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General introduction and aim of the thesis






General introduction and aim of the thesis

1. Chronic diseases, unmet medical needs

Treating chronic diseases such as rheumatoid arthritis (RA) and type 2 diabetes
mellitus (T2DM) is a hot topic that has been discussed widely and investigated
extensively, but never solved, due in part to their high complexity (e.g., dynamic
disease processes, multiple pathologies, and associated complications). The onset
of a chronic disease usually starts from a slowly developing, asymptomatic stage,
which can last several years until clinically detectable signs of disease appear, then
progresses to an irreversible stage. With respect to prevalence, approximately 1%
of the global population currently has RA, and this percentage is increasing. For
T2DM, epidemiology studies estimate that 285 million individuals are currently
affected worldwide, and this number is projected to reach 439 million by 2030 [1];
moreover, a large number of individuals are undiagnosed due to only mild
symptoms in the early stages of the disease [2][3]. This long-term undiagnosed
state can directly and/or indirectly affect quality of life, serving as a major cause of
morbidity, hospitalization, systematic complications, and even mortality. At the
same time, the costs associated with caring for patients with diabetes are extremely
high, with hospitalization and complications accounting for the largest portion of
these costs. Thus, from the perspective of both patients and the economy, it is
essential to develop more reasonable and efficient approaches to diagnose these

diseases early, thereby increasing treatment efficacy.

2. Diagnosing chronic disease using a systems approach

Early diagnosis is an essential step in the detection of chronic disease, helping the
clinician identify the appropriate target for intervention and decreasing the risk of
complications, reducing mortality, and reducing economic costs. With respect to
chronic diseases, subtle perturbations associated with metabolic disorders are often

present for years before the appearance of clinically severe symptoms. Therefore,
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the slow development of chronic disease, as well as dynamic phenotypes, make
diagnosing a chronic disease more complex and challenging, as well as leading to
complications if not diagnosed in an early stage. Current diagnostic approaches are
based primarily on a single marker (usually the most relevant marker), which is
sometimes not directly applicable and/or might not adequately reflect the chronic
disease. The ability to predict disease early and to dynamically observe chronic
disease remain challenging and if solved can—to a certain extent—prevent the
development of irreversible lesions. Given the complexity and long-term dynamics
of chronic disease, a personalized approach to phenotyping may help improve our
understanding of the early stages of chronic disease. In addition, integrating
disease-related information using a systems approach may help improve our
knowledge of all stages of the disease, thus improving the accuracy of diagnosing

chronic disease.

3. Personalized medicine: going beyond the “one-size-fits-all”

approach

The definition of “health” is shifting changing from the notion of complete well-
being towards a state of dynamic control (i.e., homeostasis); thus, reduced
resilience of the body’s systems can lead to disease [4]. This loss of resilience can
occur at any time point and/or with dynamics unique to each individual. Thus, with
respect to disease, it is reasonable to assume that each patient will experience a
unique situation that reflects that patient’s personalized disease characteristics.
Given the shift in our concept of health in recent decades, the Western model for
treating disease is also shifting from the “one disease-one target-one drug”
approach towards a more personalized approach that focuses on the individual
patient [5]. The concept of personalized medicine, which reveals unique symptoms

that are related to disease, has the ultimate goal of helping improve diagnostics and
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General introduction and aim of the thesis

prognostics, improving healthcare by providing accurate, personalized treatment
targets, and providing opportunities to minimize—or even eliminate—side effects

and non-responded therapies in patients.

The reductionist approach helps improve our understanding of complex
processes by dividing these processes into smaller, simpler units. Although living
organisms are rather complex, with many interactions, systematic approach—based
integrative analysis has the advantage of providing an overall understanding by
evaluating “what the complex system looks like, how complex systems connect
and interact, and why the various components function in the organism as they do.”
Therefore, in recent decades Western medicine has been shifting from identifying
individual components to identifying interactions within intricate networks. In
addition, a systems approach can be considered a guide for developing
complementary approaches to healthcare [5] and may contribute to personalized

diagnostics/prevention, evaluation, and intervention.

“Health promotion™ “Disease management”

Focus on resilience Focus on symptom(s)

Phenotype A

Phenotype B

Challenge

* T > 2

Phenotype C

Adapted state
of the system

Allostasis

Homeostasis

Dynamic system of health and disease |

Fig. 1: Schematic diagram illustrating health (homeostasis) and the dynamic development of
disease.
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In the healthy state, challenges can be overcome and the body’s resilience enables the system to
remain healthy. The disease state develops when the body loses the ability to overcome this challenge.
Subtle perturbations often occur for years (in the early stage of disease), and the disease progression
can take various paths, producing various phenotypes (phenotype A, B, or C) before the appearance
of serious symptoms with irreversible disease sequelae (in the late disease stage). Personalized
medicine focuses on the individual patient, and a systems-based approach may help improve our
understanding of phenotypes by measuring complex interactions between intricate networks, even in
the early stages of disease.

Combining integrative thinking at the systems level with integrative measuring
techniques and bioinformatics can help overcome challenges related to
understanding living systems and disorders, and can help move towards truly
personalized medicine. With respect to integrative thinking, traditional Chinese
medicine (TCM)-based concepts may provide a suitable holistic model, as TCM
describes disease syndromes/phenotypes as an experience-based reference from the
systems level. Such descriptions may also help with the development of specific
treatments based on various syndromes and phenotypes, thereby achieving

personalized medicine, which is particularly applicable to chronic disease [6], [7].

With respect to systems-based approaches, metabolomics has many advantages,
including linking current bodies of knowledge and providing biological
interpretations of the pathophysiology of disease [8]; specifically, these approaches
provide a comprehensive picture of small molecular metabolites in biological
systems and can be used as a readout of an organism’s physiological status [9].
These integrative tools provide a wealth of biological information beyond single
molecules by simultaneously measuring a range of metabolites—including lipid
metabolites, fatty acid—derived oxylipins, organic acids, sugars, amino acids and
their biogenic metabolites, etc.,—in order to provide an overview of the disease
state and reflect system-wide perturbations. Therefore, metabolomics is considered
a suitable approach for obtaining evidence-based scientific data; moreover, in
principle metabolomics is an appropriate method for studying the complexity of
chronic diseases from the perspective of systems biology. In addition, combining
metabolomics with TCM concept—based diagnostics may provide comprehensive

data that can be used as a readout to reflect even the early stages of disease and/or
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specific phenotypes, thereby facilitating early diagnosis and personalized medicine.
However, because metabolomics approaches do not necessarily cover the entire

metabolome, choices must be made based on available metabolomics platforms.

Recently, the rapid, highly sensitive, non-invasive measurement of ultra-weak
photon emission (UPE) has been proposed for supporting TCM-based diagnostics
[10]. UPE measures spontaneously emitted photons at the surface of the skin [11];
therefore, UPE has been proposed to reflect the body’s physiological and
pathological status and is considered to have potential in terms of clinically
diagnosing and observing disease [12]-[14]. Because of the relationship between
UPE and reactive oxygen species (ROS), which play an importantly role in
inflammatory disease during metabolic processes, UPE may be correlated with
oxidative metabolic processes, thereby reflecting the dynamics of disease [15]-[18].
In addition, UPE has potential applications for systematically characterizing TCM-
based diagnostics[19], [20]. Given that both metabolomics and UPE have distinct
advantages in terms of reflecting disease, combining metabolomics with TCM-
based diagnostics will provide a robust model for investigating the biological

processes that underlie UPE.

4. Scope and outline of this thesis

Given the challenges described above, this thesis aimed to investigate system-wide
perturbations by providing i) a systems view of chronic disease, and ii)
personalized phenotyping guided by TCM-based principles. By using a systems
approach, the biological meaning of relevant molecules related to
disease/phenotype was revealed by metabolomics, and the relationship between
metabolomics and UPE was investigated, thereby providing a molecular basis for

UPE and bridging different techniques.
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In Chapter 2 and Chapter 3, we used metabolomics in an animal model of RA

to evaluate metabolic perturbations in a disease situation from various perspectives,
including inflammatory- and ROS-related oxylipins (Chapter 2) and amine-related
energy levels (Chapter 3). These studies revealed metabolic characteristics of RA
in a commonly used animal model using two well-established platforms. To further
understand and further characterize the relationship between metabolic processes
and UPE, we then examined the correlations between metabolites (i.e., the
integrated dataset described in Chapters 2 and 3) and UPE intensity (measured in
the same group of mice) using correlation network analysis; these results are
discussed in Chapter 4. Such a combination study provides more information and
an overall look at the complex pathophysiology underlying RA from a systems
perspective. Correlation networks were also created to explore the relationship

between UPE and metabolomics under disease conditions and in health.

Personalized phenotyping guided by TCM-based diagnostic principles,
metabolomics, and UPE provides a unique contribution to personalized medicine.
An explorative study combining metabolomics and UPE with TCM-based
diagnostics may further our understanding of personalized medicine from a
systems perspective. Thus, information obtained from several analytic technologies
can be integrated, helping generate a systems view of disease, with the ultimate
goal of achieving personalized medicine. In Chapter 5, we provide a general
overview of the applications of UPE that were guided by TCM-based diagnostic
principles, and we discuss why linking metabolomics and UPE with TCM-based
diagnostics may create new avenues for personalized medicine, systems
diagnostics, and systems-based interventions for treating chronic disease. In
Chapter 6, we present our explorative study based on the notions introduced in
Chapter 5. We first examined the application of metabolomics for subtyping 44
carly-stage T2DM subjects in an attempt to identify key metabolites that contribute
to subtypes defined using TCM. We then examined the relationship between
metabolites and UPE in these TCM-based subtype.
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Collagen induced arthritis in DBA-1J mice associates with oxylipin changes

Abstract

Oxylipins play important roles in various biological processes and are considered
as mediators of inflammation for a wide range of diseases such as rheumatoid
arthritis (RA). The purpose of this research was to study differences in oxylipin
levels between a widely used collagen-induced arthritis (CIA) mice model and
healthy control (Ctrl) mice. DBA/1J male mice (age: 6-7 weeks) were selected and
randomly divided into two groups, viz. a CIA- and a Ctrl group. The CIA mice
were injected intraperitoneal (i.p.) with the joint cartilage component collagen type
II (CII) and an adjuvant injection of lipopolysaccharide (LPS). Oxylipin
metabolites were extracted from plasma for each individual sample using solid
phase extraction (SPE) and were detected with high performance liquid
chromatography/tandem mass spectrometry (HPLC-ESI-MS/MS), using dynamic
multiple reaction monitoring (dAIMRM). Both univariate and multivariate statistical
analysis was applied. The results in univariate student’s #-test revealed 10
significantly up- or down-regulated oxylipins in CIA mice, which were
supplemented by another 6 additional oxylipins, contributing to group clustering
upon multivariate analysis. The dysregulation of these oxylipins revealed the
presence of ROS-generated oxylipins and an increase of inflammation in CIA mice.
The results also suggested that the Collagen-induced arthritis might associate with
dysregulation of apoptosis, possibly inhibited by activated NF- k B because of
insufficient PPAR-y ligands.
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1. Introduction

Rheumatoid arthritis (RA) is a chronic, destructive auto-immune disease which
involves primarily the joints in the extremities. The disease is characterized by the
destruction of the cartilage in the joints and inflammation of the synovium. This
local immune response is characterized by both cell —mediated and humoral
immune factors. CD4+ T cells, activated B cells are present in the synovium
together with cytokines such as interleukins (e.g. IL-1 and IL-6), tumor necrosis
factor (TNFa) and interferon gamma (IF- y) [1]-[3]. Recent studies have shown an
important role of fibroblasts-like synovial cells in the pathophysiology of RA [4]—
[6]. Upon pro-inflammatory stimuli and in combination with genetic and
epigenetic/environmental factors, these cells, normally responsible for proper
composition of the synovial fluid and extracellular matrix, transform into an
aggressive phenotype. This phenotype is characterized by a reduced ability to
undergo apoptosis [7]-[12], the production of extracellular enzymes like
collagenase and metalloproteases responsible for the destruction of the joints [13],
[14] and the secretion of (pro-/anti) inflammatory cytokines, chemokines, pro-
angiogenic factors and oxylipins [15]-[17]. Due to local hypoxia, the formation of

reactive oxygen and nitrogen species is promoted [18]-[21].

Although the role of cytokine/chemokine triggered signal transduction
pathways such as MAP kinase and nuclear factor-kappa B (NF- kB) in the
pathophysiology of RA has been subject of extensive research, the role of oxylipins
is less well understood. Oxylipins are bioactive lipid mediators synthesized from
omega-6 polyunsaturated fatty acid such as arachidonic acid (AA), linoleic acid
(LA) and dihomo- y -linolenic acid (DGLA) and omega-3 polyunsaturated fatty
acid like eicosapentaenoic acid (EPA), docosahexanoic acid (DHA) and alfa-
linolenic acid (ALA) upon liberation from membrane bound phospholipids by
activation of phospholipase A2 and subsequent oxidation by cyclooxygenase
(COX), lipoxygenase (LOX) and cytochrome P450 expoxygenase (CYP450)

systems [22]. This leads to the formation of, over at least hundred, bioactive
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Collagen induced arthritis in DBA-1J mice associates with oxylipin changes

oxylipins such as prostaglandins (PG), leucotrienes (LT), thromboxanes (TBX),
hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EpETrEs).
They can act both on local and distant targets by secretion into the circulation
system of body. AA is the substrate of pro-inflammatory lipid mediators while
EPA and DHA derived lipid mediators are anti-inflammatory such as resolvins and
protectins playing a role in the resolution of inflammation [23]. Nonenzymatic
oxidation of polyunsaturated fatty acids produces the closely related bioactive
lipids mediators like, for example, isoprostanes, HETEs and HDoHEs, indicators of
oxidative stress [24]-[29]. Therefore, investigation of the changes of oxylipins in
RA animal models will certainly contribute to the understanding of biochemical

events in RA research.

Metabolomics is an important and rapidly emerging field of technology
enabling the comprehensive analysis of a large number of metabolites associated
with disease phenotypes. We have applied a metabolomics approach using a LC-
MS based platform combined with elaborate statistical methods to analyze
oxylipins in a validated model of RA that is collagen induced arthritis in mice. Our
results point to a diminished anti-inflammatory response and increased oxidative

stress in the RA-induced situation.
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2. Materials and Method

2.1 Chemicals
Methanol (MeOH), acetonitrile (ACN), isopropanol (IPA), ethyl-acetate (EtOAC)

and purified water were purchased from Biosolve (Netherlands). All reagents used
during the HPLC-MS/MS experiments were ultra-performance liquid
chromatography grade (UPLC). Acetic acid was purchased from Sigma-Aldrich (St.

Louis, Mo). Standards were purchased from Cayman (Netherlands).

2.2 Animal Studies

DBA/1J male mice (6—7 weeks; Charles River Laboratories) were used in this
study. Twenty mice were randomly divided in two groups (10 in CIA group, 10 in
Ctrl group as healthy control). In the CIA group, immunization with collagen type
I will provoke chronic polyarthritis by the induced autoimmune response. Each
mouse was intraperitoneally induced (i.p.) with joint cartilage component collagen
type II (CII; 100pg diluted with a 100 pl volume 0.005M acetic acid) which was
extracted from bovine nasal cartilage (Funakoshi Co., Tokyo, Japan) at day 0 (T=0).
Thereafter, the CII injection was repeated i.p. on days 14,28,42 and 56. In the ctrl
mice, 100 uL of 0.005M acetic acid alone was administered i.p. on the same days
(0, 14,28,42 and 56).

Next, to all experimental mice, 5 mg of Lipopolysaccharide from E. coli 011:B4
(Chondrex, Redmond, USA) dissolved in 100 uL phosphate buffered saline (PBS)
was given i.p. immediately after each injection of CII. In the Ctrl group, 100 pl
PBS was similarly administered as a control. This protocol for arthritis induction is
well established and extensively described [30]. All animals were maintained in a
temperature and light controlled environment with free access to standard rodent
chow and water. From day 71 to day 75, blood was taken from each animal of both
groups (CIA mice (CIA1) died when sampling, leaving 9 animal blood samples in
the CIA group) and collected in pre-cooled tubes containing EDTA
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(Ethylenediaminetetraacetic acid) as coagulant (BD Vacutainer, Plymouth, UK).
After centrifugation at 3000g for 10 minutes, the EDTA-plasma was collected and

aliquots were stored at -80 °C until further processing.

2.3 Ethics Statement

This study was carried out in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Institutes of
Health. The experiments were performed with the approval of the Tohoku Institute
of Technology Research Ethics Committee, Sendai, Japan (approval date 18
January 2009).

2.4 Oxylipin HPLC-MS/MS Analysis on Study Mouse Samples

The details of extraction and analysis of oxylipins species were adapted for the
analysis of mouse plasma from a previously described oxylipin profiling method
[31]. Antioxidant mixture (5 pL) (0.4 mg/mL BHT and 0.4 mg/mL EDTA mixed
with volume ratio 1:1) and a mixture of internal-standard mixtures (ISTDs) (5 uL,
1000nM) were added into each 50 uL aliquot of mouse plasma. Subsequently the
samples were loaded on the activated SPE plates (Oasis-HLB 96-well plates, 60mg,
30um) and eluted using ethyl acetate (1.5mL). The dried eluate was re-dissolved
in 50 pL acetonitrile/methanol (50:50 v/v) and 5 uL were analyzed by HPLC
(Agilent 1290, San Jose, CA,USA) on an Ascentis Express column (2.1 x 150 mm,
particle size of 2.7 um) coupled to electrospray ionization on a triple quadrupole
mass spectrometer (Agilent 6490, San Jose, CA, USA). Performance
characteristics for the adapted method including recovery, linearity (R?), linear
dynamic range and sensitivity (LOD/ LOQ) were evaluated in a separate
validation experiment and the results were comparable to those published before

for human plasma by Strassburg et al. [31]. The data is included in the
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Supplementary Material (Table S1, figure S1, available online at
http://dx.doi.org/10.1155/2015/543541).

2.5 Data Processing and Statistical Analysis

Peak areas were exported from Mass Hunter software (Agilent Technologies,
version B.05.01) and ratios to internal standards were computed (target
compounds/ ISTDs). Subsequently, an in-house developed QC tool [32], [33] was
used to correct for instrument drift and batch effects. The reliability of the
measurements was assessed by calculating the reproducibility of each metabolite in
a QC pool which was measured after every 10 samples. Oxylipins which met the
criteria RSD-QC lower than 35% were included in the final list for the further
statistical analysis. Data were log transformed (Glog) and scaled by the standard
deviation (autoscaling) in order to get a normal distribution [34], [35]. Univariate
analysis (two-tailed unpaired Student’s z-test) was employed to evaluate significant
differences between groups for each metabolite (determined by p< 0.05). Principal
component analysis (PCA) and partial least square discriminant analysis (PLSDA)
were performed to further investigate the discrimination oxylipins between the two
groups using tools provided in the metaboanalyst software package
(http://www.metaboanalyst.ca) [36]. Cross validation was used in order to validate
the performance of the PLS-DA model [37]. A permutation test with 100 iterations
was performed to estimate the null distribution, by randomly permuting the class
labels of the observations. p values of each pair of comparison in the permutation
test were calculated to evaluate the null hypotheses. To select the potential
important metabolites which contribute to group separation, Variable Importance in
the Projection (VIP) scores based on PLS-DA analysis were used. The higher the
VIP score of a metabolite is, the greater its contribution in the group clustering will
be. VIP scores higher than 0.8 are considered as meaningful. Variables with VIP
score higher or equal to 1 were considered as significant important features [38],
[39].
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3. Results

In this study, the relative concentrations of a panel of oxylipins were determined in
control and CIA mice. When evaluating the results from the LC-MS/MS analysis,
lower response of ISTDs peak areas were found in two samples, which lead to an
extreme high peak area ratio compared with other study samples. Therefore, these
two outliers from Ctrl group were excluded from statistical analysis. The list of
detected endogenous oxylipins in mice plasma assigned by their precursors is given

in Table 1 (details in supplementary table).

3.1 Univariate and Multivariate Analysis Results

From the QC corrected data, a total of 30 unique oxylipins out of a target list of
110 oxylipins included in the metabolomics platform met the criteria RSD-QC
<35%. In order to generally visualize the variance of the samples, a principal
components analysis (PCA) analysis, as an unsupervised multivariate analysis
approach, was performed using these oxylipins. Fig.1 displays the PCA results in
the form of a score plot. The first two principal components accounted for 60.1%
of the total variance (PC1 35.6% and PC2 24.5% respectively), which means the
model explains well the variance of the samples. The score plot showed a natural
distribution of samples between the CIA group and Ctrl group (consisting of the
symbols “A” or “+” plots). All 8 samples (100%) of Ctrl group clustered in PCA.
Eight out of 9 mice (88.9%) of CIA group clustered as well, while one sample in
CIA group was misclassified and clustered within the Ctrl group. This cluster
indicates that there are some differences between the samples, which were mainly a
reflection of the CIA/Ctrl groups.

Determining the oxylipin species responsible for the differences between the
CIA and Ctrl group is key to unraveling the biological role of this class of
compounds in RA. Student’s #-test is one of the most widely used method to

determine the statistical significance. In order to understand which of the detected
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oxylipins showed significant differences between the two groups, an unpaired
Student’s t-test analysis was evaluated in each individual metabolite. From the z-
test, 10 out of the 30 detected oxylipins (percentage of 33.3%) showed significant
differences (p<0.05) namely 9,10-DiHOME, 9-KODE, 12,13-DiHOME, 14-
HDoHE, 13-HDoHE, 12S-HEPE, 9,12,13-TriHOME, 9,10,13-TriHOME, 9,10-
EpOME and 10-HDoHE. In order to show the effect size and variance among the
samples, a comparison of individual metabolite levels measured for CIA and
control mice is displayed in Fig. 2, in the form of boxplots, with a “ *” indicating
statistical significance between groups. In the boxplot, lines extended from the
boxes (whiskers) showed the variabilities outside from the upper and lower

quartiles of the data.

Scores Plot
© A CIA
+ CTRL
+
] F
+
~ +
S . + T
g
A A A A
o
A AN
< A A
T T T
5 0 5

PC 1(35.6 %)
Fig. 1 PCA plot of oxylipin data in study mice plasma. PCA score plot of plasma oxylipin data

from all study samples revealed general clusters in CIA mice samples and Ctrl samples. The
individual samples were marked with“A” or “+”to show the group (CIA versus Ctrl) clustering.
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Fig. 2 Changes in metabolite levels between Ctrl and CIA mice. Individual metabolite levels for
the two groups are illustrated using box-plots with the whisker drawn, after logarithmic
transformation for normalization. Boxplot colored: white box: metabolites in Ctrl group; grey box:
metabolites in CIA group. The metabolites which differed significantly based on Students’ #-test (p <
0.05) are marked with “* .
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Given that compounds which showed nonsignificant changes from univariate
approaches (such as #-tests) may also contribute to group clustering and provide
useful information on biological interpretation, a PLS-DA model as a supervised
clustering method was further applied to get a more focused view on the
metabolites which contribute to group clustering. A PLS-DA scores plot using two
components with total score of 43.5% (component 1 =24.5%, component 2 = 19%)
gives a reasonable group separation (figure in supplementary data). However, this
model needs to be validated in order to prevent overfitting. Therefore, cross-
validation and permutation test was performed. The predictive accuracy (0.88 )
accompanied with a goodness of fit R? (0.84) in cross-validation revealed a sound
basis for the PLS-DA model. The permutation tests with an average of 4
misclassifications in100 iterations (p = 0.04) showed robustness of the model.
Thus classification of groups based on this approach can be considered as

significant based on both cross-validation and 100 permutation tests.

For this model, the Variable Importance in the Projection (VIP) score was used
to summarize the relative contributions of each individual metabolite to the group
separation in the PLS-DA. The VIP score shows 14 variables which contributed to
the group clustering (VIP > 1), including 5 up-regulated oxylipins (14-HDoHE, 13-
HDoHE, 12S-HEPE, 10-HDoHE and 8-HETE) and 9 down-regulated oxylipins
(9,10-DIHOME, 9-KODE, 12,13-DiHOME, 9,12,13-TriHOME, 9,10,13-TriHOME,
9,10-EpOME, 9-HODE,13-KODE and 12,13-EpOME). The top ten of them are
also detected in univariate ¢-test results, which confirmed the importance of these
oxylipins.

Given that the oxylipins 13,14-dihydro-PGF,, and12-HETE have been
implicated in inflammatory regulation in disease and also given that they showed a
meaningful VIP score close to 1 (0.96, 0.95 respectively) with increasing trend in
the CIA group, changes in these metabolites can provide insight in the biological

interpretation for CIA and are included in further biological interpretation. The
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detailed pieces of p value from Students’ ¢-test, VIP scores from PLS-DA, and

their direction of regulation are shown in Table 1.

Table 1. List of oxylipins detected in mice plasma, measured using multiple reaction
monitoring (precursor ions — product ions) in LC-MS/MS analysis.

Compounds MS transitions(m/z)  p-value  VIP Regulation  Pathway
LA

9,10-DIHOME 313.2->201.1 0.0002 1.86 l CYP450
12,13-DiIHOME 313.2->183.2 0.006 1.51 l CYP450
9,10-EpOME 295.2->171.2 0.028 1.27 l CYP450
12,13-EpOME 295.2->195.2 0.096 1.00 l CYP450
9-KODE 293.2->185.2 0.003 1.61 l 5-LOX
9,12,13-TriHOME 329.2->211.2 0.017 1.36 l 5-LOX
9,10,13-TriHOME 329.2->171.1 0.026 1.29 l 5-LOX
9-HODE 295.2->171.1 0.052 1.14 l 5-LOX
13-KODE 293.2->113.1 0.082 1.04 l 12/15-LOX
13-HODE 295.2->195.2 0.733 0.21 - 12/15-LOX
EPA

12-HEPE 317.2->179.1 0.016 1.37 T 12/15-LOX
DHA

14-HdoHE 343.2 ->205.0 0.010 1.45 T ROS
13-HdoHE 3432 ->281.0 0.012 1.42 T ROS
10-HdoHE 3432 ->153.0 0.035 1.23 T ROS
17-HdoHE 3432 ->281.3 0.173 0.83 - 12/15 LOX
19,20-DiHDPA 361.2->273.3 0.509 0.41 - CYP450
DGLA

6-keto-PGFla 369.2->163.1 0.390 0.53 - COX
8-HETTE 321.3->303.0 0.469 0.45 - 12/15 LOX
AA

8-HETE 319.2->155.1 0.074 1.06 T 12/15-LOX
12-HETE 319.2->179.2 0.116 0.95 T 12/15 LOX
15-HETE 319.2->219.2 0.770 0.18 - 12/15-LOX
5-HETE 319.2->115.1 0.713 0.23 - 5-LOX
13,14-dihydro-PGF2a 355.2->2753 0.112 0.96 t COX
PGF2a 353.2->193.1 0.176 0.82 - COoX
13,14-dihydro-15-keto-PGF2a ~ 353.2->183.1 0.618 0.31 - COX
12S-HHTIE 279.2->179.2 0.733 0.21 - COX
TXB2 369.2 ->169.1 0.900 0.08 - COX
14,15-DiHETTE 337.2->207.2 0.662 0.27 - CYP450
9-HETE 319.2->167.1 0.408 0.51 - ROS
11-HETE 319.2->167.1 0.820 0.14247 - ROS
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The oxylipins are grouped based on the original polyunsaturated fatty acid precursor: linoleic acid
(LA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), dihomo- vy -linolenic acid (DGLA),
and arachidonic acid (AA).

Their metabolic pathways include enzymatic pathways: cyclooxygenase (COX), lipoxygenase (LOX),
cytochrome P450 (P450), and nonenzymatic reactive oxygen species (ROS) pathway. The
significance of changes between two groups was illustrated by p value from univariate test (Student’s
t-test) and VIP score from multivariate test (PLS-DA). The important regulations in the CIA group
were marked with “|”or*“1” selected based on VIP scores.

|: downregulated in CIA group.
T:upregulated in CIA group.

3.2 Physiological pathways of altered oxylipins

We grouped the detected oxylipins by their metabolic pathways in order to
illustrate their biological roles in fig. 3. Color is used to indicate the up/down-
regulation (marked in yellow/blue boxes) in the CIA group. Among these
colored16 metabolites, all the 9 down-regulated oxylipins (9,10-DiIHOME, 9-
KODE, 12,13-DiHOME, 9,12,13-TriHOME, 9,10,13-TriHOME, 9,10-EpOME, 9-
HODE, 13-KODE and 12,13-EpOME) are derived via the LA group; 3 up-
regulated oxylipins (8-HETE, 13,14-dihydro-PGF2a, 12-HETE) are derived from
AA; 3 up-regulated oxylipins (14-HDoHE, 13-HDoHE and 10-HDoHE) are
derived from DHA; and 1 up-regulated oxylipins (12S-HEPE) is produced from
EPA.
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Fig. 3 Overview of regulations of oxylipins in CIA mice compared with Ctrl, including
metabolic pathways. Metabolites detected in mice plasma are grouped by metabolic pathways.
Important metabolites which contribute most to group clustering based on PLS-DA are colored:
yellow box: up-regulated in the CIA group; blue box: down-regulated in the CIA group.
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4. Discussion

Inflammation is a self-limiting innate mechanism under complex regulation with
the purpose to recruit leukocytes and plasma proteins, trafficking these to the site
of infection or tissue damage, supporting a robust adaptive immune response and
subsequent resolution [40]. RA is the consequence of a systemic auto-immune
activation/response within the synovial fluid in the joint triggering a dysregulated
chronic inflammatory response, of which the exact underlying pathogenic
mechanisms still remain largely unclear. RA is characterized with a strong
inflamed cytokine phenotype with elevated levels of IL-1 B, IL-6, TNFa as well as
increased levels of ROS [18], [41], [42], seen in fig. 4(a). Perturbations related to
TNFa activation of the NF- kB pathway inhibiting apoptosis in activated antigen-
presenting cells including neutrophils, macrophages, fibroblast-like cells, and B-
cells, forms the general accepted pathological basis of RA [9], [10], [43], [44].
Hence we applied a comprehensive oxylipin metabolomics platform to the plasma
of DBA/1J mice induced by a co-administration of type II collagen with
lipopolysaccharide, to elucidate the role of these potent inflammatory mediators in
RA.

We detected an increased pro-inflammatory oxylipin response, which can be
attributed to the activation of NF-kB and increased ROS (Figure 4(b)). NF-«B is
the transcription factor for COX-II, and its activation during RA [45], [46] can
explain the increased levels of the COX derived prostaglandin F», measured via its
downstream product 13,14-dihydro-PGF,, in CIA mice [47], [48]. Several
hydroxyl-fatty acids were also implicated as role players in the chronic
inflammatory phenotype of RA. Due to two possible de novo synthesis routes for
hydroxyl-fatty acids, it implicates both increased LOX activity concurrently with
elevated oxidative stress within CIA mice [24]-[27]. Increased 12-LOX signaling
mediators included 8-HETE and 12-HETE supporting a pro-inflammatory milieu
[49], [50]. In an oral tolerance test in CIA rats, Ding et al. [51] measured elevated

levels of EPA-derived 18-HEPE, while we detected increased level of a similar
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metabolite 12-HEPE. Overexpression of 12-LOX in RA has been published by
Liagre & Kronke [52], [53], which can further mediate the activation of NF-k B
[54]-[56], indicating the chronic nature of RA. Although 8-HETE, 12-HETE and
12-HEPE together with the docosahexaenoic acid derived HDOHEs also provide a
readout for ROS induced biologically active lipid peroxidation products [24]-[27].
Oxidative stress leading to increased free radicals as well as ROS levels have been

reported in RA by Ozkan et al. 18], supporting this finding.

Systematic autoimmune activation Proinflamamtory cytokines
(IL-1 B, IL-6, TNF-a)

Cytoplasm @
IKB NF-KB
PPAR-y ROS
HDoHEs
== l Caspase-8 A
il —
7 — "

/( - ;PAR-V — Caspase-9
,, (} Caspase-3

N Apaptasis

8-HETE .
12-HETE
13,14-dihydro-
PGF2a 12-HEPE
X \ WA 3

ox\ o LOX WA

\ \ \ Nucleus PGFla

N \ IL-1 B and IL-6, Cox LOX
~ \ IF-y, TNF-a
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Cytaplasm T

= Phospholipid

Fig. 4 A systematic auto-immune activation in RA. Appearance of pro-inflammatory cytokines (IL-
1 B and IL-6, TNFa) as well as the appearance of ROS in RA. The cytokines normally induce the
apoptosis via the caspase pathway, but also inhibit apoptosis through degradation IkB activating
nuclear factor-kB (NF-«kB), which consequently translocate to the nucleus upregulating the
antiapoptotic genes (BcL2 and BcL-xL). The activated NF-kB then can also further enhance the
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production of pro-inflammatory cytokines and chemokines as well as COX-II enzyme. (b)
Upregulated oxylipin response. During RA increased levels of AA derived prostaglandins and HETEs
are detected. 8- and 12-HETE is able to activate NF-kB exasperating RA. Due to increased levels of
ROS, DHA derived peroxidation products are also found. (c¢) — Dysregulated anti-inflammatory
response. LA derived Oxylipins including: HODEs, KODEs, TriHOMEs, DiHOMEs and EpOMEs
are ligands of peroxisome proliferator-activated receptor (PPAR)-y. Due to decreased levels of these
anti-inflammatory oxylipins, the ability of PPAR-y to inhibit the activation of NF-kB and indirectly
affect apoptosis, is diminished.

Alongside the increased pro-inflammatory oxylipins, we also identified
significantly decreased LA derived oxylipins in CIA mice plasma. The decreased
LA cytochrome P450 products (EpOMEs, DiHOMEs) and LA LOX products
(TriHOMESs) implicate a fatty acid precursor perturbation and/or a possible
oxylipin enzymatic impairment in RA. AA is the ELOVL mediated elongation
product of LA, and the detected increasing trend in AA derived oxylipins indicate
sufficient CYP and LOX activity to rule out enzyme activity as the cause of the LA
oxylipin reductions. In addition, these LA derived oxylipins as well as the
decreased HODEs and KODEs are ligands for nuclear hormone receptor
peroxisome proliferator-activated receptor-gamma (PPAR-y) activation [57]-[63],
shown in Fig. 4(c). PPAR-y are anti-inflammatory regulators of immune cells and
can inhibit the activation of NF-xB [44], [46], [61], [62], [64]-[70]. Therefore, the
decreased LA-derived oxylipins and PPAR-y ligands indicate a perturbation in
mechanisms related to the resolution of inflammation, unable to inhibit NF-xB

activation and its downstream inhibition of apoptosis.

As discussed above, our detected oxylipins indicate insufficient PPAR-y ligands,
as well mechanisms leading to the activation of NF-xB, supporting and enhancing
our understanding of the inhibition of apoptosis in CIA mice. Apoptosis plays an
important role leading to the phagocytic clearances of damage cells stifling the
development of chronic inflammation and autoimmunity [71]. The inhibition of
apoptosis prevents the silencing of activated leukocytes, dysregulating clearance

mechanisms contributing to chronic autoimmune inflammation in RA [72].
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5. Conclusion

Using our comprehensive oxylipin method we were able to show that the CIA mice
had an arachidonic acid dependent increased proinflammatory profile, with
increased levels of oxidative stress. Several studies have been published
advocating anti-inflammatory diets ( the restriction of AA in the diet), leading to
therapeutic benefits and ameliorating RA [73]. We also detected a significant
decrease in potent anti-inflammatory oxylipins derived from linoleic acid capable
of signaling via PPAR-y to inhibit the activation of NF-kB, namely, the molecular
basis for RA. Interestingly, PPAR-y has been identified and reported as a
therapeutic agent for arthritis[74]. The reduced levels of linoleic acid derived
oxylipins implicated fatty acid precursor pools, shedding light on the unexplored
routes of fatty acid elongation pathways in the pathogenicity of RA, and need
further work. As additional metabolites have been reported to play a role in RA, a
systems biology approach would complement the study of systematic auto-immune

induced rheumatoid arthritis.
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7. Abbreviations

AA: arachidonic acid;

ALA: a-arachidonic acid;

CIA: Collagen induced arthritis;

CIIL: Collagen Type II;

COX: cyclooxygenase;

CYP 450: cytochrome P450
expoxygenases;

DGLA: dihomo- y -linolenic acid;
DHA: docosahexaenoic acid;
DiHETrE: dihydroxyeicosatrienoic
acid ;

DiHOME
dihydroxyoctadeca(mono)enoic acid;
EPA: eicosapentaenoic acid;

EpETrE: epoxyeicosatrienoic acids;
EpOME: epoxyoctadecenoic acid;
HDoHE: hydroxydocosahexaenoic
acid;

HEPE: hydroxyeicosapentaenoic acid;
HETE: hydroxyeicosatetraenoic acid;

HETTrE: hydroxyeicosatrienoic acid;
HHTTE: hydroxyheptadecatrienoic acid;
HODE: hydroxyoctadecadienoic acid;
HOTYE: hydroxyoctadecatrienoic acid,;
ISTDs: internal standards;

KETE: ketoeicosatetraenoic acid;
KODE: ketooctadecadienoic acid;

LA : linoleic acid;

LOX : lipoxygenase;

LPS : Lipopolysaccharide;

NF-«B: Nuclear factor-kappa B;

PG: prostaglandin;

PPAR: peroxisome proliferator-
activated receptor;

RA: rheumatoid arthritis;

ROS: Reactive Oxygen Species;

TNF: tumor necrosis factor;
TriHOME: trihydroxyoctadecenoic
acid;
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Support information

The supplementary material provides the methodology of oxylipin extraction and
detection and reports performance characteristics of this method. Detailed results
from supervised. PLS-DA analysis and VIP scores are also provided in order to
demonstrate the important contributions of significant oxylipins to the group

clusters.

Supplementary figures
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S-Fig. 2: Score plot (component 1 vs. component 2) of PLS-DA based on the whole targeted
plasma oxylipin profiling (n=30) from LC-MS in CIA model (CII+LPS induction) group and
Ctrl group. Peak area ratio to relevant internal standards after Glog transformation and
autoscaling was used for the PLS-DA analysis.
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S-Fig. 3: Variable Importance in the Projection(VIP) scores of detected oxylipins based on PLS-
DA. Fourteen oxylipins showed VIP score higher than 1, while another to are extremely closer to
1(0.96 and 0.95 respectively). The regulation information of increase (lll) and decrease (O0) are given
in the right side of the figure.
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Supplementary tables

S-Table 1: Linearity(R?), reproducibility(RSD), Limitation of detection(LOD) and

quantitation(LOQ) of LC/ESI-MS/MS for oxylipins detected in mice plasma

Oxylipins Chemical class R? RSD[%] LOD[nM]  LOQ[nM]
AA

12S-HHTrE ~ Alcohols 0999 12 1 3.5
20-HETE Alcohols 0999 11 6.1 20.2
15-HETE® Alcohols 0.904 26 2.6 8.8
11-HETE* Alcohols 0963 12 0.6 1.8
12-HETE » Alcohols 0.794 7 15.6 52.1
8-HETE" Alcohols 0.95 30 13.1 435
9-HETE » Alcohols 0932 19 33.9 113
5-HETE® Alcohols 0.82 17 52 17.4
5S,6R-LipoxinA4 Diols 0994 4 1.5 5.1
58,6S-Lipoxin A4 Diols 099 5 4.4 14.5
6-trans-LTB4 Diols 0.99 7 83 275
LTB4 Diols 0999 12 0.4 1.3
14,15-DiHETtE Diols 1 9 0.4 1.4
11,12-DiHETE Diols 0999 14 1.6 5.5
8,9-DIHETTE Diols 0999 17 0.7 24
5,6-DiIHETrE Diols 0999 5 18.8 62.6
14,15-EpETrE Epoxides 0847 7 3.7 12.4
5,6-EpETIE Epoxides 0999 8 39 12.8
12S-HpETE Hydroperoxides 0.902 10 116.7 389.1
5S-HpETE Hydroperoxides 1 27 0.4 1.3
15-KETE Ketones 0.998 32 4.8 16
5-KETE Ketones 0985 32 39.1 130.4
8-iso-PGF2a Prostanoids/throboids 1 13 0.5 1.7
5-iPF2a-VI Prostanoids/throboids 1 10 0.1 0.3
TXB2 * Prostanoids/throboids ~ 0.999 10 1.3 4.5
PGF2a Prostanoids/throboids ~ 0.999 11 0.9 2.8
PGE2 Prostanoids/throboids ~ 0.998 12 1.9 6.2
11beta-PGE2 Prostanoids/throboids ~ 0.998 6 2.5 8.5
13,14-dihydro-PGF2a Prostanoids/throboids 1 13 4.1 13.8
13,14-dihydro-15-keto-PGF2a”  Prostanoids/throboids 1 9 1.94 6.48
PGA2 Prostanoids/throboids ~ 0.998 8 2.3 7.7
PGJ2 Prostanoids/throboids 1 6 0.03 0.1
d12-PGJ2 Prostanoids/throboids ~ 0.995 10 2.3 7.6
PGD2 Prostanoids/throboids ~ 0.996 6 2.5 8.5
HepoxilinA3 Prostanoids/throboids ~ 0.992 7 57.7 192.3
ALA

9-HOTrE Alcohols 0.998 12 0.3 1
12,13-DiHODE Diols 0993 13 54.5 181.8
DGLA

15S-HETIE Alcohols 0.998 27 1.3 43
8-HETrE" Alcohols 0979 15 2.8 9.2
5-HETrE Alcohols 0.999 23 1.6 54
6-keto-PGF1a® Prostanoids/throboids 1 15 1.08 3.62
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Abstract

Background: Rheumatoid arthritis (RA) is a complex, chronic autoimmune
disease characterized by various inflammatory symptoms, including joint swelling,
joint pain, and both structural and functional joint damage. The most commonly
used animal model for studying RA is mice with collagen-induced arthritis (CIA);
the wide use of this model is due primarily to many similarities with RA in human
patients. Metabolomics is used increasingly in biological studies for diagnosing
disease and for predicting and evaluating drug interventions, as a large number of
disease-associated metabolites can be analyzed and interpreted from a biological

perspective.

Aim: To profile free amino acids and their biogenic metabolites in CIA mice

plasma.

Method:  Ultra-high-performance  liquid chromatography/tandem  mass
spectrometry (UPLC-ESI-MS) coupled with multiple reaction monitoring (MRM)

was used for metabolomics study.

Results: Profile of 45 amine metabolites, including free amino acids and their
biogenic metabolites, in plasma was obtained from CIA mice. We found that the
plasma levels of 20 amine metabolites were significantly decreased in the CIA
group.

Conclusion: The results suggest that a disordered amine response is linked to RA-

associated muscle wasting and energy expenditure.

Key words: Collagen-induced arthritis, mouse model, amine metabolites, systems

biology.
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1. Introduction

Rheumatoid arthritis (RA) is a highly prevalent chronic disease, currently affecting
approximately 1% of the world’s population [1]-[3]. Patients with RA typically
have destruction of joint cartilage and bone accompanied by joint stiffness,
hyperplasia, microvascular injury, swelling, and pain. The pathogenesis of RA is
mainly associated with the secretion of cytokines such as interleukins (e.g., IL-1
and IL-6), tumor necrosis factor (TNFa), interferon gamma (IFNy), and various
pro-inflammatory mediators [4], [S]. Increased activity of the nuclear factor (NF)-
kB pathway, which inhibits apoptosis in immune cells, also plays a role in RA [6]-
[10]. A variety of cellular immune responses are also activated and/or dysregulated
by increased cytokine levels in RA [11]-[14]. Interestingly, nearly two-thirds of
patients with RA develop cachexia and sarcopenia, with a loss of skeletal muscle
mass, degradation of proteins, and energy expenditure [15]-[18]. This perturbation
in catabolic processes drives the body into a state of negative energy balance,
leading to skeletal muscle atrophy, loss of muscle strength, and reduced physical
activity [18], [19].

Considering the complex nature of RA, animal models have been useful for
studying the underlying pathology and disease mechanisms. The most widely used
animal model for studying chronic RA is the collagen-induced arthritis (CIA)
mouse model; in addition to high reproducibility and easy induction, the
physiological processes and pathogenic features of CIA mice are strikingly similar
to the clinical features associated with patients with RA [20]-[23]. For example,
increased levels of IL-6 , IL-1, and TNFa play a role in the development of CIA
[24]. In addition, high correlation between muscle wasting and the severity of
clinical arthritis has also been observed in animal models, including both monkeys
and mice with CIA [25], [26].

Applying a systems biology approach using metabolomics can provide a
comprehensive functional readout of the organism’s physiological status [27].

Recently, van Wietmarschen and van der Greef summarized the putative
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inflammatory mediators identified in RA patients using metabolomics [28].
Although some pro-inflammatory mediators have been observed in CIA mice [29],
the complexity of the disease warrants a search for additional compound classes
and a study of their relationship with the biochemical processes underlying RA.
Free amino acids and their derivative biogenic amines play essential roles in both
energy production and protein synthesis/degradation; thus, changes in the levels of
these amine metabolites may reflect changes in the body’s state and catabolism of
proteins in RA disease. Therefore, we used a liquid chromatography mass
spectrometry (LC/MS)-based amine platform to measure the levels of amine
metabolites in the plasma of CIA and control mice. We observed reduced levels of
amine metabolites in the plasma of CIA mice, possibly reflecting systemic changes
in this model of RA. Based on these results, we speculate that decreased amine
metabolite levels likely reflects muscle mass loss and protein degradation and may

associates with inflammatory activity.
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2. Materials and Methods

2.1 Induction of Arthritis by Co-Administration of Collagen Type Il and
Lipopolysaccharide

A total of 20 male DBA/1J mice (age 6—7 weeks) were obtained from Charles
River Laboratories (Yokohama, Japan). The animals were randomly divided into
two groups, with ten mice in the experimental (CIA) group and ten mice in the
control (Ctrl) group. The protocol for inducing arthritis is well established and has
been described in detail [29]-[31]. In brief, the mice were given intraperitoneal
(i.p.) injections containing collagen type II (extracted from bovine nasal cartilage
and dissolved in acetic acid) and lipopolysaccharide (extracted from Escherichia.
coli 011:B4 and dissolved in phosphate-buffered saline) in order to induce chronic
polyarthritis by stimulating an autoimmune response; control mice received i.p.
injections of vehicle (acetic acid and phosphate-buffered saline) only. All animals
were housed in a temperature- and light-controlled environment with free access to
standard rodent chow and water throughout the experiments. After repeated
injections (administered on days 0, 14, 28, 42, and 56), blood samples were
collected from each animal on day 70 and stored in pre-cooled Vacutainer tubes
(BD Vacutainer, Plymouth, UK) containing ethylenediaminetetraacetic acid
(EDTA) as an anticoagulant. After centrifugation, the EDTA-plasma fractions were
collected and aliquots—including individual study samples and pooled quality
control (QC) samples—were stored at -80°C until further analysis. During
sampling, one mouse in the CIA group died; thus, the final analysis is based on 9

CIA mice and 10 control mice.

2.2 Extraction of Amine Metabolites and Analysis using UPLC-MS/MS

The methods for extracting and analyzing amine metabolites were adapted for
mouse plasma samples based on a previously described protocol [32]. For each

sample, a 5-ul aliquot of plasma was used for the analysis. A mixture of internal
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standards containing '*C'>N-labeled amine metabolites was added to each 5-pl
plasma sample. After the proteins were precipitated using MeOH, the supernatant
was transferred to a fresh Eppendorf tube and dried under N». The residue was then
dissolved in borate buffer (pH 9), and 6-aminoquinolyl-N-hydroxysccinimidyl
carbamate (AQC) derivatization reagent (Waters, Etten-Leur, The Netherlands)
was added. The reaction mixture was then neutralized by the addition of formic
acid (20%), and the solution was transferred to injection vials for ultra-high-
performance LC tandem MS (UPLC-MS/MS) analysis (injection volume: 1.0 ul)
using an ACQUITY UPLC system (Waters) equipped with an AccQ-Tag Ultra
column (2.1 mm X 100 mm, 1.7 pm particles, Waters) coupled to a Xevo mass
spectrometer with electrospray ionization source (Waters). Multiple reaction
monitoring was performed in the positive ion mode in order to monitor the analytes.
A gradient elution starting with Eluent A (water containing 2% formic acid) and
ramping to Eluent B (aqueous acetonitrile containing 2% formic acid) was used as

the mobile phase in the UPLC system. The samples were analyzed in random order.

2.3 Data Processing and Statistical Analysis

The integrated peak areas of the target analytes were calculated using Quanlynx
software (Waters) and corrected using the appropriate internal standards. The
response ratio (calculated at the ratio between the target analyte and the respective
internal standard) was used for further statistical analysis. The reproducibility and
reliability of each metabolite measurement was determined using repeated
measurements of the QC pool performed after every ten samples. By defining the
acceptable relative standard deviation as <15%, 45 amine metabolites (from a
starting list of 74) were considered high quality and were included in the final list
for further analysis. The data were log-transformed to correct for distribution

skewness and auto-scaled to achieve uniform units.
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To wvisualize clustering of individual samples, unsupervised principal
component analysis (PCA) was performed using MetaboAnalyst version 3.0

(http://www.metaboanalyst.ca) [33]. To measure the significance of differences in

each individual amine metabolite between the CIA group and the Ctrl group, a two-
sided unpaired Student’s ¢-test was performed, assuming unequal variance;
differences with a p-value <0.05 were considered significant (Ho: group means are
equal). Fold change (FC) was then calculated in order to determine the direction
(logz of FC) and magnitude (FC ratio reflecting the CIA/Ctrl ratio) of differences
between two group mean values. A positive value for the log, of FC indicates
higher levels of metabolites in the CIA group, whereas a negative value indicates
lower levels of metabolites in the CIA group. In the FC analysis, a minimum
threshold of 1.5 was used, meaning that the ratio of metabolites between the CIA

and Ctrl groups exceeded 1.5.

56



The role of amino acids in rheumatoid arthritis studied by metabolomics

3. Results

A 2D plot of the PCA scores was generated using an unsupervised pattern
recognition method and was used to provide a visual overview of the natural
distribution of amines detected in the plasma samples of the nine CIA and ten Ctrl
mice (Fig. 1). PC1 and PC2 accounted for 56.6% and 13.9% of the variation,
respectively; thus, these two principal components (i.e., PC1 and PC2) explained a
total of 70.5% of the variance. From the 2D plot of the PCA scores, the CIA group
(depicted with triangles symbol) and the Ctrl group (depicted with the “+” symbol)
were generally distributed in distinct regions with respect to PC1, with the CIA
samples clustering largely on negative side of the plot and the Ctrl samples
clustering largely on the positive side of the plot, thereby reflecting group

differences with respect to the composition of free amine metabolites in the plasma

samples.
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Fig. 1 2D plot of the PCA scores for the amine metabolites measured in the plasma samples
from CIA (A) and control (+) mice. The plot of the PCA scores shows that the two groups form
distinct clusters along the x-axis (corresponding to PC1), indicated by the vertical dashed line.
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To measure whether the differences between the two groups were significant,
we performed a Student’s #-test for each amine metabolite. In total, 20 of the 45
detected amine metabolites differed significantly differences between the two
groups (p<0.05); these 20 amine metabolites are shown in Fig. 2, and all 45
detected amine metabolites are summarized in Table 1. Metabolite changes were
reported in the table 1 only when the p-values from the Student’s test were lower
than 0.1. Table 1 also lists the false discovery rate-adjusted p-values. Fold change
(FC) analysis was performed to indicate the direction of change and the magnitude
of change for the detected amine metabolites (FC of the CIA/Ctrl ratio). The
analysis revealed that 11 amine metabolites decreased by more than one-third in
the CIA group (FCciacni <0.67). The log; value of FC indicates that 43 of the 45
amine metabolites detected (95.6%) were lower in the CIA group (i.e., a negative
log, value of FC), whereas the remaining two metabolites (methylcysteine and O-

phosphoethanolamine) were higher in the CIA group.

m CIA
3 CTRL

Isoleucine 'g—::"

Y = —
Tryp

3 L El T b
Homocitrulline %
T

Histidine

Methionine
Glutamine

Homocysteine

Glycylglycine —

Asparagine —

T
Leucine -—E—E»—‘

Cysteine —

r
Threonine
Valine
Proline )
Cystathionine ‘_b_.:'_“—‘.:.—

Serine — ——

Alanine

Lysine [ —
v T

T d
<25 220 -15 -1.0 05 00 05 1.0 15 20 25 3.0

Fig. 2 Summary of the 20 amine metabolites that differed significantly between the
collagen-induced arthritis (CIA) and control groups (p<0.05). The values are presented as the
response ratio of the peak area (determined as the ratio of the target amine metabolite to its
corresponding internal standard) after logarithmic transformation and auto-scaling.
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Table 1. Summary of the 45 amine metabolites detected in CIA and control mice

Amine Metabolite HMDB p-value  FDR FCciacn  Direction of Change
Methionine HMDB00696  0.001 0.017  0.533 1
Homocysteine HMDB00742 0.001 0.017 0.640 l
Threonine HMDB00167 0.001 0.017 0.628 l
Proline HMDBO00162  0.003 0.031  0.521 1
Alanine HMDBO00161  0.003 0.031  0.573 1
Cystathionine HMDB00099 0.005 0.032 0.818 l
Valine HMDB00883 0.005 0.032 0.650 l
Glycylglycine HMDBI11733 0.006 0.032  0.660 1
Lysine HMDBO00182  0.007 0.032  0.686 1
Serine HMDB00187 0.007 0.032 0.815 l
Asparagine HMDB00168 0.009 0.036 0.667 l
Cysteine HMDB00574  0.012 0.044  0.802 1
Tryptophan HMDB00929  0.015 0.051 0.789 1
Homocitrulline HMDB00679 0.017 0.051 0.737 l
Methionine sulfoxide HMDB02005  0.017 0.051 0.582 l
Isoleucine HMDBO00172  0.020 0.056  0.682 1
Gamma-glutamylalanine HMDB06248  0.021 0.056  0.616 1
Histidine HMDB00177 0.041 0.103 0.799 l
Glutamine HMDB00641 0.047 0.107 0.775 l
Leucine HMDB00687 0.048 0.107 0.741 1
Citrulline HMDB00904  0.052 0.112 0818 1
Saccharopine HMDB00279 0.086 0.168 0.698 |
Ornithine HMDB00214 0.087 0.168 0.727 |
2-Aminoadipic acid HMDBO00510  0.093 0.168  0.732 1
Phenylalanine HMDBO00159  0.094 0.168  0.755 1
Homoserine HMDBO00719 0.103 0.178 0.852 -
Methylcysteine HMDB02108 0.114 0.187 1.330 -
Sarcosine HMDB00271 0.119 0.187  0.860 -
Arginine HMDBO00517  0.120 0.187  0.866 -
Tyrosine HMDBO00158 0.154 0.231 0.723 -
Alpha-aminobutyric acid ~ HMDB00452  0.165 0239  0.765 -
Kynurenine HMDB00684  0.270 0.379  0.861 -
Glycine HMDBO00123  0.335 0.439  0.902 -
Beta-alanine HMDBO00056 0.338 0.439 0.809 -
Putrescine HMDBO01414 0.341 0.439 0.777 -
Norepinephrine HMDB00216  0.371 0.463  0.660 -
Glutamic acid HMDB00148  0.399 0.485  0.850 -
5-Hydroxylysine HMDB00450 0.417 0.494 0.630 -
Glutathione HMDBO00125 0.497 0.573 0.841 -
4-Hydroxyproline HMDBO06055 0.565 0.635  0.934 -
Aspartic acid HMDBO00191  0.713 0.781  0.960 -
Serotonin HMDB00259 0.729 0.781 0.699 -
Spermidine HMDBO01257 0.785 0.812 0.933 -
O-Phosphoethanolamine HMDB00224  0.794 0.812 1.015 -
Ethanolamine HMDBO00149  0.963 0.963  0.858 -

CIA, collagen-induced arthritis; Ctrl, control; HMDB, Human Metabolome Database;
FC, fold change; FDR, false discovery rate
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4. Discussion

RA is a chronic disease in which the immune response is dysregulated and the
levels of several cytokines and factors are elevated, including TNFa, IL-1p, IL-6,
IFNy, and ROS [34], [35]; in addition, NF-kB activation is increased [36]. Changes
in metabolic factors such as arachidonic acid—derived inflammatory mediators have
also been reported in RA [37], suggesting that a metabolomics approach may

provide insight into the biochemical processes underlying this disease.

In addition to the well-characterized inflammatory dysregulation in RA, muscle
wasting and energy expenditure are also common features and are linked to the
production of cytokines during the immune response [38]-[40]; muscle wasting
and energy expenditure can then dysregulate the protein degradation pathway,
leading to perturbed metabolic processes [15], [16], [19], [41]-[43]. Given the
close relation between amine metabolites and proteins, it is therefore reasonable to
speculate that changes in amine metabolites may reflect protein dysregulation
which owing to muscle wasting and energy expenditure. However, few studies
have focused on measuring muscle wasting in RA by measuring the plasma levels

of amine metabolites.

Studies of the biochemical processes associated with RA revealed that activated
NF-«B is linked to skeletal muscle loss [44], and this activation has been observed
in animal models of RA [45], [46]. Moreover, injecting TNF and IL-1 into healthy
rats causes muscle wasting [47]. Previously, we reported increased levels of
inflammatory mediators and ROS-generated oxylipins in the plasma of CIA mice,
and this was associated with the production of cytokines and increased NF-xB
activation [29]. Increased ROS levels, which affect muscle signaling pathways,
have also been measured in CIA mice [48]; similar results have been reported in
tumor-bearing rats [49]. Given that increased cytokines, ROS, and NF-xB
activation robustly affect muscle metabolism, we expected to identify a metabolic

“signature” in the plasma of CIA mice.
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Building on the previous report of increased inflammatory mediators and
increased ROS-generated oxylipins in CIA mice [29], we used a targeted amine
platform to evaluate the changes in plasma amine metabolites in age- and gender-
matched CIA mice compared with control mice. We found that the plasma amine
metabolomes were clearly distinguishable between CIA mice and control mice.
Specifically, 20 amine metabolites were significantly lower in the plasma of CIA

mice.

Given that certain free amino acids such as branched-chained amino acids are
closely associated with protein degradation, amino acids—and their biogenic
amines—might be used as a biomarker of muscle wasting [50]. In support of this
notion, decreased plasma levels of some amine metabolites have been reported in
other diseases (e.g., chronic obstructive pulmonary disease) and have been linked
to resting energy expenditure and muscle wasting [51]. Increased excretion of
nitrogen into the urine due to muscle wasting has been reported in RA patients [17],
[52], and increased levels of acyl-carnitines in the urine of RA patients reflect
muscle breakdown [53]. Together, these lines of evidence suggest that muscle
wasting is a highly relevant phenomenon related to RA. However, to date relatively
few clinical studies examined muscle wasting in RA by measuring amine
metabolite levels. The large decrease in plasma amine metabolite levels (e.g.,
histidine, valine, leucine, phenylalanine, and tryptophan metabolites) is consistent
with a previous study of CIA rats by Zhang et al. [54]. The earliest studies of
amino acids regulation in RA patients date back to the mid-20™ century [55], when
researchers found decreased levels of several amino acids but were relatively
limited with respect to the biological interpretation. Kobayashi et al. measured a
similar decrease in some amine metabolites in the plasma of Japanese patients with
RA [56]; although the authors used these results to demonstrate a relationship
between ornithine metabolism and inflammation, they did not discuss the possible
biological interpretation of non-significantly changed amine metabolites, including
alanine, isoleucine, leucine, lysine, serine, and valine [56]. In addition, other

clinical studies have reported inconsistent changes in the levels of amine
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metabolites, and did not attribute these changes to muscle wasting [57]-[61]. The
difference between our CIA mouse model and RA patients with respect to changes
in amine metabolites may be due to differences in catabolic processes between
mice and humans. Alternatively, the relative complexity of clinical data in patients
may mask certain changes in amine metabolites, as various confounding variables
are not always taken into consideration in clinical studies, including factors such as
age, gender, illness stage, treatment protocol, and diet. Our findings indicate that
CIA mice are a valuable tool for studying the pathological processes that underlie
RA; specifically, this model is easy to induce, and researchers can easily
control/exclude confounding factors that may affect the study results, including age,

gender, genetic background, and drug exposure.

In summary, combining our previous oxylipin results and our current amine
metabolomics results allows us to speculate upon the biological relationship
between muscle wasting and the inflammatory response in RA (Fig. 3). In addition,
our results indicate that muscle wasting conditions such as cachexia can be
measured using a metabolomics approach (for example, by measuring amine
metabolites). Lastly, our results indicate that changes in branched-chain amino

acids as well as other amine metabolites may reflect muscle wasting status in RA.
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Fig. 3. Proposed biological interpretation of muscle wasting in RA. In RA, increased levels of
inflammatory cytokines, ROS, and NF-«kB activation play a role in the production of inflammatory
oxylipins, which then trigger an inflammatory response in muscle cells. The inflammatory response
then increases resting energy expenditure and thermogenesis, leading to amino acid wasting and
accelerating protein breakdown. Thereafter, the accelerated protein catabolism and the subsequent
reduction in amines—accompanied by the excretion of nitrogen in the urine, causes the muscle mass
loss/atrophy that manifests clinically as muscle weakness / cachexia in RA patients.
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5. Conclusion

In summary, using metabolomics, we found that the levels of amine metabolites are
systematically decreased in the plasma of CIA mice, which is consistent with
similarities between our CIA mouse model and RA patients at the metabolomics
level. This result indicates that the muscle wasting and energy expenditure issues

(e.g., cachexia) associated with RA—and models of RA—are highly complex.

The cachexia and sarcopenia associated with muscle atrophy, protein
breakdown, and energy expenditure are not unique to RA. For example, several
other chronic inflammatory diseases have been associated with catabolic wasting,
including cancer [62], HIV/AIDS) [63], type 2 diabetes [64], renal failure, uremia
[65], and heart failure [66]. We therefore hypothesize that systemic decreases in the
levels of amine metabolites may reflect muscle mass loss and protein degradation

due to inflammation.

Considering the complexity and consequences of muscle wasting in a wide
variety of chronic diseases, using a metabolomics-based approach may provide a

clearer understanding of the biological processes involved in these diseases.
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Abstract

The increasing prevalence of theumatoid arthritis has driven the development of
new approaches and technologies for investigating the pathophysiology of this
devastating, chronic disease. From the perspective of systems biology, combining
comprehensive personal data such as metabolomics profiling with ultra-weak
photon emission (UPE) data may provide key information regarding the complex
pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE
with metabolomics-based technologies in order to investigate collagen-induced
arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we
investigated the biological underpinnings of the complex dataset. Using correlation
networks, we found that elevated inflammatory and ROS-mediated plasma
metabolites are strongly correlated with a systematic reduction in amine
metabolites, which is linked to muscle wasting in theumatoid arthritis. We also
found that increased UPE intensity is strongly linked to metabolic processes (with
correlation co-efficiency || value >0.7), which may be associated with lipid
oxidation that related to inflammatory and/or ROS-mediated processes. Together,
these results indicate that UPE is correlated with metabolomics and may serve as a
valuable tool for diagnosing chronic disease by integrating inflammatory signals at
the systems level. Our correlation network analysis provides important and

valuable information regarding the disease process from a system-wide perspective.
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1. Introduction

Rheumatoid arthritis (RA) is one of the most prevalent chronic auto-immune
diseases, occurring in about approximately 1% of the population in Western
countries [1], [2]. RA manifests as a complex inflammatory syndrome that
typically includes joint swelling, pain, and hyperthermia, as well as synovial
hyperplasia and destruction of cartilage and bones in the joints. RA is considered a
systemic disease that is caused by a variety of pathophysiological processes [3].
These processes are accompanied by increased levels of cytokines such as tumor
necrosis factor a (TNF-a) and interleukins (IL-1p and IL-6) in the blood and
interstitial fluids, activation of NF-xB pathways (to inhibit apoptosis in various

immune cells), and systemic disruptions in inflammatory metabolite synthesis [4]—

[6].

Experimental studies of RA—particularly the pathophysiological mechanisms
of therapeutic interventions—are often conducted using animal models. The most
commonly used model for RA is the collagen-induced arthritis (CIA) mouse model,
which has pathophysiological processes and features similar to patients with RA
[7]-[11]. In addition, advances in metabolomics technology, which now enable
researchers to measure extremely low concentrations of metabolites in several
pathways simultaneously [12], has facilitated the study of RA in considerably more
detail, thereby increasing our understanding of the pathological mechanisms that
underlie the disease [13]. We previously studied the differences in molecular
profiles between CIA mice and control mice by examining differences with respect
to inflammation and reactive oxygen species (ROS), analyzed using univariate and
multivariate metrics [14]. In addition to the well-characterized inflammatory
phenomenon, issues related to muscle wasting and energy expenditure are also
present in RA [15]-[18], and this is reflected by the presence of amine metabolites
in the plasma of CIA mice [19].
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Differences between CIA mice and control mice were also observed with
respect to the intensity of ultra-weak photon emission (UPE), which reflects
differences in the organization of the system at a biophysical level [20]. UPE is a
process that occurs in all living organisms and is the spontaneous emission of light
with extremely weak intensity (10'-10° photons/sec/cm?) in the UV, visible, and
near-IR spectra [21]. Many studies have focused on the relationship between UPE
and ROS production during metabolic processes [22]-[26]. Considering that ROS
production is closely associated with inflammatory diseases and impaired
metabolic processes, it is reasonable to expect that UPE is also associated with
inflammatory disease and/or metabolic processes. UPE might therefore be used to
help diagnose inflammation and inflammation-related diseases. UPE has been
proposed for monitoring lipid peroxidation in cell membranes [27], and
applications using UPE in human studies—and their potential relationship with
ROS—were summarized by van Wijk [23]. Moreover, the putative relationship
between UPE, physiological state, and metabolic processes has been proposed by
several research groups [28]-[31]. Here, we performed an integrated analysis of the
biochemical and biophysical differences between CIA mice and control mice,
based on the hypothesis that a combined analysis would reveal unique insight into

the biochemical and biophysical changes that occur during RA.

Network biology is an emerging field in biomedical research, and network
biology tools are increasingly used to identify clusters of correlated parameters, to
visualize or explore high-dimensional data, and to understand or interpret
interactions that reflect part of a complex biological system [32], [33]. Correlation
networks have been used in “omics” studies to combine complex data sets, for
example combinations of metabolomics, genomics, and/or proteomics data sets.
Correlation networks are also used to support the biological interpretation of large
data profiles and to differentiate disease phenotypes [34]-[37]. Here, we expanded
the systems-based approach of correlation-based analyses in order to examine the
relationship between metabolomics profiling and UPE data. Using this correlation

network analysis, we visualized systematic perturbations in bio-photons,
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inflammatory processes, and ROS-related mediators. This approach may be used to
facilitate the diagnosis of disease and/or to discriminate between disease
syndromes, particularly with respect to complex chronic diseases such as RA and

type 2 diabetes mellitus.
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2. Materials and Methods

2.1 Animal study samples, Modelling, and ethics Statement

CIA was induced by the intraperitoneal injection of type II collagen and
lipopolysaccharide in adult (6-7 weeks of age) DBA/1J male mice as described
previously [38]; the CIA and control (Ctrl) groups contained 10 mice each. The
injections were performed on days 0, 14, 28, 42, and 56; After 70 days’ modeling,
UPE intensity was measured in each paw, and blood was collected into pre-cooled
EDTA tubes (BD Vacutainer, Plymouth, UK). The blood samples were centrifuged
at 3000xg for 10 minutes, and then stored at -80°C until metabolic measurements
were performed [14]. All animal experiments were performed in compliance with
the Guide for the Care and Use of Laboratory Animals (National Institutes of
Health, Bethesda, MD). All animal care and experiments were approved by the
Tohoku Institute of Technology Research Ethics Committee, Sendai, Japan.

2.2 Instruments and data acquisition

2.2.1 UPE instruments and settings

UPE was measured using a 600 series CCD camera system (Spectral Instruments,
Inc., Tucson, AZ) equipped with a closed-cycle mechanical cryogenic unit (held at
-120°C) as the cooling system. Prior to the UPE measurement, mice were
maintained in controlled dark conditions. The detailed settings of the CCD system
including figures about the measured location on mice is described in Van Wijk et
al [20]. In brief, the CCD camera was mounted on the top of a dark chamber, and
the animal was immobilized using isoflurane anesthesia. UPE intensity was
recorded at five independent regions on each paw and used for further correlation
analysis. The regions were named according to the paw measured, and numbers
were added (ranging from 1 to 5, indicating the location closest to the tip of the
paw through the location farthest from the tip of the paw) as follows: LFP (left
front paw) 1 through LFP5; LHP (left hind paw) 1 through LHP5; RFP (right front
paw) 1 through RFP5; and RHP (right hind paw) 1 through RHPS.
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2.2.2 Extraction of plasma metabolites and metabolomics analysis

Plasma samples were aliquoted and extracted via different methods in order to
obtain separate classes of compounds, including oxylipins, amine metabolites, and
oxidative stress—related metabolites. Oxylipins (bioactive lipid mediators derived
from polyunsaturated fatty acids) were extracted using solid phase extraction and
analyzed using an Agilent 1290 HPLC coupled to an Agilent 6490 triple
quadrupole mass spectrometer with electrospray ionization as described
previously [14], [39]. Amine metabolites (including free amino acids and their
biogenic metabolites) were extracted using AccQ-TagAQC derivatization and
analyzed using a Waters ACQUITY UPLC coupled to a Waters Xevo mass
spectrometer with electrospray ionization source as described by Noga et al. [40].
Oxidative stress—mediated metabolites—primarily PGs/IsoPGs, NO,-FAs,
lysophosphatidic acids, and sphingosine/sphingosine-related sphingolipids—were
extracted using liquid-liquid extraction and analyzed using a validated method
with an Agilent 1290 HPLC coupled to an Agilent 6490 triple quadrupole mass
spectrometer with electrospray ionization. The peak area of each target compound
was corrected using the appropriate internal standard (ISTD), leading to a ratio

(target compound/ISTD) that was used for further analysis in the correlation study.

2.3 Data preprocessing and statistical analysis

The metabolomics and UPE data collected from both the CIA and Ctrl groups
were included in the correlation analysis. Univariate correlations were performed
using the Spearman’s rank correlation method using RStudio software (version
3.0.3). Absolute values of the Spearman’s rank correlation coefficient (|r|) >0.7
were considered to reflect a strong correlation between parameters, and this
threshold was used to create highly correlated graphical networks using Cytoscape
software (version 3.3.0, http://www.cytoscape.org) with the MetScape plug-in for

extracting and integrating information and for visualizing the correlation networks
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[41], [42]. Positive and negative correlations were indicated by positive and

negative values of r, respectively.

3. Results and Discussion

3.1 Collagen-induced arthritis alters the local distribution of UPE

Differences in UPE between CIA and Ctrl mice have been reported previously
[20]. A schematic figure was displayed, in order to show the CCD setup of UPE
instrument as well as the locations for UPE measurements on mouse front and
hind paws (Fig. 1). Here, we used correlation networks to visualize the
relationship between individual UPE intensities at the locations measured in both
CIA mice and in Ctrl mice (Fig. 2), as visualizing the profile of location-based
UPE may provide important information regarding the disease. We then
interpreted the differences and similarities between the two groups with respect to

their correlation structures.

Cooling system for
temperature control|

UPE measurement
on mause paw

Anesthesia

Fig. 1 Schematic figure of CCD set-up as well as locations for UPE measurements on mouse
front and hind paws. Adapted from E. van Wijk et al. 2013.
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(a) UPE correlations from CIA group (b) UPE correlations from Ctrl group

Front paws (FPs)

Hind paws (HPs)

Fig. 2. Bio-photonic variance is revealed by location-based UPE-to-UPE correlation networks.
The figure illustrates the differences in correlations between CIA mice (a) and Ctrl mice (b). In CIA
mice, the strong correlations also indicate a strong similarity in UPE between the LFP (left front paw)
and RFP (right front paw), as well as between the LHP (left hind paw) and RHP (right hind paw).
The numbers (1 through 5) indicate the specific locations for the measurements (see Materials and
Methods). Thus, the differences between the front paws and hind paws are clearly visible in the CIA
group. The networks were established using the Spearman correlation analysis, and the lines
represent Spearman correlation coefficients (|r]) >0.7.

The correlations were quantified using the parameters (i.e., || values and p-
values) obtained from the Spearman correlation analysis. In total, 71 and 26
strongly positive UPE-to-UPE correlations were found in the CIA and Ctrl groups,
respectively; no strongly negative correlations were found. The difference in the
number of strongly positive correlations between the CIA and Ctrl groups can be
seen visually in Fig. 2. In the CIA group, UPE intensity was tightly correlated
between the two front paws and between the two hind paws (Fig. 2a). In contrast,

we found no clear correlation patterns in the Ctrl group (Fig. 2b).

3.2 Differences in metabolite correlations between CIA mice and control mice

Next, we acquired metabolic data from plasma samples using HPLC-MS/MS. The

following three groups of metabolites were extracted using three validated
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methods and detected using three specific instruments: amine metabolites
(including free amino acids and their biogenic metabolites), oxylipins, and
oxidative stress—related metabolites. A total of 110 endogenous metabolites were
detected in the plasma samples, including 30 oxylipins, 45 amine metabolites, and
35 oxidative stress—related lipids. Univariate and multivariate analyses were then
applied to the metabolite sets in order to characterize the differences between CIA
mice and Ctrl mice at the metabolomics level. Previously, we reported the
differences between CIA mice and Ctrl mice with respect to oxylipins and amine
metabolites [14], [19]. Based on the oxidative stress platform, after log
transformation and auto-scaling of the data, we also found a number of key
metabolites that differed between the CIA the Ctrl groups (p<0.05, Student’s #-
test). Table 1 summarizes the key metabolites that differed significantly between
the CIA and Ctrl groups.

Table 1. Summary of the key metabolites that significantly differed between the

CIA and Ctrl groups
Oxylipins Amine metabolites Oxidative stress
Compound Changes Compound Changes Compound Changes
9,10-DiHOME 1 Methionine ! PGE3 !
9-KODE 1 Homocysteine | 8,12-is0-iPF2a |
13-HDoHE 1 Threonine 1 cyclic-LPA C16:0 |
14-HDoHE 1 Proline 1 cyclic-LPA C18:2 1
12,13-DiHOME | Alanine 1
9,12,13-TriHOME 1 Valine !
12-HEPE 1 Cystathionine |
9,10,13-TriHOME 1 Lysine 1
9,10-EpOME 1 Glycylglycine 1
10-HDoHE 1 Serine 1
9-HODE* 1 Asparagine |
8-HETE* 1 Cysteine 1
13-KODE* | Tryptophan 1
12,13-EpOME* 1 Methionine sulfoxide |
13,14-dihydro-PGF2a* 1 Homocitrulline 1
12-HETE* 1 Isoleucine |
Gamma-glutamylalanine |
Histidine 1
Glutamine 1
Leucine 1
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Abbreviations: DIHOME, dihydroxyoctadeca(mono)enoic acid; EpOME, epoxyoctadecamonoenoic
acid; HDoHE, hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HETE,
hydroxyeicosatetraenoic acid;

HODE, hydroxyoctadecadienoic acid; KODE, ketooctadecadienoic acid; PG, prostaglandin;
TriHOME, trihydroxyoctadecenoic acid.

|: Decreased in CIA mice; 1: Increased in CIA mice;

*: Extra important oxylipins which contributed to the group clustering are based on multivariate
analysis (VIP>1).

Differences in metabolites generally do not occur independently, but often
change together with other, related metabolites, as metabolic reactions are often
part of a dynamic system and have many biological processes in common [35].
Metabolic network analysis is an emerging approach used to diagnose disease, and
it has the advantage of integrating “omics” datasets in order to identify links and
select useful information from among chaos [34], [43]. We therefore performed a
correlation network analysis in order to visualize pair-wise metabolic correlations
and to extract novel information regarding dynamic alternatives. A merge between
the metabolite-to-metabolite correlation networks measured in the plasma of CIA
and Ctrl mice is illustrated in fig. 3a and 3b, respectively. Next, the Spearman
correlation coefficient between metabolites (r,,) was calculated, and only strong
correlations (either positive or negative) (i.e., with an |r,| value >0.7) were
included in the resulting network. We found a total of 394 positive correlations and
91 negative correlations in the CIA group, and a total of 864 positive correlations
and 117 negative correlations in the Ctrl group. In general, metabolites that are in
the same chemical class or in the same biochemical pathway tended to correlate
with each other; these so-called “chemical class-based” clusters and “pathway-
based” clusters were more pronounced in the Ctrl group, leading a highly
connected region among oxylipins and another region among amine metabolites.
This network analysis revealed certain structural or pathway similarities among
those highly connected metabolites with respect to significant positive correlations.
Moreover, the associations between oxylipins and amine metabolites were
relatively weak in the Ctrl group, possible because oxylipins and amine metabolites

are generated via two separate metabolic pathways.
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(a) Metabolite-to metabolite correlations from CIA group
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Fig. 3. Metabolic correlation networks in the CIA and Ctrl groups. Depicted are the metabolite-
to-metabolite correlation networks for CIA (3a) and Ctrl (3b) mice. All of the metabolites detected in
our analysis are included in the networks models.
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Nodes with a positive correlation are indicated with solid red lines, and nodes with a negative
correlation are indicated by solid blue lines. Shaded ellipses with a light red or light blue background
indicate clusters of oxylipins or amine metabolites, respectively. Thickness of lines indicate gradient
correlation strength: the thicker the line is, the stronger the correlation is (visible correlation co-
efficiency: || ranges from 0.7 to 1). (For better visualization of the detailed figures, please visit the

web version of this article online: http://www.sciencedirect.com/cache/MiamilmageURL/1-s2.0-
S1011134416307539-gr3 lrg.jpg/0?wchp=dGLzVIV-zSkWI1&pii=S1011134416307539)

Interestingly, we found that some of the strong correlations in the Ctrl group—
including both “oxylipin-to-oxylipin” and “amine-to-amine” correlations—were
weaker in the CIA group. In contrast, the CIA group contained more negative
oxylipin-to-amine correlations (Fig. 3a) than the Ctrl group (Fig. 3b). For example,
the HETEs and HDoHEs that were elevated in CIA mice were strongly correlated
with the branched chain amino acids valine, leucine, and isoleucine, as well as with
cystathionine, alanine, glutamine, and asparagine. The use of HETEs and HDoHEs
as inflammatory/ROS-related biomarkers has been described previously [14], and
we also found that decreases in these amine metabolites may reflect muscle
wasting and/or energy expenditure (cachexia) in RA [19]. Therefore, our analysis
of metabolic correlation networks suggests that the increased inflammation and
ROS levels reflected by oxylipins may also be associated with the onset of muscle

wasting and increased energy expenditure in RA.

3.3 UPE is correlated with inflammatory signaling—related metabolites in CIA
mice

As discussed in the Introduction, UPE arises as a result of metabolic reactions,
particularly oxidation-reduction (redox) reactions; therefore, we hypothesized that
UPE emission patterns may be correlated with metabolite patterns. To test this
hypothesis, we created a correlation network to visualize potential associations
between UPE intensity and peak area ratios of measured metabolites (see
Materials and Methods). Therefore, we used UPE-to-metabolite correlations (i.e.,

between a given UPE value, u, and a given metabolite, m) in the correlation
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networks, and the Spearman’s correlation coefficient |r.,| was calculated for each
UPE-metabolite pair in both the CIA group and the Ctrl group.

The heat map in Fig. 4 depicts a general UPE-to-metabolite correlation profile
used to compare the differences measured between the CIA group and the Ctrl
group. A cluster analysis reveals clear location-based clusters in the CIA mice. The
heat map also indicates a systemic change in the CIA group (i.e., the majority of
positive correlations, shown in red) compared with the Ctrl group (i.e., the majority
of negative correlations, shown in green). After removing relative weaker
coefficient from the Spearman correlation analysis (|7.»[<0.7), networks were built
to reflect the highly correlated entities and to show the most important metabolites
(fig.4b). After we removed the relatively weaker correlations from the Spearman
correlation analysis (i.e., |[rum| values <0.7), we built a network to reflect the
strongly correlated entities and to illustrate the most relevant metabolites (Fig. 4b).
Circle-attributed networks were then used to identify the key correlations and to
compare the CIA group with the Ctrl group. A total of 27 strongly positive
correlations and 79 negative correlations were identified in the Ctrl group, and a

total of 146 positive and 9 negative correlations were identified in the CIA group.

The correlation networks revealed that the majority of UPE-to-metabolite
correlations in the Ctrl group were negative, whereas the majority of UPE-to-
metabolite correlations in the CIA group were strongly positive. The major
metabolites that were positively correlated with UPE in the CIA group are the
monohydroxyeicosatetraenoic acids (HETEs), prostaglandins (PGs), thromboxane
(TBX) synthase products, lysophosphatidic acids (LPAs), sphingolipid signaling
molecules, and some amine metabolites (Fig. 4b). UPE intensity measured at
various locations was correlated with various metabolites in the CIA group. For
example, UPE intensity in the front paws was more strongly correlated with some
LPAs, whereas UPE intensity in the hind paws was more strongly correlated with
PGs (13,14-dihydro-15-keto-PGF2a, PGE2, PGD2, and 6-keto-PGF2a), TBX
synthase products (TBX2 and 12-HHTrE), HETEs (8-HETE, 15-HETE, 11-HETE,
and 12-HETE), and sphingolipids; see the CIA correlation networks in Fig. 4b.
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Fig. 4. Correlation-based analysis between UPE and metabolites measured in the plasma of
CIA mice and Ctrl mice. a) Heat map showing the entire UPE-metabolite correlation profile, as
well as the differences between the CIA and Ctrl mice. Colored blocks represent the value of the
correlation coefficient, which were color-coded from 1 (strongly positive, light red) to -1 (strongly
negative, light green). b) Visualized network model of the strong correlations (defined as a |rum|
value >0.7). The red and blue lines indicate positive and negative correlations, respectively, and the
thickness of the lines indicate the strength of the correlation. Several important pathway-related
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networks reflect the inflammation, ROS production, and muscle wasting associated with RA. Each
dot indicates an individual parameter that includes a given metabolite and UPE value: yellow dots
reflect location-based UPE intensity, and black, gray, and white dots represent oxylipins, biogenic
amines, and oxidative stress—related metabolites, respectively. Also shown (between the Ctrl and
CIA network models) are enlarged views of the key metabolites that differed significantly based on
our univariate and multivariate analyses. The up-triangles and down-triangles indicate the direction
of the metabolic change in the CIA mice (i.e., up-regulation or down-regulation, respectively). (For
better visualization of the detailed figures, please visit the web version of this article online:
http://www.sciencedirect.com/cache/MiamilmageURL/1-s2.0-S1011134416307539-

grd lrg.jpg/0?wchp=dGLbVBA-zSkzV&pii=S1011134416307539)

Next, the pathways related to these metabolites based on our previous study [14]
and the Kyoto Encyclopedia of Genes and Genomes were organized (Fig. 5). LPAs
act on G protein—coupled signaling and cellular signaling responses and function as
inflammatory mediators [44], [45]. PGs and TBXs, which are synthesized from
arachidonic acid via COX-II pathways, have well-established pro-inflammatory
functions [46], [47]. The 12/15-LOX products (12-HETE, 15-HETE, and 8-HETE)
promote the production of cytokines and activate the NF-kB pathway to inhibit
cellular apoptosis [48], [49]. In addition, 8-HETE, 12-HETE, and 11-HETE can
also be peroxided non-enzymatically by ROS to inhibit apoptosis [50]-[54];
therefore, these three HETEs may be important inflammatory mediators [55], [56].
The sphingomyelin-derived sphingolipids sphingosine and sphingosine-1-
phosphate (S1P) are signaling molecules in immune cells that mediate neutrophil
activation and apoptosis, and are therefore also considered to be inflammatory
mediators [57]-[62]. Based on the correlation networks, it can be seen that these
inflammatory mediators participated in the systemic perturbations (measured using
both metabolomics and UPE) in the CIA mice, even though some of these
mediators were not altered significantly in our univariate analysis. We also
conclude that UPE intensity is correlated with systemic inflammatory mediators,
ROS mediators, and cellular signaling processes; therefore, measuring UPE
intensity may provide a means to diagnose inflammatory disease. In addition, UPE
may also be used to monitor lipid peroxidation which relate to inflammation and
ROS level in both healthy and diseased individuals (Fig. 6). Thus, a specific

phenotype of a disease can be complemented by measuring both “omics” profiles
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and UPE patterns, thereby providing a more detailed understanding of the disease

and its underlying processes.
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In the CIA mice, a strongly negative correlation between cystathionine and UPE
was measured, whereas several amine metabolites—including serotonin,
tryptophan, and aspartic acid—were positively correlated with UPE. Cystathionine
is a scavenger of free radicals [63]; therefore, given its significant decrease in CIA
mice compared to Ctrl mice, the negative correlation between cystathionine and
UPE intensity indicates that the increase in UPE intensity may be due to a decrease
in antioxidants in RA. Both tryptophan metabolism and the serotonergic system
have been well described as key pathways that can influence signaling in the
central nervous system [64]. Thus, UPE may also be correlated with metabolic
systems that are associated with neurotransmission. In addition, based upon
pathways that regulate amine metabolites listed in the Kyoto Encyclopedia of
Genes and Genomes, all of the other amine metabolites that were positively
correlated with UPE are associated either directly or indirectly with the TCA cycle
(see Fig. 5). The correlations identified between UPE intensity and these
metabolites may suggest that during disease, some of the electrons that would
otherwise participate in chemical reactions to produce energy (for example, with
amine metabolites in the TCA cycle) actually escape and set free the energy which
they carry, as photons, whereby the electrons change from high to low energy level
states. Simultaneously, free radicals and/or ROS are produced, driving lipid
peroxidation to produce inflammatory HETEs and PGs. While such a speculation

need more rigorous validation.

The reduction in amine metabolites in the plasma of CIA mice compared to Ctrl
mice may be linked to the contribution of muscle wasting in arthritis [19].
Considering that we found strong correlations between amine metabolites and UPE
intensity, and given that muscle wasting is a common feature in many disease
processes, including some cancers [65], HIV/AIDs [66], type 2 diabetes [67], renal
failure, uremia[68], and heart failure [69] , UPE may also have potential
perspective for the use of monitoring energy wasting and muscle wasting in other
diseases. In this respect, future studies should examine the relationship between

muscle wasting and UPE.
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Interestingly, HETEs, PGs, sphingosine, and S1P—which were strongly
correlated with UPE intensity in our study—are also considered to be important
inflammatory biomarkers in a variety of diseases, including RA [70],
cardiovascular disease and/or atherosclerosis—related inflammation [59], [61], [71],
[72], congestive heart failure [60], cancers and other tumors [54], [73], some
prostate diseases [55] , and nonalcoholic steatohepatitis [56]. Therefore, our
finding that UPE is correlated with these inflammatory mediators may shed light
on the biological mechanisms that underlie these diseases from a systems biology

perspective.
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4. Conclusions

Given its complex pathophysiology, RA has been studied using a variety of
technologies and approaches. Indeed, integrating various data sets can provide
important information regarding the disease process and possible treatment
strategies. Generating correlation networks can provide valuable information, and
these networks have been used recently within a wide range of “omics” studies,
including proteomics, genomics, and metabolomics, thereby helping distinguish
specific diseases and/or phenotypes [34], [35], [74]. Here, we performed the first
study that integrates UPE with metabolomics in both diseased mice (i.e., mice
with collagen-induced arthritis) and healthy control mice; this novel, powerful
approach yielded meaningful information regarding RA. Moreover, we found
specific correlations between metabolomics and UPE. Lastly, our correlation
network analysis shows a systematic way to illustrate the complexity of RA ,
including dysregulation of both UPE and metabolomics.

Using our correlation networks, we also found that oxylipins were negatively
correlated with certain amine metabolites in the CIA group. This may indicate a
systematic perturbation under inflammation and ROS response in RA-induced
situation. However, further study is needed in order to elucidate whether the
inflammation and ROS are the consequence of muscle wasting, or vice versa. We
also found that UPE was correlated with certain inflammatory mediators, and we

expanded the biological interpretation of RA using correlation networks.

In conclusion, our correlation network analysis provides valuable information
regarding the disease process from a system-wide perspective. Understanding the
underlying biochemical phenomena that give rise to UPE is of great importance to

learn about potential applications of UPE in early disease characterization.
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Abstract

To present the possibilities pertaining to linking ultra-weak photon emission (UPE)
with Chinese medicine—based diagnostics principles, we conducted a review of
Chinese literature regarding UPE with respect to a systems view of diagnostics.
Data were summarized from human clinical studies and animal models published
from 1979 through 1998. The research fields can be categorized as follows: 1)
human physiological states measured using UPE; 2) characteristics of human UPE
in relation to various pathological states; and 3) the relationship between diagnosis
(e.g., Chinese syndromes) and the dynamics of UPE in animal models. We
conclude that UPE has clear potential in terms of understanding the systems view
on health and disease as described using Chinese medicine—based diagnostics,
particularly from a biochemistry-based regulatory perspective. Linking UPE with
metabolomics can further bridge biochemistry-based Western diagnostics with the
phenomenology-based Chinese diagnostics, thus opening new avenues for studying
systems diagnostics in the early stage of disease, for prevention-based strategies, as

well as for systems-based intervention in chronic disease.

103



Chapter 5

1. Introduction

The use of ultra-weak photon emission (UPE) in living organisms was first
described by Gurwitsch in 1923 [1]. At that time, the technical capabilities for
measuring radiation using physical devices was rather limited. This technology
became more feasible when sensitive photomultipliers were developed in the 1960s
in the former Soviet Union. The early data were published primarily in Russian
journals [2], [3], with only a fraction of the reports translated into English [4].
Since the 1970s, UPE has been used by research teams in Germany [5], Australia
[6], Poland [7], Japan [8], the United States [9], and China [10]. UPE has been used
successfully in a wide variety of organisms, including bacteria, yeast, plants,
animals, and humans, as well as in cells and cellular homogenates derived from

living organisms [5]-[11].

UPE occurs spontaneously in living organisms, without the need for external
intervention [12]. The emission range of UPE is approximately 10-10°
photons/sec/cm?. The spectral range of the photons emitted from living systems is
300-750 nm [13]; the photons emitted from human tissue ranges from 420-570 nm
[14]. The source of UPE is closely related to the electronic transport and the
generation of reactive oxygen species (ROS) during oxidative metabolic processes,
with UPE originating from the transition from either the singlet excited state (such
as singlet oxygen '0,) or the triplet excited level of carbonyl species (*R=0%*) to
the singlet ground state [15], [16]. Biological ROS—including the reactions of
superoxide radical (O "), hydrogen peroxide (H>O.), and hydroxyl radical (HO-)—
are produced dynamically during chemical metabolic redox reactions, including
lipid peroxidation and protein/nucleic acid generation; moreover, during these
metabolic processes, electrons can become excited, and energy is emitted in the
form of photons [17]. Similar to the ROS theory described above, photons can also
be released during the metabolism of radical nitrogen species (RNS). ROS causes
the oxidation of biomolecules such as nucleic acids, proteins, and lipids, which

play essential roles in many cellular processes, including cell signaling, apoptosis,
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and pro/anti-inflammatory regulation [18], [19]. Therefore, UPE can be measured
in order to detect the physiological state of the human body and to measure
dynamic changes in health [12], [13], [20].

In humans, UPE is usually measured using a photomultiplier tube (PMT) or a
charge-coupled device (CCD). Emitted photons can be measured directly through
the skin in a light-tight, dark environment [21], [22]. The use of UPE as a
diagnostic tool for health-related issues in humans has been reviewed recently [23].
The intensity of UPE emitted from the human body can be influenced by several
physiological states, including age [24], gender [25], biological rhythms [22], [26]-
[29], and conscious activities [30]-[32], thus leading to the discovery of putative
diagnostic properties of photon emission. For example, hypothyroidism can be
diagnosed by measuring the emission of photons from the index finger of human
subjects [33]. Furthermore, differences in the intensity of photon emissions have
been measured between patients with multiple sclerosis and healthy subjects [34],
[35]. Moreover, patients with hemiparesis have asymmetrical UPE intensity
between the left and right hands, suggesting that measuring photon emission
symmetry could be used as a novel diagnostic parameter in addition to measuring
UPE intensity [36], [37]. Based on the aforementioned experimental observations,
UPE has been proposed as a non-invasive indicator of the integrated states and
dynamic changes in human health [12], [20], [38].

In the newly emerging systems-based view of health, biology can be considered
a hierarchy of various levels of organization, ranging from low levels (e.g.,
biochemistry and molecules) to the cellular and organ levels, all the way up to the
integrated systems level [38]. In Western medicine, “omics” technologies are often
utilized to study genes, proteins, and metabolites at relatively low organizational
levels [39]. Recent work suggests that the dynamic distribution of UPE emissions
from the human body can reflect both the health status at a large-scale organization
level and the dynamics of the system [13], [20]. Similar to UPE, Chinese medicine

integrates physiological and pathological information at a higher level of
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organization—i.e., the phenotype level—in order to obtain a holistic description of
the body’s state. Two important types of descriptions are frequently used:
constitution differentiation and syndrome differentiation [39]-[41]. However,
Chinese medicine-based diagnostics is a descriptive, phenomenological approach
based on many clinical observations, and the insights regarding molecular and
mechanistic biology have been explored only recently [42]. Given that UPE may
provide important insight into health at a high level of organization, measuring
UPE parameters may provide novel scientific insights into Chinese medicine—
based diagnostics and may help guide Western medicine towards a systems-based
view of life, both from a diagnostic perspective and from an intervention
perspective. Therefore, it is important to explore the history of this relationship

between UPE and Chinese medicine—based diagnostics.

Applications in which UPE has been used to understand and measure systemic
organization can be found in Chinese literature; these publications have generally
focused on the relationship between UPE and Chinese medicine—based concepts in
both human and animal studies. In this review, we summarize these studies
published in Chinese scientific journals from 1979 through 1998. In studies
published in 1979-1998, Chinese medicine—based concepts were used to establish
UPE experimental designs. After the turn of the century, UPE research interests in
China shifted from healthcare to plant and agriculture area [43], [44], and no more
literature fit in the area regarding UPE and Chinese medicine—based concepts then.
Because much of the clinical data was published in Chinese, UPE research is
relatively unknown among scientists in non-Chinese-speaking countries. By
reviewing this literature, we hope to educate scientists in terms of the possibilities
regarding linking UPE with Chinese medicine—based diagnostics principles.
Furthermore, because Western UPE researchers rarely study Chinese medicine—
based diagnostics from a systemic regulatory perspective, this review will also

provide a basis for further research in this specific area.
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2. Temporal variations in UPE intensity among healthy

human subjects

According to the Chinese medicine theory, one’s health depends on a dynamic
balance between one’s physiological state and the surrounding environment. The
human body can adapt in response to many environmental factors (e.g., changes in
the seasons) and internal environmental changes (e.g., emotional variations). These
patterns of change that result from changes in the internal and external
environments are essential for obtaining a diagnosis in Chinese medicine.
Therefore, Chinese physicians are taught to make a comprehensive diagnosis that
includes an evaluation of how the body responds to the surrounding environment at

various ages, as well as the effect of seasonal fluctuations [45]-[47].

In China, UPE measurements have been used to study temporal changes in
human physiological states since the 1980s. Zheng [48] investigated the effect of
gender and age on UPE measured from the fingertips of seven groups of healthy
subjects; these results are summarized in Figure 1. In general, the intensity of UPE
was higher among males than among females, and UPE intensity tended to increase
with age. This association between age and UPE was later confirmed by
Sauermann et al.[24]. In a separate study, Yan [49] examined the relationship
between age and UPE by measuring the specific acupuncture point LI1 (also
known as the Shangyang acupuncture point); Yan found higher UPE intensity
among young subjects (17-49 years of age) compared with both older subjects (50-
72 years age) and children (11-16 years of age).
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Fig.1: UPE intensity measured in male and female human subjects at the indicated ages (in
years). UPE intensity was measured as the average photon counts (per 30 seconds) of the total photon
emission from ten fingertips; the data are the average of five separate measurements per subject*®,

Yang measured UPE intensity at various acupuncture points located at the
extremities and on the torsos of male and female children and adults [50], [51].
Consistent with the studies described above, Yang found that UPE intensity was
higher in men than in women and higher in adults than in children. The association
between UPE intensity and season (i.e., higher photon emission in the summer
compared to the winter) that was originally reported by Zheng [52] for the fingers
of healthy subjects has been later confirmed with UPE measurements of other body
locations by Popp and Cohen [34], Van Wijk [53], Bieske et al. [54], and Jung et al.
[55]; importantly, these authors did not refer and probably had no prior knowledge
of Chinese literature regarding UPE measurements. These findings indicate that
measuring UPE can provide insight into the state of harmony between the human
body and the environment. Thus, deviations from these temporal rhythms in UPE
intensity might be utilized further in order to study the pathological state and

Chinese medicine—based diagnostic patterns.
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3. The association between UPE and pathological state based

on Chinese medicine—based diagnostic principles

In Chinese medicine, illness is viewed as a disruption of the body’s dynamic
balance. The body’s dynamic balance is an abstract way to describe the flow of
energy through the entire body, as well as the exchange between the body and the
external environment. Measuring this flow of energy—particularly interruptions in
this flow—provides important diagnostic information regarding the occurrence of
specific illnesses. The aims of acupuncture are to regulate this flow of energy,
remove blockages that interrupt energy flow, and help the ailing body re-establish
its dynamic homeostasis [56]-[60]. In Western medicine—based terms, this might

indicate a dysregulation of processes, which can be experienced as chronic disease.

The dynamic balance concept was recently correlated with symmetry—and
asymmetry—in UPE intensity between the left and right sides of the human body
[13], [37], [61], [62]. As far back as the early 1980s, this UPE left-right symmetry
was identified by Chinese researchers as an important parameter for distinguishing
between health and disease [52]. Thus, healthy subjects can be characterized by a
symmetry in UPE intensity between acupuncture points on the two sides of the
body [63]-[65]. Significant differences in UPE intensity at acupuncture points
between the left and right sides of the body have been observed in typical “Western”
diseases, including hypertension, facial nerve paralysis, and constipation [63]-[68].
Figure 2 shows an example of UPE asymmetry measured using acupuncture points
on the hand. The left side of the figure shows disease states diagnosed using
Western medicine. These specific diseases correspond to acupuncture point
locations at which significant UPE asymmetry was measured. The right side of the
figure shows the acupuncture point numbers and related meridian channels. These
meridian channels always correspond with a diagnosis of the specific
corresponding diseases in Chinese medicine [46], [63]-[65], [67]. Here, UPE may
serve to bridge the Western medicine and Chinese medicine concepts. In other

words, because UPE can be used to demonstrate potential deviations from
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homeostasis in a meridian, and because these deviations can also be related to
specific Western diseases, UPE provides the opportunity to connect Chinese
medicine-based diagnoses with specific Western diseases [61], [69]; in this way,
the long history of knowledge regarding Chinese medicine can be used to enrich

Western medicine.

Disease based on
Western diagnosis

UPE intensity

Chinese meridian concept

Hypertension
Hemiplegia

Hemi facial spasm PC9 / Pericardium meridian (PC)
Facial nerve paralysis . . -
L LIl / Large intestine meridian (LI)
Constipation

Nasosinusitis HT9 / Heart meridian (HT)

Hemorrhoids SI1 / Small intestine meridian (SI)

Cardiac disease

LU9 and LUI1/ Lung meridian (LU)
Cold

\

Bronchus asthma _— Wrist
Fig.2: UPE patterns are related with both the Western medical concept of disease and Chinese
medicine concepts [631H65)[67],

The Western medicine description of diseases corresponding to Chinese acupuncture points and
specific UPE intensity asymmetries.

I: Thumb; II: Index finger; III: Middle finger; IV: Ring finger; V: Pinkie

PC9: Zhongchong acupuncture point on the middle fingertip; LI1: Shangyang acupuncture point on
the index fingertip; HT9: Shaochong acupuncture point on the pinkie fingertip; SIl1: Shaoze
acupuncture point on the pinkie fingertip; LU9: Taiyuan acupuncture point on the wrist; LU11:
Shaoshang acupuncture point on the index fingertip.

Other studies have shown an uneven distribution of UPE intensity at
acupuncture points at various body locations [50], [S1], [70]. Higher intensity UPE
has been measured at acupuncture points compared with non-acupuncture points;
this difference was based on measurements of more than 150 acupuncture points

together with their surrounding non-acupuncture points. Thus, the authors
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suggested that acupuncture points with higher UPE intensity generally coincide
with the theoretical meridians [71]-[73]. Interestingly, Guo et al. used chemical
indicators to obtain fluorescence-based images of visible ROS distributions in an
animal model and found that the areas with the strongest fluorescence were
superimposable on human meridian lines [74]. Given that ROS content defines
UPE intensity in living systems [9], [18], [19], [75], [76], the meridian-like lines of
ROS activity measured in animals support—albeit indirectly—the correspondence

between meridians and UPE intensity in humans.

In Chinese medicine, needles are used to stimulate acupuncture points and to
trigger a dynamic interaction between the acupuncture points and the connective
tissue along the meridian [77], [78]. This dynamic interaction was measured in
several Chinese studies by measuring changes in UPE intensity [79], [80]. After
placing needles in the acupuncture points of the forearm or calf, UPE intensity will
change significantly at the acupuncture points of a finger or toe, respectively. In
addition, UPE asymmetry can also be used to measure the therapeutic effect of
acupuncture in patients. For example, left-right UPE asymmetry was measured at
various acupuncture points on both sides of the body and was found to change
following acupuncture [81]. Some studies also examined the therapeutic effect of
acupuncture treatment by comparing the concentration changes in ROS-related
enzymes and endogenous metabolites before and after treatment; these studies have
been performed in both human subjects and animal models [82]-[86]. In addition,
adiposity decreased when ROS-related anti-oxidant products (e.g., a recombinant
superoxide dismutase protein) were applied to specific acupuncture points in obese
subjects, and this therapeutic effect is similar to the effect of Chinese acupuncture
[86]. The aforementioned studies of the therapeutic effect of acupuncture based on
UPE and ROS measurements suggest that linking UPE parameters to changes in
ROS may provide more opportunities to study the effect of acupuncture at the

biochemical level.
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4. UPE in relation to Chinese syndromes based in studies

using animal models

Chinese studies have provided examples for how to study basic Chinese
diagnostics concepts using UPE measurements, and this has been supported by
similar UPE studies conducted in both Japan [87] and Korea [37], [88]. The pattern
of UPE in the human body—and the changes in UPE intensity at specific body
locations following acupuncture—appear to coincide with the meridian theory of
Chinese medicine. Thus, the question arises whether UPE can also reflect the

Chinese diagnostic syndrome theory.

The term “Chinese syndrome” refers to a combined pattern of physiology,
psychology, and pathology in relation to a specific condition. The goal of
syndrome differentiation is to understand illness as a pattern of relationships.
Typically, several diagnostic procedures are used in order to identify the syndrome;
these procedures include inspection, listening and smelling, inquiry, and palpation.
Correctly identifying a Chinese syndrome is the basis of personalized therapies that
use Chinese herbs, nutritional advice, acupuncture, physical exercise, and
medication [89], [90]. To obtain a better understanding of Chinese syndromes from
a modern biological perspective, several Western analytical tools—for example,
omics-based approaches—have been used to study basic Chinese syndromes in
patients with chronic diseases such as rheumatoid arthritis and diabetes. Using this
approach, chemical biomarkers have been identified successfully for subtypes of
patients with diabetes or rheumatoid arthritis [91], [92].

Given its potential for measuring overarching regulatory processes, UPE may
be a useful diagnostic tool for identifying Chinese syndromes. In the Chinese
literature, UPE has been used in three animal models to study deficiency
syndromes [10], [93]-[95]. Marked reductions in UPE intensity at the acupuncture
points located at the governor vessel (gV) and the conception vessel (¢V) meridian

channels were observed in Yang deficiency rats and Blood deficiency rats,
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respectively; an increase in UPE intensity was measured after stimulating these
acupuncture points [96]. In another study, a rabbit model of Qi deficiency was
established by excessive intake of Rhubarb. In this model, a rapid decline in UPE
intensity, followed by a slow rise in intensity, was measured in the rabbit’s ears,
reflecting the rabbit’s altered dynamics as it progressed from illness to a healthy
state [97]. In addition, the UPE level of the rabbit’s organs (e.g., the spleen and
stomach) decreased considerably, suggesting that UPE can also reveal changes in
organs induced by treatment with herbs [98]. The Chinese research showed an
intriguing change in UPE intensity related to the specific dynamics of deficiency
syndromes. As more UPE parameters are identified in the future, they will likely

provide more information regarding Chinese syndromes.

5. Perspective: UPE-guided metabolomics based on Chinese

medicine—based diagnostics

In this review, we discussed the UPE research that has been performed in China
within the past century with respect to physiological and pathological conditions.
Importantly, our review revealed that UPE experimental observations are closely
correlated with Chinese medicine—based diagnostic concepts. Some researchers
have hypothesized that this correlation may be due to the concordance between the
coherence theory of photon emissions in humans and the energetic properties of

living organisms as developed in Chinese medicine [99], [100].

Here, we propose that a UPE-guided metabolomics approach based on Chinese
diagnostic theory may improve the dialogue between Western medicine and
Chinese medicine. UPE parameters and Chinese diagnostics reflect dynamic
responses that arise as a result of internal and/or external disturbances in the human
body at a relatively high organizational level. In addition, because its origin lies in

oxidative metabolic processes, UPE has been proposed to link to metabolic
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networks [20]. Various ROS-regulating metabolites have been detected in several
diseases, including cardiovascular disease, hypertension, rheumatoid arthritis, and
type 2 diabetes [91], [92]. Several metabolomics platforms—such as platforms
based on amino acids and oxylipins—have been established, and these platforms
reflect ROS/oxidative stress products, as well as their biosynthetic pathways [101]-
[103]. Given that ROS play an important role in mechanisms associated with UPE
and metabolic processes, they might serve as a direct biochemical bridge between

UPE and metabolomics.

If UPE parameters can be linked to ROS-related metabolic pathways, the
Chinese diagnostic principle, which is characterized by UPE, may be related to
biochemical mechanisms. Thus, UPE might be used to detect early perturbations,
even before they can be detected using metabolomics. In this way, UPE
measurements could be used to indicate when metabolomics measurements would
be warranted. Alternatively, depending on the UPE parameter that is changed, a
specific metabolomics platform can be used for further analysis. In other words, by
characterizing Chinese diagnostics using UPE parameters, and by studying the
relationship between UPE and metabolomics, UPE-guided metabolomics based on

Chinese diagnostics can be used to improve healthcare.

6. Conclusions

In this review, we discussed the UPE research linked to Chinese medicine that was
published in the Chinese literature in the last century. Several experimental
observations using UPE were found to be highly correlated with Chinese
medicine—based diagnostic concepts. A UPE-based metabolomics approach guided
by the Chinese medicine—based diagnostic concept may provide a biochemical
bridge between Western medicine and Chinese medicine. From this perspective,
three areas of UPE-based research should be explored further: i) the UPE-based
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methodologies should be developed and optimized; ii) experimental work should
bridge UPE with Chinese medicine—based diagnostics and metabolomics; and iii)
dynamic UPE-based data should be integrated with other system-based diagnostic

measurements.

Linking UPE, a dynamic diagnostics tool, with omics measurements in systems
biology studies will increase our understanding of the diagnosis, prediction, and
treatment of many diseases. Moreover, combining UPE with metabolomics based
on ROS production might provide an effective approach for studying the
relationship between health and disease and will help improve our understanding of
the healthy state.
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Abstract

Ethnopharmacological relevance: The prevalence of type 2 diabetes mellitus
(T2DM) is increasing rapidly worldwide. Because of the limited success of generic
interventions, focus has shifted toward personalized strategies, particularly in early
stages of the disease. Traditional Chinese medicine (TCM) is based on a systems
view combined with personalized strategies and has improved our knowledge with
respect to personalized diagnostics. From a systems biology perspective, this
understanding can be improved in order to yield a biochemical basis for such
strategies, for example using metabolomics combined with other system-based
diagnostic methods such as ultra-weak photon emission (UPE). In this respect,
UPE has been used successfully to support TCM-based subtyping. Combining
these technologies will further support TCM-based subtyping of diseases such as
T2DM.

Aim of the study: The aim of this study was to investigate the feasibility of using
plasma metabolomics to stratify the following TCM-based subtypes: Qi-Yin
deficiency, Qi-Yin deficiency with dampness, and Qi-Yin deficiency with
stagnation. Furthermore, we studied the relationship between plasma metabolomics
and UPE with respect to TCM-based subtyping in order to obtain biochemical

information for further interpreting disease subtypes.

Materials and methods: Plasma samples obtained from 44 subjects were extracted
and analyzed using both liquid chromatography/tandem mass spectrometry and gas
chromatography/tandem mass spectrometry. We then profiled various classes of
metabolites, including amine metabolites, organic acids, sugars, and
lysophosphatidic acid—derived metabolites, as well as lipids, including

sphingomyelin phosphatidylcholine, phosphoethanolamine, lyso-
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phosphatidylcholine, lyso-phosphoethanolamine, , cholesterol esters and
triglycerides. Multivariate analysis (principal component analysis and orthogonal
projections to latent structures discriminant analysis) was used to analyze the
metabolomics profiles and to study TCM-based stratification. Finally, Spearman’s
rank correlation-based networks were used to correlate the metabolites with the

UPE parameters.

Results and discussion: Principal component analysis of plasma metabolites
revealed differences among the TCM-based pre-T2DM subtypes. Relatively high
levels of lipids (e.g., triglycerides and cholesterol esters) were important
discriminators of two of the three subtypes and may be associated with a higher
risk of cardiovascular disease. Correlation networks revealed that plasma
metabolomics and UPE yielded similar TCM-based subtypes. Finally, plasma
metabolomics data indicate that the lipid profile is an essential component captured
by UPE with respect to stratifying subtypes of T2DM.

Conclusions: Metabolic differences exist among different TCM-based subtypes of
pre-T2DM, and profiling plasma metabolites can be used to discriminate among
these subtypes. Plasma metabolomics provides biochemical insights into system-

based UPE measurements.

Key words: Type 2 diabetes mellitus, plasma metabolites, disease subtypes, ultra-

weak photon emission, correlation networks
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic, devastating complex disease. T2DM
is characterized by increased fasting plasma glucose levels, impaired postprandial
insulin secretion, decreased insulin sensitivity, and impaired pancreatic beta-cell
function [1]. In addition, patients with T2DM have increased levels of
inflammatory factors such as TNFa, IL-6, IL-8, and reactive active species [2], [3],
altered levels of hormones, peptides, proteins, and enzyme activity, as well as other
metabolic perturbations [4]. Striking, nearly all of these metabolic changes are
often present years before the patient presents with clinical symptoms leading to a
diagnosis of T2DM [5], [6].

Based on epidemiology studies, an estimated 285 million individuals are
affected by diabetes worldwide, and this number continues to increase [7].
Furthermore, this number is likely an underestimate, as many individuals are not
diagnosed in an early stage due to insufficient knowledge regarding the multi-
symptom relationships at a systems level [8], [9]. Receiving a diagnosis only in a
later stage of diabetes—together with the severe complications associated with
disease progression—can lead to high costs and can reduce the efficacy of
treatment [10]. For example, long-term dysglycemia increases the risk of severe
complications such as hypertension, blindness, renal failure, and cardiovascular
disease [11], [12]. These complications reduce quality of life and are a major cause
of morbidity, hospitalization, and mortality among patients with diabetes. Current
diagnostic tests are based primarily on a single screening tool such as the oral
glucose tolerance test or measuring fasting plasma glucose. Understanding the
symptoms that develop in an early stage of the disecase and developing indicators of
disease progression would likely contribute to improving both prevention and
treatment strategies, including strategies based on changes in lifestyle. Moreover,
treatments based on generic observations—which have led to the notion of one

drug-one target-one disease (or one-size-fits-all)—are extremely limited,
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particularly in early stages of the disease. Therefore, system-based approaches are

needed in order to achieve personalized approaches.

Integrative holistic forms of medicine such as traditional Chinese medicine
(TCM) provide descriptions of disease syndromes and subtypes at a systems level,
including descriptions that can be used to diagnose early syndromes of chronic
diseases. Such descriptions can be used as a guide or reference in order to achieve
personalized medicine. In this respect, TCM has provided descriptions of pre-
T2DM syndromes, indicating its potential for helping develop personalized
medicine [13], [14]. To bridge TCM with Western medicine, evidence-based
scientific data is needed at the biochemical level. Thus, modern systems biology
research—including metabolomics—is a promising approach for exploring the

biochemistry underlying TCM subtyping.

Metabolic disorders are often present for years before the appearance of clinical
disease, and metabolomics is a widely used technique for predicting and
diagnosing disease [15]. Metabolomics provides a comprehensive profile of small
molecular metabolites in biological systems and can be used as a readout of the
organism’s physiological status [16]. In principle, this approach is well suited to
studying complex TCM-based diagnostics. Metabolomics is generally performed
on fluids such as blood, urine, and cerebrospinal fluid. Urine is commonly used for
metabolomics, as it easily obtained, contains information regarding the excretion of
products, and can reflect how metabolic processes change during the disease
process. Several studies have used urine metabolomics to explore TCM-based
diagnostics and T2DM syndrome subtypes [17], [18]. In addition to urine, blood
also contains information regarding the body’s regulatory status and dynamics.
Thus, performing metabolomics on different fluids can provide complementary
information, thereby improving our understanding of T2DM. An explorative study
at TNO (https://clinicaltrials.gov/ct2/show /NCT00469287) was designed in which
44 pre-T2DM subjects received a diagnosis by a panel of three TCM-trained
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physicians [17], and we explored these TCM-based subtypes using plasma

metabolomics.

Recently, a sensitive, non-invasive technique has been proposed for supporting
TCM-based diagnostics [19]. This technique, called ultra-weak photon emission
(UPE), is used to measure spontancous photon emissions from the skin’s surface
[20]. Because UPE reflects the body’s physiological and pathological status, it
represents a promising tool for use in clinical diagnostics at a systems level [21],
[22]. The underlying biochemistry of UPE is related to metabolism and is
correlated with reactive oxygen species in oxidative metabolic processes [23]-[26].
Although the use of UPE properties for characterizing TCM-based diagnostics has
been summarized previously [19], [20], [27], further understanding of the
molecular basis of UPE is needed. Therefore, combining metabolomics with TCM-
based diagnostics can be used to investigate the biological meaning of UPE and to
explore the added value of each technology. Importantly, UPE was used previously
to subtype the same cohort of 44 subjects with pre-T2DM [27], thereby enabling us

to study the correlation between UPE and plasma metabolomics.
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2. Materials and Methods

2.1 Inclusion criteria for the selection of pre-diabetic subjects and the diagnosis

of syndrome subtypes based on TCM
The recruitment of subjects and the diagnosis of pre-T2DM subtypes by TCM-

trained physicians were described previously [17]. In brief, clinical parameters
were obtained from 44 male Dutch subjects who met the following inclusion
criteria: 30-70 years of age, body mass index of 26-35 kg/m?, and a fasting glucose
level of 6.1-6.9 mmol/L. No other clinical abnormalities or evidence of diabetic
complications were detected. The subjects were then diagnosed separately in a
blinded study by three TCM-certified physicians with at least five years of training
in TCM and at least ten years of clinical experience. Three categories were based
on TCM-based diagnostic terms, and 85% consensus was reached among the three
CM physicians with respect to diagnosing the subjects. These three categories are
defined as follows: QYD (Qi-Yin deficiency, n=15 subjects), QYD Damp (Qi-Yin
deficiency with dampness, n=20 subjects), and QYD_Stag (Qi-Yin deficiency with
stagnation, n=9 subjects). Blood samples were collected after overnight fasting and
used for the metabolomics study. In addition, UPE was measured from the palmar

and dorsal surfaces of both hands.

2.2 Ethics statement

This explorative study was designed and conducted by TNO (Zeist, the
Netherlands; https://clinicaltrials.gov/ct2/show/NCT00469287) and was approved
by the Medical Ethics Committee of Tilburg (METOPP).

2.3 Data acquisition

2.3.1 Plasma metabolomics profiling
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Metabolic profiles were measured by the Netherlands Organization for Applied
Scientific Research (TNO, Zeist, the Netherlands). Heparinized blood samples
were collected, and plasma was obtained by centrifugation (2000xg at 4°C for 15
min). The plasma samples were aliquoted and stored at -20°C prior to metabolite

extraction and mass spectrometry.

Using a gas chromatography/mass spectrometry (GC-MS) platform, a large
variety of metabolic classes were measured, including amine metabolites, organic
acids, sugars, and lysophosphatidic acid (LPA)-derived metabolites. The details of
the extraction and the GC-MS analysis protocol have been published previously
[28]. In brief, 100-ul aliquots of plasma were spiked with a mixture of internal
standards (ISTDs) and deproteinized with methanol. After centrifugation, the
supernatant was transferred to a new sample vial for evaporation and two-step
derivatization. The derivatized extracts were then analyzed using an Agilent 6890
gas chromatograph on a DB5-MS capillary column (30 m x 250 um i.d., 0.25-um
film thickness; J&W Scientific, Folsom, CA) coupled to an Agilent 5973 mass
selective detector; helium was used as the carrier gas at a flow rate of 1.7 ml/min
for temperature-programmed gradient chromatographic separation. The raw data
were pre-processed and exported using ChemStation G1701CA software (version
D.01.02, Agilent), providing response ratios to the appropriate internal ISTD for

each metabolite; these ratios were used for further statistical analysis.

For liquid chromatography/tandem mass spectrometry (LC-MS) lipid
measurements, seven classes of lipids, including both polar lipids—such as
phosphatidylcholine, phosphoethanolamine, lyso-phosphatidylcholine, lyso-
phosphoethanolamine, and sphingomyelin —and non-polar lipids—such as
cholesterol esters and triglycerides—were investigated using targeted analysis as
reported previously by van Wietmarschen et al. [29] and Draisma et al. [30]. In
brief, 10-ul aliquots of plasma were deproteinized by the addition of isopropanol
containing a mixture of ISTDs. The lipids were separated and analyzed using a

TSQ Quantum Discovery Triple Quad mass spectrometer coupled to a Surveyor
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MS HPLC system on an Alltech Prosphere C4 300A column (150 x 3.2 mm,
particle size of 5 pm; Alltech, Lexington, KY) in combination with a Symmetry
300 C4 guard column (2.1 x 10 mm, particle size of 3.5 um; Waters, Milford, MA)
in positive ionization mode. The peak areas of the target lipids were integrated, and
raw data were exported using LCQuan software (version 2; Thermo Fisher
Scientific, Waltham, MA), yielding response ratios to the appropriate internal

ISTD for each metabolite; these ratios were used for further statistical analysis.

During the GC-MS and LC-MS experiments, quality control (QC) samples were
prepared by pooling equal amounts of plasma from each sample, then dividing the
pooled samples into aliquots; these QC samples were used to check the
performance of the LC-MS platform as well as to identify temporal trends in the
acquired data. The relative standard deviation (RSD) of each target peak in the QC
samples was used to confirm the quality of the data acquired from each analytical

platform.
2.3.2 UPE measurements

UPE signals were measured from the same cohort of 44 subjects. A photomultiplier
system (provided by Meluna Research B.V., Geldermalsen, the Netherland) with
two detecting heads located at the top of a dark chamber was used to measure UPE.
Each detecting head contains a 9558QB photomultiplier tube within a spectral
sensitivity range of 190-650 nm (Electron Tubes Enterprises Ltd., Ruislip, UK) and
an electronically controlled shutter. The dark chamber was maintained at 20+1.0°C.
The settings used to measure UPE have been described previously [31], [32]. All
measurements were controlled automatically via computer-driven software. UPE
signals were measured at the following four hand surfaces: left dorsal (LD), right
dorsal (RD), left palm (LP), and right palm (RP).

2.4 Data preprocessing and statistical analysis

132



Traditional Chinese medicine-based subtyping of early-stage type 2 diabetes

2.4.1 Metabolomics data processing and analysis

Before performing a statistical analysis on the metabolomics data, the log-
transformed dataset was processed using various scaling options (i.e., autoscaling,
range scaling, and pareto-scaling) using the online software package

MetaboAnalyst 3.0 (http:/www.metaboanalyst.ca/) [33]. The pareto-scaling

approach (mean-centered and scaling by the square root of the standard deviation
of each variable) was chosen because it provided the best grouping performance,
consistently explaining the largest variabilities when considering the same number
of principal components (both 2D and 3D) [34]-[36]. Preliminary selection of
variables prior to multivariate analysis is needed in order to: i) limit the dataset of
variables for reliably separating the sample groups; ii) remove irrelevant and/or
confounding variables; and iii) decide which variables to retain for the multivariate
analysis; however, this selection is not needed in order to identify potential
biomarkers, which has been applied in metabolic profiling studies [37], using p-
values obtained from a one-way analysis of variance (ANOVA) (p<0.1) in GC-MS
and LC-MS. Multiple comparisons, including principal component analysis (PCA)
and orthogonal projections to latent structures discriminant analysis (OPLS-DA),
were conducted using MetaboAnalyst 3.0, which provides standard validation
information, including cross-validation and a permutation test to prevent over-fit of
the models to the data [33].

2.4.2 Acquisition of UPE data and derived parameters

From a 50-ms bin, the following ten UPE properties were calculated from all four
hand surfaces: strength, FFO, FF1, FF2, alpha, gamma, theta, phi, SSI, and SSR
[31], [32], [38]. Thus, a total of 40 UPE parameters were obtained from each

subject.
2.4.3 Correlation analysis

The statistics software package R (version 3.0.3) was used to calculate Spearman’s

rank correlation coefficient in order to examine the relationship between the
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metabolites and UPE parameters. A graphical overview of the correlation networks
was created using CytoScape version 3.3.0 (http://www.cytoscape.org) with the
MetScape plugin [39], [40]. Positive and negative correlations are indicated by

positive and negative values of r, respectively.
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3. Results and Discussion
3.1 Subtyping based on plasma metabolomics

TCM-based diagnostics is based on several standard diagnostic steps, including
inspection, listening and smelling, inquiry and question, and palpation. The
outcomes from these steps are combined to create an individual profile, which is
used to establish a diagnosis. In this study, 26 variables were determined using
TCM-based diagnostics [17]. From this exploratory study, plasma samples were
used to obtain evidence-based information that was used to help subtype the pre-
T2DM subjects.

We used two validated metabolomics methods based on GC-MS and LC-MS.
GC-MS yielded 147 untargeted metabolites, and LC-MS yielded 110 targeted
metabolites; all of these metabolites were included in the total metabolomics
profile. The metabolites detected by GC-MS included various metabolic classes,
but primarily included amine metabolites, organic acids, sugars, and fatty acids
such as LPA and LPA-derived metabolites. The metabolites detected by LC-MS
included seven classes of lipids, including both polar lipids such as
phosphatidylcholine, phosphoethanolamine, lyso-phosphatidylcholine, lyso-
phosphoethanolamine, and sphingomyelin and non-polar lipids such as cholesterol
esters (ChEs) and triglycerides (TGs). Given the relatively small number of
subjects (44) compared to the large number of total variables (257), a first step in
selecting variables was required before proceeding with a multivariate analysis;
this step allowed us to optimize the variable/object ratio for discriminant type
approaches, and it allowed us to remove potential irrelevant and/or confounding
variables [37]. A total of 32 preliminary variables were selected based on an
ANOVA analysis (p<0.1); these variables included 14 plasma metabolites
identified by GC-MS and 17 plasma lipids identified by LC-MS. These variables
were then used for subsequent multivariate analyses, including PCA, Partial least
squares discriminant analysis (PLSDA), and OPLS-DA (see S-table 1 and S-fig. 1).
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The first step in our analysis focused on investigating whether plasma
metabolomics could be used to discriminate between the three TCM-based
syndrome subtypes of pre-T2DM (i.e., QYD vs. QYD Damp, QYD vs. QYD _Stag,
and QYD Damp vs. QYD Stag). A 3D PCA plot was used to visualize the natural
distribution of the three groups in 3-dimensional space [37], [41]. The first three
principal components analyzed described 66.5% of the total variance in the plasma
metabolome (Fig. 1). We found no large distance between the three subtypes
reflected by PCA, which is not surprising given that their TCM-based diagnostic
patterns are all-linked (interrelated) and TCM-based syndromes subtypes are not
independent but with dynamic changes towards different direction [13], [14].
However, we did observe tendency of clusters within the subtypes, with minor

overlap in the PCA analysis.
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Fig. 1: 3D PCA score plot based on plasma metabolite profiling, acquired and integrated from
GC-MS and LC-MS, for visualizing clusters of the three pre-T2DM subtypes (QYD,
QYD_Damp and QYD_Stag).
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Next, we used supervised models, including LDA, PLSDA, and OPLS-DA, in
order to identify relevant plasma metabolites (S-fig. 2). The OPLS-DA model
provided the highest R? and Q? values and was therefore used to identify the most
relevant variables based on score plots [42][43]. Furthermore, permutation tests
with 1000 iterations (p<0.05) showed a good performance of the model. Fig. 2
shows the OPLS-DA score plots for the first two principal components between

each pair of subtypes (see also S-fig. 3).
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“Parniftation: p=0.001

Fig. 2: OPLS-DA score plots of plasma metabolite profilling (integrated from LC-MS and GC-
MS) for comparing differences between each pair of subtypes. a) QYD vs. QYD _Damp; b) QYD
vs. QYD_Stag; and ¢) QYD _Damp vs. QYD_Stag.

Table 1 summarizes the relevant metabolites (defined as the combination of
covariance |p[1]/>0.7 and correlation coefficient |p(corr)[>0.3[43]) for each pair of
groups, together with their contribution between each pair of subtypes (QYD vs.
QYD_Damp, QYD vs. QYD_Stag, and QYD_Stag vs. QYD_Damp). As shown in
Table 1, 15 of the 18 metabolites that contributed to the differentiation between
QYD and QYD_Damp are long-chain non-polar lipids (11 TGs and 4 ChEs); these
metabolites were higher in the QYD _Damp group than in the QYD group.
Fourteen of these same metabolites (10 TGs and 4 ChEs) were also higher in the
QYD Stag group than in the QYD group. Thus, we conclude that an increase in
long-chain non-polar lipids is associated with the QYD Damp and QYD Stag

groups.
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The physiological mechanisms that underlie the early phases of T2DM have
been linked to lifestyle issues such as the consumption of a diet high in fat and
calories [44]-[47], which is similar to chronic fatigue syndrome and/or mild
inflammatory status [17]. Triglycerides are the precursors of phospholipids, which
are the building blocks of cell membranes and play an important role in energy
homeostasis. Cholesterol esters are a stored form of cholesterol that is normally
exported as a high-density lipoprotein (HDL) and returned to the liver. High levels
of cholesterol and triglycerides (hypercholesterolemia and hypertriglyceridemia,
respectively) are associated with fat accumulation, atherosclerosis, and
cardiovascular disease [48], [49]. Therefore, patients in the pre-T2DM subgroups
QYD Damp and QYD Stag may have an increased risk of developing

atherosclerosis and/or cardiovascular disease in a later disease stage.

Table 1: List of relevant metabolites identified by OPLS-DA

QYD_Damp. vs. QYD QYD_Stag. vs. QYD QYD_Stag. vs. QYD_Damp.
Metabolite Change Metabolite Change Metabolite Change
C52 5 TG 1 C22 5 ChE 1 Beta-Alanine 1
C54 6 TG 1 C54 7 TG 1 6926ukx10* !
C54 5 TG 1 C54 6 TG 1 1-Methylhistidine % 10227\01.03 uk x 45* !
C54 7 TG 1 €58 10 TG 1 31944uk05* !
C56 8 TG 1 €52 6 TG 1
C56 7 TG 1 C56 8 TG 1
€56 9 TG 1 CI8 3 ChE 1
C58 8 TG 1 €52 5 TG 1
1-Methylhistidine % 10227\01.03 uk x 45* 1 22 6 ChE 1
C58 9 TG 1 C56_7_TG 1
C52 6 TG 1 €56 9 TG 1
C18 3 ChE 1 20 3 ChE 1
C16 0 ChE 1 C54 5 TG 1
(22 6 ChE 1 C58 9 TG 1
(20 3 ChE 1 31944uk05 1
Creatinine 1
1-Palmitoyl-L-alpha-lysophosphatidic acid 1
1-Stearoyl-sn-glycero-3-phosphocholine 1

1, increase; |, decrease.
* Structural unidentified metabolites in GC-MS untargeted measurement.
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Although TGs and ChEs were increased in both the QYD Damp and
QYD _Stag groups relative to the QYD group, these two groups had several
metabolic differences (Table 1). The relatively lower levels of amine metabolites in
the QYD _Stag group (and/or the relatively higher levels in the QYD Damp group)
may suggest that the difference between the QYD Stag and QYD Damp subtypes
is based primarily in differences in the TCA cycle and/or muscle catabolism
processes [50]. In summary, 23 metabolites contribute to the stratification of pre-
T2DM subtypes. Thus, different subtypes of pre-T2DM may be discriminated
based on differences in plasma metabolomics, including plasma lipids and amine

metabolites.

Previously, Wei, et al. reported that urine metabolomics can be used to reflect
changes in carbohydrate metabolism and renal function in patients with QYD Stag
syndrome; specifically, two of the three TCM-based subtypes could be stratified
[17]. In contrast, plasma metabolomics provides stratification among the three
subgroups, which is likely due to the use of a lipidomics platform, which measures
a class of compounds that cannot be measured using urine metabolomics. This
finding suggests that measuring lipid metabolomics is important for accurately

subtyping pre-T2DM.

3.2 Correlation between metabolomics and UPE

We also measured UPE in our cohort of subjects with pre-T2DM. Stratification of
the three TCM-based syndrome subtypes using 16 UPE parameters has been
studied previously [27]. Given that both plasma metabolomics and UPE can stratify
subjects into pre-T2DM subgroups, plasma metabolomics data may be used to
obtain biochemical insight into UPE [51]-{53]. To explore the relationship
between these two approaches, we used Spearman’s rank correlation coefficient to

establish a correlation-based metabolite-to-UPE network. Such a correlation
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network may provide additional information that may further stratify disease

subtypes and may provide a biochemical interpretation of UPE parameters.

We generated correlation networks between the 23 metabolites and 16 UPE
parameters that contributed to the stratification of subtypes in order to visualize the
most relevant correlations related to the three subtypes (Figure 3). These networks
revealed clearly distinct distributions of UPE-to-metabolite correlations between
the three subtypes. Specifically, the QYD Damp subtype contained relatively few
correlations, whereas the QYD and QYD _Stag subtypes contained relatively more
positive and negative correlations, respectively. Moreover, although clear links are
visible between UPE parameters and specific classes of metabolites (e.g., TGs and
ChEs), the correlations differ among the subtypes. The differences between the
three networks provide a clear distinction between the subgroups and might serve

as an additional diagnostic tool.
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4. Conclusions and perspectives

Here, we report that plasma metabolomics can be used to stratify the three TCM-
based subtypes of early-stage type 2 diabetes, providing better stratification than
urine metabolomics. Specifically, increased levels of plasma lipids such as TGs
and ChEs may indicate a relatively higher risk of developing cardiovascular
disease among patients with specific subtypes. In addition, we used UPE as a non-
invasive method for subtyping pre-T2DM, and the UPE parameters were correlated
with specific plasma metabolites—primarily lipid metabolites—and these
correlations differed among the three subtypes. Thus, combining UPE and plasma
metabolomics provides additional insight into the diagnosis of disease and the

underlying biochemistry of UPE from a systems biology perspective.

The ability to identify the pre-T2DM syndrome subtype based on TCM is
essential for achieving a personalized treatment plan, thereby significantly
improving patient care. These results provide a window of opportunity for
combining metabolomics with UPE in order to achieve personalized medicine and
improve the early diagnosis of disease. Nevertheless, metabolomics platforms do
not necessarily cover the entire metabolome, and choices must be made based on
the metabolomics platforms that are currently available. Given the difficulties
associated with obtaining comprehensive information regarding the dynamic
changes reflected by measuring metabolomics, linking metabolomics to UPE under
the guidance of TCM-based diagnostics is particularly attractive, promoting the
carly diagnosis of T2DM. Additional research is needed in order to expand the
correlation networks between metabolites and UPE parameters. In addition, current
approaches for stratifying T2DM are based on various criteria, which must be
consistent for further clinical diagnosis. Therefore, additional research is needed in

order to understand TCM-based concepts such as disease syndromes and subtypes.
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Supplementary information

S-table 1. Preliminary variables in the MS data identified by ANOVA (p<0.1)

Compounds p-value Post-hoc test(Fisher's LSD) between groups
Metabolites in GC-MS
Citric acid 0.018 QYD - QYD_Damp; QYD _Damp - QYD_Stag
Creatinine 0.019 QYD - QYD_Damp; QYD_Damp - QYD_Stag
L-Threonine 0.028 QYD - QYD_Damp; QYD - QYD_Stag
Beta-Alanine 0.039 QYD _Damp - QYD_Stag
D-Ribulose or D-Xylulose 0.049 QYD - QYD_Damp
31944 uk 05 0.052 QYD - QYD_Stag; QYD_Damp - QYD_Stag
1-Stearoyl-sn-glycero-3-phosphocholine 0.054 QYD - QYD_Damp; QYD - QYD_Stag
1-Methylhistidine % 10227\01.03 uk x 45 0.054 QYD _Damp - QYD_Stag
VP9pl uk17 0.054 QYD - QYD_Damp; QYD - QYD_Stag
unknown 39d 0.06 QYD _Damp - QYD_Stag
Myo-inositol-1,2-cyclicphosphate % unknown 0.065 QYD_Damp- QYD_Stag
6926 uk x 10 0.068 QYD_Damp - QYD_Stag
31944 uk 04 0.073 QYD_Damp- QYD_Stag
1-Palmitoyl-L-alpha-lysophosphatidic acid 0.091 QYD - QYD_Damp; QYD - QYD_Stag
Metabolites in LC-MS
C56 9 TG 0.005 QYD - QYD_Damp; QYD - QYD_Stag
C54 6 TG 0.024 QYD - QYD_Damp; QYD - QYD_Stag
C58 10 TG 0.027 QYD - QYD_Damp; QYD - QYD_Stag
C54 5 TG 0.031 QYD - QYD_Damp; QYD - QYD_Stag
C54_7_TG 0.035 QYD - QYD_Damp; QYD - QYD_Stag
C52 5 TG 0.044 QYD - QYD_Damp; QYD - QYD_Stag
C18_3 ChE 0.050 QYD - QYD_Damp; QYD - QYD_Stag
C20_3 _ChE 0.056 QYD - QYD_Damp; QYD - QYD_Stag
C58 9 TG 0.056 QYD - QYD_Damp
C52_6_TG 0.061 QYD - QYD_Damp; QYD - QYD_Stag
C22_6_ChE 0.070 QYD - QYD_Damp; QYD - QYD_Stag
C58 8 TG 0.081 QYD - QYD_Damp
C38 3 PC 0.085 QYD - QYD_Damp; QYD - QYD_Stag
C16_0_ChE 0.085 QYD - QYD_Damp; QYD - QYD_Stag
C56_7_TG 0.086 QYD - QYD_Damp; QYD - QYD_Stag
C40_5_PC 0.091 QYD - QYD_Stag
C56 8 TG 0.092 QYD - QYD Damp
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S-fig. 1: Box plots summarizing the 32 preliminary variables (plasma metabolites detected by
LC-MS and GC-MS, identified by ANOVA (p<0.1)) in pre-T2DM subjects. Individual metabolite
(peak area ratio between target metabolites and relevant internal standard) for the three groups are
illustrated using boxplots after logarithmic transformation and pareto-scaling for data normal
distribution. The metabolites which differed significantly based on ANOVA (p<0.05) were then
followed by a post-hoc analysis (Fisher’s least significant difference method) to show between which
two groups the differences are significant (*).
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QYD vs. QYD_D ‘ ’ QYDvs. QYD_S ‘ ’ QYD_D vs. QYD_S

a)

c)

) OPLS-DA | |~

S-fig. 2: Performance comparison between three supervised multivariate analysis models (LDA,
PLSDA, and OPLS-DA), based on metabolite profiling in plasma of pre-T2DM subjects
detected and integrated by LC-MS and GC-MS. A Permutation test with 1000 iterations (p<0.05)
as well as the R2 and Q2 showed that the OPLS-DA model performed best.
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Summary, conclusions and perspectives

1. Summary and Conclusions

1. 1 Systems-based evaluation of chronic disease

Chronic diseases such as rheumatoid arthritis (RA) and type 2 diabetes mellitus
(T2DM) involve complex processes and pathologies that result in multiple
interactions within the body, including inflammatory symptoms, complications, an
increased risk of morbidity, loss of mobility, and mortality. Under the chronic
disease state, complex responses often lead to unpredictable, subtle perturbations
and dynamic changes. A systems biology—based analytical approach that integrates
comprehensive data may provide unique insight into the underlying
pathophysiological mechanisms. Rather than looking for a single target to
characterize chronic disease, the studies in this thesis investigated systematic
processes relevant to chronic disease using systems level analyses. Specifically,
metabolomics was used to measure a large set of small molecule metabolites in

combination with measuring spontaneous ultra-weak photon emission (UPE).

In research, animal models of chronic disease are widely used due to their many
similarities with human patients. In Chapter 2 and Chapter 3, metabolomics,
which provides a comprehensive measure of small molecule metabolites as a
readout of physiological status, was applied to mice with collagen-induced arthritis
(CIA)—a commonly used mouse model of RA—to evaluate interactions at the
metabolic level under chronic disease conditions. Oxylipins are bioactive lipid
mediators synthesized from polyunsaturated fatty acids. Because of their important
role in inflammatory processes, we measured plasma oxylipin levels in CIA mice
in order to gain insight into inflammation- and ROS-related metabolites (Chapter
2). Compared to control mice, we found dysregulated oxylipins in CIA mice,
reflecting inflammation and increased ROS levels. In addition, we found that
collagen-induced arthritis may be associated with a dysregulation of apoptosis,
perhaps due to activated NF-xB as a result of reduced levels of PPAR-y ligands.

Given that free amino acids—and their derivative biogenic amines—play essential
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roles in both energy production and protein synthesis/degradation, we measured
plasma levels of amino acid—based metabolites in CIA mice in order to gain a
different perspective regarding the levels of energetic metabolites (Chapter 3).
Our finding of reduced levels of free amino acids together with their biogenic
metabolites suggests a link between arthritis and muscle wasting/energy

expenditure.

From these studies, we found that both oxylipins and amine metabolites
reflecting arthritis but from different perspectives with respect to interpreting
putative pathophysiological mechanisms. Systems biology—based metabolomics
can provide new ways of improving the diagnosis of chronic disease and can

provide insight into of the underlying pathophysiological mechanisms.

Correlation network—based analyses provide the opportunity to integrate data
obtained from different technical platforms, thereby providing a correlation-based
understanding of systemic interactions and regulation[1]. Interaction networks
based on correlation analyses can be visualized and analyzed using software such
as Cytoscape[2]. UPE is a non-invasive method for measuring photons emitted
from the surface of body and may be correlated with oxidative metabolic
processes[3], [4]. UPE intensity was increased in CIA mice[5]. In Chapter 4, we
performed a correlation networks—based study to explore the relationship between
metabolic processes and UPE by integrating the metabolic data described in
Chapter 2 and Chapter 3 with UPE data measured in the same group of mice.
This combination study yielded valuable information and provided insight into the
disease process from a systems perspective. Our results revealed that the increase
in UPE with arthritis is associated with a specific metabolites processes (primarily
lipid oxidation, inflammatory metabolites and/or ROS-mediated metabolic
processes). These results provide a window of knowledge into in our attempt to
integrate different datasets and analyze complex interactions in RA, and these
results provide further evidence to support the relationship between metabolic

processes and UPE.
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1.2 Personalized medicine-based phenotyping using TCM-based principles

Epidemiology studies have shown a rapid increase in the prevalence of clinic
diseases, as well as a large undiagnosed patient population due primarily to mild
clinical symptoms. Indeed, mild physiological perturbations can be present for
years before the appearance of severe symptoms. The ability to predict disease
early and to dynamically observe chronic disease remain challenging and if solved
can—to a certain extent—prevent the development of irreversible lesions. In
addition, if left undiagnosed long-term, chronic disease can develop in different
directions, producing a wide range of phenotypes. Moreover, treatments based on
generic observations (i.e., the “one drug-one target-one disease” or “one-size-fits-
all” approach) are extremely limited, particularly in the early phases of a disease in
which a personalized, systems-based approach is needed. Developing a
personalized approach based on systems biology will reveal the unique clinical
characteristics in individual patients and may shed light on the complexity and

variability of chronic disease.

Traditional Chinese medicine (TCM) is based on a systems view combined with
personalized strategies to provide descriptions of disease syndromes and subtypes
as a guide to diagnose early syndromes of chronic diseases, an approach that has
been shown to improve knowledge regarding personalized diagnostics. Based on
TCM-based diagnostics, metabolomics may provide evidence-based biological
mechanisms, thereby leading to personalized medicine and establishing a bridge
between TCM and Western medicine. UPE reflects both the physiological and
pathological status and is a potential tool for clinical diagnostics at the systems
level[6] [7]; moreover, TCM-based diagnostics, metabolomics, and UPE each
contributes to personalized medicine for treating chronic diseases. Integrating UPE
with metabolomics under the guide of TCM-based diagnostics may create new
opportunities for personalized medicine, systems-based diagnostics, and systems-
based interventions for treating chronic disease (reviewed in Chapter 5). Based on

the ideas described in Chapter 5, we performed an explorative study by combining
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metabolomics and UPE with TCM-based diagnostics (Chapter 6). We examined
the relationship between metabolomics and TCM-guided subtypes of early-stage
T2DM (“pre-T2DM”), and we identified key metabolites—primarily plasma
lipids—that contribute to phenotypic subtypes. In addition, these key plasma lipids
were correlated with the UPE parameters that were used to stratify the same cohort
of pre-T2DM diabetic subjects, and these correlations differed among subtypes.
These differences between subgroups may be used to establish correlation

networks for improved diagnostics.

2. Perspectives

Analyses at the systems biology level offer many opportunities for understanding
chronic disease from various perspectives by integrating various sets of
information. This systems approach requires collaboration among scientists from
various fields, including medicine, analytical biology, chemical biology, and
bioinformatics. Metabolomics is a systems-based approach for studying
comprehensive pathophysiological mechanisms in chronic disease. However,
before conducting a metabolomics study, one must select the most suitable
metabolomics platform. Future studies require additional metabolomics platforms
in order to supplement biochemical information and to provide a link to other

techniques, including UPE.

In this thesis, UPE was measured at specific positions on the body. Measuring a
larger number of anatomical positions may provide additional information
regarding disease, thus helping improve our understanding of personalized
medicine. Here, we visualized the relationship between metabolomics and UPE

using the statistic network tool Cytoscape (www.cytoscape.org) and based on our

Spearman’s rank correlation analysis presents in Chapter 4 and Chapter 6. In the
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future, correlation-based networks may provide more comprehensive data for

exploring interactions under a variety of disease conditions.

Animal models have many advantages for studying chronic disease. Specifically,
the researcher can easily control and/or exclude potential confounding factors that
may affect the results, including age, gender, genetic background, duration of
disease, and drug exposure. However, although animal models are qualitatively
similar to chronic disease in patients, metabolic differences clearly exist among
patients, due to genetic differences and other factors; therefore, any biological
mechanisms identified in animal models must be carefully compared to patients

and validated in clinical studies involving patients.

Our study in human subjects (Chapter 6) illustrates the feasibility of stratifying
patients using metabolomics guided by TCM-based diagnostics and provides a
molecular correlate to UPE, thus illustrating that both metabolomics and UPE can
be used to identify patient subtypes of pre-T2DM. Importantly, combining
metabolomics and UPE measurements provides evidence-based data to support
TCM-based diagnostics. Nevertheless, additional study is clearly needed in order to
expand our knowledge and to achieve a systems view-based approach to

personalized diagnostics.

159



Chapter 7

3. References

(1]

(2]

(7]

160

S. E. Calvano, W. Xiao, D. R. Richards, R. M. Felciano, H. V Baker, R. J. Cho, R. O. Chen,
B. H. Brownstein, J. P. Cobb, S. K. Tschoeke, C. Miller-Graziano, L. L. Moldawer, M. N.
Mindrinos, R. W. Davis, R. G. Tompkins, and S. F. Lowry, “A network-based analysis of
systemic inflammation in humans.,” Nature, vol. 437, no. 7061, pp. 10327, Oct. 2005.

M. S. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys, C. Workman, R. Christmas, I.
Avila-Campilo, M. Creech, B. Gross, K. Hanspers, R. Isserlin, R. Kelley, S. Killcoyne, S.
Lotia, S. Maere, J. Morris, K. Ono, V. Pavlovic, A. R. Pico, A. Vailaya, P.-L. Wang, A.
Adler, B. R. Conklin, L. Hood, M. Kuiper, C. Sander, I. Schmulevich, B. Schwikowski, G. J.
Warner, T. Ideker, and G. D. Bader, “Integration of biological networks and gene expression
data using Cytoscape.,” Nat. Protoc., vol. 2, no. 10, pp. 2366-82, Jan. 2007.

P. Pospisil, A. Prasad, and M. Rac, “Role of reactive oxygen species in ultra-weak photon
emission in biological systems,” J. Photochem. Photobiol. B Biol., vol. 139, pp. 11-23, Oct.
2014.

A. Rastogi and P. Pospisil, “Spontaneous ultraweak photon emission imaging of oxidative
metabolic processes in human skin: effect of molecular oxygen and antioxidant defense
system.,” J. Biomed. Opt., vol. 16, no. 9, p. 096005, Sep. 2011.

E. van Wijk, M. Kobayashi, R. van Wijk, and J. van der Greef, “Imaging of ultra-weak
photon emission in a theumatoid arthritis mouse model,” PloS one, vol. 8, no. 12. p. e84579,
Jan-2013.

J. A. Tves, E. van Wijk, N. Bat, C. Crawford, A. Walter, W. B. Jonas, R. van Wijk, and J. van
der Greef, “Ultraweak Photon Emission as a Non-Invasive Health Assessment: A Systematic
Review,” PLoS One, vol. 9, no. 2, p. ¢87401, Feb. 2014.

R. Van Wijk, E. Van Wijk, H. van Wietmarschen, and J. Van der Greef, “Towards whole-
body ultra-weak photon counting and imaging with a focus on human beings: A review,” J.
Photochem. Photobiol. B Biol., vol. 139, pp. 39-46, Oct. 2014.



Samenvatting

SAMENVATTING

Chronische ziekten, zoals reumatoide artritis (RA) en type 2 Diabetes (T2DM), zijn
gerelateerd aan complexe pathologische processen en met mogelijk ernstige
consequenties zoals inflammatoire symptomen, een verhoogd risico op ziekte,
verlies van mobiliteit en sterfte. In een chronische ziektetoestand ontstaan vaak
complexe biologische responsen, die leiden tot onvoorspelbare subticle
veranderingen in dynamische processen. Een systeembiologische analytische
benadering, die omvangrijke datasets integreert, kan wellicht een uniek inzicht
geven in de onderliggende pathofysiologische processen. In plaats van te zoeken
naar één enkele variabele voor de beschrijving van een ziekteproces, richt de
research in dit proefschrift zich op systemische beschrijving van chronische ziekten
door gebruik te maken van methoden die systemische relevante gegevens
opleveren. In het bijzonder wordt metabolomics gebruikt om grote datasets te
genereren rond de concentratie van kleine metabolieten in combinatie met ultra-
lage fotonemissie (Ultra-low Photon Emission, UPE) om een systeemperspectief te

verkrijgen.

Gezien de relatief grote overeenkomsten met de humane situatie is het
gebruikelijk om in research diermodellen voor chronische ziekten te gebruiken. In
Hoofdstuk 2 en Hoofdstuk 3 is metabolomics als methodiek gebruikt om op
uitgebreide schaal de concentraties van kleine metabolieten te meten als uitlezing
van de fysiologische status. Dit is toegepast op een collageen-geinduceerd artritis
muizenmodel (CIA) , dat veel gebruikt wordt in RA research, om relaties op het
metabolietenniveau op te sporen in chronische situaties. Oxylipiden zijn bioactieve
lipidenmediatoren, die gesynthetiseerd worden uit meervoudig onverzadigde
vetzuren en die een belangrijke rol spelen in ontstekingsprocessen. De plasma
concentraties van oxylipiden in CIA-muizen werden gemeten om inzicht te
verkrijgen in ontstekingsprocessen en metabolieten, gerelateerd aan reactieve
zuurstofverbindingen (Hoofdstuk 2). In vergelijking met controle muizen, werden

ontregelde oxylipiden aangetroffen in de CIA-muizen, die een reflectie kunnen zijn
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van ontsteking en toegenomen reactieve zuurstofverbindingen. Bovendien, werd
gevonden dat de collageen geinduceerde artritis geassocieerd kan zijn met een
ontregeling van de apoptose, wellicht door activatiec van NF-kB ontstaan door
gereduceerde niveaus van PPAR-y liganden. Omdat vrije aminozuren — en de
daarvan afgeleide biogene aminen — een essentiéle rol spelen in zowel de
energieproductie als de eiwit-synthese/degradatie, zijn de plasmaconcentraties van
aminozuur-gerelateerde metabolieten in CIA-muizen ook gemeten, zodat er een
beter inzicht verkregen werd rond de metabolieten, betrokken bij energieregulatie
(Hoofdstuk 3). Er werden verlaagde niveaus van zowel vrije aminozuren als
biogene metabolieten gevonden hetgeen suggereert dat er een link is tussen CIA en
spierafbraak/energieverbruik. Uit deze studies werd gevonden dat oxylipiden en
amine-metabolieten een weerspiegeling geven van CIA, maar beiden vanuit een
ander perspectief op de vermeende pathofysiologische processen. Systeembiologie
gebaseerd op metabolomics, kan derhalve nieuwe inzichten verschaffen in de

pathofysiologie van onderliggende processen.

De op correlatie-netwerk gebaseerde analyses bieden de mogelijkheid om
gegevens te integreren, die verkregen zijn uit verschillende technische platforms,
zodat een correlatie-gebaseerd begrip verkregen kan worden van systemische
interacties en regulatie. UPE is een niet-invasieve methode om fotonen te meten,
waarbij het belangrijk is dat de UPE-emissie gecorreleerd kan worden met
oxidatieve metabole processen. In Hoofdstuk 4 is correlatie-netwerk analyse
toegepast om de relatie tussen metabole processen en UPE te verkennen, door de
data gemeten aan dezelfde muizen van Hoofdstuk 2 en Hoofdstuk 3 te integreren.
Deze studie leverde belangrijke informatie op en gaf inzicht in het ziekteproces
vanuit een systeemvisie. Zo blijkt uit deze studie dat de toename van UPE bij de
voortgang van artritis geassocieerd is met specificke metabole processen, in het
bijzonder lipidenoxidatie, ontsteking-gerelateerde metaboliecten en/of ROS-
gemedieerde processen. Deze resultaten betekenen een belangrijke stap voorwaarts

in de wijze waarop datasets geintegreerd kunnen worden om complexe processen
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in RA te bestuderen, maar leveren ook een verdere onderbouwing over de relatie

tussen metabole processen en UPE.

Diermodellen hebben specifieke voordelen voor de bestudering van chronische
processen. In het bijzonder is het voor de researcher eenvoudiger om potentieel
verstorende factoren van de resultaten en de interpretatie daarvan uit te sluiten of te
controleren. Onder dergelijk factoren kunnen leeftijd, geslacht, genetische
achtergrond, duur van de ziekte, blootstelling aan medicatie etc. gerekend worden.
Echter ondanks het feit dat diermodellen kwalitatieve overeenkomsten met de
chronische ziekteprocessen bij de mens hebben, zijn er ook duidelijke verschillen
door genetische variatie en andere factoren. Derhalve moeten biologische
mechanismen die relevant gevonden worden in diermodellen, zorgvuldig
geévalueerd worden in pati€nten en gevalideerd worden in humane klinische

studies.

Epidemiologische studies laten een snelle toename zien in het voorkomen van
chronische ziekten, waarbij een groot aantal patiénten met lichte klinische
symptomen niet gediagnosticeerd worden. Zo kunnen milde fysiologische
verstoringen over vele jaren plaatsvinden voordat zich ernstige symptomen
voordoen. Niet gediagnosticeerde patiénten kunnen over langere tijd, op een
verschillende wijze, chronische ziekten ontwikkelen met een uiteenlopende schaal
van fenotypen. Behandelingen met een generieke aanpak (one drug — one target ;
one-size-fits-all benadering) zijn uiterst beperkt vooral in de vroege fasen van
ziekten, waarbij een geindividualiseerde systeemaanpak noodzakelijk is.
Ontwikkeling van een geindividualiseerde benadering, gebaseerd op
systeembiologie, kan de unieke klinische karakteristicken opleveren in individuele
patiénten, zodat er meer inzicht wordt verkregen over de complexiteit en diversiteit

van chronische ziekten.

Traditionele Chinese geneeskunde (TCM) is gebaseerd op een systeemvisie

gecombineerd met geindividualiseerde interventie-strategieén. Dit kan gebruikt
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worden, om een betere beschrijving van ziektesyndromen of subtypen te verkregen,
om vroege stadia van syndromen of chronische ziekten op te sporen. Deze
beschrijving kan dan als diagnosegids dienen, in een vroeg stadium van syndromen
van chronische ziekten en verrijkt tevens onze kennis voor geindividualiseerde
diagnose. Metabolomics kan meer wetenschappelijk bewijs leveren van op TCM-
gebaseerde diagnostieck door  opsporing van de onderliggende biologische
mechanismen en geindividualiseerde diagnose, daarbij een brugvormend tussen
TCM en Westerse geneeskunde. UPE reflecteert zowel de fysiologische als de
pathologische toestand en heeft potentie als klinisch systeemdiagnostische methode.
De combinatie van op TCM gebaseerde diagnostische concepten, metabolomics en
UPE, kunnen elk met een unieke inbreng bijdragen aan de ontwikkeling en
behandeling van chronische ziekten. Op basis van deze geintegreerde aanpak
kunnen er nieuwe mogelijkheden worden gecreéerd voor geindividualiseerde
geneeskunde onderbouwd met systeemdiagnose en systeembehandeling voor
chronische ziekten, zoals beschreven in Hoofdstuk 5. Op basis van het
gedachtegoed in Hoofdstuk 5 is er een verkennende studie uitgevoerd door de
combinatie van metabolomics, UPE en TCM-diagnose, zie Hoofdstuk 6. In het
bijzonder is de vermeende relatie tussen metabolomics en op TCM gebaseerde
subtypering van vroeg stadium diabetes (pre-T2DM) bestudeerd en zijn de
sleutelmetabolieten — voornamelijk plasmalipiden — die bijdragen aan de
subtypering geidentificeerd. Daarnaast werden deze plasma sleutelmetabolieten
gecorreleerd met de UPE parameters, die eveneens gebruikt konden worden om
dezelfde subtypen te identificeren in het cohort van pre-T2DM patiénten. Deze
correlaties bleken verschillend te =zijn voor verschillende subtypen. Deze
verschillen zouden gebruikt kunnen worden voor het differenti€ren tussen subtypen.
Op  basis van deze verschillen tussen subtypen kunnen mogelijk

correlatienetwerken ontworpen worden om verbeterde diagnostiek te verkrijgen.

In de humane studie, beschreven in Hoofdstuk 6, is de haalbaarheid voor
subtypering van patiénten met metabolomics, TCM-diagnose en UPE geillustreerd.

Deze studie liet zien dat zowel metabolomics als UPE toegepast kunnen worden
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voor de subtypering van pre-T2DM patiénten. Daarenboven geeft de combinatie
van metabolomics met UPE biomedisch bewijs voor de onderbouwing van TCM-
gebaseerde diagnostick. Ondanks deze veelbelovende resultaten, =zijn er
aanvullende studies nodig om de kennis verder te verrijken tot een systeemvisie

gebaseerd op geindividualiseerde diagnostiek.

Samenvattend, analyse uitgevoerd op een systeembiologisch niveau, verrijkt de
kennis van chronische ziekten vanuit verschillende perspectieven door de integratie
van verschillende bronnen van informatie. Deze systeembenadering vereist
samenwerking tussen wetenschappers uit verschillende velden waaronder
geneeskunde, analytische chemie , biologie en bioinformatica. In dit proefschrift is
metabolomics gebruikt in een systeembenadering voor de bestudering van
pathofysiologische mechanismen in chronische ziekten door de meting van een
omvangrijk aantal kleine metaboliecten en door het combineren daarvan met
spontane UPE. Deze resultaten bevestigen de mogelijkheid om verschillende
datasets te kunnen integreren en om complexe interacties te bestuderen in
chronische ziekten. Bovendien verschaffen deze resultaten aanvullend bewijs voor

het aantonen van een relatie tussen metabole processen en UPE.

165



166



List of publications

LIST OF PUBLICATIONS

He, M., Sun, M., van Wijk, E., van Wietmarschen, H., van Wijk, R., Wang, Z., et al.
(2016). A Chinese literature overview on ultra-weak photon emission as promising
technology for studying system-based diagnostics. Complementary Therapies in
Medicine, 25, 20-26.

He, M., van Wijk, E., Berger, R., Wang, M., Strassburg, K., Schoeman, C., et al.
(2015). Collagen Induced Arthritis in DBA / 1J Mice Associates with Oxylipin
Changes in Plasma. Mediators of inflammation, 2015, 543541.

He, M., Harms, A.C., van Wijk, E., Wang, M., Berger R., Koval, S., et al. (2017). The
role of amino acids in rheumatoid arthritis studied by metabolomics. International
journal of rheumatic diseases. Journal of International Journal of Rheumatic Diseases.
(Article in press)

He, M., van Wijk, E., van Wietmarschen, H., Wang, M., Sun, M., Koval, S., et
al.(2017). Spontaneous ultra-weak photon emission in correlation to inflammatory
metabolism and oxidative stress in a mouse model of collagen-induced arthritis.
Journal of photochemistry and photobiology B: Biology, 168, 98-106.

He, M., van Wijk, E., Wang, M., Koval, S., Sun, M., Van Wijk, R., et al. Traditional
Chinese medicine-based subtyping of early-stage type 2 diabetes using plasma
metabolomics combined with ultra-weak photon emission. (Submitted for publication).
Burgos, R. C. R., van Wijk, E., van Wijk, R., He, M., & van der Greef, J. (2016).
Crossing the Boundaries of Our Current Healthcare System by Integrating Ultra-Weak
Photon Emissions with Metabolomics. Frontiers in Physiology, 7, 1-7.

Sun, M., Li, L., Wang, M., van Wijk, E., He, M., van Wijk, R., et al. (2016). Effects
of growth altitude on chemical constituents and delayed luminescence properties in
medicinal rhubarb. Journal of Photochemistry and Photobiology B: Biology, 162, 24—
33.

Sun, M., Van Wijk, E., Koval, S., Van Wijk, R., He, M., Wang, M., et al. (2017).
Measuring ultra-weak photon emission as a non-invasive diagnostic tool for detecting
early-stage type 2 diabetes: A step toward personalized medicine. Journal of
Photochemistry and Photobiology B: Biology, 166, 86-93.

Sun, M., Chang W., Van Wijk, E., He, M., Koval, S., Lin M., et al. Characterization
of the therapeutic properties of Chinese herbal materials by measuring delayed
luminescence and dendritic cell-based immunomodulatory response. Journal of
Photochemistry and Photobiology B: Biology,168,1-11.

167



168



Curriculum Vitae

CURRICULUM VITAE

(About the author)

Min He was born on September 8,1984 in Qigqihar, Heilongjiang Province, P.R.
China. In 2000, after attending Qiqihar No. 1 High School, which is a key high
school in Heilongjiang Province, she completed her 3-year secondary school
education in 2003 and obtained her high school diploma. In September of the same
year, she started her 4-year Bachelor’s study (major in Pharmacy) at Jiamusi
University in Heilongjiang Province, where her interests in pharmacy grew; she
received her BSc degree in 2007. Next, she started her Master’s study at the
Changchun University of Chinese Medicine, in which she specialized in
Pharmaceutical Chemistry, with a focus on bioactivity studies of anti-bacterial

compounds purified from herbal materials.

After obtaining her MSc degree, her enthusiasm for scientific research deepened,
and she applied successfully for the Chinese Scholarship Council (CSC)
scholarship “Chinese Government Graduate Student Overseas Study Program” to
study as a PhD student (scholarship no. 20108220166). She therefore began her
scientific training abroad in September 2012, under the supervision of Prof. dr. Jan
van der Greef, Dr. Eduard van Wijk, and Dr. Mei Wang in the Department of

Analytical Biosciences at Leiden University in Leiden, the Netherlands.

169



170



Acknowledgments

ACKNOWLEDGEMENTS

I would like to thank Prof. Dr. Jan van der Greef and Prof. Thomas Hankermeier
for their enthusiastic response when learning my eagerness to study abroad at
Leiden University. I not only appreciate their inspiration for my scientific career,

but also their kind encouragement when I was facing “challenges”.

Many thanks to my co-promotor Dr. Mei Wang as she is always so kind-hearted
and graceful to support and guided me as co-promotor, as friend, sometimes even
like my mom or elderly sister. This makes me feel that going abroad is to a warm,

home-like place.

With sincere gratitude, the input from my co-promotor Dr. Eduard Van Wijk, as
well as Dr. Roeland Van Wijk and Dr. Herman A. van Wietmarschen, Dr. Slavik
Koval and Dr. Amy Harms with their professional knowledge and technical
support is very much appreciated. My sincere thanks to my dear colleagues from
the ABS group: Loes, Bea, Katrin, Rob, Ruud, Sabine, Belén, Gerwin, Nelus,
Rosilene, Can, Vasudev, Amar, etc. With your appearance and contributions I
overcame many difficulties and finished my thesis, you made my Dutch life
colorful.

Dear friends, Jinfeng, Junzeng, Jian, Jinxian, Yuchuan, Zhenyu, Yaojin,
Guangsheng, Fuyu, Di, Koko, Wen, Sihan, Zhiwei, Song, Liang, Chen, Yanming,
Xuequan, Wenxi and Xiaoyu, etc. We spent so many unforgettable moments

together, which I cherished a lot and will never forget.

My dear parents Xueqing and Yuying, thank you for your respect and
encouragement, letting me fly in freedom, even though you know I may fly too far
away from you. Many sincere thanks to my cousins and other relatives, for your
kind concern and taking care of my parents as well as my grandpa and grandma,

which enabled me to focus more easily on my scientific research and thesis writing.

171



Acknowledgments

My dear husband Mengmeng, I am so lucky to have met you at the right time
point, as a great life partner and a brilliant career supporter, and we enjoy together
our “limited” life. I appreciated you for accompanying me during this difficult 4-
year foreign journey, facing challenges together with me on both our scientific road
and life path, even without knowing our future when we decided to go. Let’s
continue this way by bravely helping and supporting each other in our life time,

holding hands and keeping positive!

Your sincerely,

Min

172



