
Systems diagnosis of chronic diseases, explored by metabolomics and
ultra-weak photon emission
He, M.

Citation
He, M. (2017, April 13). Systems diagnosis of chronic diseases, explored by metabolomics and
ultra-weak photon emission. Retrieved from https://hdl.handle.net/1887/47897
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/47897
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/47897


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/47897 holds various files of this Leiden University 
dissertation. 
 
Author: He, M. 
Title: Systems diagnosis of chronic diseases, explored by metabolomics and ultra-weak 
photon emission 
Issue Date: 2017-04-13 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/47897
https://openaccess.leidenuniv.nl/handle/1887/1�


 

 

 

 

 

Chapter 4  

Spontaneous ultra-weak photon emission in 
correlation to inflammatory metabolism and 

oxidative stress in a mouse model of collagen-induced 
arthritis 

 

Min He, Eduard van Wijk, Herman van Wietmarschen, Mei Wang, Mengmeng Sun, 

Slavik Koval, Roeland van Wijk, Thomas Hankemeier and Jan van der Greef  

Published: Journal of photochemistry and photobiology B:Biology. (2017) 168: 
98-106, (with minor modification) 

DOI:10.1016/j.jphotobiol.2016.12.036 

For detailed supplemental data, please visit the web version of this article online: For better visualization of the 
detailed figures, please visit the web version of this article online: 
http://www.sciencedirect.com/science/article/pii/S1011134416307539



 

72  



Spontaneous ultra-weak photon emission in correlation  

73 

 

 

Abstract 

The increasing prevalence of rheumatoid arthritis has driven the development of 

new approaches and technologies for investigating the pathophysiology of this 

devastating, chronic disease. From the perspective of systems biology, combining 

comprehensive personal data such as metabolomics profiling with ultra-weak 

photon emission (UPE) data may provide key information regarding the complex 

pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE 

with metabolomics-based technologies in order to investigate collagen-induced 

arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we 

investigated the biological underpinnings of the complex dataset. Using correlation 

networks, we found that elevated inflammatory and ROS-mediated plasma 

metabolites are strongly correlated with a systematic reduction in amine 

metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also 

found that increased UPE intensity is strongly linked to metabolic processes (with 

correlation co-efficiency |r| value >0.7), which may be associated with lipid 

oxidation that related to inflammatory and/or ROS-mediated processes. Together, 

these results indicate that UPE is correlated with metabolomics and may serve as a 

valuable tool for diagnosing chronic disease by integrating inflammatory signals at 

the systems level. Our correlation network analysis provides important and 

valuable information regarding the disease process from a system-wide perspective.    
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1. Introduction  

Rheumatoid arthritis (RA) is one of the most prevalent chronic auto-immune 

diseases, occurring in about approximately 1% of the population in Western 

countries [1], [2]. RA manifests as a complex inflammatory syndrome that 

typically includes joint swelling, pain, and hyperthermia, as well as synovial 

hyperplasia and destruction of cartilage and bones in the joints. RA is considered a 

systemic disease that is caused by a variety of pathophysiological processes [3]. 

These processes are accompanied by increased levels of cytokines such as tumor 

necrosis factor α (TNF-α) and interleukins (IL-1β and IL-6) in the blood and 

interstitial fluids, activation of NF-κB pathways (to inhibit apoptosis in various 

immune cells), and systemic disruptions in inflammatory metabolite synthesis [4]–

[6].  

Experimental studies of RA—particularly the pathophysiological mechanisms 

of therapeutic interventions—are often conducted using animal models. The most 

commonly used model for RA is the collagen-induced arthritis (CIA) mouse model, 

which has pathophysiological processes and features similar to patients with RA 

[7]–[11]. In addition, advances in metabolomics technology, which now enable 

researchers to measure extremely low concentrations of metabolites in several 

pathways simultaneously [12], has facilitated the study of RA in considerably more 

detail, thereby increasing our understanding of the pathological mechanisms that 

underlie the disease [13]. We previously studied the differences in molecular 

profiles between CIA mice and control mice by examining differences with respect 

to inflammation and reactive oxygen species (ROS), analyzed using univariate and 

multivariate metrics [14]. In addition to the well-characterized inflammatory 

phenomenon, issues related to muscle wasting and energy expenditure are also 

present in RA [15]–[18], and this is reflected by the presence of amine metabolites 

in the plasma of CIA mice [19]. 
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Differences between CIA mice and control mice were also observed with 

respect to the intensity of ultra-weak photon emission (UPE), which reflects 

differences in the organization of the system at a biophysical level [20]. UPE is a 

process that occurs in all living organisms and is the spontaneous emission of light 

with extremely weak intensity (101–103 photons/sec/cm2) in the UV, visible, and 

near-IR spectra [21]. Many studies have focused on the relationship between UPE 

and ROS production during metabolic processes [22]–[26]. Considering that ROS 

production is closely associated with inflammatory diseases and impaired 

metabolic processes, it is reasonable to expect that UPE is also associated with 

inflammatory disease and/or metabolic processes. UPE might therefore be used to 

help diagnose inflammation and inflammation-related diseases. UPE has been 

proposed for monitoring lipid peroxidation in cell membranes [27], and 

applications using UPE in human studies—and their potential relationship with 

ROS—were summarized by van Wijk [23]. Moreover, the putative relationship 

between UPE, physiological state, and metabolic processes has been proposed by 

several research groups [28]–[31]. Here, we performed an integrated analysis of the 

biochemical and biophysical differences between CIA mice and control mice, 

based on the hypothesis that a combined analysis would reveal unique insight into 

the biochemical and biophysical changes that occur during RA.  

Network biology is an emerging field in biomedical research, and network 

biology tools are increasingly used to identify clusters of correlated parameters, to 

visualize or explore high-dimensional data, and to understand or interpret 

interactions that reflect part of a complex biological system [32], [33]. Correlation 

networks have been used in “omics” studies to combine complex data sets, for 

example combinations of metabolomics, genomics, and/or proteomics data sets. 

Correlation networks are also used to support the biological interpretation of large 

data profiles and to differentiate disease phenotypes [34]–[37]. Here, we expanded 

the systems-based approach of correlation-based analyses in order to examine the 

relationship between metabolomics profiling and UPE data. Using this correlation 

network analysis, we visualized systematic perturbations in bio-photons, 
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inflammatory processes, and ROS-related mediators. This approach may be used to 

facilitate the diagnosis of disease and/or to discriminate between disease 

syndromes, particularly with respect to complex chronic diseases such as RA and 

type 2 diabetes mellitus. 
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2. Materials and Methods 

2.1 Animal study samples, Modelling, and ethics Statement 

CIA was induced by the intraperitoneal injection of type II collagen and 

lipopolysaccharide in adult (6-7 weeks of age) DBA/1J male mice as described 

previously [38]; the CIA and control (Ctrl) groups contained 10 mice each. The 

injections were performed on days 0, 14, 28, 42, and 56; After 70 days’ modeling, 

UPE intensity was measured in each paw, and blood was collected into pre-cooled 

EDTA tubes (BD Vacutainer, Plymouth, UK). The blood samples were centrifuged 

at 3000×g for 10 minutes, and then stored at -80ºC until metabolic measurements 

were performed [14]. All animal experiments were performed in compliance with 

the Guide for the Care and Use of Laboratory Animals (National Institutes of 

Health, Bethesda, MD). All animal care and experiments were approved by the 

Tohoku Institute of Technology Research Ethics Committee, Sendai, Japan. 

 

2.2 Instruments and data acquisition  

2.2.1 UPE instruments and settings   

UPE was measured using a 600 series CCD camera system (Spectral Instruments, 

Inc., Tucson, AZ) equipped with a closed-cycle mechanical cryogenic unit (held at 

-120°C) as the cooling system. Prior to the UPE measurement, mice were 

maintained in controlled dark conditions. The detailed settings of the CCD system 

including figures about the measured location on mice is described in Van Wijk et 

al [20]. In brief, the CCD camera was mounted on the top of a dark chamber, and 

the animal was immobilized using isoflurane anesthesia. UPE intensity was 

recorded at five independent regions on each paw and used for further correlation 

analysis. The regions were named according to the paw measured, and numbers 

were added (ranging from 1 to 5, indicating the location closest to the tip of the 

paw through the location farthest from the tip of the paw) as follows: LFP (left 

front paw) 1 through LFP5; LHP (left hind paw) 1 through LHP5; RFP (right front 

paw) 1 through RFP5; and RHP (right hind paw) 1 through RHP5. 



Chapter 4 

78  

2.2.2 Extraction of plasma metabolites and metabolomics analysis 

Plasma samples were aliquoted and extracted via different methods in order to 

obtain separate classes of compounds, including oxylipins, amine metabolites, and 

oxidative stress‒related metabolites. Oxylipins (bioactive lipid mediators derived 

from polyunsaturated fatty acids) were extracted using solid phase extraction and 

analyzed using an Agilent 1290 HPLC coupled to an Agilent 6490 triple 

quadrupole mass spectrometer with electrospray ionization as described 

previously [14], [39]. Amine metabolites (including free amino acids and their 

biogenic metabolites) were extracted using AccQ-TagAQC derivatization and 

analyzed using a Waters ACQUITY UPLC coupled to a Waters Xevo mass 

spectrometer with electrospray ionization source as described by Noga et al. [40]. 

Oxidative stress‒mediated metabolites—primarily PGs/IsoPGs, NO2-FAs, 

lysophosphatidic acids, and sphingosine/sphingosine-related sphingolipids—were 

extracted using liquid–liquid extraction and analyzed using a validated method 

with an Agilent 1290 HPLC coupled to an Agilent 6490 triple quadrupole mass 

spectrometer with electrospray ionization. The peak area of each target compound 

was corrected using the appropriate internal standard (ISTD), leading to a ratio 

(target compound/ISTD) that was used for further analysis in the correlation study. 

 

2.3 Data preprocessing and statistical analysis 

The metabolomics and UPE data collected from both the CIA and Ctrl groups 

were included in the correlation analysis. Univariate correlations were performed 

using the Spearman’s rank correlation method using RStudio software (version 

3.0.3). Absolute values of the Spearman’s rank correlation coefficient (|r|) >0.7 

were considered to reflect a strong correlation between parameters, and this 

threshold was used to create highly correlated graphical networks using Cytoscape 

software (version 3.3.0, http://www.cytoscape.org) with the MetScape plug-in for 

extracting and integrating information and for visualizing the correlation networks 
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[41], [42]. Positive and negative correlations were indicated by positive and 

negative values of r, respectively.  

 

3. Results and Discussion 

3.1 Collagen-induced arthritis alters the local distribution of UPE 

Differences in UPE between CIA and Ctrl mice have been reported previously 

[20].  A schematic figure was displayed, in order to show the CCD setup of UPE 

instrument as well as the locations for UPE measurements on mouse front and 

hind paws (Fig. 1). Here, we used correlation networks to visualize the 

relationship between individual UPE intensities at the locations measured in both 

CIA mice and in Ctrl mice (Fig. 2), as visualizing the profile of location-based 

UPE may provide important information regarding the disease. We then 

interpreted the differences and similarities between the two groups with respect to 

their correlation structures. 

 
Fig. 1 Schematic figure of CCD set-up as well as locations for UPE measurements on mouse 
front and hind paws. Adapted from E. van Wijk et al. 2013. 
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Fig. 2. Bio-photonic variance is revealed by location-based UPE-to-UPE correlation networks. 
The figure illustrates the differences in correlations between CIA mice (a) and Ctrl mice (b). In CIA 
mice, the strong correlations also indicate a strong similarity in UPE between the LFP (left front paw) 
and RFP (right front paw), as well as between the LHP (left hind paw) and RHP (right hind paw). 
The numbers (1 through 5) indicate the specific locations for the measurements (see Materials and 
Methods). Thus, the differences between the front paws and hind paws are clearly visible in the CIA 
group. The networks were established using the Spearman correlation analysis, and the lines 
represent Spearman correlation coefficients (|r|) >0.7. 

The correlations were quantified using the parameters (i.e., |r| values and p-

values) obtained from the Spearman correlation analysis. In total, 71 and 26 

strongly positive UPE-to-UPE correlations were found in the CIA and Ctrl groups, 

respectively; no strongly negative correlations were found. The difference in the 

number of strongly positive correlations between the CIA and Ctrl groups can be 

seen visually in Fig. 2. In the CIA group, UPE intensity was tightly correlated 

between the two front paws and between the two hind paws (Fig. 2a). In contrast, 

we found no clear correlation patterns in the Ctrl group (Fig. 2b). 

 

3.2 Differences in metabolite correlations between CIA mice and control mice 

Next, we acquired metabolic data from plasma samples using HPLC-MS/MS. The 

following three groups of metabolites were extracted using three validated 
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methods and detected using three specific instruments: amine metabolites 

(including free amino acids and their biogenic metabolites), oxylipins, and 

oxidative stress‒related metabolites. A total of 110 endogenous metabolites were 

detected in the plasma samples, including 30 oxylipins, 45 amine metabolites, and 

35 oxidative stress‒related lipids. Univariate and multivariate analyses were then 

applied to the metabolite sets in order to characterize the differences between CIA 

mice and Ctrl mice at the metabolomics level. Previously, we reported the 

differences between CIA mice and Ctrl mice with respect to oxylipins and amine 

metabolites [14], [19]. Based on the oxidative stress platform, after log 

transformation and auto-scaling of the data, we also found a number of key 

metabolites that differed between the CIA the Ctrl groups (p<0.05, Student’s t-

test). Table 1 summarizes the key metabolites that differed significantly between 

the CIA and Ctrl groups. 

Table 1. Summary of the key metabolites that significantly differed between the 
CIA and Ctrl groups 

Oxylipins Amine metabolites  Oxidative stress 

Compound Changes Compound Changes Compound Changes 

9,10-DiHOME ↓ Methionine ↓ PGE3 ↓ 

9-KODE ↓ Homocysteine ↓ 8,12-iso-iPF2a ↓ 

13-HDoHE ↑ Threonine ↓ cyclic-LPA C16:0 ↓ 

14-HDoHE ↑ Proline ↓ cyclic-LPA C18:2 ↓ 

12,13-DiHOME ↓ Alanine ↓ 
  

9,12,13-TriHOME ↓ Valine ↓ 
  

12-HEPE ↑ Cystathionine ↓ 
  

9,10,13-TriHOME ↓ Lysine ↓ 
  

9,10-EpOME ↓ Glycylglycine ↓ 
  

10-HDoHE ↑ Serine ↓ 
  

9-HODE* ↓ Asparagine ↓ 
  

8-HETE* ↑ Cysteine ↓ 
  

13-KODE* ↓ Tryptophan ↓ 
  

12,13-EpOME* ↓ Methionine sulfoxide ↓ 
  

13,14-dihydro-PGF2a* ↑ Homocitrulline ↓ 
  

12-HETE* ↑ Isoleucine ↓ 
  

  
Gamma-glutamylalanine ↓ 

  

  
Histidine ↓ 

  

  
Glutamine ↓ 

  
  Leucine ↓   
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Abbreviations: DiHOME, dihydroxyoctadeca(mono)enoic acid;  EpOME, epoxyoctadecamonoenoic 
acid; HDoHE,  hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HETE, 
hydroxyeicosatetraenoic acid;  
HODE, hydroxyoctadecadienoic acid; KODE, ketooctadecadienoic acid;  PG, prostaglandin; 
TriHOME, trihydroxyoctadecenoic acid. 
↓: Decreased in CIA mice; ↑: Increased in CIA mice;   

*: Extra important oxylipins which contributed to the group clustering are based on multivariate 
analysis (VIP>1). 

Differences in metabolites generally do not occur independently, but often 

change together with other, related metabolites, as metabolic reactions are often 

part of a dynamic system and have many biological processes in common [35]. 

Metabolic network analysis is an emerging approach used to diagnose disease, and 

it has the advantage of integrating “omics” datasets in order to identify links and 

select useful information from among chaos [34], [43]. We therefore performed a 

correlation network analysis in order to visualize pair-wise metabolic correlations 

and to extract novel information regarding dynamic alternatives. A merge between 

the metabolite-to-metabolite correlation networks measured in the plasma of CIA 

and Ctrl mice is illustrated in fig. 3a and 3b, respectively. Next, the Spearman 

correlation coefficient between metabolites (rm) was calculated, and only strong 

correlations (either positive or negative) (i.e., with an |rm| value >0.7) were 

included in the resulting network. We found a total of 394 positive correlations and 

91 negative correlations in the CIA group, and a total of 864 positive correlations 

and 117 negative correlations in the Ctrl group. In general, metabolites that are in 

the same chemical class or in the same biochemical pathway tended to correlate 

with each other; these so-called “chemical class-based” clusters and “pathway-

based” clusters were more pronounced in the Ctrl group, leading a highly 

connected region among oxylipins and another region among amine metabolites. 

This network analysis revealed certain structural or pathway similarities among 

those highly connected metabolites with respect to significant positive correlations. 

Moreover, the associations between oxylipins and amine metabolites were 

relatively weak in the Ctrl group, possible because oxylipins and amine metabolites 

are generated via two separate metabolic pathways.   
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Fig. 3. Metabolic correlation networks in the CIA and Ctrl groups. Depicted are the metabolite-
to-metabolite correlation networks for CIA (3a) and Ctrl (3b) mice. All of the metabolites detected in 

our analysis are included in the networks models.  
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Nodes with a positive correlation are indicated with solid red lines, and nodes with a negative 
correlation are indicated by solid blue lines. Shaded ellipses with a light red or light blue background 
indicate clusters of oxylipins or amine metabolites, respectively. Thickness of lines indicate gradient 
correlation strength: the thicker the line is, the stronger the correlation is (visible correlation co-
efficiency: |r|  ranges from 0.7 to 1). (For better visualization of the detailed figures, please visit the 
web version of this article online: http://www.sciencedirect.com/cache/MiamiImageURL/1-s2.0-
S1011134416307539-gr3_lrg.jpg/0?wchp=dGLzVlV-zSkWl&pii=S1011134416307539)  

Interestingly, we found that some of the strong correlations in the Ctrl group—

including both “oxylipin-to-oxylipin” and “amine-to-amine” correlations—were 

weaker in the CIA group. In contrast, the CIA group contained more negative 

oxylipin-to-amine correlations (Fig. 3a) than the Ctrl group (Fig. 3b). For example, 

the HETEs and HDoHEs that were elevated in CIA mice were strongly correlated 

with the branched chain amino acids valine, leucine, and isoleucine, as well as with 

cystathionine, alanine, glutamine, and asparagine. The use of HETEs and HDoHEs 

as inflammatory/ROS-related biomarkers has been described previously [14], and 

we also found that decreases in these amine metabolites may reflect muscle 

wasting and/or energy expenditure (cachexia) in RA [19]. Therefore, our analysis 

of metabolic correlation networks suggests that the increased inflammation and 

ROS levels reflected by oxylipins may also be associated with the onset of muscle 

wasting and increased energy expenditure in RA. 

 

3.3 UPE is correlated with inflammatory signaling‒related metabolites in CIA 

mice 

As discussed in the Introduction, UPE arises as a result of metabolic reactions, 

particularly oxidation-reduction (redox) reactions; therefore, we hypothesized that 

UPE emission patterns may be correlated with metabolite patterns. To test this 

hypothesis, we created a correlation network to visualize potential associations 

between UPE intensity and peak area ratios of measured metabolites (see 

Materials and Methods). Therefore, we used UPE-to-metabolite correlations (i.e., 

between a given UPE value, u, and a given metabolite, m) in the correlation 
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networks, and the Spearman’s correlation coefficient |rum| was calculated for each 

UPE-metabolite pair in both the CIA group and the Ctrl group.  

The heat map in Fig. 4 depicts a general UPE-to-metabolite correlation profile 

used to compare the differences measured between the CIA group and the Ctrl 

group. A cluster analysis reveals clear location-based clusters in the CIA mice. The 

heat map also indicates a systemic change in the CIA group (i.e., the majority of 

positive correlations, shown in red) compared with the Ctrl group (i.e., the majority 

of negative correlations, shown in green). After removing relative weaker 

coefficient from the Spearman correlation analysis (|rum|<0.7), networks were built 

to reflect the highly correlated entities and to show the most important metabolites 

(fig.4b). After we removed the relatively weaker correlations from the Spearman 

correlation analysis (i.e., |rum| values <0.7), we built a network to reflect the 

strongly correlated entities and to illustrate the most relevant metabolites (Fig. 4b). 

Circle-attributed networks were then used to identify the key correlations and to 

compare the CIA group with the Ctrl group. A total of 27 strongly positive 

correlations and 79 negative correlations were identified in the Ctrl group, and a 

total of 146 positive and 9 negative correlations were identified in the CIA group. 

The correlation networks revealed that the majority of UPE-to-metabolite 

correlations in the Ctrl group were negative, whereas the majority of UPE-to-

metabolite correlations in the CIA group were strongly positive. The major 

metabolites that were positively correlated with UPE in the CIA group are the 

monohydroxyeicosatetraenoic acids (HETEs), prostaglandins (PGs), thromboxane 

(TBX) synthase products, lysophosphatidic acids (LPAs), sphingolipid signaling 

molecules, and some amine metabolites (Fig. 4b). UPE intensity measured at 

various locations was correlated with various metabolites in the CIA group. For 

example, UPE intensity in the front paws was more strongly correlated with some 

LPAs, whereas UPE intensity in the hind paws was more strongly correlated with 

PGs (13,14-dihydro-15-keto-PGF2a, PGE2, PGD2, and 6-keto-PGF2a), TBX 

synthase products (TBX2 and 12-HHTrE), HETEs (8-HETE, 15-HETE, 11-HETE, 

and 12-HETE), and sphingolipids; see the CIA correlation networks in Fig. 4b.  
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CIA

Ctrl

(a) (b)

Putrescine
Ethanolamine
Ornithine
Lysine
Glycine
5-hydroxylysine
Sarcosine
Beta-alanine
Alanine
Alpha-aminobutyric acid
Serine
Cystathionine
Proline
Valine
Homoserine
Threonine
Cysteine
Isoleucine
Leucine
4-Hydroxyproline
Asparagine
Glycylglycine
Aspartic acid
Methylcysteine
Homocysteine
O-Phosphoethanolamine
Glutamine
Glutamic acid
Methionine
Histidine
Spermidine
Aminoadipic acid
Methionine sulfoxide
Phenylalanine
Norepinephrine
Arginine
Citrulline
Serotonin
Tytosine
Homocitrulline
Tryptophan
Kynurenine
5-Glutamylalanine
Saccharopine
Glutathione
10-HDoHE
11-HETE
12,13-DiHOME
12,13-EpOME
12-HETE
12-HEPE
12-HHTrE

13,14-dihydro-15-keto-PGF2a
13,14-dihydro-PGF2a
13-HDoHE
13-HODE
13-KODE
14,15-DiHETrE
14-HDoHE
15-HETE
17-HDoHE
19,20-DiHDPA
5-HETE
6-keto-PGF1a
8-HETE
8-HETrE
9,10,13-TriHOME
9,10-DiHOME
9,10-EpOME
9,12,13-TriHOME
9-HETE
9-HODE
9-KODE
PGF2a
TXB2
2 E,D series Unknown 
2,3-dinor-8-iso-PGF2a 
8,12-iso-iPF2a 
alkyl-LPA C14:0 
alkyl-LPA C18:0 
cyclic LPA C16:0
cyclic LPA C18:0
cyclic LPA C18:1
cyclic LPA C18:2
cyclic LPA C18:3
cyclic LPA C20:4
LPA C14
LPA C16
LPA C16:1
LPA C18
LPA C18:1
LPA C18:2
LPA C20
LPA C20:1
LPA C20:3
LPA C20:4
LPA C22:5
LPA C22:6
PGA2
PGD2
PGD3
PGE2
PGE3
PGF2a-1
S-1-P C18:1 
Spha1-1-P C18:0 
Sphinganine C18 
Sphinganine C20
Sphingosine C18:1 
Sphingosine C20

Cytokines activation/ROS

Cellular signaling 

Inflammatory response, 
response to stress

HETEs
（LOX/ROS）

PGs, TXs
(COX-2)

FPs
HPs

Lysophosphatidic acid
(LPA)

Sphingosine, S-1-P

FPs HPs

 

Fig. 4. Correlation-based analysis between UPE and metabolites measured in the plasma of 
CIA mice and Ctrl mice. a) Heat map showing the entire UPE-metabolite correlation profile, as 
well as the differences between the CIA and Ctrl mice. Colored blocks represent the value of the 
correlation coefficient, which were color-coded from 1 (strongly positive, light red) to -1 (strongly 
negative, light green). b) Visualized network model of the strong correlations (defined as a |rum| 
value >0.7). The red and blue lines indicate positive and negative correlations, respectively, and the 
thickness of the lines indicate the strength of the correlation. Several important pathway-related 
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networks reflect the inflammation, ROS production, and muscle wasting associated with RA. Each 
dot indicates an individual parameter that includes a given metabolite and UPE value: yellow dots 
reflect location-based UPE intensity, and black, gray, and white dots represent oxylipins, biogenic 
amines, and oxidative stress‒related metabolites, respectively. Also shown (between the Ctrl and 
CIA network models) are enlarged views of the key metabolites that differed significantly based on 
our univariate and multivariate analyses. The up-triangles and down-triangles indicate the direction 
of the metabolic change in the CIA mice (i.e., up-regulation or down-regulation, respectively). (For 
better visualization of the detailed figures, please visit the web version of this article online: 
http://www.sciencedirect.com/cache/MiamiImageURL/1-s2.0-S1011134416307539-
gr4_lrg.jpg/0?wchp=dGLbVBA-zSkzV&pii=S1011134416307539) 

Next, the pathways related to these metabolites based on our previous study [14] 

and the Kyoto Encyclopedia of Genes and Genomes were organized (Fig. 5). LPAs 

act on G protein‒coupled signaling and cellular signaling responses and function as 

inflammatory mediators [44], [45]. PGs and TBXs, which are synthesized from 

arachidonic acid via COX-II pathways, have well-established pro-inflammatory 

functions [46], [47]. The 12/15-LOX products (12-HETE, 15-HETE, and 8-HETE) 

promote the production of cytokines and activate the NF-κB pathway to inhibit 

cellular apoptosis [48], [49]. In addition, 8-HETE, 12-HETE, and 11-HETE can 

also be peroxided non-enzymatically by ROS to inhibit apoptosis [50]–[54]; 

therefore, these three HETEs may be important inflammatory mediators [55], [56]. 

The sphingomyelin-derived sphingolipids sphingosine and sphingosine-1-

phosphate (S1P) are signaling molecules in immune cells that mediate neutrophil 

activation and apoptosis, and are therefore also considered to be inflammatory 

mediators [57]–[62]. Based on the correlation networks, it can be seen that these 

inflammatory mediators participated in the systemic perturbations (measured using 

both metabolomics and UPE) in the CIA mice, even though some of these 

mediators were not altered significantly in our univariate analysis. We also 

conclude that UPE intensity is correlated with systemic inflammatory mediators, 

ROS mediators, and cellular signaling processes; therefore, measuring UPE 

intensity may provide a means to diagnose inflammatory disease. In addition, UPE 

may also be used to monitor lipid peroxidation which relate to inflammation and 

ROS level in both healthy and diseased individuals (Fig. 6). Thus, a specific 

phenotype of a disease can be complemented by measuring both “omics” profiles 
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and UPE patterns, thereby providing a more detailed understanding of the disease 

and its underlying processes. 
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In the CIA mice, a strongly negative correlation between cystathionine and UPE 

was measured, whereas several amine metabolites—including serotonin, 

tryptophan, and aspartic acid—were positively correlated with UPE. Cystathionine 

is a scavenger of free radicals [63];  therefore, given its significant decrease in CIA 

mice compared to Ctrl mice, the negative correlation between cystathionine and 

UPE intensity indicates that the increase in UPE intensity may be due to a decrease 

in antioxidants in RA. Both tryptophan metabolism and the serotonergic system 

have been well described as key pathways that can influence signaling in the 

central nervous system [64]. Thus, UPE may also be correlated with metabolic 

systems that are associated with neurotransmission. In addition, based upon 

pathways that regulate amine metabolites listed in the Kyoto Encyclopedia of 

Genes and Genomes, all of the other amine metabolites that were positively 

correlated with UPE are associated either directly or indirectly with the TCA cycle 

(see Fig. 5). The correlations identified between UPE intensity and these 

metabolites may suggest that during disease, some of  the electrons that would 

otherwise participate in chemical reactions to produce energy (for example, with 

amine metabolites in the TCA cycle) actually escape and set free the energy which 

they carry, as photons, whereby the electrons change from high to low energy level 

states. Simultaneously, free radicals and/or ROS are produced, driving lipid 

peroxidation to produce inflammatory HETEs and PGs. While such a speculation 

need more rigorous validation.   

The reduction in amine metabolites in the plasma of CIA mice compared to Ctrl 

mice may be linked to the contribution of muscle wasting in arthritis [19]. 

Considering that we found strong correlations between amine metabolites and UPE 

intensity, and given that muscle wasting is a common feature in many disease 

processes, including some cancers [65], HIV/AIDs [66], type 2 diabetes [67], renal 

failure, uremia[68],  and heart failure [69] , UPE may also have potential 

perspective for the use of monitoring energy wasting and muscle wasting in other 

diseases. In this respect, future studies should examine the relationship between 

muscle wasting and UPE. 
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Interestingly, HETEs, PGs, sphingosine, and S1P—which were strongly 

correlated with UPE intensity in our study—are also considered to be important 

inflammatory biomarkers in a variety of diseases, including RA [70], 

cardiovascular disease and/or atherosclerosis‒related inflammation [59], [61], [71], 

[72], congestive heart failure [60], cancers and other tumors [54], [73], some 

prostate diseases [55] , and nonalcoholic steatohepatitis [56]. Therefore, our 

finding that UPE is correlated with these inflammatory mediators may shed light 

on the biological mechanisms that underlie these diseases from a systems biology 

perspective.  
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4. Conclusions 

Given its complex pathophysiology, RA has been studied using a variety of 

technologies and approaches. Indeed, integrating various data sets can provide 

important information regarding the disease process and possible treatment 

strategies. Generating correlation networks can provide valuable information, and 

these networks have been used recently within a wide range of “omics” studies, 

including proteomics, genomics, and metabolomics, thereby helping distinguish 

specific diseases and/or phenotypes [34], [35], [74]. Here, we performed the first 

study that integrates UPE with metabolomics in both diseased mice (i.e., mice 

with collagen-induced arthritis) and healthy control mice; this novel, powerful 

approach yielded meaningful information regarding RA. Moreover, we found 

specific correlations between metabolomics and UPE. Lastly, our correlation 

network analysis shows a systematic way to illustrate the complexity of RA , 

including dysregulation of both UPE and metabolomics. 

Using our correlation networks, we also found that oxylipins were negatively 

correlated with certain amine metabolites in the CIA group. This may indicate a 

systematic perturbation under inflammation and ROS response in RA-induced 

situation. However, further study is needed in order to elucidate whether the 

inflammation and ROS are the consequence of muscle wasting, or vice versa. We 

also found that UPE was correlated with certain inflammatory mediators, and we 

expanded the biological interpretation of RA using correlation networks.  

In conclusion, our correlation network analysis provides valuable information 

regarding the disease process from a system-wide perspective. Understanding the 

underlying biochemical phenomena that give rise to UPE is of great importance to 

learn about potential applications of UPE in early disease characterization. 
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