for Disease Control and Prevention, “National Diabetes Statistics Report: Estimates 
of Diabetes and Its Burden in the United States,” 2014. 

[10] Wenya Yang, T. M. Dall, P. Halder, P. Gallo, S. L. Kowal, and P. F. Hogan, “Economic 
Costs of Diabetes in the U.S. in 2012,” Diabetes Care, vol. 36, no. 4, pp. 1033–1046, Apr. 
2013. 

[11] M. I. Mccarthy, “Genomics, type 2 diabetes, and obesity.,” N Engl J Med., vol. 363, no. 24, 
pp. 2339–2350, 2010. 

[12] M. I. Harris and R. C. Eastman, “Early detection of undiagnosed diabetes mellitus : a US 
perspective,” Diabetes Metab Res Rev., vol. 7560, no. July, pp. 230–236, 2000. 

[13] M. Jiang, C. Lu, C. Zhang, J. Yang, Y. Tan, A. Lu, and K. Chan, “Syndrome differentiation 
in modern research of traditional Chinese medicine,” J. Ethnopharmacol., vol. 140, no. 3, pp. 
634–642, Apr. 2012. 

[14] J. Guo, H. Chen, J. Song, J. Wang, L. Zhao, and X. Tong, “Syndrome Differentiation of 
Diabetes by the Traditional Chinese Medicine according to Evidence-Based Medicine and 
Expert Consensus Opinion.,” Evid Based Complement Altern. Med., vol. 2014, p. 492193, 
2014. 

[15] A. H. Zhang, H. Sun, S. Qiu, and X. J. Wang, “Recent highlights of metabolomics in chinese 
medicine syndrome research,” Evidence-based Complement. Altern. Med., vol. 2013, 2013. 

[16] R. Ramautar, R. Berger, J. van der Greef, and T. Hankemeier, “Human metabolomics: 
Strategies to understand biology,” Curr. Opin. Chem. Biol., vol. 17, no. 5, pp. 841–846, 2013. 

[17] H. Wei, W. Pasman, C. Rubingh, S. Wopereis, M. Tienstra, J. Schroen, M. Wang, E. Verheij, 



Traditional Chinese medicine-based subtyping of early-stage type 2 diabetes  

145 

and J. van der Greef, “Urine metabolomics combined with the personalized diagnosis guided 
by Chinese medicine reveals subtypes of pre-diabetes,” Mol. Biosyst., vol. 8, no. 5, pp. 
1482–91, Apr. 2012. 

[18] T. Wu, M. Yang, H. F. Wei, S. H. He, S. C. Wang, and G. Ji, “Application of metabolomics 
in traditional chinese medicine differentiation of deficiency and excess syndromes in patients 
with diabetes mellitus,” Evidence-based Complement. Altern. Med., vol. 2012, 2012. 

[19] M. He, M. Sun, E. van Wijk, H. van Wietmarschen, R. van Wijk, Z. Wang, M. Wang, T. 
Hankemeier, and J. van der Greef, “A Chinese literature overview on ultra-weak photon 
emission as promising technology for studying system-based diagnostics,” Complement. 
Ther. Med., vol. 25, pp. 20–26, 2016. 

[20] R. van Wijk, J. van der Greef, and E. van Wijk, “Human Ultraweak Photon Emission and the 
Yin Yang Concept of Chinese Medicine,” J. Acupunct. Meridian Stud., vol. 3, no. 4, pp. 
221–231, 2010. 

[21] J. A. Ives, E. van Wijk, N. Bat, C. Crawford, A. Walter, W. B. Jonas, R. van Wijk, and J. van 
der Greef, “Ultraweak Photon Emission as a Non-Invasive Health Assessment: A Systematic 
Review,” PLoS One, vol. 9, no. 2, p. e87401, Feb. 2014. 

[22] R. Van Wijk, E. Van Wijk, H. van Wietmarschen, and J. Van der Greef, “Towards whole-
body ultra-weak photon counting and imaging with a focus on human beings: A review,” J. 
Photochem. Photobiol. B Biol., vol. 139, pp. 39–46, Oct. 2014. 

[23] R. Van Wijk, E. Van Wijk, F. Wiegant, and J. Ives, “Free radicals and low-level photon 
emission in human pathogenesis: state of the art.,” Indian J. Exp. Biol., vol. 46, no. 5, pp. 
273–309, May 2008. 

[24] M. Cifra and P. Pospíšil, “Ultra-weak photon emission from biological samples: Definition, 
mechanisms, properties, detection and applications,” J. Photochem. Photobiol. B Biol., vol. 
139, pp. 2–10, Oct. 2014. 

[25] A. Prasad and P. Pospíšil, “Linoleic acid-induced ultra-weak photon emission from 
Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell 
membranes.,” PloS one, vol. 6, no. 7. p. e22345, Jan-2011. 

[26] M. Kobayashi, M. Takeda, T. Sato, Y. Yamazaki, K. Kaneko, K. Ito, H. Kato, and H. Inaba, 
“In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated 
with cerebral energy metabolism and oxidative stress.,” Neurosci. Res., vol. 34, no. 2, pp. 
103–13, Jul. 1999. 

[27] M. Sun, E. Van Wijk, S. Koval, R. Van Wijk, M. He, M. Wang, T. Hankemeier, and J. van 
der Greef, “Measuring ultra-weak photon emission as a non-invasive diagnostic tool for 
detecting early-stage type 2 diabetes: a step toward personalized medicine.” J. Photochem.  
Photobiol. B, vol. 166 , 86–93, Jan. 2017. 

[28] M. M. Koek, B. Muilwijk, M. J. Van Der Werf, and T. Hankemeier, “Microbial 
metabolomics with gas chromatography/mass spectrometry,” Anal. Chem., vol. 78, no. 4, pp. 
1272–1281, 2006. 

[29] H. A. Van Wietmarschen, J. Van Der Greef, Y. Schroën, and M. Wang, “Evaluation of 
symptom, clinical chemistry and metabolomics profiles during Rehmannia six formula (R6) 
treatment: An integrated and personalized data analysis approach,” J. Ethnopharmacol., vol. 
150, no. 3, pp. 851–859, 2013. 

[30] H. H. M. Draisma, T. H. Reijmers, I. Bobeldijk-Pastorova, J. J. Meulman, G. F. Estourgie-
Van Burk, M. Bartels, R. Ramaker, J. van der Greef, D. I. Boomsma, and T. Hankemeier, 



Chapter 6 

146  

“Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs,” 
OMICS, vol. 12, no. 1, pp. 17–31, 2008. 

[31] E. Van Wijk, R. Van Wijk, R. P. Bajpai, and J. van der Greef, “Statistical analysis of the 
spontaneously emitted photon signals from palm and dorsal sides of both hands in human 
subjects.,” J. Photochem. Photobiol. B., vol. 99, no. 3, pp. 133–43, Jun. 2010. 

[32] R. P. Bajpai, E. P. A. Van Wijk, R. Van Wijk, and J. Van Der Greef, “Attributes 
characterizing spontaneous ultra-weak photon signals of human subjects,” J. Photochem. 
Photobiol. B Biol., vol. 129, pp. 6–16, 2013. 

[33] J. Xia, I. V. Sinelnikov, B. Han, and D. S. Wishart, “MetaboAnalyst 3.0--making 
metabolomics more meaningful,” Nucleic Acids Res., pp. 1–7, 2015. 

[34] B. Worley and R. Powers, “Multivariate Analysis in Metabolomics,” Curr. Metabolomics, 
vol. 1, no. 1, pp. 92–107, 2013. 

[35] R. A. van den Berg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. van der 
Werf, “Centering, scaling, and transformations: improving the biological information content 
of metabolomics data.,” BMC Genomics, vol. 7, no. 1, p. 142, Jan. 2006. 

[36] K. Benkali, P. Marquet, J. Rérolle, Y. Le Meur, and L. Gastinel, “A new strategy for faster 
urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry.,” 
BMC Genomics, vol. 9, p. 541, 2008. 

[37] I. L. Petersen, G. Tomasi, H. S??rensen, E. S. Boll, H. C. B. Hansen, and J. H. Christensen, 
“The use of environmental metabolomics to determine glyphosate level of exposure in 
rapeseed (Brassica napus L.) seedlings,” Environ. Pollut., vol. 159, no. 10, pp. 3071–3077, 
2011. 

[38] R. Van Wijk, E. P. a Van Wijk, and R. P. Bajpai, “Photocount distribution of photons 
emitted from three sites of a human body.,” J. Photochem. Photobiol. B., vol. 84, no. 1, pp. 
46–55, Jul. 2006. 

[39] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. 
Schwikowski, and T. Ideker, “Cytoscape: a software environment for integrated models of 
biomolecular interaction networks.,” Genome Res., vol. 13, no. 11, pp. 2498–504, Nov. 2003. 

[40] J. Gao, V. G. Tarcea, A. Karnovsky, B. R. Mirel, T. E. Weymouth, C. W. Beecher, J. D. 
Cavalcoli, B. D. Athey, G. S. Omenn, C. F. Burant, and H. V. Jagadish, “Metscape: A 
Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human 
metabolic networks,” Bioinformatics, vol. 26, no. 7, pp. 971–973, 2010. 

[41] P. Yin, A. Peter, H. Franken, X. Zhao, S. S. Neukamm, L. Rosenbaum, M. Lucio, A. Zell, H. 
U. H??ring, G. Xu, and R. Lehmann, “Preanalytical aspects and sample quality assessment in 
metabolomics studies of human blood,” Clin. Chem., vol. 59, no. 5, pp. 833–845, 2013. 

[42] M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes, and J. Trygg, “OPLS discriminant 
analysis : combining the strengths of PLS-DA and SIMCA classification y,” no. February, pp. 
341–351, 2007. 

[43] S. Wiklund, E. Johansson, L. Sjöström, E. J. Mellerowicz, U. Edlund, J. P. Shockcor, J. 
Gottfries, T. Moritz, and J. Trygg, “Visualization of GC/TOF-MS-Based Metabolomics Data 
for Identification of Biochemically Interesting Compounds Using OPLS Class Models,” 
Anal. Chem., vol. 80, no. 1, pp. 115–122, Jan. 2008. 

[44] N. Esser, S. Legrand-Poels, J. Piette, A. J. Scheen, and N. Paquot, “Inflammation as a link 
between obesity, metabolic syndrome and type 2 diabetes,” Diabetes Res. Clin. Pract., vol. 
105, no. 2, pp. 141–150, 2014. 



Traditional Chinese medicine-based subtyping of early-stage type 2 diabetes  

147 

[45] T. J. Wang, M. G. Larson, R. S. Vasan, S. Cheng, E. P. Rhee, E. McCabe, G. D. Lewis, C. S. 
Fox, P. F. Jacques, C. Fernandez, C. J. O’Donnell, S. a Carr, V. K. Mootha, J. C. Florez, A. 
Souza, O. Melander, C. B. Clish, and R. E. Gerszten, “Metabolite profiles and the risk of 
developing diabetes.,” Nat. Med., vol. 17, no. 4, pp. 448–53, Apr. 2011. 

[46] R. M. Salek, M. L. Maguire, E. Bentley, D. V Rubtsov, T. Hough, M. Cheeseman, D. Nunez, 
B. C. Sweatman, J. N. Haselden, R. D. Cox, S. C. Connor, and J. L. Griffin, “A metabolomic 
comparison of urinary changes in type 2 diabetes in mouse, rat, and human.,” Physiol. 
Genomics, vol. 29, no. 2, pp. 99–108, 2007. 

[47] R. Wang-Sattler, Z. Yu, C. Herder, A. C. Messias, A. Floegel, Y. He, K. Heim, M. 
Campillos, C. Holzapfel, B. Thorand, H. Grallert, T. Xu, E. Bader, C. Huth, K. Mittelstrass, 
A. Döring, C. Meisinger, C. Gieger, C. Prehn, W. Roemisch-Margl, M. Carstensen, L. Xie, 
H. Yamanaka-Okumura, G. Xing, U. Ceglarek, J. Thiery, G. Giani, H. Lickert, X. Lin, Y. Li, 
H. Boeing, H.-G. Joost, M. H. de Angelis, W. Rathmann, K. Suhre, H. Prokisch, A. Peters, T. 
Meitinger, M. Roden, H.-E. Wichmann, T. Pischon, J. Adamski, and T. Illig, “Novel 
biomarkers for pre-diabetes identified by metabolomics.,” Mol. Syst. Biol., vol. 8, no. 615, p. 
615, 2012. 

[48] S. P. Bagdade JD, Ritter MC, “Accelerated cholesteryl ester transfer in patients with insulin-
dependent diabetes mellitus.,” Eur J Clin Invest., vol. 21, no. 2, pp. 161–7, 1991. 

[49] H. N. Ginsberg, Y.-L. Zhang, and A. Hernandez-Ono, “Regulation of plasma triglycerides in 
insulin resistance and diabetes.,” Arch. Med. Res., vol. 36, no. 3, pp. 232–40, 2005. 

[50] J. Sjolin, G. Hjort, G. Friman, and L. Hambraeus, “Urinary excretion of 1-methylhistidine: A 
qualitative indicator of exogenous 3-methylhistidine and intake of meats from various 
sources,” Metabolism, vol. 36, no. 12, pp. 1175–1184, 1987. 

[51] H. Chuang, E. Lee, Y. Liu, D. Lee, and T. Ideker, “Network-based classification of breast 
cancer metastasis,” no. 140, pp. 1–10, 2007. 

[52] A.-L. Barabasi, N. Gulbahce, and J. Loscalzo, “Network medicine: a network-based 
approach to human disease.,” Nat. Rev. Genet., vol. 12, no. 1, pp. 56–68, 2011. 

[53] S. E. Calvano, W. Xiao, D. R. Richards, R. M. Felciano, H. V Baker, R. J. Cho, R. O. Chen, 
B. H. Brownstein, J. P. Cobb, S. K. Tschoeke, C. Miller-Graziano, L. L. Moldawer, M. N. 
Mindrinos, R. W. Davis, R. G. Tompkins, and S. F. Lowry, “A network-based analysis of 
systemic inflammation in humans.,” Nature, vol. 437, no. 7061, pp. 1032–7, Oct. 2005. 



Chapter 6 

148  

Supplementary information 

S-table 1. Preliminary variables in the MS data identified by ANOVA (p<0.1) 

Compounds p-value Post-hoc test(Fisher's LSD) between groups  

Metabolites in GC-MS    

Citric acid 0.018 QYD - QYD_Damp; QYD_Damp - QYD_Stag 

Creatinine 0.019 QYD – QYD_Damp; QYD_Damp - QYD_Stag 

L-Threonine 0.028 QYD - QYD_Damp; QYD - QYD_Stag 

Beta-Alanine 0.039 QYD_Damp - QYD_Stag 

D-Ribulose or D-Xylulose 0.049 QYD – QYD_Damp 

31944 uk 05 0.052 QYD - QYD_Stag; QYD_Damp - QYD_Stag 

1-Stearoyl-sn-glycero-3-phosphocholine 0.054 QYD - QYD_Damp; QYD - QYD_Stag 

1-Methylhistidine % 10227\01.03 uk x 45 0.054 QYD_Damp - QYD_Stag 

VP9pl uk17 0.054 QYD – QYD_Damp; QYD – QYD_Stag 

unknown 39d 0.06 QYD_Damp - QYD_Stag 

Myo-inositol-1,2-cyclicphosphate % unknown 0.065 QYD_Damp- QYD_Stag 

6926 uk x 10 0.068 QYD_Damp - QYD_Stag 

31944 uk 04 0.073 QYD_Damp- QYD_Stag 

1-Palmitoyl-L-alpha-lysophosphatidic acid 0.091 QYD - QYD_Damp; QYD - QYD_Stag 

   

Metabolites in LC-MS   

C56_9_TG 0.005 QYD - QYD_Damp; QYD - QYD_Stag 

C54_6_TG 0.024 QYD - QYD_Damp; QYD - QYD_Stag 

C58_10_TG 0.027 QYD - QYD_Damp; QYD - QYD_Stag 

C54_5_TG 0.031 QYD - QYD_Damp; QYD - QYD_Stag 

C54_7_TG 0.035 QYD - QYD_Damp; QYD - QYD_Stag 

C52_5_TG 0.044 QYD - QYD_Damp; QYD - QYD_Stag 

C18_3_ChE 0.050 QYD - QYD_Damp; QYD - QYD_Stag 

C20_3_ChE 0.056 QYD - QYD_Damp; QYD - QYD_Stag 

C58_9_TG 0.056 QYD - QYD_Damp 

C52_6_TG 0.061 QYD - QYD_Damp; QYD - QYD_Stag 

C22_6_ChE 0.070 QYD - QYD_Damp; QYD - QYD_Stag 

C58_8_TG 0.081 QYD - QYD_Damp 

C38_3_PC 0.085 QYD - QYD_Damp; QYD - QYD_Stag 

C16_0_ChE 0.085 QYD - QYD_Damp; QYD - QYD_Stag 

C56_7_TG 0.086 QYD - QYD_Damp; QYD - QYD_Stag 

C40_5_PC 0.091 QYD - QYD_Stag 

C56_8_TG 0.092 QYD - QYD_Damp 
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S-fig. 1: Box plots summarizing the 32 preliminary variables (plasma metabolites detected by 
LC-MS and GC-MS, identified by ANOVA (p<0.1)) in pre-T2DM subjects. Individual metabolite 
(peak area ratio between target metabolites and relevant internal standard) for the three groups are 
illustrated using boxplots after logarithmic transformation and pareto-scaling for data normal 
distribution. The metabolites which differed significantly based on ANOVA (p<0.05) were then 
followed by a post-hoc analysis (Fisher’s least significant difference method) to show between which 
two groups the differences are significant (*).  
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S-fig. 2: Performance comparison between three supervised multivariate analysis models (LDA, 
PLSDA, and OPLS-DA), based on metabolite profiling in plasma of pre-T2DM subjects 
detected and integrated by LC-MS and GC-MS. A Permutation test with 1000 iterations (p<0.05) 
as well as the R2 and Q2 showed that the OPLS-DA model performed best.  
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