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Spontaneous ultra-weak photon emission in correlation

Abstract

The increasing prevalence of theumatoid arthritis has driven the development of
new approaches and technologies for investigating the pathophysiology of this
devastating, chronic disease. From the perspective of systems biology, combining
comprehensive personal data such as metabolomics profiling with ultra-weak
photon emission (UPE) data may provide key information regarding the complex
pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE
with metabolomics-based technologies in order to investigate collagen-induced
arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we
investigated the biological underpinnings of the complex dataset. Using correlation
networks, we found that elevated inflammatory and ROS-mediated plasma
metabolites are strongly correlated with a systematic reduction in amine
metabolites, which is linked to muscle wasting in theumatoid arthritis. We also
found that increased UPE intensity is strongly linked to metabolic processes (with
correlation co-efficiency || value >0.7), which may be associated with lipid
oxidation that related to inflammatory and/or ROS-mediated processes. Together,
these results indicate that UPE is correlated with metabolomics and may serve as a
valuable tool for diagnosing chronic disease by integrating inflammatory signals at
the systems level. Our correlation network analysis provides important and

valuable information regarding the disease process from a system-wide perspective.
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1. Introduction

Rheumatoid arthritis (RA) is one of the most prevalent chronic auto-immune
diseases, occurring in about approximately 1% of the population in Western
countries [1], [2]. RA manifests as a complex inflammatory syndrome that
typically includes joint swelling, pain, and hyperthermia, as well as synovial
hyperplasia and destruction of cartilage and bones in the joints. RA is considered a
systemic disease that is caused by a variety of pathophysiological processes [3].
These processes are accompanied by increased levels of cytokines such as tumor
necrosis factor a (TNF-a) and interleukins (IL-1p and IL-6) in the blood and
interstitial fluids, activation of NF-xB pathways (to inhibit apoptosis in various

immune cells), and systemic disruptions in inflammatory metabolite synthesis [4]—

[6].

Experimental studies of RA—particularly the pathophysiological mechanisms
of therapeutic interventions—are often conducted using animal models. The most
commonly used model for RA is the collagen-induced arthritis (CIA) mouse model,
which has pathophysiological processes and features similar to patients with RA
[7]-[11]. In addition, advances in metabolomics technology, which now enable
researchers to measure extremely low concentrations of metabolites in several
pathways simultaneously [12], has facilitated the study of RA in considerably more
detail, thereby increasing our understanding of the pathological mechanisms that
underlie the disease [13]. We previously studied the differences in molecular
profiles between CIA mice and control mice by examining differences with respect
to inflammation and reactive oxygen species (ROS), analyzed using univariate and
multivariate metrics [14]. In addition to the well-characterized inflammatory
phenomenon, issues related to muscle wasting and energy expenditure are also
present in RA [15]-[18], and this is reflected by the presence of amine metabolites
in the plasma of CIA mice [19].
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Differences between CIA mice and control mice were also observed with
respect to the intensity of ultra-weak photon emission (UPE), which reflects
differences in the organization of the system at a biophysical level [20]. UPE is a
process that occurs in all living organisms and is the spontaneous emission of light
with extremely weak intensity (10'-10° photons/sec/cm?) in the UV, visible, and
near-IR spectra [21]. Many studies have focused on the relationship between UPE
and ROS production during metabolic processes [22]-[26]. Considering that ROS
production is closely associated with inflammatory diseases and impaired
metabolic processes, it is reasonable to expect that UPE is also associated with
inflammatory disease and/or metabolic processes. UPE might therefore be used to
help diagnose inflammation and inflammation-related diseases. UPE has been
proposed for monitoring lipid peroxidation in cell membranes [27], and
applications using UPE in human studies—and their potential relationship with
ROS—were summarized by van Wijk [23]. Moreover, the putative relationship
between UPE, physiological state, and metabolic processes has been proposed by
several research groups [28]-[31]. Here, we performed an integrated analysis of the
biochemical and biophysical differences between CIA mice and control mice,
based on the hypothesis that a combined analysis would reveal unique insight into

the biochemical and biophysical changes that occur during RA.

Network biology is an emerging field in biomedical research, and network
biology tools are increasingly used to identify clusters of correlated parameters, to
visualize or explore high-dimensional data, and to understand or interpret
interactions that reflect part of a complex biological system [32], [33]. Correlation
networks have been used in “omics” studies to combine complex data sets, for
example combinations of metabolomics, genomics, and/or proteomics data sets.
Correlation networks are also used to support the biological interpretation of large
data profiles and to differentiate disease phenotypes [34]-[37]. Here, we expanded
the systems-based approach of correlation-based analyses in order to examine the
relationship between metabolomics profiling and UPE data. Using this correlation

network analysis, we visualized systematic perturbations in bio-photons,
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inflammatory processes, and ROS-related mediators. This approach may be used to
facilitate the diagnosis of disease and/or to discriminate between disease
syndromes, particularly with respect to complex chronic diseases such as RA and

type 2 diabetes mellitus.
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2. Materials and Methods

2.1 Animal study samples, Modelling, and ethics Statement

CIA was induced by the intraperitoneal injection of type II collagen and
lipopolysaccharide in adult (6-7 weeks of age) DBA/1J male mice as described
previously [38]; the CIA and control (Ctrl) groups contained 10 mice each. The
injections were performed on days 0, 14, 28, 42, and 56; After 70 days’ modeling,
UPE intensity was measured in each paw, and blood was collected into pre-cooled
EDTA tubes (BD Vacutainer, Plymouth, UK). The blood samples were centrifuged
at 3000xg for 10 minutes, and then stored at -80°C until metabolic measurements
were performed [14]. All animal experiments were performed in compliance with
the Guide for the Care and Use of Laboratory Animals (National Institutes of
Health, Bethesda, MD). All animal care and experiments were approved by the
Tohoku Institute of Technology Research Ethics Committee, Sendai, Japan.

2.2 Instruments and data acquisition

2.2.1 UPE instruments and settings

UPE was measured using a 600 series CCD camera system (Spectral Instruments,
Inc., Tucson, AZ) equipped with a closed-cycle mechanical cryogenic unit (held at
-120°C) as the cooling system. Prior to the UPE measurement, mice were
maintained in controlled dark conditions. The detailed settings of the CCD system
including figures about the measured location on mice is described in Van Wijk et
al [20]. In brief, the CCD camera was mounted on the top of a dark chamber, and
the animal was immobilized using isoflurane anesthesia. UPE intensity was
recorded at five independent regions on each paw and used for further correlation
analysis. The regions were named according to the paw measured, and numbers
were added (ranging from 1 to 5, indicating the location closest to the tip of the
paw through the location farthest from the tip of the paw) as follows: LFP (left
front paw) 1 through LFP5; LHP (left hind paw) 1 through LHP5; RFP (right front
paw) 1 through RFP5; and RHP (right hind paw) 1 through RHPS.
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2.2.2 Extraction of plasma metabolites and metabolomics analysis

Plasma samples were aliquoted and extracted via different methods in order to
obtain separate classes of compounds, including oxylipins, amine metabolites, and
oxidative stress—related metabolites. Oxylipins (bioactive lipid mediators derived
from polyunsaturated fatty acids) were extracted using solid phase extraction and
analyzed using an Agilent 1290 HPLC coupled to an Agilent 6490 triple
quadrupole mass spectrometer with electrospray ionization as described
previously [14], [39]. Amine metabolites (including free amino acids and their
biogenic metabolites) were extracted using AccQ-TagAQC derivatization and
analyzed using a Waters ACQUITY UPLC coupled to a Waters Xevo mass
spectrometer with electrospray ionization source as described by Noga et al. [40].
Oxidative stress—mediated metabolites—primarily PGs/IsoPGs, NO,-FAs,
lysophosphatidic acids, and sphingosine/sphingosine-related sphingolipids—were
extracted using liquid-liquid extraction and analyzed using a validated method
with an Agilent 1290 HPLC coupled to an Agilent 6490 triple quadrupole mass
spectrometer with electrospray ionization. The peak area of each target compound
was corrected using the appropriate internal standard (ISTD), leading to a ratio

(target compound/ISTD) that was used for further analysis in the correlation study.

2.3 Data preprocessing and statistical analysis

The metabolomics and UPE data collected from both the CIA and Ctrl groups
were included in the correlation analysis. Univariate correlations were performed
using the Spearman’s rank correlation method using RStudio software (version
3.0.3). Absolute values of the Spearman’s rank correlation coefficient (|r|) >0.7
were considered to reflect a strong correlation between parameters, and this
threshold was used to create highly correlated graphical networks using Cytoscape
software (version 3.3.0, http://www.cytoscape.org) with the MetScape plug-in for

extracting and integrating information and for visualizing the correlation networks
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-

[41], [42]. Positive and negative correlations were indicated by positive and

negative values of r, respectively.

3. Results and Discussion

3.1 Collagen-induced arthritis alters the local distribution of UPE

Differences in UPE between CIA and Ctrl mice have been reported previously
[20]. A schematic figure was displayed, in order to show the CCD setup of UPE
instrument as well as the locations for UPE measurements on mouse front and
hind paws (Fig. 1). Here, we used correlation networks to visualize the
relationship between individual UPE intensities at the locations measured in both
CIA mice and in Ctrl mice (Fig. 2), as visualizing the profile of location-based
UPE may provide important information regarding the disease. We then
interpreted the differences and similarities between the two groups with respect to

their correlation structures.

Cooling system for
temperature control|

UPE measurement
on mause paw

Anesthesia

Fig. 1 Schematic figure of CCD set-up as well as locations for UPE measurements on mouse
front and hind paws. Adapted from E. van Wijk et al. 2013.
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(a) UPE correlations from CIA group (b) UPE correlations from Ctrl group

Front paws (FPs)

Hind paws (HPs)

Fig. 2. Bio-photonic variance is revealed by location-based UPE-to-UPE correlation networks.
The figure illustrates the differences in correlations between CIA mice (a) and Ctrl mice (b). In CIA
mice, the strong correlations also indicate a strong similarity in UPE between the LFP (left front paw)
and RFP (right front paw), as well as between the LHP (left hind paw) and RHP (right hind paw).
The numbers (1 through 5) indicate the specific locations for the measurements (see Materials and
Methods). Thus, the differences between the front paws and hind paws are clearly visible in the CIA
group. The networks were established using the Spearman correlation analysis, and the lines
represent Spearman correlation coefficients (|r]) >0.7.

The correlations were quantified using the parameters (i.e., || values and p-
values) obtained from the Spearman correlation analysis. In total, 71 and 26
strongly positive UPE-to-UPE correlations were found in the CIA and Ctrl groups,
respectively; no strongly negative correlations were found. The difference in the
number of strongly positive correlations between the CIA and Ctrl groups can be
seen visually in Fig. 2. In the CIA group, UPE intensity was tightly correlated
between the two front paws and between the two hind paws (Fig. 2a). In contrast,

we found no clear correlation patterns in the Ctrl group (Fig. 2b).

3.2 Differences in metabolite correlations between CIA mice and control mice

Next, we acquired metabolic data from plasma samples using HPLC-MS/MS. The

following three groups of metabolites were extracted using three validated
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methods and detected using three specific instruments: amine metabolites
(including free amino acids and their biogenic metabolites), oxylipins, and
oxidative stress—related metabolites. A total of 110 endogenous metabolites were
detected in the plasma samples, including 30 oxylipins, 45 amine metabolites, and
35 oxidative stress—related lipids. Univariate and multivariate analyses were then
applied to the metabolite sets in order to characterize the differences between CIA
mice and Ctrl mice at the metabolomics level. Previously, we reported the
differences between CIA mice and Ctrl mice with respect to oxylipins and amine
metabolites [14], [19]. Based on the oxidative stress platform, after log
transformation and auto-scaling of the data, we also found a number of key
metabolites that differed between the CIA the Ctrl groups (p<0.05, Student’s #-
test). Table 1 summarizes the key metabolites that differed significantly between
the CIA and Ctrl groups.

Table 1. Summary of the key metabolites that significantly differed between the

CIA and Ctrl groups
Oxylipins Amine metabolites Oxidative stress
Compound Changes Compound Changes Compound Changes
9,10-DiHOME 1 Methionine ! PGE3 !
9-KODE 1 Homocysteine | 8,12-is0-iPF2a |
13-HDoHE 1 Threonine 1 cyclic-LPA C16:0 |
14-HDoHE 1 Proline 1 cyclic-LPA C18:2 1
12,13-DiHOME | Alanine 1
9,12,13-TriHOME 1 Valine !
12-HEPE 1 Cystathionine |
9,10,13-TriHOME 1 Lysine 1
9,10-EpOME 1 Glycylglycine 1
10-HDoHE 1 Serine 1
9-HODE* 1 Asparagine |
8-HETE* 1 Cysteine 1
13-KODE* | Tryptophan 1
12,13-EpOME* 1 Methionine sulfoxide |
13,14-dihydro-PGF2a* 1 Homocitrulline 1
12-HETE* 1 Isoleucine |
Gamma-glutamylalanine |
Histidine 1
Glutamine 1
Leucine 1
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Abbreviations: DIHOME, dihydroxyoctadeca(mono)enoic acid; EpOME, epoxyoctadecamonoenoic
acid; HDoHE, hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HETE,
hydroxyeicosatetraenoic acid;

HODE, hydroxyoctadecadienoic acid; KODE, ketooctadecadienoic acid; PG, prostaglandin;
TriHOME, trihydroxyoctadecenoic acid.

|: Decreased in CIA mice; 1: Increased in CIA mice;

*: Extra important oxylipins which contributed to the group clustering are based on multivariate
analysis (VIP>1).

Differences in metabolites generally do not occur independently, but often
change together with other, related metabolites, as metabolic reactions are often
part of a dynamic system and have many biological processes in common [35].
Metabolic network analysis is an emerging approach used to diagnose disease, and
it has the advantage of integrating “omics” datasets in order to identify links and
select useful information from among chaos [34], [43]. We therefore performed a
correlation network analysis in order to visualize pair-wise metabolic correlations
and to extract novel information regarding dynamic alternatives. A merge between
the metabolite-to-metabolite correlation networks measured in the plasma of CIA
and Ctrl mice is illustrated in fig. 3a and 3b, respectively. Next, the Spearman
correlation coefficient between metabolites (r,,) was calculated, and only strong
correlations (either positive or negative) (i.e., with an |r,| value >0.7) were
included in the resulting network. We found a total of 394 positive correlations and
91 negative correlations in the CIA group, and a total of 864 positive correlations
and 117 negative correlations in the Ctrl group. In general, metabolites that are in
the same chemical class or in the same biochemical pathway tended to correlate
with each other; these so-called “chemical class-based” clusters and “pathway-
based” clusters were more pronounced in the Ctrl group, leading a highly
connected region among oxylipins and another region among amine metabolites.
This network analysis revealed certain structural or pathway similarities among
those highly connected metabolites with respect to significant positive correlations.
Moreover, the associations between oxylipins and amine metabolites were
relatively weak in the Ctrl group, possible because oxylipins and amine metabolites

are generated via two separate metabolic pathways.
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(a) Metabolite-to metabolite correlations from CIA group

Oxylipins

Amino acids

Oxidative stress
Significantly increased
Significantly decreased
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Oxylipins
(12-LOX)

- NETES

Oxylipins
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(b) Metabolite-to metabolite correlations from Ctrl group

® Oxylipins
©  Amino acids —.—
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Fig. 3. Metabolic correlation networks in the CIA and Ctrl groups. Depicted are the metabolite-
to-metabolite correlation networks for CIA (3a) and Ctrl (3b) mice. All of the metabolites detected in
our analysis are included in the networks models.
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Nodes with a positive correlation are indicated with solid red lines, and nodes with a negative
correlation are indicated by solid blue lines. Shaded ellipses with a light red or light blue background
indicate clusters of oxylipins or amine metabolites, respectively. Thickness of lines indicate gradient
correlation strength: the thicker the line is, the stronger the correlation is (visible correlation co-
efficiency: || ranges from 0.7 to 1). (For better visualization of the detailed figures, please visit the

web version of this article online: http://www.sciencedirect.com/cache/MiamilmageURL/1-s2.0-
S1011134416307539-gr3 lrg.jpg/0?wchp=dGLzVIV-zSkWI1&pii=S1011134416307539)

Interestingly, we found that some of the strong correlations in the Ctrl group—
including both “oxylipin-to-oxylipin” and “amine-to-amine” correlations—were
weaker in the CIA group. In contrast, the CIA group contained more negative
oxylipin-to-amine correlations (Fig. 3a) than the Ctrl group (Fig. 3b). For example,
the HETEs and HDoHEs that were elevated in CIA mice were strongly correlated
with the branched chain amino acids valine, leucine, and isoleucine, as well as with
cystathionine, alanine, glutamine, and asparagine. The use of HETEs and HDoHEs
as inflammatory/ROS-related biomarkers has been described previously [14], and
we also found that decreases in these amine metabolites may reflect muscle
wasting and/or energy expenditure (cachexia) in RA [19]. Therefore, our analysis
of metabolic correlation networks suggests that the increased inflammation and
ROS levels reflected by oxylipins may also be associated with the onset of muscle

wasting and increased energy expenditure in RA.

3.3 UPE is correlated with inflammatory signaling—related metabolites in CIA
mice

As discussed in the Introduction, UPE arises as a result of metabolic reactions,
particularly oxidation-reduction (redox) reactions; therefore, we hypothesized that
UPE emission patterns may be correlated with metabolite patterns. To test this
hypothesis, we created a correlation network to visualize potential associations
between UPE intensity and peak area ratios of measured metabolites (see
Materials and Methods). Therefore, we used UPE-to-metabolite correlations (i.e.,

between a given UPE value, u, and a given metabolite, m) in the correlation
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networks, and the Spearman’s correlation coefficient |r.,| was calculated for each
UPE-metabolite pair in both the CIA group and the Ctrl group.

The heat map in Fig. 4 depicts a general UPE-to-metabolite correlation profile
used to compare the differences measured between the CIA group and the Ctrl
group. A cluster analysis reveals clear location-based clusters in the CIA mice. The
heat map also indicates a systemic change in the CIA group (i.e., the majority of
positive correlations, shown in red) compared with the Ctrl group (i.e., the majority
of negative correlations, shown in green). After removing relative weaker
coefficient from the Spearman correlation analysis (|7.»[<0.7), networks were built
to reflect the highly correlated entities and to show the most important metabolites
(fig.4b). After we removed the relatively weaker correlations from the Spearman
correlation analysis (i.e., |[rum| values <0.7), we built a network to reflect the
strongly correlated entities and to illustrate the most relevant metabolites (Fig. 4b).
Circle-attributed networks were then used to identify the key correlations and to
compare the CIA group with the Ctrl group. A total of 27 strongly positive
correlations and 79 negative correlations were identified in the Ctrl group, and a

total of 146 positive and 9 negative correlations were identified in the CIA group.

The correlation networks revealed that the majority of UPE-to-metabolite
correlations in the Ctrl group were negative, whereas the majority of UPE-to-
metabolite correlations in the CIA group were strongly positive. The major
metabolites that were positively correlated with UPE in the CIA group are the
monohydroxyeicosatetraenoic acids (HETEs), prostaglandins (PGs), thromboxane
(TBX) synthase products, lysophosphatidic acids (LPAs), sphingolipid signaling
molecules, and some amine metabolites (Fig. 4b). UPE intensity measured at
various locations was correlated with various metabolites in the CIA group. For
example, UPE intensity in the front paws was more strongly correlated with some
LPAs, whereas UPE intensity in the hind paws was more strongly correlated with
PGs (13,14-dihydro-15-keto-PGF2a, PGE2, PGD2, and 6-keto-PGF2a), TBX
synthase products (TBX2 and 12-HHTrE), HETEs (8-HETE, 15-HETE, 11-HETE,
and 12-HETE), and sphingolipids; see the CIA correlation networks in Fig. 4b.
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Fig. 4. Correlation-based analysis between UPE and metabolites measured in the plasma of
CIA mice and Ctrl mice. a) Heat map showing the entire UPE-metabolite correlation profile, as
well as the differences between the CIA and Ctrl mice. Colored blocks represent the value of the
correlation coefficient, which were color-coded from 1 (strongly positive, light red) to -1 (strongly
negative, light green). b) Visualized network model of the strong correlations (defined as a |rum|
value >0.7). The red and blue lines indicate positive and negative correlations, respectively, and the
thickness of the lines indicate the strength of the correlation. Several important pathway-related
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networks reflect the inflammation, ROS production, and muscle wasting associated with RA. Each
dot indicates an individual parameter that includes a given metabolite and UPE value: yellow dots
reflect location-based UPE intensity, and black, gray, and white dots represent oxylipins, biogenic
amines, and oxidative stress—related metabolites, respectively. Also shown (between the Ctrl and
CIA network models) are enlarged views of the key metabolites that differed significantly based on
our univariate and multivariate analyses. The up-triangles and down-triangles indicate the direction
of the metabolic change in the CIA mice (i.e., up-regulation or down-regulation, respectively). (For
better visualization of the detailed figures, please visit the web version of this article online:
http://www.sciencedirect.com/cache/MiamilmageURL/1-s2.0-S1011134416307539-

grd lrg.jpg/0?wchp=dGLbVBA-zSkzV&pii=S1011134416307539)

Next, the pathways related to these metabolites based on our previous study [14]
and the Kyoto Encyclopedia of Genes and Genomes were organized (Fig. 5). LPAs
act on G protein—coupled signaling and cellular signaling responses and function as
inflammatory mediators [44], [45]. PGs and TBXs, which are synthesized from
arachidonic acid via COX-II pathways, have well-established pro-inflammatory
functions [46], [47]. The 12/15-LOX products (12-HETE, 15-HETE, and 8-HETE)
promote the production of cytokines and activate the NF-kB pathway to inhibit
cellular apoptosis [48], [49]. In addition, 8-HETE, 12-HETE, and 11-HETE can
also be peroxided non-enzymatically by ROS to inhibit apoptosis [50]-[54];
therefore, these three HETEs may be important inflammatory mediators [55], [56].
The sphingomyelin-derived sphingolipids sphingosine and sphingosine-1-
phosphate (S1P) are signaling molecules in immune cells that mediate neutrophil
activation and apoptosis, and are therefore also considered to be inflammatory
mediators [57]-[62]. Based on the correlation networks, it can be seen that these
inflammatory mediators participated in the systemic perturbations (measured using
both metabolomics and UPE) in the CIA mice, even though some of these
mediators were not altered significantly in our univariate analysis. We also
conclude that UPE intensity is correlated with systemic inflammatory mediators,
ROS mediators, and cellular signaling processes; therefore, measuring UPE
intensity may provide a means to diagnose inflammatory disease. In addition, UPE
may also be used to monitor lipid peroxidation which relate to inflammation and
ROS level in both healthy and diseased individuals (Fig. 6). Thus, a specific

phenotype of a disease can be complemented by measuring both “omics” profiles
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and UPE patterns, thereby providing a more detailed understanding of the disease

and its underlying processes.
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In the CIA mice, a strongly negative correlation between cystathionine and UPE
was measured, whereas several amine metabolites—including serotonin,
tryptophan, and aspartic acid—were positively correlated with UPE. Cystathionine
is a scavenger of free radicals [63]; therefore, given its significant decrease in CIA
mice compared to Ctrl mice, the negative correlation between cystathionine and
UPE intensity indicates that the increase in UPE intensity may be due to a decrease
in antioxidants in RA. Both tryptophan metabolism and the serotonergic system
have been well described as key pathways that can influence signaling in the
central nervous system [64]. Thus, UPE may also be correlated with metabolic
systems that are associated with neurotransmission. In addition, based upon
pathways that regulate amine metabolites listed in the Kyoto Encyclopedia of
Genes and Genomes, all of the other amine metabolites that were positively
correlated with UPE are associated either directly or indirectly with the TCA cycle
(see Fig. 5). The correlations identified between UPE intensity and these
metabolites may suggest that during disease, some of the electrons that would
otherwise participate in chemical reactions to produce energy (for example, with
amine metabolites in the TCA cycle) actually escape and set free the energy which
they carry, as photons, whereby the electrons change from high to low energy level
states. Simultaneously, free radicals and/or ROS are produced, driving lipid
peroxidation to produce inflammatory HETEs and PGs. While such a speculation

need more rigorous validation.

The reduction in amine metabolites in the plasma of CIA mice compared to Ctrl
mice may be linked to the contribution of muscle wasting in arthritis [19].
Considering that we found strong correlations between amine metabolites and UPE
intensity, and given that muscle wasting is a common feature in many disease
processes, including some cancers [65], HIV/AIDs [66], type 2 diabetes [67], renal
failure, uremia[68], and heart failure [69] , UPE may also have potential
perspective for the use of monitoring energy wasting and muscle wasting in other
diseases. In this respect, future studies should examine the relationship between

muscle wasting and UPE.
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Interestingly, HETEs, PGs, sphingosine, and S1P—which were strongly
correlated with UPE intensity in our study—are also considered to be important
inflammatory biomarkers in a variety of diseases, including RA [70],
cardiovascular disease and/or atherosclerosis—related inflammation [59], [61], [71],
[72], congestive heart failure [60], cancers and other tumors [54], [73], some
prostate diseases [55] , and nonalcoholic steatohepatitis [56]. Therefore, our
finding that UPE is correlated with these inflammatory mediators may shed light
on the biological mechanisms that underlie these diseases from a systems biology

perspective.
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4. Conclusions

Given its complex pathophysiology, RA has been studied using a variety of
technologies and approaches. Indeed, integrating various data sets can provide
important information regarding the disease process and possible treatment
strategies. Generating correlation networks can provide valuable information, and
these networks have been used recently within a wide range of “omics” studies,
including proteomics, genomics, and metabolomics, thereby helping distinguish
specific diseases and/or phenotypes [34], [35], [74]. Here, we performed the first
study that integrates UPE with metabolomics in both diseased mice (i.e., mice
with collagen-induced arthritis) and healthy control mice; this novel, powerful
approach yielded meaningful information regarding RA. Moreover, we found
specific correlations between metabolomics and UPE. Lastly, our correlation
network analysis shows a systematic way to illustrate the complexity of RA ,
including dysregulation of both UPE and metabolomics.

Using our correlation networks, we also found that oxylipins were negatively
correlated with certain amine metabolites in the CIA group. This may indicate a
systematic perturbation under inflammation and ROS response in RA-induced
situation. However, further study is needed in order to elucidate whether the
inflammation and ROS are the consequence of muscle wasting, or vice versa. We
also found that UPE was correlated with certain inflammatory mediators, and we

expanded the biological interpretation of RA using correlation networks.

In conclusion, our correlation network analysis provides valuable information
regarding the disease process from a system-wide perspective. Understanding the
underlying biochemical phenomena that give rise to UPE is of great importance to

learn about potential applications of UPE in early disease characterization.
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