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Introduction

Paragangliomas (PGLs) are rare vascular, neuroendocrine tumors of paraganglia. They derive 
from either sympathetic chromaffin tissue in adrenal (also termed pheochromocytoma 
(PCC)) and extra-adrenal locations (also termed sympathetic PGL (sPGL)) or from 
parasympathetic tissue of the head and neck (HNPGL) (Figure 1).1 The overall estimated 
incidence of PGLs is 1/300.000.1-3 From all PGLs, PCCs have the highest relative incidence. 
In 340 unselected PGL patients, PCC was present in about 73% of the patients, sPGL in 9%, 
and HNPGL in 20% of the patients.4,5 PGLs may occur in all ages, with the highest incidence 
between 40 and 50 years and with no gender differences.5,6
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Figure 1. Anatomical distribution of paraganglia. Adapted from Lips et al.7 with permission.

Hereditary syndromes

PGLs can occur spontaneously or as a part of different hereditary tumor syndromes.8 Before 
the 21st century, it was thought that 10% of PGL/PCC were genetically determined, caused 
specifically by germline mutations in the RET, NF1 or VHL genes.3,9-11 After the identification 
of SDHD, SDHC and SDHB as additional susceptibility genes,12-14 it became clear that a 
least 25% of PGL/PCC was inherited.15 To date, 14 PGL/PCC susceptibility genes have been 
discovered (RET, NF1, VHL, SDHD/C/B/A/AF2, TMEM127, MAX, FH, HRAS, HIF2A/EPAS1 and 

KIF1Bβ), explaining around one half of cases.15-20 Mutations in other genes such as MEN1, 
EGLN1, EGLN2, MDH2 and IDH1 have been reported in single cases or families, suggesting 
that their contribution to the disease is modest.21-24 In addition, somatic mutations in ATRX, 
BRAF and TP53 have been described, but their role is yet to be established.25,26
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The SDHA, SDHB, SDHC and SDHD genes encode for the four subunits of SDH (mitochondrial 
complex II), a key respiratory enzyme which links the Krebs cycle and the electron transport 
chain.27 The SDHAF2 gene encodes SDH complex assembly factor 2 (SDHAF2), essential for 
flavination of the SDHA protein and SDH enzyme activity.28 Germline mutations in SDHA, 
SDHB, SDHC, SDHD, and SDHAF2 genes are responsible for the occurrence of syndromes 
named PGL5, PGL4, PGL3, PGL1, and PGL2, respectively. These various germline mutations 
have distinct phenotypic effects. SDHD-related PGL/PCCs are usually characterized by 
multiple PGLs, predominantly located in the head and neck region with a low frequency 
of malignancy. In contrast, SDHB-related disease is often diagnosed as a single tumor.15 
In addition, SDHB mutation carriers more frequently develop sPGLs, PCC’s and malignant 
disease than carriers with mutations in the other subunits of the SDH gene.29-31 All familial 
PGL syndromes have an autosomal dominant mode of inheritance. SDHD, SDHAF2 and MAX 
are characterized by paternal transmission of the disease.15,32-34 Besides the above mentioned 
hereditary syndromes, a small fraction is associated with other syndromes, including Carney 
triad, Carney-Stratakis syndrome and, very rarely, MEN1.22

Etiology

SDH is located on the inner mitochondrial membrane and is functionally integrated in the 
mitochondrial respiratory chain and the Krebs cycle. In the respiratory chain, SDH transports 
electrons to the ubiquinone pool, then to cytochrome c of complex III. In the Krebs cyclus, 
SDH catalyses the oxidation of succinate to fumarate. Thus, two consequences of SDH 
inactivation are succinate accumulation and increased production of reactive oxygen 
species.35 Succinate acts as an inhibitor of prolyl hydroxylase (PHD) enzymatic activity. PHDs 
are enzymes that are required for the degradation of hypoxia-induced factor (HIF). As a 
consequence, even in the presence of oxygen, HIF cannot be destroyed via proteasome 
mediated degradation driven by VHL protein and is stabilized to induce angiogenesis and 
tumorigenesis.36-38 The increased production of reactive oxygen species has also been 
suggested to contribute to cellular accumulation of hypoxia-inducible factors.35,38 Tumors 
associated with SDH deficiency display notable upregulation of hypoxia-responsive genes. 
For PGLs associated with mutations in VHL, the same signaling pathway is involved.39

Clinical presentation

HNPGLs (parasympathetic PGLs) present commonly as a painless, slow growing cervical 
mass.1 Many patients are non-symptomatic. Depending on site, however, the tumors 
may cause symptoms such as pain, tinnitus, hearing disturbances, cranial nerve palsy, 
hoarseness, and dysphagia.22 HNPGLs are usually not clinically functional or only produce a 
low amount of catecholamines. Carotid body tumors (CBTs) are the most common HNPGL. 
They may, when large and compressive, result in vagal and hypoglossal nerve paralysis. 
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Vagal body tumors are occasionally accompanied by dysphagia and hoarseness. Tympanic 
and jugular foramen tumors most commonly present as a vascular middle ear mass, that 
often present with pulsatile tinnitus and hearing loss. Difficulties in speech, swallowing and 
airway function may be the result of dysfunction of cranial nerves traversing the jugular 
foramen.40

The clinical presentation of PCCs and sPGLs is highly variable. They generally produce 
catecholamines and usually cause hypertension, which may be either paroxysmal or 
sustained. Typical symptoms are recurring episodes of headache, sweating, and palpitations, 
however, up to 10% of the patients have only minor or no signs of clinical symptoms and 
an increasing number of tumors are incidentally found during imaging studies.41 Symptoms 
can occur spontaneously or be triggered by direct stimulation of the tumor, physical activity, 
diagnostic procedures or certain drugs (e.g. metoclopramide).42

Depending on the gene that is involved, the clinical characteristics of PCCs, sPGLs 
and HNPGLs differ (Table 1). Genotype-phenotype correlations can provide important 
information about the specific characteristics of a genetic syndrome like future tumor 
risk, anatomical localizations, different hormonal profiles and risks of metastatic disease. 
Knowing these characteristics might be important to enable optimal genotype-tailored 
treatment options, follow-up and preventive care.43 

Treatment

The treatment of choice for PCCs and sPGLs is surgical resection, preferably laparoscopically.44 
In case of a large tumor (in general > 6 cm), with a higher risk of malignancy, conventional 
laparotomy should be considered. Cortical sparing adrenal surgery should be considered 
in the management of patients with hereditary pheochromocytoma, especially in patients 
with VHL or MEN2 hereditary PCC, because of the higher risk of bilateral PCC in these 
patients.45 For catecholamine-secreting tumors, pre-operative treatment with an alfa-
blocker (phenoxybenzamine or doxazosin) is necessary. Pretreatment reduces perioperative 
mortality to below 1%.46

For HNPGL, a wait-and-scan policy is often advised, because most tumors grow slowly.47 
However, although HNPGLs are indolent tumors, tumor growth may lead to serious 
morbidity and cranial nerve impairment due to their location in close proximity to important 
neurovascular structures. Treatment options for HNPGLs include surgery, radiotherapy, 
radiosurgery, radiofrequency ablation or cryoablation.35 External beam radiotherapy and 
radiosurgery can result in local tumor control in 79-100%, and sometimes regression by 
producing fibrosis and vascular sclerosis.48 The optimal choice of treatment is not clear at 
the moment, due to the absence of trials, selection bias, and differently defined criteria for 
surgery vs. radiotherapy. 
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Table 1. Genotype-phenotype correlations due to mutations in 14 susceptibility genes

Gene Associated 
syndrome Yeara HNPGL sPGL Multiple 

PGL
Single 

PCC
Bilateral 

PCC
Malignancy 

risk

RET MEN2 1993 - - - ++ ++ -

NF1 NF1 1992 - - - + - +

VHL VHL 1995 ± + + ++ +++ +

SDHD PGL1 2000 +++ ++ +++ + + +

SDHC PGL3 2000 ++ + + ± - ±

SDHB PGL4 2001 ++ +++ ++ ++ + ++

SDHA PGL5 2010 + + - - - ?

SDHAF2 PGL2 2009 +++ - ++ - - ?

TMEM127 2010 ± ± ± +++ ++ ±

MAX 2011 - - - ++ ++ +

FH 2013 + ++ ++ ++ + ++?

HIF2A/EPAS1 2012 -? + +? + ? ?

KIF1Bβ 2008 -? -? -? ++ +? ?

HRAS 1992 ? -? -? ++ -? +?

Abbreviations: HNPGL head and neck paraganglioma; sPGL sympathetic paraganglioma; PCC pheochromocytoma; 
PGL paraganglioma; MEN2 multiple endocrine neoplasia type 2; NF1 neurofibromatosis type 1; VHL von Hippel 
Lindau disease; PGL1-5 familial paraganglioma syndrome type 1-5.
a year in which the gene was identified.
+ present; - absent; ? not known.

Malignant paragangliomas

Although the majority of PGLs are benign, there is a risk of malignant transformation of 10% 
for PCC and 10-20% for sPGL.49 Malignant disease is defined as the presence of metastatic 
lesions at sites where neuroendocrine tissue is normally absent.50-52 The prognosis in 
malignant PGL/PCC is known to be poor and treatment remains basically palliative. The 
overall 5-year survival in patients with malignant PGL/PCC is less than 50%.49,53,54 Patients with 
metastatic tumors also have high morbidity rates from excessive catecholamine secretion, 
hypertension and cardiovascular complications. The primary management of patients with 
malignant HNPGL should be surgical debulking of tumor tissue and regional lymph nodes. 
Postoperative radiation may be considered. For patients with malignant PCC/PGL, surgical 
debulking may also be considered, but the usefulness has not been established.55 External 
beam irradiation can be useful in the treatment of local tumor complications. Systemic 
treatment options include radionuclide therapy with 131I-MIBG or radiolabelled somatostatin 
analogues,56 however 131I-MIBG has proved to be the most efficient non-surgical therapeutic 
modality. Response rates of 131I-MIBG therapy vary considerably, with a great variability in 
the type and the design of the studies, the administered activity, the schemes of treatment 
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and the criteria for response assessment. Objective response rates (i.e. stable disease, partial 
response and complete response) vary from 30-67%.57-63 A meta-analysis in 1997 performed 
by Loh et al. reported response rates of symptomatic improvement in 76%, anti-tumor 
response in 30% and hormonal response in 45%.64

In MIBG-negative patients, combination chemotherapy of cyclophosphamide, vincristine 
and dacarbazine (CVD) can be used. This regimen for the treatment of malignant PGL/PCC 
was introduced in 1985 by Keiser et al.65 Partial remissions and in single cases complete 
remissions have been reported with this regimen, however, with no significant effect on 
survival.65,66

In the last few years, an increasing number of metastatic NETs have been treated with 
peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues 
like 177Lutetium (Lu)-DOTA-octreotide and 90Yttrium (Y)-DOTA-lanreotide.67 Differentiated 
neuroendocrine cancers frequently express several subtypes of the somatostatin 
receptor;67,68 PGL/PCC were found to express predominantly subtypes 2A and 3, and 
therefore, patients with PGL/PCC are suitable candidates for PRRT.69 Van Essen et al.70 treated 
nine PGL/PCC patients with 177Lu-octreotate. None of the patients achieved a complete 
response on tumour volume; however, a partial response or stable disease was achieved 
in, respectively, two and four patients. In a study by Imhof et al.,71 11 patients with PCC and 
28 patients with PGL were treated with 90Y-DOTATOC therapy. Seven patients had a partial 
response after therapy. 
Not all patients with malignant PGL/PCC are eligible for MIBG therapy, as it depends 
on whether the tumours exhibit adequate take up of the radiopharmaceutical after 
intravenous administration.72,73 To establish whether a patient is a good candidate for 
treatment with either 131I-MIBG therapy or PRRT, a diagnostic 123I-/131I- MIBG scintigraphy 
or 111In-pentetreotide scintigraphy (SRS), respectively, has to be performed in advance. In 
patients with malignant PGL/PCC with poor 123I-MIBG uptake, but good uptake with SRS, 
PRRT might be a good alternative treatment for 131I-MIBG therapy.
More recently, studies assessing targeted therapies, such as Sunitinib, have shown promising 
results in the treatment of malignant PGL.74 Sunitinib is an oral tyrosine kinase inhibitor with 
antiangiogenic and antitumor activity. Currently, the published data are limited to only a 
few case reports and retrospective reports.74-76 
The prognosis in malignant PGL/PCC is known to be poor and treatment remains basically 
palliative. The overall 5-year survival in patients with malignant PGL/PCC is less than 
50%.49,53,54,77

Associated tumors

SDHA, SDHB, SDHC and SDHD mutations have also been linked to gastrointestinal stromal 
tumors 27,78 and renal-cell carcinoma.79-84 SDH-deficient renal carcinoma has been accepted 
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as a provisional entity in the 2013 International Society of Urological Pathology Vancouver 
Classification. Gill et al. studied 36 SDH-deficient renal carcinomas and showed that these 
carcinomas had a strong relationship with SDH germline mutation.85 In addition, pituitary 
adenomas have been reported to be associated with SDHA, SDHB, SDHC and SDHD 
mutations.81,86-89 However, other nonparaganglionic tumors may belong to the SDH tumor 
spectrum, like thyroid tumors.30,90

Scope of the present thesis

The aim of the present thesis is to evaluate the clinical characteristics of SDHx mutation carriers, 
to describe the genotype-phenotype correlations, to assess which (nonparaganglionic) 
tumors can also be linked to SDHx mutations and to review various treatment options for 
malignant PGL/PCC.

In the Netherlands, the majority of hereditary PGLs are caused by SDHD and SDHB mutations. 
Founder mutations in SDHD are particularly prevalent, but several SDHB founder mutations 
have also been described. The reported penetrance of SDHB mutations is 26–75%. In 
chapter 2 we describe an extended PGL family with a Dutch founder mutation in SDHB, 
c.201-4429_287-933del, and calculated the penetrance in this kindred.

The prevalence of SDHB founder mutations is relatively high in the Netherlands. This gave 
us the opportunity to perform a nationwide study with 196 SDHB germline mutation 
carriers identified in the Netherlands. In chapter 3 we describe the genotype-phenotype 
characteristics of this large Dutch cohort of SDHB mutation carriers and assess potential 
differences in clinical phenotypes related to specific SDHB mutations. 

SDH mutations have also been linked to nonparaganglionic tumors like gastrointestinal 
stromal tumors (GIST), renal-cell carcinoma and pituitary adenomas. To explore which 
nonparaganglionic tumors may belong to the SDH tumor spectrum, we investigated all 
nonparaganglionic tumors affecting patients included in the Leiden SDH Mutation Carrier 
Registry. In chapter 4 we describe which tumors expand the SDH-related tumor spectrum.

PGLs in the head and neck region can arise from the carotid body, vagal body or 
jugulotympanic tissue (i.e. paraganglioma of the temporal bone). Their location is in close 
proximity to important neurovascular structures. Therefore, tumor growth may lead to 
serious morbidity and cranial nerve impairment. Removal of these tumors may lead to 
carotid sinus nerve impairment. The baroreflex arc has arterial baroreceptors mainly located 
in the carotid sinuses and aortic arch. Bilateral carotid body tumor resection (bCBR) may thus 
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result in arterial baroreflex dysfunction. Patients with bCBR are known to have significant 
lower baroreflex sensitivity compared with controls, i.e. a less marked heart rate response to 
a given rise or fall in blood pressure.  In chapter 5 we investigated the role of the baroreflex 
during sleep.

Although the majority of PGLs are benign, there is a risk of malignant transformation of 10% 
for PCC and 10-20% for sPGL. The prognosis in malignant PGL/PCC is known to be poor and 
treatment remains basically palliative. There are only a few systemic treatment modalities. 
Radionuclide therapy is one of these. In chapter 6 we performed a systematic review and 
meta-analysis on the effects of radionuclide therapy on malignant PGL. Another treatment 
option is combination chemotherapy of cyclophosphamide, vincristine and dacarbazine 
(CVD). The precise effect of CVD chemotherapy for the treatment of malignant PGL/PCC is 
unclear. In chapter 7 we performed a systematic review and meta-analysis on the effects 
of CVD chemotherapy on tumor volume, biochemical response and survival on malignant 
PGL. 
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