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General introduction

Introduction

Paragangliomas (PGLs) are rare vascular, neuroendocrine tumors of paraganglia. They derive
from either sympathetic chromaffin tissue in adrenal (also termed pheochromocytoma
(PCC)) and extra-adrenal locations (also termed sympathetic PGL (sPGL)) or from
parasympathetic tissue of the head and neck (HNPGL) (Figure 1)." The overall estimated
incidence of PGLs is 1/300.000."7 From all PGLs, PCCs have the highest relative incidence.
In 340 unselected PGL patients, PCC was present in about 73% of the patients, SPGL in 9%,
and HNPGL in 20% of the patients.** PGLs may occur in all ages, with the highest incidence
between 40 and 50 years and with no gender differences.>®

Jugulotympanic ganglion A | Jugular vein

Jugular ganglion
Carotid body Nodose ganglion
Superior laryngeal ganglion Glossopharyngeal nerve

) ) Nervus vagus
Inferior laryngeal ganglion

Aorticopulmonary ganglion

Pre-aortical ganglia

Ganglia of the sympathetic trunk (visceral autonomic)

Adrenal medulla

Figure 1. Anatomical distribution of paraganglia. Adapted from Lips et al” with permission.

Hereditary syndromes

PGLs can occur spontaneously or as a part of different hereditary tumor syndromes.® Before
the 21t century, it was thought that 10% of PGL/PCC were genetically determined, caused
specifically by germline mutations in the RET, NFT or VHL genes.®*'" After the identification
of SDHD, SDHC and SDHB as additional susceptibility genes,'”™ it became clear that a
least 25% of PGL/PCC was inherited.” To date, 14 PGL/PCC susceptibility genes have been
discovered (RET, NF1, VHL, SDHD/C/B/A/AF2, TMEMI127, MAX, FH, HRAS, HIF2A/EPAST and
KIF1BB3), explaining around one half of cases."?° Mutations in other genes such as MENT,
EGLNT, EGLN2, MDH2 and IDHT have been reported in single cases or families, suggesting
that their contribution to the disease is modest.?’** In addition, somatic mutations in ATRX,
BRAF and TP53 have been described, but their role is yet to be established.??
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The SDHA, SDHB, SDHC and SDHD genes encode for the four subunits of SDH (mitochondrial
complexll), a key respiratory enzyme which links the Krebs cycle and the electron transport
chain.”’ The SDHAF2 gene encodes SDH complex assembly factor 2 (SDHAF2), essential for
flavination of the SDHA protein and SDH enzyme activity.?® Germline mutations in SDHA,
SDHB, SDHC, SDHD, and SDHAF2 genes are responsible for the occurrence of syndromes
named PGL5, PGL4, PGL3, PGL1, and PGL2, respectively. These various germline mutations
have distinct phenotypic effects. SDHD-related PGL/PCCs are usually characterized by
multiple PGLs, predominantly located in the head and neck region with a low frequency
of malignancy. In contrast, SDHB-related disease is often diagnosed as a single tumor.”
In addition, SDHB mutation carriers more frequently develop sPGLs, PCC's and malignant
disease than carriers with mutations in the other subunits of the SDH gene. 3" All familial
PGL syndromes have an autosomal dominant mode of inheritance. SDHD, SDHAF2 and MAX
are characterized by paternal transmission of the disease.*3* Besides the above mentioned
hereditary syndromes, a small fraction is associated with other syndromes, including Carney
triad, Carney-Stratakis syndrome and, very rarely, MEN1.22

Etiology

SDH is located on the inner mitochondrial membrane and is functionally integrated in the
mitochondrial respiratory chain and the Krebs cycle. In the respiratory chain, SDH transports
electrons to the ubiguinone pool, then to cytochrome ¢ of complex lll. In the Krebs cyclus,
SDH catalyses the oxidation of succinate to fumarate. Thus, two consequences of SDH
inactivation are succinate accumulation and increased production of reactive oxygen
species.® Succinate acts as an inhibitor of prolyl hydroxylase (PHD) enzymatic activity. PHDs
are enzymes that are required for the degradation of hypoxia-induced factor (HIF). As a
consequence, even in the presence of oxygen, HIF cannot be destroyed via proteasome
mediated degradation driven by VHL protein and is stabilized to induce angiogenesis and
tumorigenesis.***® The increased production of reactive oxygen species has also been
suggested to contribute to cellular accumulation of hypoxia-inducible factors.*% Tumors
associated with SDH deficiency display notable upregulation of hypoxia-responsive genes.
For PGLs associated with mutations in VHL, the same signaling pathway is involved.*

Clinical presentation

HNPGLs (parasympathetic PGLs) present commonly as a painless, slow growing cervical
mass.! Many patients are non-symptomatic. Depending on site, however, the tumors
may cause symptoms such as pain, tinnitus, hearing disturbances, cranial nerve palsy,
hoarseness, and dysphagia.”? HNPGLs are usually not clinically functional or only produce a
low amount of catecholamines. Carotid body tumors (CBTs) are the most common HNPGL.
They may, when large and compressive, result in vagal and hypoglossal nerve paralysis.
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Vagal body tumors are occasionally accompanied by dysphagia and hoarseness. Tympanic
and jugular foramen tumors most commonly present as a vascular middle ear mass, that
often present with pulsatile tinnitus and hearing loss. Difficulties in speech, swallowing and
airway function may be the result of dysfunction of cranial nerves traversing the jugular
foramen.*

The clinical presentation of PCCs and sPGLs is highly variable. They generally produce
catecholamines and usually cause hypertension, which may be either paroxysmal or
sustained. Typical symptoms are recurring episodes of headache, sweating, and palpitations,
however, up to 10% of the patients have only minor or no signs of clinical symptoms and
an increasing number of tumors are incidentally found during imaging studies.*' Symptoms
can occur spontaneously or be triggered by direct stimulation of the tumor, physical activity,
diagnostic procedures or certain drugs (e.g. metoclopramide).*

Depending on the gene that is involved, the clinical characteristics of PCCs, sPGLs
and HNPGLs differ (Table 1). Genotype-phenotype correlations can provide important
information about the specific characteristics of a genetic syndrome like future tumor
risk, anatomical localizations, different hormonal profiles and risks of metastatic disease.
Knowing these characteristics might be important to enable optimal genotype-tailored
treatment options, follow-up and preventive care.®

Treatment

Thetreatment of choice for PCCs and sPGLs is surgical resection, preferably laparoscopically.*
In case of a large tumor (in general > 6 cm), with a higher risk of malignancy, conventional
laparotomy should be considered. Cortical sparing adrenal surgery should be considered
in the management of patients with hereditary pheochromocytoma, especially in patients
with VHL or MEN2 hereditary PCC, because of the higher risk of bilateral PCC in these
patients.* For catecholamine-secreting tumors, pre-operative treatment with an alfa-
blocker (phenoxybenzamine or doxazosin) is necessary. Pretreatment reduces perioperative
mortality to below 1%.%

For HNPGL, a wait-and-scan policy is often advised, because most tumors grow slowly.*
However, although HNPGLs are indolent tumors, tumor growth may lead to serious
morbidity and cranial nerve impairment due to their location in close proximity to important
neurovascular structures. Treatment options for HNPGLs include surgery, radiotherapy,
radiosurgery, radiofrequency ablation or cryoablation.®® External beam radiotherapy and
radiosurgery can result in local tumor control in 79-100%, and sometimes regression by
producing fibrosis and vascular sclerosis.*® The optimal choice of treatment is not clear at
the moment, due to the absence of trials, selection bias, and differently defined criteria for
surgery vs. radiotherapy.
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Table 1. Genotype-phenotype correlations due to mutations in 14 susceptibility genes

i—\;:g:(i)a;e: Year  HNPGL SPGL Ml;léifle SiPncche Bilséeéral Mali:_?;fncy
RET MEN2 1993 - - - ++ r .
NFT1 NF1 1992 = - - + - &
VHL VHL 1995 + + + r St +
SDHD PGL1 2000 A A AFrE 4 + +
SDHC PGL3 2000 A 1 1 + = i
SDHB PGL4 2001 i AHHF Sinis A +* A
SDHA PGL5 2010 1 1 = = - ?
SDHAF2 PGL2 2009 ot . o - g 7
TMEM127 2010 Et= &= E2 +++ ++ gt
MAX 2011 = - - 4k S 4
FH 2013 + ++ ++ ++ + ++7?
HIF2A/EPAST 2012 = + +? A ? ?
KIF1803 2008 2 2 2 ++ +? ?
HRAS 1992 ? -? -7 4=r -7 +7?

Abbreviations: HNPGL head and neck paraganglioma; sPGL sympathetic paraganglioma; PCC pheochromocytoma;
PGL paraganglioma; MEN2 multiple endocrine neoplasia type 2; NF1 neurofibromatosis type 1; VHL von Hippel
Lindau disease; PGL1-5 familial paraganglioma syndrome type 1-5.

@year in which the gene was identified.
+ present; - absent; 7 not known.

Malignant paragangliomas

Although the majority of PGLs are benign, there is a risk of malignant transformation of 10%
for PCC and 10-20% for sPGL.“> Malignant disease is defined as the presence of metastatic
lesions at sites where neuroendocrine tissue is normally absent>**? The prognosis in
malignant PGL/PCC is known to be poor and treatment remains basically palliative. The
overall 5-year survival in patients with malignant PGL/PCCis less than 509%.%%3%* Patients with
metastatic tumors also have high morbidity rates from excessive catecholamine secretion,
hypertension and cardiovascular complications. The primary management of patients with
malignant HNPGL should be surgical debulking of tumor tissue and regional lymph nodes.
Postoperative radiation may be considered. For patients with malignant PCC/PGL, surgical
debulking may also be considered, but the usefulness has not been established.*® External
beam irradiation can be useful in the treatment of local tumor complications. Systemic
treatment options include radionuclide therapy with "*'I-MIBG or radiolabelled somatostatin
analogues,*® however "*'I-MIBG has proved to be the most efficient non-surgical therapeutic
modality. Response rates of "*'I-MIBG therapy vary considerably, with a great variability in
the type and the design of the studies, the administered activity, the schemes of treatment




General introduction

and the criteria for response assessment. Objective response rates (i.e. stable disease, partial
response and complete response) vary from 30-67%.>"% A meta-analysis in 1997 performed
by Loh et al. reported response rates of symptomatic improvement in 76%, anti-tumor
response in 30% and hormonal response in 45%.%

In MIBG-negative patients, combination chemotherapy of cyclophosphamide, vincristine
and dacarbazine (CVD) can be used. This regimen for the treatment of malignant PGL/PCC
was introduced in 1985 by Keiser et al® Partial remissions and in single cases complete
remissions have been reported with this regimen, however, with no significant effect on
survival 5566

In the last few years, an increasing number of metastatic NETs have been treated with
peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues
like ’Lutetium (Lu)-DOTA-octreotide and “Yttrium (Y)-DOTA-lanreotide.®” Differentiated
neuroendocrine cancers frequently express several subtypes of the somatostatin
receptor;®”% PGL/PCC were found to express predominantly subtypes 2A and 3, and
therefore, patients with PGL/PCC are suitable candidates for PRRT°Van Essen et al.’”® treated
nine PGL/PCC patients with "’Lu-octreotate. None of the patients achieved a complete
response on tumour volume; however, a partial response or stable disease was achieved
in, respectively, two and four patients. In a study by Imhof et al,”” 11 patients with PCC and
28 patients with PGL were treated with *°Y-DOTATOC therapy. Seven patients had a partial
response after therapy.

Not all patients with malignant PGL/PCC are eligible for MIBG therapy, as it depends
on whether the tumours exhibit adequate take up of the radiopharmaceutical after
intravenous administration.”?”® To establish whether a patient is a good candidate for
treatment with either *'I-MIBG therapy or PRRT, a diagnostic '#I-/"*'l- MIBG scintigraphy
or "MIn-pentetreotide scintigraphy (SRS), respectively, has to be performed in advance. In
patients with malignant PGL/PCC with poor '**|-MIBG uptake, but good uptake with SRS,
PRRT might be a good alternative treatment for "*'I-MIBG therapy.

More recently, studies assessing targeted therapies, such as Sunitinib, have shown promising
results in the treatment of malignant PGL.”* Sunitinib is an oral tyrosine kinase inhibitor with
antiangiogenic and antitumor activity. Currently, the published data are limited to only a
few case reports and retrospective reports.”*7¢

The prognosis in malignant PGL/PCC is known to be poor and treatment remains basically
palliative. The overall 5-year survival in patients with malignant PGL/PCC is less than

50% 49,53,54,77

Associated tumors

SDHA, SDHB, SDHC and SDHD mutations have also been linked to gastrointestinal stromal
tumors #78 and renal-cell carcinoma.”*® SDH-deficient renal carcinoma has been accepted
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as a provisional entity in the 2013 International Society of Urological Pathology Vancouver
Classification. Gill et al. studied 36 SDH-deficient renal carcinomas and showed that these
carcinomas had a strong relationship with SDH germline mutation.® In addition, pituitary
adenomas have been reported to be associated with SDHA, SDHB, SDHC and SDHD
mutations.®'#% However, other nonparaganglionic tumors may belong to the SDH tumor
spectrum, like thyroid tumors

Scope of the present thesis

Theaim ofthe presentthesisistoevaluatethe clinical characteristics of SDHxmutation carriers,
to describe the genotype-phenotype correlations, to assess which (nonparaganglionic)
tumors can also be linked to SDHx mutations and to review various treatment options for
malignant PGL/PCC.

In the Netherlands, the majority of hereditary PGLs are caused by SDHD and SDHB mutations.
Founder mutations in SDHD are particularly prevalent, but several SDHB founder mutations
have also been described. The reported penetrance of SDHB mutations is 26-75%. In
chapter 2 we describe an extended PGL family with a Dutch founder mutation in SDHB,
€.201-4429_287-933del, and calculated the penetrance in this kindred.

The prevalence of SDHB founder mutations is relatively high in the Netherlands. This gave
us the opportunity to perform a nationwide study with 196 SDHB germline mutation
carriers identified in the Netherlands. In chapter 3 we describe the genotype-phenotype
characteristics of this large Dutch cohort of SDHB mutation carriers and assess potential
differences in clinical phenotypes related to specific SDHB mutations.

SDH mutations have also been linked to nonparaganglionic tumors like gastrointestinal
stromal tumors (GIST), renal-cell carcinoma and pituitary adenomas. To explore which
nonparaganglionic tumors may belong to the SDH tumor spectrum, we investigated all
nonparaganglionic tumors affecting patients included in the Leiden SDH Mutation Carrier
Registry. In chapter 4 we describe which tumors expand the SDH-related tumor spectrum.

PGLs in the head and neck region can arise from the carotid body, vagal body or
jugulotympanic tissue (i.e. paraganglioma of the temporal bone). Their location is in close
proximity to important neurovascular structures. Therefore, tumor growth may lead to
serious morbidity and cranial nerve impairment. Removal of these tumors may lead to
carotid sinus nerve impairment. The baroreflex arc has arterial baroreceptors mainly located
in the carotid sinuses and aortic arch. Bilateral carotid body tumor resection (bCBR) may thus
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result in arterial baroreflex dysfunction. Patients with bCBR are known to have significant
lower baroreflex sensitivity compared with controls, i.e. a less marked heart rate response to
a given rise or fall in blood pressure. In chapter 5 we investigated the role of the baroreflex
during sleep.

Although the majority of PGLs are benign, there is a risk of malignant transformation of 10%
for PCC and 10-20% for sPGL. The prognosis in malignant PGL/PCC is known to be poor and
treatment remains basically palliative. There are only a few systemic treatment modalities.
Radionuclide therapy is one of these. In chapter 6 we performed a systematic review and
meta-analysis on the effects of radionuclide therapy on malignant PGL. Another treatment
option is combination chemotherapy of cyclophosphamide, vincristine and dacarbazine
(CVD). The precise effect of CVD chemotherapy for the treatment of malignant PGL/PCC is
unclear. In chapter 7 we performed a systematic review and meta-analysis on the effects
of CVD chemotherapy on tumor volume, biochemical response and survival on malignant
PGL.
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Abstract

In the Netherlands, the majority of hereditary paragangliomas (PGL) is caused by SDHD,
SDHB and SDHAF2 mutations. Founder mutations in SDHD are particularly prevalent, but
several SDHB founder mutations have also been described. Here, we describe an extended
PGL family with a Dutch founder mutation in SDHB, c.201-4429_287-933del. The proband
presented with apparently sporadic head and neck paraganglioma at advanced age.
Subsequently, evaluation of the family identified several unaffected mutation carriers,
asymptomatic and symptomatic PGL patients, and patients presenting with early-onset
malignant pheochromocytoma. The calculated penetrance of the SDHB mutation in this
kindred is lower than the risk suggested for SDHB mutations in the literature. This may
represent a characteristic of this particular SDHB mutation, but may also be a reflection of
the inclusion of relatively large numbers of asymptomatic mutation carriers in this family
and adequate statistical correction for ascertainment bias. The low penetrance of SDHB
mutations may obscure the hereditary nature of SDHB-linked disease and is important in
the counseling of SDHB-linked patients. Risk estimates should preferably be based on the
specific mutation involved.
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Introduction

Paragangliomas (PGL) are rare, usually benign tumors that originate from the neuroendocrine
paraganglia along the paravertebral axis. PGLs can be subdivided into head and neck
paraganglioma (HNPGL), pheochromocytoma (PHEO) and thoracic and abdominal extra-
adrenal PGL. A genetic predisposition for PGL or PHEO formation can be identified in about
one third of the patients.

In the Netherlands, the majority of hereditary PGLs are caused by a limited number of
specific Dutch founder mutations, predominantly in SDHD, but also in SDHB and SDHAF2.!
Patients with SDHD and SDHAF2 mutations are mainly characterized by the occurrence
of HNPGLs, whereas SDHB mutation carriers more frequently develop extra-adrenal PGLs,
PHEOs and metastatic PGLs.?”

The reported penetrance of SDHB mutations (26-75%) is lower than the penetrance of
(paternally inherited) SDHD or SDHAF2 mutations (88—100% and 87-100%, respectively).>#"
The majority of the earlier reports on the penetrance of SDHB or SDHD mutations were
largely based on groups of affected PGL patients and a limited inclusion of asymptomatic
family members. The penetrance calculations in these studies are prone to overestimation
of riskif the bias that is introduced by the inclusion of predominantly symptomatic mutation
carriers is not adequately corrected for. Recent family-based studies that involve more
comprehensive screening of asymptomatic family members of index patients have shown
lower penetrance rates for SDHB and SDHD mutations.'®'61”

Here, we present the penetrance and clinical characteristics of an extended PGL-PHEO
kindred linked to a recently identified Dutch founder mutation in SDHB, c.201-4429_287-
933del.” The index patient presented with HNPGL at advanced age and the family history
for the nuclear family was negative for PGL or PHEO. However, through genealogical study
and comprehensive screening of the extended kindred, we identified several affected PGL-
PHEO patients as well as asymptomatic mutation carriers, allowing the further assessment
of the penetrance and variable phenotype associated with this SODHB mutation.

Materials and methods

Data were collected from two tertiary referral centers for PGL in the Netherlands: the Leiden
University Medical Center (Leiden) and the VU University Medical Center (Amsterdam).
Screening for SDHB mutations was performed by direct sequencing using the Sanger
method on an ABI 377 Genetic Analyser (Applied Biosystems, Carlsbad, CA) and by multiplex
ligation-dependent probe amplification (MLPA) using the P226 MLPA kit (MRC Holland,
Amsterdam, the Netherlands). In the index patient, the c.201-4429_287-933del mutation in
SDHB was identified, previously described as a Dutch founder mutation.'> Family members
at risk were invited for genetic counseling and DNA testing. The identification of at-risk
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family members was facilitated by a previous genealogical study of this kindred; however,
some of these family members could not be reached or declined DNA testing. Mutation
carriers were referred to the outpatient clinic of the departments of Otorhinolaryngology
and Endocrinology and Metabolic Diseases. All carriers of the SDHB mutation were offered
annual clinical evaluation, biochemical screening for catecholamine excess and magnetic
resonance (MR) imaging of the head and neck, thorax and abdomen. Additionally, two
mutation carriers underwent DOPA-PET scanning, one underwent FDG-PET scanning, and
one metaiodobenzylguanidine (MIBG) scintigraphy. Biochemical screening included the
annual measurement of (nor)metanephrine and 3-methoxytyramine in two 24-h urinary
samples. Clinical characteristics including gender, age, the occurrence and location of SDHB-
linked tumors, and age at diagnosis were recorded. All the participating family members
gave informed consent for the clinical study and DNA testing.

Statistics

We estimated the age-specific penetrance function for mutation carriers by maximizing the
non-parametric conditional likelihood function for all individuals in the pedigree, except the
proband, given the positive mutation status of the proband. The likelihood also included
those individuals who had not been tested. We assumed that the penetrance functions for
male and female mutation carriers are equal and, in addition, assumed that non-mutation
carriers have zero risk to be affected.

We found an estimated lower bound of the penetrance function by assuming that all untested
individuals are carriers and next estimating the penetrance function by the Kaplan—Meier
estimate based on all positive tested individuals. Similarly, we found an upper bound by
assuming that all untested individuals are non-carriers and next estimating the penetrance
function by the Kaplan—-Meier estimate. Computations were performed in R, version 3.0.1.

Results

The index patient was referred for the evaluation of a tinnitus in the right ear at 77 years
of age. Otoscopy revealed a purple-red mass behind the right tympanic membrane.
Computed tomography of the mastoid showed partial opacification of the right middle ear
with irregular erosion of the bone surrounding the jugular bulb. T1- and T2-weighted MR
imaging of the head and neck showed a mass extending from the right jugular foramen
into the hypotympanum, suggestive of a jugulotympanic PGL. No other masses in head
and neck region were found. Blood pressure was normal and 24-h urine analysis showed
no increased catecholamine excretion. The family history in this branch of the family was
negative for PGL. However, DNA analysis revealed a germline mutation in SDHB, the c.201-
4429_287-933del Dutch founder mutation.
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Subsequently, the mutation status of 49 of his relatives belonging to a four-generation family
with 153 members was evaluated (Fig. 1). Twelve family members tested negative for the
mutation and were considered not to be at risk, as was their offspring (n=21). Seventeen
family members, including the index patient, were identified as mutation carriers, 12 by
DNA analysis and 5 were shown to be obligate carriers. All mutation carriers agreed to
the clinical evaluation for PGL/PHEO as specified above, except for five obligate carriers
that had already deceased before the discovery of SDHB as a PGL susceptibility gene and
before the discovery of the PGL syndrome in this family. All five obligate carriers deceased
without signs or symptoms of PGL/PHEQ (at an average age of 72 years; range 34-97). One
carrier was subjected to urine measurements of catecholamines only, because of young
age (7 years).

Table 1. Phenotype of the 6 affected family members carrying the c.201-4429_287-933del founder
mutation in SDHB

Catecholamine

Sympt?matlc/ PGL location biochemistry at Othe'rtumo.ur Disease
screening . . (at diagnosis) course
diagnosis
1T M 50 Symptomatic  Carotid body Normal (urine) Negative clinical ~ Benign
PGL screening
2 F 59  Symptomatic ~ PHEO Elevated metanephrines,  Negative clinical ~ Benign
normal normetanephrines screening
(urine)
3 M 63 Symptomatic PHEO N/A Hyperparathyroid Malignant
4 M 39 Symptomatic PHEO N/A Negative clinical ~ Malignant
screening
5 M 77 Symptomatic  Jugulotympanic  Normal (urine) Negative clinical ~ Benign
PGL screening
6 F 41 Screening Extra-adrenal Normal (urine) Negative clinical ~ Benign
PGL between screening
aorta and inferior
vena cava

Abbreviations: M male; F female; PGL paraganglioma; PHEO pheochromocytoma; N/A not applicable.

Six mutation carriers (35%) were diagnosed with PGL (Table 1). Three patients (3 of 6; 50%)
were diagnosed with a PHEO. Two patients (2 of 6; 33%) had a HNPGL (one jugulotympanic
and one carotid body tumor), and one (1 of 6; 17%) patient had an extra-adrenal PGL.
Metastatic disease was identified in two patients (2/6; 33%), both diagnosed with a PHEQ.
There was no significant difference between the average age of symptomatic carriers
(average age 61years, range 43-79years) and asymptomatic mutation carriers (average
age of 46years, range 7-73years) (p=0.29). The average follow-up of the family members
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carrying the mutation was 5years (range 1-12years). The estimated age-dependent
penetrance for this SDHB exon 3 deletion at the ages of 40, 50, 60 and 70 is 0.04, 0.09, 0.15
and 0.21, respectively (Fig. 2).

1.0

Probability

04
|

0.2

Age

Figure 2. Estimated age-related penetrance of the SDHB exon 3 deletion in the family presented. Solid
line: maximum likelihood estimated of the age-related penetrance. Upper dashed line: estimated
upper bound of the age-related penetrance (Kaplan-Meier curve assuming all non-tested family
members are non-carriers). Lower dashed line: estimated lower bound of the age-related penetrance
(Kaplan-Meier curve assuming all non-tested family members are carriers without disease).

Discussion

In this study of an extended family with hereditary PGL syndrome due to a founder exon 3
deletion in the SDHB gene, we identified 17 mutation carriers, six of whom were clinically
affected PGL patients. Clinical manifestations included benign HNPGL, extra-adrenal PGL,
benign PHEO and metastatic PHEO. The number of HNPGL patients in this family is low
(2 of 17; 11.7%) compared with previous reports (27-31%).2* The number of PHEOs (3 of
17, 18%) is comparable to what has been reported in the literature (18-28%), malignant
PHEO however occurs less frequently in this family (2 of 17; 11.7%) than previously reported
(20.6-25.2%).2* We found no multifocal tumor development. The average age at diagnosis
(55years, range 39-77) is higher compared to the average age found in other studies (30
and 37 years, respectively).>*

Most mutation carriers in this family were found to be disease free (11 of 17; 65%), and the
age-related penetrance of this mutation is lower than the reported penetrance estimates
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for SDHB mutations. The decreased penetrance found in this study might reflect a clinical
characteristic of this specific Dutch SDHB founder mutation, or the influence of a shared
genetic or environmental modifier of penetrance in this family. It might however also reflect
an overestimation of SDHB-linked penetrance in the literature due to various forms of bias.
Earlier studies on SDHB-linked PGL syndrome reported a penetrance of respectively 50-75%
by the age of 50 years.>*'" In these studies, penetrance calculations were largely based on
affected, apparently non-familial individuals. These calculations are prone to overestimation
because of the limited inclusion of asymptomatic mutation carriers and because the
mutation carriers were identified via index patients. As index patients are affected mutation
carriers per definition, the chance of selecting other mutation carriers with the disease is
increased (ascertainment bias).

Family-based studies that evaluated the penetrance of specific SDHB mutations have found
lower penetrance estimates: Solis et al. described a family with 11 PGL patients among 41
mutation carriers of a large exon 1 deletion in SDHB, at this time the most extended SDHB-
linked pedigrees.’ In this study, the estimated penetrance was 35% at age 50. Hes et al.
reported 3 of 15 SDHB c423+ 1G> A mutation carriers who developed PGLs and found a
penetrance of 26% at 48 years."” Although both studies included relatively large number
of asymptomatic mutation carriers, the index patients were included in the penetrance
calculations and the ascertainment bias was not corrected for. Schiavi et al. showed that
addressing these sources of bias results in even lower penetrance estimates for SDHB
mutations (13% at the age of 50).'

In the current study of an extended family linked to the c.201-4429_287-933del mutation in
SDHB, we have corrected for ascertainment bias by using the maximum likelihood estimate
ofthe penetrance function and excluded the index patient from the penetrance calculations,
resulting in an even lower penetrance of 9% at 50 years. This maximum likelihood estimate
may represent an overestimation of the true penetrance, because of the ascertainment
bias that is inevitably introduced by evaluating family members of an affected patient. In
addition, when presymptomatic DNA testing is offered, individuals from affected branches
of the family or individuals who experience symptoms of PGL-related disease may be more
inclined to consent.

However, because the pedigree presented in this study is large and the individuals who
have not been tested were included in the likelihood function, the bias is expected to be
small. The estimated upper limit of the penetrance for this mutation was calculated by
leaving all untested individuals out of the calculation (dashed upper line in Fig. 2). In this
case, the penetrance increases to 24% at 50 years (dashed upper line in Fig. 2), which is close
to the described penetrance by Solis et al. and Hes et al."®"” The estimated lower limit of the
penetrance is calculated by presuming that all untested individuals are mutation carriers
without disease, which results in a penetrance of 3.7% at 50 years (dashed lower line in Fig. 2).
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Although the number of mutation carriers and PGL-PHEO patients in this family is limited
compared to the large patient cohorts mentioned above, family-based study designs
yield more specific information on the penetrance and phenotype of specific mutations.
Moreover, penetrance calculations may be more accurate because comprehensive family
screening not only identifies PGL-PHEO patients but also enables the identification of
asymptomatic mutation carriers. In combination with the appropriate statistical correction
of the ascertainment bias, this results in reduced estimates of SDHB-linked penetrance. This
low penetrance of SDHB mutations may obscure the hereditary nature of the disease, and is
an important aspect of the genetic counseling of SDHB-linked patients.
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Abstract

Succinate dehydrogenase B subunit (SDHB) gene mutations predispose to
pheochromocytomas, sympathetic paragangliomas, head and neck paragangliomas, and
nonparaganglionic tumors (e.g. renal cell carcinoma, gastrointestinal stromal tumor and
pituitary neoplasia). The aim of this study was to determine phenotypical characteristics of
a large Dutch cohort of SDHB mutation carriers and assess differences in clinical phenotypes
related to specific SDHB mutations. We conducted a retrospective descriptive study in 7
academic centers. We included 196 SDHB mutation carriers containing 65 (33.2%) index
patients and 131 (66.8%) relatives. Mean age at presentation was 44.8 + 16.4 years. Median
duration of follow-up was 2.6 years (range 0-36). Sixty-one persons (31.1%) carried the exon
3 deletion and 46 (23.5%) the c.423+1G>A mutation. Fifty-four mutation carriers (27.6%) had
one or multiple head and neck paragangliomas, 4 (2.0%) had a pheochromocytoma and 26
(13.3%) had one or more sympathetic paragangliomas. Fifteen patients (7.7%) developed
a malignant paraganglioma and 17 (8.7%) developed nonparaganglionic tumors. At study
close, there were 113 (57.7%) unaffected mutation carriers. Statistical analyses showed
no significant differences in the number and location of head and neck paragangliomas,
sympathetic paragangliomas or pheochromocytomas, nor in the occurrence of malignant
disease or other tumors between carriers of the two founder SDHB mutations (exon 3
deletion versus c423+1G>A).

In conclusion, in this nationwide study of disease-affected and unaffected SDHB mutation
carriers, we observed a lower rate of malignant disease and a relatively high number of head
and neck paragangliomas compared to previously reported referral-based cohorts.
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Introduction

Paragangliomas (PGLs) are rare vascular, neuroendocrine tumors of paraganglia. They
derive from either sympathetic chromaffin tissue of the adrenal medulla (also termed
pheochromocytoma (PCC)) and extra-adrenal locations (also termed sympathetic PGL
(sPGL)) or from parasympathetic tissue of the head and neck (HNPGL)." PGLs can occur
spontaneously or as part of a hereditary syndrome. Most familial cases of PCC and/or PGL
and 10-20% of sporadic cases carry germline mutations in VHL, RET, NF1, SDHA/B/C/D/AF2,
TMEM127, MAX, FH, HIF2A/EPAS, EGLN1/PHD2, KIF1BB and MDHZ2. >’ In the Netherlands, SDH
mutations are responsible for most hereditary cases. The SDHA, SDHB, SDHC and SDHD genes
encode for the four subunits of succinate dehydrogenase (also mitochondrial complex II),
a key respiratory enzyme that links the Krebs cycle and the electron transport chain® The
SDHAF2 gene encodes SDH complex assembly factor 2 (SDHAF2), essential for flavination of
the SDHA protein and SDH enzyme activity.” These various germline mutations have distinct
phenotypic effects. SDHD-related PGL/PCCs are usually characterized by multiple PGLs,
predominantly located in the head and neck region with a low frequency of malignancy.
In contrast, SDHB-related disease is often diagnosed as a single tumor.? Furthermore,
SDHB mutation carriers more frequently develop sPGLs, PCC's and malignant disease than
mutation carriers in the other subunits of the SDH gene.'”'? Although initial malignancy
rates as high as 31-97% were reported for SDHB-related PGL,'"""* we recently reported risks
of malignant disease in SDHB mutation carriers that were considerably lower. A systematic
review and meta-analysis reported by Van Hulsteijn et al. demonstrated that the pooled
prevalence of malignant disease was 13% in populations including both asymptomatic
SDHB mutation carriers and mutation carriers with manifest PGL, and 23% in studies that
included only mutation carriers with manifest disease.'”

SDH mutations have also been linked to nonparaganglionic tumors. In a recent study
we strengthened the etiological association of SDH genes with pituitary neoplasia, renal
tumorigenesis, and gastric gastrointestinal stromal tumors. We also found that pancreatic
neuroendocrine tumors may be part of the SDH-related tumor spectrum.'®

Two founder mutations in SDHB have been identified in Dutch PGL families, the c.423+1G>A
splice site mutation and the ¢.201- 4429_287-933del, p.(Cys68fs) mutation, also annotated
as a deletion of exon 3.8 The aim of this study was to obtain a better impression of the
phenotype of SDHB mutation carriers, especially of the two founder mutations. Therefore, we
investigated the clinical and biochemical characteristics of disease-affected and unaffected
SDHB mutation carriers in a nationwide study in seven academic centers in the Netherlands.
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Materials and methods

In this retrospective nationwide study, all SDHB mutation carriers diagnosed before 2014
were included in the analysis. All included persons gave written informed consent and
in case of persons under 18 years of age, written informed consent was obtained from
their parents. Follow-up ended July 15t 2014 or, when lost to follow-up, the date of the last
contact with the endocrinologist or otolaryngologist/head and neck surgeon. We evaluated
the genetic, clinical, radiological and biochemical data of SDHB mutation carriers collected
from seven Academic Medical Centers in the Netherlands: Leiden University Medical Center
(Leiden), University Medical Center Groningen (Groningen), Radboud University Medical
Center (Nijmegen), VU University Medical Center (Amsterdam), Erasmus Medical Center
(Rotterdam), Academic Medical Center (Amsterdam) and University Medical Center Utrecht
(Utrecht). Data from 47 SDHB mutation carriers from the Leiden University Medical Center
are previously described by van Hulsteijn et al."

In the academic centers, genetic counseling and DNA testing for mutations in the SDH
genes are offered to patients with PCC/sPGL and a positive family history for HNPGL or PCC/
sPGL, patients with an isolated PCC/sPGL at an early age (younger than 50 years), and all
patients with a HNPGL. If a mutation in the SDHB gene is identified, at risk family-members
of the index patients are subsequently invited for genetic counseling and DNA testing for
the family-specific SDHB mutation. Screening for SDHB mutations is performed by direct
sequencing using the Sanger method on an ABI 377 Genetic Analyser (Applied Biosystems,
Carlsbad, CA) and by multiplex ligation-dependent probe amplification (MLPA) using the
P226 MLPA kit (MRC Holland, Amsterdam, the Netherlands). SDHB mutations are classified
as a variant of unknown clinical significance (VUS) or as pathogenic.

All SDHB mutation carriers were investigated according to structured protocols used for
standard care in the Netherlands for patients with a PGL (www.oncoline.nl/familiair-
paraganglioom). They were offered annual clinical surveillance for PGL at the departments
of otorhinolaryngology and endocrinology. For mutation carriers older than 18 years
of age, screening consisted of magnetic resonance imaging (MRI) of the head and neck
region once every three years, and MRI or computed tomography (CT) scans of thorax and
abdomen once every two years. Annual biochemical screening included the measurement
of (nor)epinephrine, vanillylmandelic acid (VMA), dopamine, (nor)metanephrine and/
or 3-methoxytyramine (3-MT) in two 24-h urinary samples (depending on the Academic
Center which urinary measurement(s) were done), and/or plasma free (nor)metanephrine.
In case of excessive catecholamine secretion (i.e. any value above the upper reference
limit), radiological assessment by MRI or CT scans of thorax, abdomen and pelvis and/or '3
metaiodobenzylguanidine (MIBG)-scans/Positron emission tomography with 2-deoxy-2-
[fluorine-18]fluoro-D-glucose ("®F-FDG PET)-scans/'8F-L-dihydroxyphenylalanine ("*F-DOPA)
PET-scans were performed to identify potential sources of excessive catecholamine
production outside the head and neck region.
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At the time of this study, there were no national, structured protocols for surveillance in
SDHB mutation carriers younger than 18 years of age. Therefore, the method and interval of
surveillance in this age category varied between centers. In case of a diagnosis of sPGL, PCC
or HNPGL, treatment or intensified periodic examination was offered, guided by the clinical
course. In general, for a PCC or sPGL an operation was the preferred treatment of choice.
In case of a HNPGL, treatment was guided by the clinical symptoms, tumor characteristics
and patient characteristics. A wait and scan policy, radiotherapy or resection were possible
treatment options.

An unaffected mutation carrier was defined as a mutation carrier without evidence of
disease (i.e. HNPGL, sPGL and/or PCQ). A disease-affected mutation carrier was defined as a
mutation carrier with disease, i.e. HNPGL, sPGL and/or PCC.

Malignant disease was defined as the presence of metastases, that is, the presence of
chromaffin tissue in locoregional lymphnodes or in non-chromaffin organs distant from the
primary tumor, because there are no histological features of the primary tumor that reliably
distinguish benign from malignant PGLs.

The study was approved by the Medical ethics committee of the Leiden University Medical
Center (LUMGC; number P13.161), participating centers complied with their local medical
ethics committee requirements.

Data analysis

IBM SPSS Statistics version 20-0 (SPSS inc,, Chicago, IL) was used for data analysis. Chi-square
tests were used to test whether proportions differed significantly, except when an expected
cell size was less than five, in which case Fisher's exact was employed. Results are presented
as mean + SD. Differences were considered statistically significant at p < 0.05 (two-sided).

Results

A total of 196 SDHB mutation carriers were included: 61 from the Leiden University Medical
Center (Leiden), 61 from the University Medical Center Groningen (Groningen), 29 from the
Radboud University Medical Center (Nijmegen), 19 from the VU University Medical Center
(Amsterdam), 18 from the Erasmus Medical Center (Rotterdam), four from the Academic
Medical Center (Amsterdam) and four from the University Medical Center Utrecht (Utrecht).
In total, 84 men (42:9%) and 112 women (57-1%) were included. The median duration of
follow-up was 2:6 years (range 0-36). Twelve persons (6-1%) were lost to follow-up: seven
for unknown reasons, three chose not to pursue any follow-up, one emigrated and one
continued the follow-up in a non-participating hospital. Seven persons (3-6%) died: three
because of intercurrent disease (lung cancer, metastasized breast cancer and myocardial
infarction), one due to progressive disease of a malignant HNPGL (jugular body tumor) with
bone metastases, and three due to progressive disease due to a malignant sPGL.
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Genetics

Details of SDHB mutations are outlined in Table 1. Sixty-one (31-1%) were carriers of the
exon 3 deletion and 46 (23-5%) were carriers of the c.423+1G>A mutation. The c.654G>A,
p.(Trp218*) mutation was present in 19 persons (9:7%) and the c.653 G>C, p.(Trp218Ser)
mutation in 11 persons (5:6%).

Table 1. Pathogenic SDHB germline mutations and Variants of Uncertain Significance (VUS)
SDHB predicted

DNA mutation protein change Pathogenic/VUS Number of subjects (%)
exon 3 deletion p.? pathogenic 61 (31)
Cc423+1G>A p.? pathogenic 46 (23.5)
C.654G>A p.(Trp218%) pathogenic 19 (10)
c.653G>C p.(Trp218Ser) VUS 11 (6)
c.574T7>C p.(Cys192Arg) VUS 8 (4)
c.200+1G>A p.? pathogenic 6 (3)
c.137G>A p.(Arg46Gln) pathogenic 4(2)
c.328A>C p.(Thr110Pro) VUS 4(2)
c418G>T p.(Val140Phe) VUS 4(2)
c.725G>A p.(Arg242His) VUS 3(1.5)
c.649C>T p.(Arg217Cys) VUS 3(1.5)
c.590C>G p.(Pro197Arg) VUS 3(1.5)
c.686_725del p.(Glu229fs) pathogenic 3(1.5)
c.343C>T p.(Arg115%) pathogenic 3(1.5)
€.292T>C p.(Cys98Arg) VUS 2(1)
deletion promoter and exon 1 p.? pathogenic 2(1)
deletion promoter till exon 8 p.0 pathogenic 2(1)
exon 2 deletion p.? pathogenic 2(1)
exon 1 deletion p.? pathogenic 2(1)
c.713delT p.(Phe238fs) pathogenic 1(0.5)
c.727T>A p.(Cys243Ser) VUS 1(0.5)
c761C>T p.(Pro254Leu) VUS 1(0.5)
c.626C>T p.(Pro209Leu) VUS 1(0.5)
€.380T>C p.(lle127Thr) VUS 1(0.5)
c.325A>C p.(Asn109His) VUS 1(0.5)
c1A>G p.? VUS 1(0.5)
c.119A>C p.(Lys40Thr) VUS 1(0.5)

Abbreviation: VUS variant of uncertain significance.
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Clinical features

The mean age at first evaluation at the outpatient clinic was 44-8 + 16-4 years (range 2-76).
In total, our cohort comprised of 65 (33-2%) index patients and 131 (66-8%) of their relatives.
Clinical characteristics at the end of follow-up of the cohort as a whole and for four most
prevalent Dutch SDHB mutations (deletion exon 3, c423+1G>A, c.654G>A and ¢.653 G>(Q)
are outlined in Table 2.

Table 2. Clinical phenotypes of specific SDHB germline mutations

Total cohort Exon 3 deletion c.423+1G>A  c.654G>A €.653G>C
(GERED)] (n=61) (n=46) (n=19) (n=11)
Gender
Man 84 (42.9%) 29 (47.5%) 18 (39.1%) 8 (42.1%) 2 (18.2%)
Woman 112 (57.1%) 32 (52.5%) 28 (60.9%) 11 (57.9%) 9 (81.8%)
Age (mean+SD)? 448 +164 425+ 16.1 51.0%14.5 440+ 18.1 491 +11.7
0,
Family history positive 131 (66.8%) 41 (67.2%) 35 (76.1%) 17 8 (72.7%)
HNPGL 54 (27.6%) 18 (29.5%) 11 (23.9%) 1 (5.3%) 3(27.3%)
1 HNPGL 47 15 10 1 3
2 HNPGL 6 2 1 0 0
3 HNPGL 1 1 0 0 0
CBT 22 (11.2%) 6 (9.8%) 3 (6.5%) 1 2 (18.2%)
Left 11 3 3 0 1
Right 9 4 0 1 1
Bilateral 2 0 0 0 0
VBT 12 (6.1%) 4 (6.6%) 3 (6.5%) 1 (9.1%)
Left 6 2 0 0 1
Right 6 2 3 0
Bilateral 0 0 0 0
JBT 14 (7.1%) 7 (11.5%) 5(10.9%)
Left 8 5 3
Right 5 1 2 0 0
Bilateral 1 1 0
Tymp 10 (5.1%) 4 (6.6%) 1(2.2%)
Left 5 1 1
Right 5 3 0 0 0
Bilateral 0 0 0
Other (HNPGL) 1 (right tonsil) 0 0 0 0
Age HNPGLP 459+ 14.1 470+ 14.8 506+ 11.2 27.2 448+ 143
Operation HNPGL 27 (50.0%) 8 (44.4%) 4 (36.4%) 0 1(33.3%)
Radiotherapy HNPGL 15 (27.8%) 8 (44.4%) 4 (36.4%) 0 0
PCC 4 (2.0%) 1(1.6%) 0
Left 3 1 0 0 1 (©.1%)
Right 1 0
sPGL® 26 (13.3%) 8(13.1%) 5(10.9%) 1(5.3%) 1(9.1%)
Operation sPGL 25 8 (100%) 5 (100%) 1(100%)
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Table 2. Clinical phenotypes of specific SDHB germline mutations (Continued)

Total cohort Exon 3 deletion ¢.423+1G>A  ¢.654G>A €.653G>C
(n=196) (n=61) (n = 46) (n=19) (n=11)

Malignant PGL/PCC 15 (7.7%) 5 (8.2%) 1(2.2%) 1(5.3%) 1(9.1%)
Other tumors?

Mamma ca. 17 (8.7%) 5(8.2%) 7 (15.2%)9 0 0

Renal cell ca. 1 0 1

Basal cell ca. 3 2 1

Melanoma 2 0 1

Lung ca. 2 1 1

Prostate ca. 1 0 1

Colon ca. 1 0 0

Meibomian gland 2 0 2

Synovial sarcoma 1 0 0

Ovarian ca. 1 1 0

Gastric GIST 1 0 1

Micro-PRL 2f 0 1

Pituitary 1 0 0

incidentaloma 1 1 0
Disease status at last follow-up

NED 134 (68.4%) 43 (70.5%) 32 (69.6%) 16 (84.2%) 8 (72.7%)

AWD 43 (21.9%) 13 (21.3%) 9 (19.6%) 1(5.3%) 3(27.3%)

LTF 12 (6.1%) 3 (4.9%) 2 (4.3%) 1(5.3%) 0

DOD 4 (2.0%) 2 (3.3%) 1(2.2%) 1 (5.3%) 0

DID 3(1.5%) 0 2 (4.3%) 0 0

Abbreviations: HNPGL head and neck paraganglioma; PCC pheochromocytoma; CBT carotid body tumor; VBT vagal
body tumor; JBT jugular body tumor; Tymp tympanicum body tumor; GIST gastrointestinal stromal tumor; PRL
prolactinoma; NED no evidence of disease; AWD alive with disease; LTF loss to follow-up; DOD dead of disease; DID
dead of intercurrent disease; sPGL sympathetic paraganglioma; ca. carcinoma.

a Mean age at presentation at the outpatient clinic in an academic hospital.

b Age at diagnosis HNPGL.

¢ Total cohort: 26 patients with 1 or more sPGLs. Of these 26 patients, five patients had 2 sPGLs.

d Number of patients (some patients developed multiple tumors).

e There was one patient with two foci of renal cell carcinoma (RCC) on the left side and one RCC on the right side.
The other 2 patients both had 1 foci of a RCC.

f One patient developed three renal cell carcinomas (2 foci on the left side en one on the right side) as well as a
gastrointestinal stromal tumor (GIST).

g One patient with rectal cancer and ovarian cancer, one patient with three RCC as well as a GIST.

Of the whole cohort, 54 mutation carriers (27-6%) were clinically affected with one or
multiple HNPGLs. Mean age of diagnosis of HNPGL was 459 + 14-1 years (range 11-77).
Carotid body tumors were the most prevalent HNPGLs (in 11-2%), followed by jugular body
tumors (in 7-1%) and vagal body tumors (in 6-1%). Twenty-seven carriers (50-0%) had an
operation for their HNPGL and 15 (27-8%) received radiotherapy.

Four patients (2:0%) were clinically affected with a PCC. Mean age of diagnosis of PCC was
36-2 + 16:3 years (range 19-56). Clinical characteristics are detailed in Table 3.
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Twenty-six mutation carriers (13-3%) were clinically affected with one or more sPGLs. Mean
age of diagnosis of sSPGL was 33-4 + 12-7 years (range 10-66). Five carriers had two sPGLs.
The sPGLs were mainly located in the abdominal/pelvic region (28 tumors); there were
only three thoracic PGLs. Eight persons carried the exon 3 deletion, five the c423+1G>A
mutation, two the ¢.343C>T mutation and another two the c.200+1G>A mutation. Twelve
of the 26 carriers with one or more sPGLs had malignant disease and three of them died
due to progressive malignant disease. Clinical characteristics and biochemical phenotypes
are detailed in Table 4.

Out of the whole cohort of SDHB mutation carriers, 15/196 (7-7%) developed a malignant
PGL. Clinical characteristics, treatment and outcome of the patients with metastatic disease
are displayed in detail in Table 5.

Seventeen mutation carriers (8:7%) developed a total of 21 nonparaganglionic tumors.
Three patients developed a total of five renal tumors: two patients developed a clear cell
renal cell carcinoma (RCC) on one side, and one patient developed two foci of a RCC on the
right side and one on the left side. This latter patient also developed a gastric gastrointestinal
stromal tumor (GIST) and has been described previously . There was one other patient
with a gastric GIST. Furthermore, there were two patients with a basal cell carcinoma, two
with a melanoma, one with a squamous cell lung carcinoma, one with (metastasized) breast
cancer, one with prostate cancer, one with a meibomian gland (adeno) carcinoma and one
with a (metastasized) synovial sarcoma. In addition, two patients had a rectal cancer and
one had ovarian cancer (granulosa cell tumor).

Besides these malignancies, one person developed a microprolactinoma and one person
had a non-functioning pituitary incidentaloma.

In total, our cohort consisted of 83 (42:3%) disease-affected mutation carriers and 113
(57-7%) unaffected mutation carriers. There were 65 index patients and 131 relatives of
index patients. Of the 131 relatives, 109 persons (83-2%) were unaffected mutation carriers.
Four index patients were not affected with HNPGL, PCC or sPGL because these patients
had DNA testing for other reasons (one with multiple congenital anomalies, one with two
RCCs and a gastric GIST, one was thought to have a HNPGL, but during radiological follow-
up the diagnosis of HNPGL was reversed to no evidence of a tumor and the fourth patient
was thought to have a PCC, but this turned out to be a non-functioning adrenal adenoma).
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To explore potential differences in clinical phenotypes related to the specific mutations
within the SDHB gene, carriers of the two most common SDHB mutations in the Netherlands
(exon 3 deletion and c423+1G>A) were compared. Statistical analyses showed no significant
differences in number and location of HNPGLs, sPGLs or PCCs, nor in the occurrence of
malignant disease or other tumors.

Discussion

In this nationwide multicenter study we assessed the phenotypes of 196 SDHB mutation
carriers. Our cohort consisted of 83 (42:3%) disease-affected mutation carriers and 113
(57-7%) unaffected mutation carriers. Fifty-four carriers (27-6%) were clinically affected with
one or multiple HNPGLs. Only four patients (2:0%) were clinically affected with a PCC and
26 (13:3%) with one or more sPGLs. Fifteen patients (7-7%) developed malignant disease.

Previous studies have reported much higher rates for developing PCC and sPGLs, 18-52%
and 59-84%, respectively.'®"1320 For various reasons, it is quite difficult to directly compare
our results with those reported in the literature. The majority of previously published studies
include a high proportion of index patients. This may result in ascertainment bias and
therefore overestimation of the risk of developing HNPGL, PCC, sPGL or malignant disease.
A recently published study by the French network on PGL/PCC in SDHx mutation carriers
included 124 SDHB mutation carriers, 39 (31%) of whom were index patients and 85 persons
(69%) were relatives of index patients.”’ This cohort seems to resemble the proportions of
our study cohort, and the prevalences of PCC (1-6%) and sPGL (6-5%) found in their study are
more comparable to the results in our current study (2:0% and 13:3% respectively). The low
percentages of PCC/sPGLs reported in France and in the present study indicate that the high
percentages described in several other studies are likely to be the result of ascertainment
bias. Furthermore, it should be noted that the percentages mentioned in most studies
are calculated using the total number of tumors divided by the total number of patients
with any tumor, thereby taking only disease-affected persons into account. Removal of all
unaffected mutation carriers from our cohort (113 subjects) would give a figure for PCC of 4
in 83 (4-8%) and 26 in 83 (31-3%) for sPGL. Even if we take only disease-affected individuals
into account, our figures are substantially lower than in previous studies that have assessed
clinical characteristics in SDHB mutation carriers. By contrast, we found a relatively high
frequency of HNPGLs (27-6%) among SDHB mutation carriers compared with other studies
(3-319%),'%11320 even compared with that of the French network (14-5%).2" If only the disease-
affected mutation carriers were taken into account, the prevalence of HNPGL was as high
as 54/83 (65:1%) in our cohort, nearly double the frequency reported previously in disease-
affected subjects.’®"* This might in part be explained by the observation that in our study
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the proportion of HNPGL patients with a positive family history (i.e. non-index HNPGL
patients) is 29:6% (16/54). The large majority of these patients had no symptoms and had
not yet come to medical attention. The genetic testing of relatives and structured follow-up
protocols of persons with a SDHB mutation in the Netherlands identifies a relatively high
number of asymptomatic mutation carriers, with or without tumors, allowing for a more
accurate representation of the phenotype of SDHB mutation carriers.

The observation that the majority of SDHB-linked patients develop a HNPGL furthermore
underlines the importance of radiological screening of the head and neck region in SDHB
mutation carriers.

Only fifteen patients (7-7%) in the entire cohort, including both disease-affected and
unaffected mutation carriers, developed a malignant PGL. In three of these patients (20%)
the primary tumor was a HNPGL (including one in the tonsil) and in 12 patients (80%) the
primary tumor was an sPGL. Removal of all unaffected mutation carriers (113 subjects)
results in a prevalence for malignant disease of 18:1% (15/83). Srirangalingam et al. reported
malignant PGL in five of 16 (31%) disease-affected subjects.” However, the malignancy rate
for the entire cohort was 16% (5/32). The rates of malignancy reported in the literature are
calculated based on disease-affected subjects and vary from 31-97%.'%'* These reported
malignancy rates are however most likely also inflated because of selection bias in referral-
based studies. Alternatively, the discrepancy in malignancy rates may also be a result of
variable follow-up times.''3 A recent systematic review of prevalence studies comprising
both asymptomatic SDHB mutation carriers and SDHB mutation carriers with manifest
non-malignant PGL documented a pooled risk for developing malignant PGL of 13 and
23%, respectively,’ also much lower than previously reported.””? In the fifteen patients
with malignant PGL, we found a wide range of time to metastatic disease (0 — 39-2 years).
This is in line with previously published results. Timmers et al. found a range from 0-17
years'? and Srirangalingam et al. between 1.5 and 25 years.” This underscores the need
for an extended follow-up is necessary in patients with an SDHB mutation, especially in
disease-affected mutation carriers. Our findings suggest that the SDHB mutation genotype
shows a relatively mild phenotype in the Netherlands. Astrom et al. hypothesized a causal
relationship between residential altitudes and disease phenotype in SDHD mutation
carriers.”* Consequently, the low altitude in the Netherlands might result in a less severe
phenotype due to the relatively high oxygen level at sea level. Extrapolating this hypothesis
to SDHB mutation carriers it could offer an explanation for our relatively mild phenotype.
However, studying a large cohort from a single country will provide a more homogeneous
study population and the inclusion of unaffected mutation carriers should provide better
information on actual tumor risks than series that include mainly index patients.” The high
proportion of unaffected mutation carriers in our study seems to reflect an active testing
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protocol in the Netherlands of at risk family members of the index patients, who are advised
to undergo genetic counseling and DNA testing for the family-specific SDHB mutation.
Lower lifetime cancer risks have also been established for other genetic tumor syndromes
following the inclusion of unaffected mutation carriers, one well-known example being
pathogenic BRCA1/2 gene variants.® Lower cumulative lifetime risks of breast cancer
followed from analyses that excluded index patients while including first-degree relatives.

In conclusion, in this nationwide study which allowed for the inclusion of SDHB germline
mutation carriers identified in The Netherlands, we found a lower rate of malignant disease
and a relatively high number of HNPGLs compared with previous reports of referral-based
cohorts. This finding underlines the importance of including both disease-affected and
unaffected individuals in studies that assess the phenotype of germline mutations.
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Abstract

Context: Mutations in genes encoding the subunits of succinate dehydrogenase (SDH) can
lead to pheochromocytoma/paraganglioma formation. However, SDH mutations have also
been linked to nonparaganglionic tumors.

Objective: The objective was to investigate which nonparaganglionic tumors belong to the
SDH-associated tumor spectrum.

Design: This was a retrospective cohort study.
Setting: The setting was a tertiary referral center.

Patients: Patients included all consecutive SDHA/SDHB/SDHC and SDHD mutation carriers
followed at the Department of Endocrinology of the Leiden University Medical Center who
were affected by non-pheochromocytoma/paraganglioma solid tumors.

Main Outcome Measures: Main outcome measures were SDHA/SDHB immunohisto-
chemistry, mutation analysis, and loss of heterozygosity analysis of the involved SDH-
encoding genes.

Results: Twenty-five of 35 tumors (from 26 patients) showed positive staining on SDHB
and SDHA immunohistochemistry. Eight tumors showed negative staining for SDHB and
positive staining for SDHA: a pancreatic neuroendocrine tumor, a macroprolactinoma, two
gastric gastrointestinal stromal tumors, an abdominal ganglioneuroma and three renal cell
carcinomas. With the exception of the abdominal ganglioneuroma, loss of heterozygosity
was detected in all tumors. A prolactinoma in a patient with a germline SDHA mutation
was the only tumor immunonegative for both SDHA and SDHB. Sanger sequencing of
this tumor revealed a somatic mutation (p.D38V) as a likely second hit leading to biallelic
inactivation of SDHA. One tumor (breast cancer) showed heterogeneous SDHB staining,
positive SDHA staining and retention of heterozygosity.

Conclusions: This study strengthens the etiological association of SDH genes with pituitary
neoplasia, renal tumorigenesis and gastric gastrointestinal stromal tumors. Furthermore,
our results indicate that pancreatic neuroendocrine tumor also falls within the SDH-related
tumor spectrum.
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Introduction

Mutations in any one of the succinate dehydrogenase (SDH) complex subunits (SDHA,
SDHB, SDHC, SDHD and SDHAF2) can lead to formation of pheochromocytoma (PCC)/
paraganglioma (PGL). Heterozygous germline mutations of SDHB, SDHC and SDHD cause
the well-characterized familial PCC-PGL syndromes known as PGL4, PGL3 and PGLI,
respectively."? The gene for PGL2 syndrome has been identified as SDHAF2 (SDH5).2 The
SDHA, SDHB, SDHC and SDHD genes encode for the four subunits of SDH (mitochondrial
complexl), a key respiratory enzyme which links the Krebs cycle and the electron transport
chain.* The SDHAF2 gene encodes SDH complex assembly factor 2 (SDHAF2), essential for
flavination of the SDHA protein and SDH enzyme activity.? If mutations occur in the SDHA,
SDHB, SDHC, SDHD or SDHAF2 genes with corresponding loss of the wild-type allele or a
second inactivating mutation, SDHB immunohistochemical staining will become negative.’
This negative staining for SDHB is now a validated and highly sensitive marker for germline
mutations of any of the SDH subunits and is a broadly accepted indication of pathogenicity
of an SDH mutation®’” In addition, SDHA immunohistochemistry is a proven marker for
SDHA mutations, showing loss of immunoreactivity exclusively in SDHA-mutated tumors,
while non-SDHA-mutated tumors, including SDHB, SDHC, SDHD and SDHAF2-mutated cases,
show positive SDHA staining.>®

SDHA, SDHB, SDHC and SDHD mutations have also been linked to gastrointestinal stromal
tumor “° and renal-cell carcinoma.'®" SDH-deficient renal carcinoma has been accepted
as a provisional entity in the 2013 International Society of Urological Pathology Vancouver
Classification. Gill et al. studied 36 SDH-deficient renal carcinomas and showed that these
carcinomas had a strong relationship with SDH germline mutation.'® In addition, pituitary
adenomas have been reported to be associated with SDHA, SDHB, SDHC and SDHD
mutations.'”'”?° However, other nonparaganglionic tumors may belong to the SDH tumor
spectrum. To address this issue, we investigated all nonparaganglionic tumors affecting
patients included in the Leiden SDH Mutation Carrier Regjistry.

Subjects and methods

Subjects

All consecutive SDHA, SDHB, SDHC and SDHD mutation carriers followed at the Department
of Endocrinology of the Leiden University Medical Center who were affected by non-PCC/
PGL solid tumors and who gave written informed consent were included. Of the three SDHA
mutation carriers, one had a non-PCC/PGL tumor. Of the 54 SDHB mutation carriers, seven
had non-PCC/PGL tumors, of which six were available for investigation. Of the 239 SDHD
mutation carriers, 22 were affected by non-PCC/PGL tumors. Histological material was
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unavailable from one patient and as two additional patients underwent only radiological
follow-up, no biopsy or surgically-resected material was available. Of the four SDHC mutation
carriers, one was affected by a non-PCC/PGL tumor. However, this patient did not provide
written informed consent and was therefore excluded. In total, 26 patients with 35 non-
PCC/PGL tumors were included.

Tissue samples

Archival specimens of tumor and normal formalin-fixed paraffin-embedded (FFPE) tissues
were provided by the hospitals where the patients underwent surgery. Clinical and genetic
characteristics of the patients are detailed in Supplemental Table 1.

SDHA/SDHB immunohistochemistry

All nonparaganglionic tumors were analyzed with SDHA and SDHB immunohistochemistry
(IHQ). FFPE tissue sections of 4 um thickness were stained with commercially available
antibodies: mouse monoclonal Ab14715 antibody (Mitosciences, Abcam, Cambridge, UK;
1:500 dilution) against SDHA and rabbit polyclonal HPA002868 antibody (Sigma-Aldrich
Corp, St. Louis, MO, USA,; 1:400 dilution) against SDHB. Stainings were performed on an
automatic Ventana Benchmark Ultra System (Ventana Medical Systems Inc. Tuscon, AZ,
USA) using the Ultraview DAB detection system, following heat-induced epitope retrieval
with Ventana Cell Conditioning 1 (pH 8.4) at 97°C for 52 and 92 minutes, respectively.

Loss of heterozygosity (LOH) analysis

DNA isolation from SDHB and/or SDHA immunonegative tumors was carried out using
standard procedures after manual microdissection. All tumor samples were estimated
to contain at least 80% neoplastic cells. LOH analysis of SDHB immunonegative/SDHA
immunopositive tumors was performed using polymorphic microsatellite markers flanking
either the SDHB (one surrounding a microsatellite located at UCSC chr1:17,417,100 and
D15507) or the SDHD (D1155015, D1155017, D1155019 and D1151347) gene. Tumor DNA
and fluorescently-labeled primers (Invitrogen; primer sequences available on request)
underwent 35 cycles of PCR at an annealing temperature of 60°C. Amplified products were
analyzed, along with LIZ 500 size standard (Applied Biosystems, Bleiswijk, the Netherlands),
using capillary electrophoresis on an ABI 3130-XL genetic analyzer (Applied Biosystems).
Data were analyzed using GeneMarker Software (Soft-Genetics LLC, State College, PA, USA).

Mutation screening

From SDHB immunonegative/ SDHA immunopositive tumors without LOH or lack of
informative (centromeric or telomeric) markers, the full coding sequence, including
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intron—exon boundaries, was screened for SDHD and SDHB mutations at the somatic level
either by Sanger (direct) sequencing in forward and reverse orientation or by using an lon
AmpliSeq Custom Panel sequenced on the lon Torrent Personal Genome Machine (PGM,;
Life Technologies) respectively, as previously described.'*?! In addition, Sanger sequencing
was also used to confirm the presence of the known mutations in the tumors, and to
investigate the occurrence of loss of the wild-type allele in all cases with immunonegative
SDHB staining.

Results

An overview of the immunohistochemical and sequencing results is shown in Supplemental
Figure 1. Thirty-five nonparaganglionic tumors from 26 SDH mutation carriers were
analyzed in the current study (Supplemental Table 1). No further analysis was carried out in
25 tumors displaying SDHB and SDHA immunopositivity, with the exception of one growth
hormone producing pituitary adenoma (case 8), because this analysis was conducted
previously as reported in Papathomas et al'? The 25 SDHB/SDHA immunopositive tumors
obtained from 15 SDHD- and four SDHB mutation carriers, encompassed papillary thyroid
carcinoma, melanoma, bladder cancer, endometrial cancer, prostate cancer, testicular
cancer, meningioma, basal cell carcinoma, and sebaceous gland carcinoma of the eyelid
(Supplemental Table 1). The clinicopathological and molecular genetic characteristics
of the remaining 10 tumors displaying SDHB immunonegativity (n=9) or heterogeneous
immunoexpression pattern (n=1) are displayed in Table 1. These tumors occurred in seven
patients, of which four harbored an SDHD germline mutation, two harbored an SDHB
germline mutation, and one harbored an SDHA germline mutation.

In particular, nine tumors showed loss of SDHB expression. Eight of these displayed
positive staining for SDHA: a pancreatic neuroendocrine tumor (NET) (case 1; Figure 1A,
B, C), a macroprolactinoma (case 2), an abdominal ganglioneuroma (case 5), two gastric
gastrointestinal stromal tumors (GIST) (cases 4 and 6) and three renal cell carcinomas
(case 6). One tumor (case 7) showed loss of SDHB and SDHA expression. Seven of the nine
SDHB immunonegative tumors showed LOH for at least one of the microsatellite markers,
indicating biallelic inactivation of the given SDH gene (Table 1). Loss of the wild-type allele
was also confirmed by the Sanger sequencing results (Figure 1D, E). Sanger sequencing of
the single SDHB/SDHA-immunonegative macroprolactinoma (case 7) revealed a somatic
SDHA mutation (p.D38V), along with the germline SDHA mutation (p.R31X). In conclusion,
eight tumors fulfilled the criteria of biallelic inactivation of the given SDH gene (Table
1). In contrast, the SDHB immunonegative abdominal ganglioneuroma (case 5) showed
retention of heterozygosity, similarly to the single tumor (breast cancer, case 3) exhibiting a
heterogeneous SDHB immunoexpression pattern.
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Table 1. Clinicopathological and molecular genetic characteristics of nonparaganglionic tumors
displaying SDHB immunonegativity or heterogenous immunoexpression pattern

Germline SDH Tumors observed SDHA _Secor)d . SR 2l
Case Age?/sex e (age at detection, y) IHC |r!act|vat|on follow-up
hit 19 (age, y)
1 56/M SDHD pNET (56) Neg Pos LOH# Died (64)
p.Asp92Tyr Oligodendroglioma (57) Pos Pos
c274G>T GCT (L+R) (56)
GVT (R) (56)
2 61/MP SDHD Macroprolactinoma (61) Neg Pos LOH AWED (69)
p.Asp92Tyr PCC(R) (61)
c.274G>T GJTT (R) (60)
GCT (L) (60)
GVT (L+R) (60)
3 38/F¢ SDHD Breast cancer (38) Hetero-  Pos ROH Died due to
p.Pro81Leu GCT (L) (38) genousA breast cancer
c242C>T 41)
4 55/F SDHD Gastric GIST (55) Neg Pos LOH# AWED (64)
p.Asp92Tyr GCT (L+R) (50)
Cc.274G>T GVT (L) (50)
5 42/M SDHB Abdominal Neg Pos ROH AWED (50)
C423+1G>A ganglioneuroma (42)
GVT (R) (42)
6 45/M¢ SDHB RCC L foci 1 (45) Neg Pos LOH AWED (47)
C423+1G>A RCC L foci 2 (45) Neg Pos LOH
RCCR (45) Neg Pos LOH
Gastric GIST (45) Neg Pos LOH
No PGL
7 49/F SDHA Macroprolactinoma (49) Neg Neg p.D38V AWD
p.Arg31X GCT (R) (26) (meningioma)
cI1CT GCT (L) (49) (65)
Meningiomas (49) Pos Pos

Abbreviations: M male; F female; IHC immunohistochemistry; pNET pancreatic neuroendocrine tumor; GCT glomus
caroticum tumor; GVT glomus vagale tumor; GJTT glomus jugulotympanicum tumor; PGL paraganglioma; PCC
pheochromocytoma; RCC renal cell carcinoma; GIST gastrointestinal stromal tumor; L left; R right; AWD alive with
(non-paraganglionic) disease; AWED alive without evidence of disease other than head and neck PGL; Pos positive;
Neg negative; ROH retention of heterozygosity; LOH loss of heterozygosity; LOH# only one marker (centromeric
or telomeric) was informative in each tumor as indicative of LOH. Sanger (direct) sequencing showed loss of the
wild-type allele.

a Age at diagnosis of non-PCC/PGL tumor.

b Patient previously described by Papathomas et al.”?

¢ Patient also carrier of a germline breast cancer 1 (BRCAT) mutation.
d Patient previously described by Gill A et al.®

9 The germline mutation was documented in all tumors.

99 Loss of wild-type allele or somatic mutation.

A Heterogenous is defined as granular cytoplasmic staining combined with a cytoplasmic blush lacking definite
granularity or completely absent staining in the presence of an internal positive control throughout the same
slide.
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Case 1 originally presented with a pancreatic mass that was eventually diagnosed as a
pancreatic NET. An octreotide scan performed to further evaluate the pancreatic mass led to
the subsequent detection of head and neck PGLs. Head/neck magnetic resonance imaging
(MRI) confirmed the presence of the latter. Genetic analysis identified a germline SDHD
mutation. The patient’s twin sister and brother are both affected by PGLs, as are the father
and an uncle (Figure 2). After confirmation of the germline SDHD mutation, follow-up with
urinary analysis for catecholamine excess and head and neck MRIs was initiated. One year
later, a brain MRI was performed due to visual field complaints; it showed a (histologically
proven) low-grade oligodendroglioma in the right frontal lobe. This resulted in the person
being affected by epilepsy seizures. The patient died at the age of 64 years, due to the
complications of a pneumosepsis with pleural empyema and left hydropneumothorax. The
LOH analysis together with SDHB immunonegativity, strongly suggests that this tumor is
most likely caused by the germline SDHD mutation.

healthy control PNET case 1 E germline case 1 pNET case 1

180 185 190 180 185 190
T % % A C T AT G T A C T

Y Y

SDHD ¢.274G>T, p.Asp92Tyr

Figure 1. (A) Hematoxylin and eosin staining of the pancreatic neuroendocrine tumor arising in a
patient carrying a germline SDHD c.274G>T (p.Asp92Tyr) mutation; (B) SDHB immunohistochemistry
(IHC) displaying loss of expression in the neoplastic cells with normal (endothelial) cells serving as
positive internal controls; (C) SDHA IHC showing immunopositivity in both neoplastic and non-
neoplastic cellular compartments; (D) Sequencing chromatograms of healthy germline tissue and
tumor DNA. Mutational analysis revealed the germline SDHD c.274G>T (p.Asp92Tyr) mutation in
the pancreatic neuroendocrine tumor. Note the absence of the wild-type allele indicating loss of
heterozygosity (LOH); and (E) Loss of heterozygosity (LOH) electropherogram. Heterozygosity was
lost only for a microsatellite marker (D1155019) telomeric to the SDHD locus. The red arrows indicate
the allele with relative loss. Heterozygosity was retained for a microsatellite marker (D1155017)
centromeric to the SDHD locus, while the patient was homozygous (not informative) for another
marker (D1155015) on the centromeric side (LOH electropherograms not shown).

Abbreviation: pNET pancreatic neuroendocrine tumor.
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HN PGL proband

healthy e HN PGL, non -PCC/PGL tumor

Non-PCC/PGL tumor d: died (age)
1
7

RO ﬁ #ﬂé

@00

d (~80) d (~70-80) 453) s
HN PGL HN PGL lymphoma
11
Hb'ﬁ\azeGr: HNPGL HN PGLs bilateral
pNET
oligodendroglioma
d (64)

Figure 2. Pedigree from case 1, a patient with a germline SDHD (p.Asp92Tyr) mutation with bilateral
paragangliomas, a pancreatic neuroendocrine tumor and an oligodendroglioma.

Abbreviations: HN PGL head and neck paraganglioma; non-PCC/PGL non-pheochromocytoma/paraganglioma;
pNET pancreatic neuroendocrine tumor.

Discussion

Our initial immunohistochemical analysis of 35 nonparaganglionic tumors from 26 SDH
mutation carriers identified and excluded 25 SDHB and SDHA immunopositive tumors.
Immunohistochemical and molecular genetic data from eight SDHB immunonegative
tumors confirm that a wide range of nonparaganglionic tumors fall within the SDH-
related tumor spectrum and suggest the pancreatic NET may also expand this spectrum.
In particular, we present strong supporting evidence indicating that the pancreatic NET
described here very likely arose due to a germline SDHD mutation and is therefore a
constituent of the SDHD-associated tumor spectrum. This is the first report of an association
between a germline SDHD mutation and pancreatic NET and as such it expands the
spectrum of hereditary pancreatic NETSs, previously only attributable to multiple endocrine
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neoplasia type 1 (MEN1), Von Hippel-Lindau disease (VHL), neurofibromatosis 1 (NF-1) and
the tuberous sclerosis complex (TSC).2

The occurrence of a pancreatic NET in a SDHD mutation carrier is rare. Of the 239 patients
with a germline SDHD mutation enrolled in the Leiden SDH Mutation Carrier Registry, only
one of 22 patients suffering from a nonparaganglionic tumor was affected by a pancreatic
NET. Despite the rarity, this finding might have potential implications for the surveillance of
patients with a germline SDHD mutation. In The Netherlands, the surveillance protocol for
SDHD mutation carriers includes urinary analysis for catecholamine excess every two years
and MRI of the head/neck region every three years. Abdominal imaging is only advised
when there is evidence of catecholamine excess. The addition of pancreatic NET to the
SDH-related tumor spectrum suggests that it might be advisable to amend surveillance
protocols, with the addition of standard abdominal imaging studies. Because the latter are
not currently included in surveillance protocols in The Netherlands, the possibility that other
patients in our registry carry undetected pancreatic NETs cannot be ruled out. However,
given the rare occurrence rate in our study, further studies are needed to definitely amend
surveillance protocols.

This study also included a patient with a germline SDHA mutation and an associated pituitary
adenoma.This case,alongwith an additional case previously described by Papathomasetal.”?,
suggests an important role for SDH mutations in hypophyseal tumorigenesis. These cases,
togetherwith thelarge patientcohortdescribed by Dénesetal?®, notonly supporta causative
role of SDH genes in pituitary adenoma formation, but also highlight genotype-phenotype
correlations in this fast-moving endocrine field. To date, 25 pituitary adenoma cases have
been described occurring in association with confirmed germline SDH mutations/variants
(Table 2).1217202326 Most of these tumors are prolactinomas, nonfunctioning adenomas or
growth-hormone secreting macro-adenomas, with variable ages at diagnosis ranging from
15 to 84 years. It is now clear that germline SDH mutations are also a component of the
familial spectrum of pituitary adenomas comprising Familial /solated Pituitary Adenoma
(FIPA) (germline inactivating aryl hydrocarbon receptor interacting protein (A/P) mutations),
Carney complex (germline inactivating PRKARIA mutations), Multiple Endocrine Neoplasia,
type 1 (germline inactivating MENT mutations) and Multiple Endocrine Neoplasia, type 4
(germline inactivating CDKN1B (p27/KIP1) mutations).2”#

Biallelic SDHA inactivation has been documented in both paraganglionic tumors and GISTs
arising in patients harboring a germline SDHA mutation.*® To the best of our knowledge, this
is the first pituitary adenoma with proven biallelic inactivation in a patient with a germline
SDHA mutation. Dwight et al. described a family in which a germline SDHA mutation was
associated with a PGL in the proband, as well as a pituitary nonfunctioning macroadenoma
in the proband’s son. SDHA immunohistochemistry confirmed loss of expression in both
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tumors. However, biallelic SDH inactivation was not detected in the pituitary adenoma; only
paradoxical loss of the mutated allele was detected.” Dénes et al. demonstrated LOH in the
pituitary adenomas of 3 SDHB patients, but there was ROH in the pituitary adenomas of two
SDHA-mutated patients. Gill et al. detected two inactivating SDHA mutations in a 62-year-
old man with a prolactin-producing tumor, but neither of these mutations was present in
the germline?' In an effort to identify the underlying pathogenic mechanism by which
SDH mutations lead to pituitary tumor development, Xekouki et al. studied the pituitary in
Sdhb* mice and provided evidence that pituitary hyperplasia in SDH-deficient cells may be
the initial abnormality in the cascade of events leading to true adenoma formation.” These
data unravel critical aspects related to hypophyseal pathobiology and further add to the
understanding of the tumorigenic process.

In contrast, other tumor types, eg, bladder cancer, melanoma, prostate cancer and
papillary thyroid cancer, retained SDHB/SDHA protein expression, suggesting that these
tumors are not part of the SDH-associated tumor spectrum. To extend, the biological
nature of heterogeneous breast cancer (case 3) in this particular genetic context (ie, SDHD
and BRCA-T) remains elusive. Along these lines, the SDHB immunonegative abdominal
ganglioneuroma (case 5) displayed ROH in the absence of additional mutations, strongly
suggesting an alternative mechanism of SDHB protein loss other than loss of genomic
regions encompassing the SDHB locus and/or a second‘exonic’somatic event. An alternative
mechanism could be SDHC promoter hypermethylation.*** Nevertheless, a limitation of the
current study concerns the lack of methylation analysis for the promoter of SDHC gene.

In conclusion, the current study expands the SDH-related tumor spectrum and identifies
pancreatic NET as a new component of this spectrum. This study also strengthens the
etiological association of SDH genes with pituitary neoplasia, renal tumorigenesis and
gastric GISTs as revealed in the Leiden SDH Mutation Carrier Registry. These findings may
have implications for the surveillance protocol for patients with a germline SDHD mutation.
In this context, further studies are warranted to elucidate the role of the disruption of the
Krebs cycle in familial and sporadic pancreatic neuroendocrine tumorigenesis.
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Table 2. Germline SDH mutations/variants and pituitary adenomas reported in the literature

Case Age’/sex

1

2

30/M

27/M

49/F

53/M

84/M

33/M9

36/F9

53/F

31/F

60/F

Functional
classification of PA

Pituitary
nonfunctioning
macroadenoma
Pituitary
prolactinoma, size
NA

Pituitary
macroprolactinoma

Pituitary
nonfunctioning
macroadenoma

Pituitary GH-
secreting
macroadenoma
Pituitary
macroprolactinoma

Pituitary
macroprolactinoma

Pituitary
nonfunctioning
macroadenoma
Pituitary
macroprolactinoma
Pituitary
macroprolactinoma

Germline SDH
mutation

SDHA
c1873C>T
p.His625Tyr
SDHA
c91C>T
p.Arg31*

VHL**
Cc.589G>A
p.Asp197Asn

AIP MENT and
CDKN1B are not
available

SDHA

coC>T
p.Arg31*

SDHA variant
c.969C>T
p.Gly323Glyt

SDHAF2 variant
c-52T>C

SDHB
€.298T>C
p.Ser100Pro
SDHB
€298T>C
p.Ser100Pro
SDHB
c587G>A
p.Cys196Tyr
SDHB
delex6to 8
SDHB
c423+1G>A

Biallelic SDH
inactivation
in PA
Paradoxical loss
(LOH) of the
mutated allele

p.D38V; somatic
mutation as

a second hit

of biallelic
inactivation
ROH

LOH

LOH

LOH

PGL/PCC

None

pCC

Bilateral HN PGL

Abdominal PGL,
Wilms tumor,
retroperitoneal
liposarcomas &
renal
oncocytoma
HN PGL

HN PGL

BAH

HN PGL

HN PGL

Reference

20

present
study

20

20

20

20

20

20

20
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Table 2. Germline SDH mutations/variants and pituitary adenomas reported in the literature
(Continued)

Case Age"/sex

20

21

22

23

15/NA

71/Mi#

51/F#

60/M

53/M

36/F

41/M

56/F

60/M

NA

NA

NA

NA

70

Functional
classification of PA

Pituitary adenoma
NA

GH-secreting
adenoma

Pituitary
microadenoma
Pituitary
macoprolactinoma

Pituitary
macroprolactinoma

Pituitary
macroprolactinoma

Pituitary GH-
secreting
macroadenoma
Pituitary GH-
secreting
macroadenoma
Pituitary
macroprolactinoma

GH-secreting
macroadenoma
PGL1 syndrome
Pituitary
nonfunctioning
microadenoma
PGL-1 syndrome
pituitary
nonfunctioning
microadenoma
PGL-1 syndrome
Pituitary
nonfunctioning
microadenoma
PGL-1 syndrome

. Biallelic SDH

S‘eurg tl:g: 12l !nactivation PGL/PCC Reference
in PA

SDHB None 23
c.761insC
p.254fsX255
SDHB exon7 Bilateral HNPGL 26
C.689G>A
p.Arg230His
SDHB exon 6 Metastatic PGL 26
C642+1G>A GIST
SDHC HN PGL 18
€.256-257insTTT
p.Phe85dup
SDHC HN PGLs 20
C.380A>G
p.His127Arg
SDHD HN PGLs 24
c242C>T
p.Pro81Leu
SDHD LOH HN- & 17
€.298_301delACTC ea-PGLs
p.T100fsX133 Bilateral PCCs
SDHD ROH HN PGLs 12 and
Cc.274G>T present
p.Asp92Tyr study
SDHD LOH HN PGLs 12 and
C.274G>T pPCC present
p.Asp92Tyr study
SDHD 25
C341A>G
p.Tyr114Cys
SDHD 25
c341A>G
p.Tyr114Cys
SDHD 25
c341A>G
p.Tyr114Cys
SDHD 25
Cc341A>G
p.Tyr114Cys
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Table 2. Germline SDH mutations/variants and pituitary adenomas reported in the literature
(Continued)

Functional Germline SDH !Bialle.lic .SDH

Case Age’/sex 2 A 5 inactivation PGL/PCC Reference
classification of PA  mutation in PA

24 40/F# Pituitary SDHD exon3 Bilateral PCC 26
macroprolactinoma  c.242C>T

p.Pro81Leu

25 51/F Pituitary SDHD NA, radiologic HN PGL present
nonfunctioning Asp92Tyr follow-up study***
macroadenoma

Abbreviations: SDH succinate dehydrogenase; PA pituitary adenoma; PGL paraganglioma; PCC pheochromocytoma;
M male; F female; VHL Von Hippel-Lindau; MEN T multiple endocrine neoplasia type 1; AlP aryl hydrocarbon receptor
interacting protein; CDKN1B cyclin-dependant kinase inhibitor 1B; LOH loss of heterozygosity; ROH retention of
heterozygosity; dup duplication; HN PGL head and neck paraganglioma; BAH bilateral adrenal hyperplasia; GH
growth hormone; NA not available; ea-PGL extra-adrenal paraganglioma; fs frame-shift; GIST gastrointestinal
stromal tumor.

A Age at diagnosis of the pituitary adenoma.

# Age of diagnosis of the new syndromic association.

9 These patients were first-degree relatives.

** This variant has been described in polycythemia vera but not in classical Von Hippel-Lindau syndrome.

*** One of the excluded patients in the present study, because no biopsy or surgically resected material was
available.

1 Insilico splicing analysis software packages predicted that this variant may create a new splice donor site. RNA
was extracted from peripheral blood using PAXgene Blood RNA Kit (PreAnalytiX, Hombrechtikon, Switzerland)
but RT-PCR analysis found no evidence of aberrant splicing of the SDHA gene. Sequence analysis of DNA
extracted from a paraffin embedded pituitary adenoma sample from this patient showed the presence of this
variant with no evidence of loss of the normal allele in the tumor DNA when compared to the peripheral blood
DNA. Tissue extracted from the father’s nonfunctioning pituitary adenoma (NFPA) did not harbor the variant,
while it was present in the germline DNA of the mother, suggesting that it is not the cause of NFPA in father
and son. Its role in the proband’s other tumors is unknown.
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Supplemental tables and figures

Supplemental Table 1. Clinicopathological and molecular genetic characteristics of nonpara-
ganglionic tumors arising in SDH mutation carriers

Germline SDH Tumors observed SDHA .Secor.1d . S 23
Case Age?/sex 5 " inactivation follow-up
mutation (age at detection) IHC hit 1 (age)
1 56/M SDHD p.Asp92Tyr ~ pNET (56) Neg Pos LOH# Died (64)
c.274G>T Oligodendroglioma (57)  Pos Pos
GCT (L+R) (56)
GVT (R) (56)
2 61/MP SDHD Macro-prolactinoma (61) Neg Pos LOH AWED (69)
p.Asp92Tyr PCC (R) (61)
c274G>T GJTT (R) (60)
GCT (L) (60)
GVT (L+R) (60)
3 38/F¢ SDHD Breast cancer (38) Hetero-  Pos ROH Died due to
p.Pro81Leu GCT (L) (38) genous” breast cancer
c242C>T 471)
4 55/F SDHD Gastric GIST (55) Neg Pos LOH# AWED (64)
p.Asp92Tyr GCT (L+R) (50)
c274G>T GVT (L) (50)
5 42/M SDHB Abdominal Neg Pos ROH AWED (50)
C423+1G>A ganglioneuroma (42)
GVT (R) (42)
6 45/M¢ SDHB RCC L foci 1 (45) Neg Pos LOH AWED (47)
c423+1G>A RCC L foci 2 (45) Neg Pos LOH
RCCR (45) Neg Pos LOH
Gastric GIST (45) Neg Pos LOH
No PGL
7 49/F SDHA Macroprolactinoma (49)  Neg Neg  p.D38V AWD
p.Arg31Xx GCT (R) (26) (meningi-
cINCT GCT (L) (49) omas) (65)
Meningiomas (49) Pos Pos
8 56/F° SDHD Pituitary adenoma, Pos Pos ROH Died (71)
p.Asp92Tyr GH producing (56)
c274G>T GCT (L+R) (56)
GJT (R) (56)
GVT (R) (56)
9 70/M SDHD Bladder cancer (70) Pos Pos Died (73)
p.Asp113fs Basal cell carcinoma (71) Pos Pos

€337_340delGACT  GCT (L+R) (NA)
GJT (R) (NA)

10 48/F¢ SDHD Endometrial cancer (48) Pos Pos AWED (59)
p.Asp92Tyr GCT (L+R) (45)
C.274G>T GJT
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Supplemental Table 1. Clinicopathological and molecular genetic characteristics of nonpara-
ganglionic tumors arising in SDH mutation carriers (Continued)

Case Age?/sex

20

21

22

40/F

57/M

57/F

57/M

68/M

37/M

37/F

56/M

35/F

64/F

65/M

50/F

Germline SDH
mutation

SDHD p.Asp92Tyr
c274G>T

SDHD
p.Leu139Pro
c416T>C
SDHD p.Asp92Tyr
c274G>T
SDHD
pP.Asp92Tyr
c274G>T
SDHD
p.Asp92Tyr
c274G>T
SDHD
p.Asp92Tyr
c.274g>T

SDHD
pP.Asp92Tyr
c.274G>T

SDHD
p.Asp92Tyr
c274G>T

SDHD
p.Leu139Pro
c416T>C

SDHD
p.Asp92Tyr
c274G>T
SDHD
p.Leu139Pro
c416T>C

SDHD
p.Asp92Tyr
c.274G>T

Tumors observed
(age at detection)

Breast cancer (40)
GJT (R) (40)
GVT (L) (51)

Pos

Hodgkin lymphoma (18)

Melanoma (57)

Breastcancer
GCT (L+R) (65)

Pos

Pos

Melanoma shoulder (57) Pos

PCC (R) (55)

GCT (L+R) (NA)
Prostate cancer (68)
GJTT (L) (57)
Abdominal PGL (65)
Testicular cancer (37)
Prostate cancer (53)
GCT (L+R) (47)

GJT (L) 47)

GVT (L+R) (48)
Papillary thyroid
carcinoma (37)

GCT (L+R) (37)

GVT (R) (37)

Bladder cancer (56)
GCT (L) (38)

GJTT (L) (38)

GVT (R) (38)

Breast cancer (R) (35)
Breast cancer (L) (47)
GCT (L) (41)

GVT (R) (42)
Meningioma (64)
Mediastinal PGL (67)

Prostate cancer (65)
Gastric GIST (41)
GCT (L+R) (57)

GVT (L+R) (57)

PCC (L) (62)
Meningeoma (50)
Breast cancer (45)
No PGL

Pos

Pos
Pos

Pos

Pos

Pos
Pos

Pos

Pos
NA

Pos
Pos

Pos

Pos

Pos

Pos

Pos
Pos

Pos

Pos

Pos
Pos

Pos

Pos
NA

Pos
Pos

Status at last
follow-up
(age)

AWED (55)

AWED (71)

AWED (71)

AWED (61)

Died due

to prostate
cancer (71)
AWED (62)

AWED (63)

AWD (63)

AWED (49)

Died due to
malignant
PGL (74)
AWED (70)

AWED (55)
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Supplemental Table 1. Clinicopathological and molecular genetic characteristics of nonpara-
ganglionic tumors arising in SDH mutation carriers (Continued)

Germline SDH Tumors observed .Secor.Id . S 2D
Case Age?/sex 5 . inactivation follow-up
mutation (age at detection)
(age)
23 46/F SDHB Basal cell carcinoma (46) Pos Pos AWED (50)
c423+1G>A No PGL
24 33/F SDHB Breast cancer (33) Pos Pos Died due to
cA423+1G>A PGL NA breast cancer
(49)
25 26/F SDHB Melanoma (26) Pos Pos AWED (49)
C423+1G>A No PGL
26 48/M SDHB Sebaceous gland Pos Pos AWED (67)
p.Thr110Pro carcinoma of the eyelid
unclassified variant  (48)
€.328A>C No PGL

Abbreviations: M male; F female; IHC immunohistochemistry; pNET pancreatic neuroendocrine tumor; GCT glomus
caroticum tumor; GVT glomus vagale tumor; GJT glomus jugulare tumor; GJTT glomus jugulotympanicum tumor;
GTT glomus tympanicum tumor; PGL paraganglioma; PCC pheochromocytoma; RCC renal cell carcinoma; GIST
gastrointestinal stromal tumor; L left; R right; GH growth hormone; AWD alive with (non-paraganglionic) disease;
AWED alive without evidence of disease other than head and neck PGL; NA not available; ROH retention of
heterozygosity; LOH loss of heterozygosity; LOH# only one marker (centromeric or telomeric) was informative in each
tumor as indicative of LOH. Sanger (direct) sequencing showed loss of the wild-type allele.

a Age at diagnosis of non-PCC/PGL tumor.

b Patient previously described by Papathomas et al.””

¢ Patient also carrier of a germline breast cancer 1 (BRCA1) mutation.
d Patient previously described by Gill A et al.’®

e Also heterozygosity for mutation 467C>G, S156X (MSH-6).

9 Loss of wild-type allele or somatic mutation.
A Heterogenous is defined as granular cytoplasmic staining combined with a cytoplasmic blush lacking definite
granularity or completely absent staining in the presence of an internal positive control throughout the same slide.
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300 SDH-patients

3SDHA | 54 SDHB | 4 SDHC | 239 SDHD

31 patients with non-PCC/PGL
tumors

5 patients
excluded

| 26 patients (35 tumors) |

[

2
| SDHB IHC pos, SDHA IHC pos: n=25 | | SDHB IHC neg, SDHA IHC pos: n=8 | I SDHB IHC neg, SDHA IHC neg: n=1 | | SDHB IHC het, SDHA IHC pos: n=1 |

| Not further analyzed | N=7 LOH, loss of WT I Double mutation | ROH
N=1 ROH, no loss of WT no loss of WT allele

Supplemental Figure 1. Overview of the immunohistochemical and sequencing results from 35
nonparaganglionic tumors arising in 26 SDH mutation carriers.

Abbreviations: SDH succinate dehydrogenase; PCC pheochromocytoma; PGL  paraganglioma; [HC
immunohistochemistry; pos positive; neg negative; het heterogenous, LOH loss of heterozygosity; ROH retention
of heterozygosity; WT wild-type.
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Chapter 5

Abstract

Study Objectives: The carotid bodies are thought to play an important role in sleep-
dependent autonomic changes. Patients who underwent resection of bilateral carotid
body tumors have chronically attenuated baroreflex sensitivity. These subjects provide a
unique opportunity to investigate the role of the baroreflex during sleep.

Design: One-night ambulatory polysomnography (PSG) recording.
Setting: At participants’homes.

Participants: Nine patients with bilateral carotid body tumor resection (bCBR) (four women,
mean age 50.4 +7.2 years) and nine controls matched for age, gender and body mass index.

Interventions: N/A

Measurements: Sleep parameters were obtained from PSG. Heart rate (HR) and its variability
were calculated using 30-s epochs.

Results: In bCBR patients, HR was slightly but not significantly increased during wake and all
sleep stages. The effect of sleep on HR was similar for patients and controls. Low frequency
(LF) power of the heart rate variability spectrum was significantly lower in bCBR patients in
active wakefulness, sleep stage 1 and rapid eye movement (REM) sleep. No differences were
found between patients and controls for high frequency (HF) power and the LF/HF ratio.

Conclusions: bCBR is associated with decreased LF power during sleep, suggesting
impaired baroreflex function. Despite this, sleep-related HR changes were similar between
bCBR patients and controls. These findings suggest that the effects of sleep on HR are

predominantly generated through central, non-baroreflex mediated pathways.

Keywords: Heart rate variability, carotid body tumor, paraganglioma, sleep, baroreflex
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Introduction

Physiological sleep-dependent autonomic changes result from a complex interaction of
peripheral cardiovascular reflexes and central modulation.? The baroreflex arc, with arterial
baroreceptors mainly located in the carotid sinuses and aortic arch, is considered to be the
critical relay in this complex integration.? Baroreflex sensitivity is continuously modulated
and differs markedly between behavioral and physiological conditions, including sleep.'**
During non-rapid eye movement (non-REM) sleep, a progressive decrease is seen in
peripheral sympathetic nerve activity and blood pressure (BP), together with a decrease
in heart rate (HR)."**® The latter sign suggests increased parasympathic vagal activity.
Conversely, a net increase of HR and BP has been reported during rapid eye movement
(REM) sleep.!*>6 This increase is accompanied by irregular changes in autonomic activity.'
Paragangliomas are rare neuroendocrine tumors of paraganglia, which are neural-crest
derived chromaffin tissues associated with the autonomic nervous system.” Paragangliomas
in the head and neck region can arise from the carotid body, vagal body or jugulotympanic
tissue (i.e. paraganglioma of the temporal bone)2? Due to their location in close proximity
to important neurovascular structures, tumor growth may lead to serious morbidity and
cranial nerve impairment. These tumors can be removed without recurrence.'® However,
branches of the carotid sinus nerves may not be spared. Bilateral carotid body tumor
resection (bCBR) may thus result in arterial baroreflex dysfunction." Patients with bCBR
are known to have significant lower baroreflex sensitivity compared with controls, i.e, a
less marked heart rate response to a given rise or fall in blood pressure.'" Baroreflex failure,
whether from carotid endarteriectomy,'” head and neck irradiation,”'* mixed cranial nerve
neuroma,” neurosarcoidosis,'® or brain stem stroke," is associated with changes in heart
rate variability (HRV). Notably, these patients have little low frequency’(LF) power, an index
of baroreflex-mediated HR control.'®" This parallels findings in mouse models, where carotid
sinus denervation resulted in lower values of LF power and baroreflex sensitivity.” So far, no
data are available on the effects of sleep on HRV following bCBR. These patients provide
a unique opportunity to study the role of the baroreflex in sleep. We therefore monitored
HR and HRV during nocturnal sleep in bCBR patients and compared them with controls
matched for age, gender, and body mass index (BM)).

Methods

Subjects

We included nine patients who had previously been treated with bCBR. These patients
were recruited from the outpatient clinics of the departments of Endocrinology,
Otorhinolaryngology and Surgery of the Leiden University Medical Center and through
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an advertisement on the website of the Dutch paraganglioma patient network. For each
patient we recruited a healthy control subject matched for gender, age (+/- 5 years), and
BMI (+/- 3 kg/m?).

Exclusion criteria were the presence of a pheochromocytoma, extra-adrenal paraganglioma,
history of a psychiatric disorder, history of a diagnosed sleep disorder, or the use of sleep
medication.

The Medical Ethics Committee of the Leiden University Medical Center approved the study
protocol. All subjects provided written informed consent prior to the study.

Study Design
Polysomnography

Sleep was recorded at home using a portable polysomnography recorder (Somnologica
Version 5.1.1, Embla, CO, USA). The measurement started at 16:00 and lasted for 24 hours.
Duration of ‘active wakefulness, sleep stages 1-3, and REM sleep were assessed. Active
wakefulness was defined as all wake epochs occurring between the period from 16:00
until 20 minutes before onset of nocturnal sleep, and the period from 20 minutes after
awakening in the morning until the end of the measurement.

Sleep stages and apnea/hypopnea events were manually scored in 30-s epochs by an
experienced sleep technician, according to the guidelines of the American Academy of
Sleep Medicine.? The polysomnography were analysed by a technician who was blinded
to the diagnosis of the subject. The autonomic parameters were analyzed automatically.
Respiration was monitored with a nasal pressure sensor and two elastic bands (thorax and
abdomen). Oxygen saturation was assessed continuously with a pulse oximeter attached
to the index finger. Apneas were defined as a drop in the peak thermal sensor excursion
by =90 % of baseline for longer than 10 s. Hypopneas were defined as a drop in the nasal
pressure signal excursion by >30 % of baseline for longer than 10 s, with a >4 % desaturation
from the pre-event baseline.

Electrocardiography and respiration

A continuous wavelet transform was implemented in Matlab (Version 13.1, Mathworks, MA,
USA) to detect R-peaks in the electrocardiogram.?? A filter was used to exclude outliers, with
outliers defined as values that differed > 25 beats/min from the previous or next sample.
The signal was resampled at 5 Hz.

R-peak detection resulted in a series of consecutive R-R intervals, split into consecutive 30-s
epochs for analysis. For each epoch the mean HR was calculated and a frequency spectrum
by creating time-frequency domains through fast Fourier transform. From the frequency
spectrum, the LF (0.04-0.15 Hz) and high frequency (HF) (0.15-0.4 Hz) power component
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were calculated. The HF component is considered to represent vagal activity, and the
LF component to reflect baroreflex-mediated sympathetic activity.'®” LF/HF ratio was
computed as a reflection of the sympathovagal balance.

Autonomic parameters

LF power and HR were selected as main outcome parameters. Secondary outcome
measures included HF and LF/HF ratio.

Selection of epochs

Allepochs of sleep following onset of nocturnal sleep and prior to awakening in the morning
were included in our analysis. For active wakefulness, a selection of epochs was made, as
the length of the active wakefulness period proved to exceed those of the sleep states
considerably, which could affect the results. We therefore nullified this effect by limiting
the number of epochs of active wakefulness to that of stage 2 epochs for each subject. The
wake epochs were selected in a random fashion. To account for the effects of arousals, we
labeled every epoch following a transition from sleep stage 3 to stage 2 or 1 and sleep stage
2 to stage 1. We defined these epochs as ‘arousal transitions. In addition, we identified all
epochs that coincided with either an apnea or a hypopnea to study the autonomic effects
of respiratory arousals.

Statistical Analysis

Overall we included an average total number of 1269 epochs per subject. For each epoch
the autonomic parameters, sleep/wake stage, subject number, beta-blocker use, presence
of bCBR, arousal transitions and apnea/hypopnea (Figure 1) were recorded and entered
into our model. For each autonomic parameter a linear mixed effects regression model
was formed to describe the effect of sleep stages and bCBR on the autonomic parameters.
To obtain a normal distribution of the residuals of the models, a natural logarithm-
transformation was applied. Sleep stage, beta-blocker use, apneas/hypopneas, arousal
transitions and the interaction between bCBR and sleep stages were entered as fixed and
subjects as random effects to the model. Because of expected differences in variability
between sleep stages and between patients and controls, the random subject effects were
stratified for sleep stage/wakefulness (5 levels) and patient status (2 levels).

Outliers with a standardized residual at a distance greater than 2.5 standard deviations from
0 were excluded from the linear mixed effects regression model.

P-values below 0.05 were considered to be significant. All statistical analyses were performed
using R (Version 3.0.0, R).
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Figure 1. Schematic diagram illustrating our data analysis. For each subject, we analysed the heart
rate data during overnight sleep and a random selection of active wakefulness (lower part of the
figure). Overall we included an average total number of 1269 epochs per subject. The upper part of
the figure zooms in on a representative one-minute segment illustrating how the heart rate was
calculated from the one-channel ECG data. For each epoch the autonomic parameters, sleep/wake
stage, subject number, beta-blocker use, presence of bCBR, arousal transitions and apnea/hypopnea

were recorded and entered into our model.
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Results

Participant characteristics

The bCBR group comprised 6 patients with a mutation in subunit D of the SDH gene (SDHD),
one obligate SDHD mutation carrier, one patient tested negative for germline mutations in
SDH genes and one patient had not been genetically tested (Table 1). In the bCBR patients,
resection of the first carotid body tumor (CBT) was performed 12.5+7.6 years (range 2.2—-
25.2 years) and resection of the second CBT 8.9+6.8 years (range 1.2-21.5 years) prior to
current study. Three patients had additional head and neck paragangliomas. Two patients
had a vagal body tumor and one patient had a jugular foramen tumor. Two patients used
beta-blockers (bisoprolol 2.5 mg once daily and propranolol, unknown dosage). None of
the participants were shift-workers or were known to have arrhythmias.

Table 1. Clinical characteristics of nine patients with bilateral carotid body tumor resection (bCBR) and
their matched healthy controls

Characteristics Connirgols
Age (year) 504+72 51.0+8.2
Gender (n)
Male 5 5
Female 4 4
BMI (kg/m2) 257 +28 250+4.2
First CBR
Time since (yrs; range) 125+76(22-252) -
Second CBR
Time since (yrs; range) 89+6.8(1.2-21.5) -

bCBR bilateral carotid body tumor resection; BMI body mass index; CBR carotid body tumor resection.
Data are shown as mean values + standard deviation.

Sleep parameters

bCBR patients spent significantly more time in sleep stage 1 than controls (12.6% versus
7.5%; p<0.05). Apart from this difference, polysomnography parameters were similar
between groups. As reported previously, no significant differences in apnea/hypopnea
index between patients and controls were found (Table 2).**

Autonomic parameters

In bCBR patients, HR was slightly but not significantly increased during wake and all sleep
stages (Table 3, Figure 2). The effect of sleep on HR was similar for patients and controls.
LF power of the HRV spectrum was significantly lower in bCBR patients during active
wakefulness (p<0.05), sleep stage 1 (p<0.01) and REM sleep (p<0.05). (Table 3, Figure 2). No
differences were found between bCBR patients and controls for HF power and the LF/HF ratio.

85



Chapter 5

Table 2. Polysomnography results of nine patients with bilateral carotid body tumor resection (bCBR)
and their matched healthy controls

Polysomnography 'TSZ%R Col?irgols
Total sleep time (min) 4164 +52.2 4418 +30.0
Sleep latency (min) 80+43 48+18
Sleep efficiency (%) 91.1+3.7 91.8+32
% Sleep stage 1 12.6 + 6.0* 7.5 +2.0*
% Sleep stage 2 383+86 384+65
% Sleep stage 3 248+63 274+65
% REM sleep 243£76 26.7 £3.7
Awakenings (/h) 1.8+0.7 19+08
AHI (/h) 40+43 33+38
Al (/h) 12£1.1 1.7£30
Hypopnea index (/h) 29+38 16+14
Oxygen desaturation events (/h) 42439 3.1+£32

Data are shown as mean values + standard deviation.
bCBR bilateral carotid body tumor resection; REM rapid eye movement; AHI apnea hypopnea index; Al apnea index.
*p<0.05.

Table 3. Regression coefficients derived from the linear mixed effects model with the effects of sleep
on cardiovascular parameters

Model Parameters HR (bpm) In(LF) In(LF/HF)

intercept (active wakefulness) 74/3 1/0.2 -0.3/0.4 1/0.3
stage 1 -12/2%** -0.4/0.2* -0.3/0.2 -0.1/0.2
stage 2 -16/2%*% -1/0.2%%% -0.6/0.2** -0.4/0.2*
stage 3 -13/2%% -1/0.3%%* -0.6/0.2* -0.8/0.2**
stage REM -13/2%** -0.9/0.2%** -0.9/0.2%* -0.1/0.2
beta-blocker -7/9 -0.4/0.6 -1 0.4/0.9
apnea/hypopnea 0.2/0.2 0.5/0.0%** 0.2/0.0%** 0.3/0.0%**
arousal transitions* 1/0.3** 0.5/0.0%** 0.1/0.0%** 0.3/0.0%**
stage active:bCBR 6/6 -0.9/0.3* -0.2/0.7 -0.6/0.5
stage 1:bCBR 7/5 -1/0.3** -0.3/0.6 -0.7/0.5
stage 2:bCBR 8/5 -0.6/0.4 -0.0/0.6 -0.5/0.5
stage 3:bCBR 7/5 -0.6/0.4 -0.1/0.7 -0.5/0.5
stage REM:bCBR 7/5 -1/04% -0.4/0.7 -0.6/0.5

Abbreviations: HR heart rate; bpm beats per minute; /n natural log-transformed; LF low frequency; HF high
frequency; B regression coefficient; S.E. standard error of the regression; REM rapid eye movement; bCBR bilateral
carotid body tumor resection.

*p <0.05; ** p<0.01; *** p<0.001; * defined as transitions from sleep stage 2 to 1 and from sleep stage 3to 2 or 1.
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Figure 2. Effects of sleep on heart rate (HR) and low frequency (LF) power of heart rate variability
in nine patients with bilateral carotid body tumor resection (dashed, blue lines) and their matched
healthy controls (solid, red lines). * p <0.05; ** p<0.01. Bars represent standard error of the mean.

Abbreviations: HR heart rate; REM rapid eye movement; In natural logarithm; LF low frequency power; Active active
wakefulness.

Discussion

We found that the LF component of HRV was significantly lower during active wakefulness,
sleep stage 1, and REM sleep in bCBR patients compared to controls, reflecting baroreflex
dysfunction. Interestingly, in spite of these signs of baroreflex dysfunction, the effect of sleep
on HR was similar in bCBR patients and their matched controls. These findings suggest that
the sleep-related HR decrease primarily results from non-baroreflex mediated pathways.

Sleep studies

Patients with bCBR spent significantly more time than controls in sleep stage 1. This increase
in light sleep could not be explained by an increased prevalence of sleep-disordered
breathing.?* Whether these findings are of clinical importance is disputable, as no differences
were found in measures of daytime sleepiness between bCBR patients and controls.**

Baroreflex and sleep

As in previous daytime studies, bCBR patients had a lower LF indicating baroreflex failure.'>"”
Differences in LF power during sleep between bCBR patients and controls were most
apparent in sleep stage 1 and during REM sleep. During deeper sleep (sleep stages 2 and
3), this difference was less marked. This contrast could not be attributed to an increase in LF
during deeper sleep in the bCBR patients: only minimal LF changes were seen throughout
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sleep stages (Figure 2). Instead, the healthy controls appeared to have a marked decrease in
LF activity during sleep stages 2 and 3 compared to sleep stage 1 and REM sleep. Accordingly,
previous work indicated that sleep stages 2 and 3 are associated with the lowest values of
sympathetic outflow in healthy controls'*5? The absence of significant differences in LF
power between patients and controls during sleep stages 2 and 3 is thus explained by the
transient suppression of baroreflex function during normal deep sleep. Baroreflex function
is thus state-dependent, meaning that it is differently modulated by central influences in
the different sleep phases and by wake adaptive behaviours."**

In spite of the marked contrasts in baroreflex function during sleep stage 1 and REM sleep
in bCBR patients, sleep-related HR changes were similar for bCBR patients and controls.
Notably, the relative higher LF values of the controls seen during sleep stage 1 and REM
compared to the bCBR patients, did not translate to more marked HR contrasts in these
sleep stages (Figure 2). Also, within the healthy controls we found that sleep stage 3 was
associated with lowest LF values, while HR was similar between both sleep stage 2 and 3. This
confirms previous work on sleep-related sympathetic outflow: sleep stage 3 was associated
with a consistently lower value in muscle sympathetic nerve activity whereas HR remained
stable between both sleep stages 2 and 3.'°5% Taken together, these findings suggest that
the sleep-related HR changes primarily result from non-baroreflex mediated pathways.
Which alternative pathways should be considered? It could be argued that the HR decrease
during sleep results from inactivity. However, the gradual decrease of HR seen in different
non-REM sleep stages and the contrasting effects in REM sleep favor central modulation.
Accordingly, overnight infusion of vasopressive drugs (phenylephrine) in healthy subjects
results in a sustained decrease in blood pressure the following morning, thus suggesting
that overnight blood pressure increases are counteracted by central mechanisms.??¢ Thus,
while inactivity may, of course, in part contribute, this cannot explain the complex dynamics
between sleep stages. Diurnal contrasts in autonomic control could also result from
neuroendocrine changes, e.g, circadian rhythms in adrenocorticotropic activity and the
renin-angiotensin-aldosterone system (RAAS). Clear circadian patterns have been identified
for HR and its variability.”® The overall effects of these circadian effects, however, appear
to be modest and can only partly explain the sleep-related HR changes. Supporting this
view, the blood pressure dipping pattern has shown to be primarily related to sleep-wake
phases rather than endogeneous circadian oscillators.?® The close correlation between HR
and sleep stages argues for direct effects of the sleep-wake cycle on the central autonomic
network. Sympathetic outflow decreases and baroreflex sensitivity increases along with the
depth of non-REM sleep.'*5% Sleep-related autonomic alterations may thus well fit in the
general concept of sleep as a state of adaptive inactivity.*® The central autonomic network
during non-REM sleep may involve the hypothalamic ventrolateral preoptic area, central
thermoregulatory and central baroreflex pathways, and command neurons in the pons
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and midbrain.?®3' The intact sleep-related HR decrease in bCBR patients suggest that the
peripheral baroreceptors play a minor role in the cardiovagal modulation during sleep. We
speculate that the balance of neuronal autonomic control changes throughout the sleep-
wake cycle. While awake, baroreceptors have an important role in buffering circulatory
oscillations induced by activity and mental stress. During non-REM sleep, these oscillations
decrease. Consequently, the influence of the baroreceptors gradually declines and
autonomic outflow is predominantly driven by the central autonomic network?3? (Figure
3). During REM sleep, both pathways are likely equally important: centrally induced transient
augmentations of sympathetic outflow cause an increase in baroreceptor activity."»*

Limitations

We did not quantify baroreflex function as we lacked continuous blood pressure
measurements and did not perform daytime standardized baroreflex tests. The low LF
values in our bCBR patients are however a clear indication of baroreflex dysfunction.’®"
Accordingly, a previous small study in eight bCBR subjects confirmed that bCBR causes
chronic impairment of baroreflex control of both heart rate and sympathetic nerve activity."
Also, ideally given the complex nature of the autonomic nervous system measurements
should be multimodal (e.g.,, including muscle sympathetic nervous activity, sympathetic
skin response, pulse arterial tonometry (PAT)) to account for regional differences.

The small sample size of our study was inevitable in view of the extremely low prevalence
of paragangliomas. The study did not have enough power to detect small differences.
Therefore we were not willing to correct for multiple testing; this may have caused a type |
error. However, we believe that our conclusions are valid, as the direction of the results were
consistent and in line with previous daytime studies.””'” Again, because of the small number
of subjects we included two patients who were using beta-blockers. To overcome this
limitation, we corrected for beta-blocker use in our mixed effects model, but no significant
effects were observed. Another limitation is the lack of measurements of leg movements.
We are not aware of an increased prevalence of periodic leg movements in bCBR patients.
Even if such a difference would have been the case, the effects on our outcome parameters
would be likely minimal as leg movements only have short-term effects: autonomic
parameters did not differ between patients with periodic leg movements and controls if
the periodic leg movements epochs were excluded.®®

Conclusion

In conclusion, the arterial baroreceptors are a critical relay in the autonomic network
modulating both the peripheral and the central autonomic outflow. Our small study in
patients with probable baroreflex failure, however, indicates that the sleep-related HR
decrease predominantly results from non-baroreflex mediated, central mechanisms.
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Heart rate variability after carotid body tumor resection

Abbreviations

bCBR bilateral carotid body tumor resection
BMI body mass index

BP blood pressure

BPM beats per minute

EEG electroencephalographic

HF high frequency

HR heart rate

HRV heart rate variability

LF low frequency

non-REM non rapid eye movement

PLMS periodic leg movements

REM rapid eye movement

SDHD succinate dehydrogenase subunit D
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Chapter 6

Abstract

Background: “'I-MIBG therapy can be used for palliative treatment of malignant
paraganglioma and phaeochromocytoma. The main objective of this study was to perform
a systematic review and meta-analysis assessing the effect of *'I-MIBG therapy on tumour
volume in patients with malignant paraganglioma/phaeochromocytoma.

Methods: A literature search was performed in December 2012 to identify potentially
relevant studies. Main outcomes were the pooled proportions of complete response, partial
response and stable disease after radionuclide therapy. A meta-analysis was performed with
an exact likelihood approach using a logistic regression with a random effect at the study
level. Pooled proportions with 95% confidence intervals (Cl) were reported.

Results: Seventeen studies concerning a total of 243 patients with malignant paraganglioma/
phaeochromocytoma were treated with "'I-MIBG therapy. The mean follow-up ranged
from 24 to 62 months. A meta-analysis of the effect of *'-MIBG therapy on tumour volume
showed pooled proportions of complete response, partial response and stable disease of,
respectively, 0-03 (95% Cl: 0:06-0-15), 0-27 (95% Cl: 0-19-0-37) and 0-52 (95% Cl: 0-41-0-62)
and for hormonal response 0-11 (95% Cl: 0-05-0-22), 0-40 (95% Cl: 0-28-0-53) and 0-21 (95%
Cl:0:10-0-40), respectively. Separate analyses resulted in better results in hormonal response
for patients with paraganglioma than for patients with phaeochromocytoma.

Conclusions: Data on the effects of "'I-MIBG therapy on malignant paraganglioma/
phaeochromocytoma suggest that stable disease concerning tumour volume and a partial
hormonal response can be achieved in over 50% and 40% of patients, respectively, treated
with ¥1I-MIBG therapy. It cannot be ruled out that stable disease reflects not only the effect
of MIBG therapy, but also (partly) the natural course of the disease.
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Introduction

Background

Paragangliomas (PGLs) are rare vascular, neuroendocrine tumours (NETs) of paraganglia.
They derived from either sympathetic chromaffin tissue in adrenal and extra-adrenal
locations or from parasympathetic tissue of the head and neck (HNPGL)." Approximately,
80% of PGLs arise from the adrenal medulla and are referred to as phaeochromocytoma
(PCC)."? Although the majority of PGLs are benign, there is a risk of malignant degeneration
of 10% for PCC and 10-20% for extra-adrenal non-HNPGLS.* Malignant disease is defined as
the presence of metastatic lesions at sites where neuroendocrine tissue is normally absent.*
The prognosis in malignant PGL/PCC is known to be poor and treatment remains basically
palliative. The overall 5-year survival in patients with malignant PGL/PCC is <50%.37# In 1984,
Sisson et al.? reported their first experience with radionuclide therapy using "*'I-MIBG in the
treatment of patients with malignant PCC. Since then, several studies have investigated the
therapeutic option of radiolabelled MIBG in the treatment of malignant PGL/PCC, however,
with varying success rates.

At present, the precise effect of *'I-MIBG therapy for the treatment of malignant PGL/PCC
is unclear. One systematic review on the effect of radionuclide therapy in malignant NETs
has been published,”® however, results were not stratified for PGL/PCC and a meta-analysis
assessing this effect has never been performed.

Objective of the study

The aim of this study was to perform a systematic review and meta-analysis of the effects of
1-MIBG therapy on tumour volume in malignant PGL/PCC. Secondary objectives were to
assess biochemical response, overall survival, progression-free survival and toxicity.

Materials and methods

Eligibility criteria

Studies assessing the effect of *'I-MIBG therapy on tumour volume of malignant PGL/PCC
were eligible for inclusion. Malignant PGL/PCC was defined as the presence of metastases
in non-neuroendocrine tissue distant to the primary tumour.*® Studies concerning patients
with nonmalignant PGL/PCC according to this definition were excluded, for example,
locally invasive PGL/PCC without metastases, unless data for patients with metastatic PGL/
PCC could be extracted separately.

The analysis aimed to assess the proportion of PGL/PCC patients with tumour response
after ®'I-MIBG therapy, with biochemical response (i.e. levels of catecholamines and/or their
metabolites), overall survival, progression-free survival and toxicity as secondary outcomes.
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According to the 'Response evaluation in solid tumours (RECIST) criteria’version 1.1, a partial
treatment response is defined as ‘at least a 30% decrease in the sum of diameters of target
lesions, taking as reference the baseline sum diameters'" However, the RECIST criteria
have not (yet) been widely accepted in the field of PGLs. Therefore, it was decided not to
restrict inclusion of studies to RECIST criteria only for tumour response. The same applies
to biochemical response: we included both papers that measured biochemical response
with clear criteria as well as papers that measured biochemical response without clear
definitions.

To accurately assess response rates, only studies determining treatment response (tumour
volume) by radiologic imaging were eligible for inclusion. Furthermore, only studies
reporting a population of five or more patients with PGL/PCC were included, to avoid the
inclusion of cases or case series that are more prone to selection and publication bias. In
case of multiple studies describing the same cohort, the study that comprised the highest
number of subjects and/or the longest duration of follow-up was included.

To strengthen the results and enlarge the number of patients with these relatively rare
tumours that could be included in our systematic review and meta-analysis, we also included
studies that described patients with other types of NETs if data for patients with metastatic
PGL/PCC could be extracted separately and if these studies reported a population of five or
more patients with PGL/PCC.

Eligible studies were restricted to languages familiar to the authors (English, French, German
and Dutch). When reported data were not sufficient for accurate data extraction, we tried to
contact the authors for clarification.

Search strategy

In December 2012, PubMed, MEDLINE, EMBASE, Web of Science, COCHRANE, CINAHL,
Academic Search Premier and ScienceDirect were searched to identify potentially relevant
studies (search strategy provided upon request). References of key articles were assessed
for additional relevant articles.

Data extraction

All studies obtained from the search strategy were entered into reference manager software
(Reference Manager version 12; Thomson Reuters, Philadelphia, PA, USA) and were screened
on title and abstract. Potentially relevant studies were retrieved for detailed assessment.
For eligible studies, data were independently extracted by two reviewers (LvH and NN).
Disagreements between reviewers were resolved by consensus, but when doubt remained,
a third reviewer (EC) decided.
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Risk of bias assessment

The present meta-analysis is based on observational studies. Risk of bias assessment was

based on study components that potentially bias an association between the intervention

under study ("*'I-MIBG therapy) and the primary outcome (tumour volume). The following

elements were assessed for all studies:

1. Risk of selection bias. Inclusion of consecutive exposed patients or a random sample of
the inception cohort was considered a low risk of bias.

2. Adequacy of reporting of intervention ("*'I-MIBG therapy). When number of doses and
activity of *'I-MIBG therapy were reported, this was considered adequate.

3. Adequacy of measurement of tumour volume. The effect of *'I-MIBG therapy on tumour
volume should have been measured by either sequential MRI or CT scanning.

4. Adequate definition of tumour response. A prespecified definition of objective tumour
response was considered adequate.

5. Adequacy of follow-up. Loss to follow-up <5% was considered to represent a low risk of
bias.

Statistical analysis

The main outcome of the present meta-analysis was the pooled proportion of PGL/PCC
patients with tumour response after *'I-MIBG therapy. The pooled proportion of PGL/PCC
patients with biochemical response after *'I-MIBG therapy was the secondary outcome.
For all studies, the proportion of PGL/PCC patients with tumour response was calculated
as the number of PGL/PCC patients with tumour response divided by the total number of
PGL/PCC patients treated with "'I-MIBG therapy. The same procedure was applied to the
proportion of PGL/PCC patients with biochemical response. For all proportions, exactly, 95%
confidence intervals (95% Cl) were calculated.

Meta-analysis was performed using an exact likelihood approach. The method used was
a logistic regression with a random effect at the study level."” Given the expected clinical
heterogeneity, a random effects model was performed by default, and no fixed effects
analyses were performed. For meta-analysis of proportions, the exact likelihood approach
based on a binomial distribution has advantages compared with a standard random effects
model that is based on normal distributions.” Firstly, estimates from a binomial model
are less biased than estimates from models based on a normal approximation.' This is
especially the case for proportions that are close to 0 or 1. Secondly, no assumptions are
needed for the exact approximation when dealing with zero cells, whereas the standard
approach needs to add an arbitrary value (often 0-5) when dealing with zero cells. Adding
values to zero cells is known to contribute to the biased estimate of the model.” All analyses
were performed with stata 12.0 (Stata Corp, College Station, TX, USA).
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Results

Study selection

The initial search resulted in 1648 unique records; 93 were selected for detailed assessment.
After detailed assessment, 76 articles were excluded for the following reasons: outcome
other than tumour response (n = 25), no radiologic evaluation or unclear if radiologic
evaluation was performed (n = 7), no original data (n = 5), article included patients with
various NETs without stratification for patients with PGL/PCC (n = 3). Twenty-three studies
were excluded because the number of patients with PGL/PCC did not exceed five and
three studies did not meet our criteria for malignant PGL/PCC. Furthermore, ten studies
comprised a cohort also described in another publication; the studies with the smallest
sample sizes were excluded.”'®?* No new articles were found in references of key articles.
Finally, a total of 17 studies were included in the present analysis, 16 written in English and
one written in French.92>4

Study characteristics

Study characteristics are displayed in Table 1. Included studies were published from 1984
to 2012. All included studies were classified as cohort studies.*' A total of 243 patients
were included in this meta-analysis. The largest study contained 49 subjects. One study
included patients only after there was evidence of progressive disease,* while in most other
studies, patients were included irrespective of evidence of progressive disease or secretory
symptoms, or it was not reported.

Mean age ranged from 25 to 49 years. Mean duration of follow-up ranged from 24 to 62
months.

Patients were treated with a median total administered activity of *'I-MIBG ranging from
6882 to 39400 megabecquerel, MBq (186—1065millicurie, mCi), with a median number of
infusions ranging from 1 to 7.
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B1-MIBG therapy for paraganglioma

Risk of bias assessment

Summary characteristics of the risk of bias assessment are shown in Table 2. In 15 studies
(88%), included patients were explicitly described as consecutive exposed patients or as a
random sample of the inception cohort. The intervention under study (i.e. "*'I-MIBG therapy)
was adequately described in 13 studies (76%).

Table 2. Risk of bias assessment

Consecutive

" Determination Adequate Adequate Number of

First author patients or of intervention measurement definition patients lost
(Year) rar'ndom s.ample adequately of tumor of tumor to follow-up

HlnSSERCD reported response response (%)

cohort
Sisson (1984)° Unclear Yes Yes No? nr.
Charbonnel (1988)* Unclear NoP Yes Yes nr.
Krempf (1991)* Yes Yes Yes Yes 1 (7%)
Lewington (1991)% Yes Yes Yes No? n.r.
Schlumberger (1992)%  Yes Yes Yes Yes 1 (8%)
Sakahara (1994)% Yes Yes Yes No? 0
Hartley (2001)?' Yes Yes No¢ Yes 1 (17%)
Mukherjee (2001)* Yes Yes Nod Yes 1 (7%)
Bomaniji (2003)* Yes Yes Yes Yes 0
Safford (2003)%* Yes Yes Yes Yes nr.
Gedik (2008)*° Yes Yes Yes Yes n.tr.
Gonias (2009)*° Yes No¢ Yes Yes 1 (2%)
Castellani (2010)% Yes Yes Yes Yes n.tr.
Shilkrut (2010)* Yes Yes Yes Yes n.tr.
Rachh (2011)* Yes Yes Yes Yes 5 (50%)
Szalat (2011)% Yes Nof Yes Yes nr.
Fishbein (2012)% Yes Nod Nod Yes 0

Abbreviations: n.r. not reported; n.s. not specified.

a Prespecified definitions for assessment of tumor response not reported.

b Total administered activity: only range reported.

¢ Radiological responses assessed by CT/X-rays; unclear which patients were evaluated by CT and which by X-ray.
d Specific imaging modality not reported.

e Administered activity of MIBG only reported for the first treatment.

f Administered activity not reported.

g Total dose not reported.

The effect of therapy on tumour volume was adequately measured (i.e. by CT and/or MRI)
in 14 studies (82%). In two studies, the specific imaging modality was not reported and
one study also used X-rays to assess tumour response and did not specify which imaging
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modality was performed in which patients. Three studies did not report prespecified
definitions for assessment of tumour response. Actual loss to follow-up was reported in 9 of
17 studies (53%). In five of these 9 studies, loss to follow-up exceeded 5%.

Effect of '*'I-MIBG therapy on tumour volume

Table 3 gives an overview of reported outcomes after "*'I-MIBG therapy. To assess tumour
response, eight studies used the World Health Organization (WHO) criteria, 293132343638 four
studies the RECIST criteria, of which one version 1.1,8203%4 one study the Eastern Cooperative
Oncology Group (ECOG) criteria® and one study the International Neuroblastoma Response
Criteria (INRC).* Three studies did not report how tumour response was assessed.?***
Proportions of complete response after *'I-MIBG therapy ranged from 0-00 to 0-38. For
partial response, this was 0-00 to 0-83 and for stable disease 0-00 to 0-90.

Results of the random effects meta-analysis are displayed in Fig. 1. Pooled proportions of
complete response, partial response and stable disease were 0-03 (95% Cl: 0-06-0-15), 0-27
(95% Cl: 0-19-0-37) and 0-52 (95% Cl: 0-41-0-62), respectively.

Effect of '*'I-MIBG therapy on catecholamine excess

Hormonal response was measured by all studies except one® Five studies assessed
hormonal response using the World Health Organization (WHO) criteria,?*?"?%343 one study
using the ECOG criteria?® and one study using the INRC.* Five studies did not use common
criteria®®?238 and four studies did not report prespecified definitions for assessment of
hormonal response.*?#*33” Proportions of complete response ranged from 0-00 to 0-27,
partial response from 0-16 to 1-00 and stable disease from 0-00 to 0-63.

The random effects meta-analysis resulted in pooled proportions of complete response,
partial response and stable disease of respectively 0-11 (95% Cl 0-05-0-22), 0-40 (95% Cl
0-28-0-53) and 0-21 (95% Cl 0-10-0-40) (Fig. 2).

Paraganglioma vs phaeochromocytoma

To assess potential differences in response between PGL and PCC, separate analyses were
performed for these two subgroups. Unfortunately, in three manuscripts, the results were
not separately reported for PCC and PGL,***?¢ resulting in a total of 99 patients with PCC
and 47 patients with PGL for separate analyses. Results are displayed in Figs 1 and 2. For
tumour response, pooled proportions of complete response and partial response were
slightly larger for patients with PGL than for patients with PCC (respectively, 0-04 and 0-30
for patients with PGL vs 0-01 and 0-28 for patients with PCC), with a larger proportion of
stable disease in patients with PCC (0-50 for patients with PCC vs 0-28 for patients with PGL).
Concerning catecholamine excess, results of the meta-analysis showed better response
rates for patients with PGL than for patients with PCC.
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Chapter 6

Effect of MIBG therapy on tumor volume

Response
Outcome Disease Studies in % (95% CI)
Complete response  PCC 13 — 1.09 (0.15, 7.31)
Partial response PCC 13 —— 27.69 (19.00, 37.05)
Stable disease PCC 12 —_— 50.72 (38.23, 63.18)
Complete response  PGL 1 — 4.35 (1.09, 15.84)
Partial response PGL 11 —_— 30.36 (12.56, 42.80)
Stable disease PGL 1" —_— 27.69 (9.28, 58.66)
Complete response  Combined PCC and PGL 12 — 3.14 (0.57, 15.45)
Partial response Combined PCC and PGL 12 —_—— 27.09 (19.15, 37.05)
Stable disease Combined PCC and PGL 11 —_— 51.75 (41.10, 62.25)
T T T T
0 25 50 75 100
Figure 1. Meta-analysis, tumor volume.
Effect of MIBG therapy on Cathecholamine excess Response
Outcome Disease Studies in % (95% Cl)
Complete response  PCC 12 —_ 8.79 (4.23,17.22)
Partial response PCC 12 —— 46.26 (35.66, 57.20)
Stable disease PCC 12 —_—— 10.43 (2.15, 38.46)
Complete response  PGL 9 —— 8.32 (2.08, 27.89)
Partial response PGL 9 —_— 58.42 (38.23, 75.95)
Stable disease PGL 9 —_—— 20.75 (8.95, 41.34)
Complete response  Combined PCC and PGL 11 —— 10.91 (5.37, 21.59)
Partial response Combined PCC and PGL 11 —_—— 40.13 (28.09, 53.49)
Stable disease Combined PCC and PGL 11 —_—— 21.08 (9.62, 39.89)
T T T T
0 25 50 75 100

Figure 2. Meta-analysis, catecholamine excess.
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Survival and side effects of 3'I-MIBG therapy

Two studies reported a 5-year survival rate of 45% and 64%°°*° and two studies a mean
progression-free survival time of 23-1 and 285 months, respectively.?*

To grade toxicity, three studies used the ctcae version 3.0 2°* one study describes the
ECOG criteria® and another study WHO criteria.*? Eight studies did not specify toxicity
criteria. In two studies, which also included patients with other types of NETs, toxicity
could not be extracted for the patients with PGL/PCC. Another two studies did not report
toxicity. Haematologic toxicity was the most frequently reported side effect, with grade 3-4
neutropenia occurring in up to 87% of treatments and grade 3-4 thrombocytopenia in
83%. Renal toxicity was not reported.

Discussion

The present systematic review and meta-analysis aimed to assess tumour response of
malignant PGL/PCC after 'I-MIBG therapy. Although reported therapy effects varied
considerably, our meta-analysis showed that stable disease following "'I-MIBG therapy
could be achieved in 52% of the patients and a partial hormonal response in 40%. Reported
5-year survival rates were 45% and 64% and mean progression-free survival times 23-1 and
28-5 months. The most frequent side effect was haematologic toxicity.

By including only patients with metastatic PGL/PCC in our meta-analysis, we tried to abolish
incorrectly positive tumour response rates. With the results of this study, it is possible to
inform both patients with malignant PGL/PCC and their treating physicians more adequately
concerning the expected tumour response after *'I-MIBG therapy.

In patients with malignant PGL/PCC, in whom treatment is basically palliative, stable disease
following therapy may be a useful criterion for assessing tumour response, especially in
patients with previously demonstrated progressive disease. However, in the included
studies, the protocol when to initiate treatment differed widely. One study included patients
only after there was evidence of progressive disease,*® while most other studies included
patients irrespective of evidence of progressive disease. Therefore, the possibility remains
that stable disease is not merely a therapy effect, but also a reflection of the natural course
of the disease with slow progression in a subset of patients.

The same applies to hormonal response: included studies did not report if patients were
selected for inclusion irrespective of catecholamine excess. However, as reduced tumour
function and, as a consequence, symptom palliation are important treatment goals in
patients with malignant PGL/PCC, it is a meaningful finding that our meta-analysis showed
that a partial hormonal response after *'I-MIBG therapy can be achieved in 43% of patients.
Future studies may translate these results by including quality of life measures as an end-
point when assessing results of *'I-MIBG therapy.

113



Chapter 6

There are some other limitations that should be taken into account when interpreting this
meta-analysis. The included studies displayed differences in treatment regimens; patients
treated with "*'I-MIBG therapy received a total administered activity ranging from 6882 to
39400 MBq (186-1065 mCi), with a mean number of infusions ranging from 1 to 7. This
may have contributed to the variation in reported response rates. One study addressed
this issue; Castellani et al?® compared the use of low vs intermediate activity per session
of B'-MIBG therapy and found that increasing the single session activity resulted in a
shorter median time to achieve a significant response, which was obtained with a lower
median cumulative activity in a lower median number of sessions. It is unclear if a higher
total administered activity results in a higher number of patients with tumour response.
However, as the amount of administered activity does not reflect the (radiation) dose that
is actually absorbed in the tumour, pretherapeutic individual tumour dosimetry should be
performed to optimize dose delivery. To achieve this, more clinical studies to obtain reliable
dosimetry of radiation therapy for malignant PGL/PCC are needed.

Included studies also displayed heterogeneity in assessing the effects of radionuclide
therapy. Several different criteria were applied to define tumour response. In addition, the
effect of therapy on tumour volume was not adequately measured (i.e. by CT and/or MRI)
in three studies. This may have contributed to the variety in reported response rates. Future
research on the effects of radionuclide therapy on malignant PGL/PCC should apply uniform
criteria for changes in tumour size and sequential CT and/or MRI scanning to objectively
assess treatment response.

In our systematic review, we included a total of 243 patients, of which 94 were PGL patients.
In two of these patients with PGL, a HNPGL was the primary tumour. Although HNPGLs are
classified as parasympathetic PGLs, which differ from sympathetic PGL in terms of secretion
and of receptor expression profile, both HNPGL patients showed pretherapeutic uptake of
the radiopharmaceutical on diagnostic 'I-/"*'I- MIBG scintigraphy. Therefore, these patients
were good candidates for MIBG therapy, and it seems unlikely that the inclusion of these
two patients has skewed our results.

Paraganglioma/phaeochromocytoma can occur sporadically or as part of a hereditary
syndrome (i.e. hereditary paraganglioma syndrome, von Hippel-Lindau disease, multiple
endocrine neoplasia (MEN) type 2 or neurofibromatosis type 1).*** Although the different
susceptibility genes vary in their risk of developing malignant PGL/PCC,%** to our knowledge,
it is not known if the response to "*'I-MIBG therapy differs between tumours of different
genetic backgrounds. Only four of the included studies reported known gene mutations,
resulting in a total of 15 SDHB patients, three patients with neurofibromatosis type |, one
patient with MEN2A and one with MEN2B.%6283038 Gonias et al** found that patients with an
SDHB mutation were more likely to achieve complete or partial remission. SDHB mutation
was not, however, predictive of overall survival or event free survival. Unfortunately, it is
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not reported if all other included patients tested negative for susceptibility genes or were
not genetically tested at all. Furthermore, the small sample sizes in these studies prohibit a
separate meta-analysis.

Possibly, differences in genetic background may also explain the higher hormonal response
rates in patients with PGL than in patients with PCC. Examining different responses to
B1-MIBG therapy between PGL/PCC patients of different genetic backgrounds would be an
interesting topic for further research.

In the last few years, an increasing number of metastatic NETs have been treated with
peptide receptor radionuclide therapy (PRRT) with radiolabelled somatostatin analogues
like 7Lutetium (Lu)-DOTA-octreotide and “Yttrium (Y)-DOTA-lanreotide.” Differentiated
neuroendocrine cancers frequently express subtypes of the somatostatin receptor family*;
PGL/PCC were found to express predominantly subtypes 2A and 3, and therefore, patients
with PGL/PCC are suitable candidates for PRRT.* Van Essen et al.*® treated nine PGL/PCC
patients with a total administered activity ranging from 14800 to 29600 MBq (400-800 mCi)
"’Lu-octreotate. None of the patients achieved a complete response on tumour volume;
however, a partial response or stable disease was achieved in, respectively, two and four
patients. In a study by Imhof et al*, 11 patients with PCC and 28 patients with PGL were
treated with °Y-DOTATOC therapy. Seven patients had a partial response after therapy.

Not all patients with malignant PGL/PCC are eligible for MIBG therapy, as it depends
on whether the tumours exhibit adequate take up of the radiopharmaceutical after
intravenous administration.®*! To establish whether a patient is a good candidate for either
B1-MIBG therapy or PRRT, '2I-/"'l- MIBG scintigraphy or '"'In-pentetreotide scintigraphy
(SRS), respectively, has to be performed in advance. In patients with malignant PGL/PCC
with poor "2|-MIBG uptake, but good uptake with SRS, PRRT might be a good alternative
treatment for *'-MIBG therapy.

Chemotherapy is another treatment option for patients with malignant PGL/PCC, but large
clinical trials are lacking. Huang et al*? showed a complete response of tumour volume in
11% and a partial response in 44% of 18 patients treated with a combination chemotherapy
of cyclophosphamide, vincristine and dacarbazine (CVD). The 5-year overall survival was
<50% and did not differ between the patients whose tumours responded to therapy and
those whose tumours did not respond. Nomura et al.”® also did not find a better survival
in patients treated with CVD chemotherapy compared with controls. An advantage
of ¥'I-MIBG therapy is that, unlike chemotherapy, it has a mild toxicity in general. In our
review, haematologic toxicity was the most reported side effect of included studies, usually
neutropenia and/or thrombocytopenia. Unfortunately, the timing at which these side
effects were noted is missing in most cases. Sze et al** recently published a study about
the incidence of persistent haematological and renal toxic effects after long-term follow-up
of ¥'I-MIBG therapy in fourteen patients with PGL/PCC and 44 patients with NETs. Overall,
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32 patients (26 patients with NET and six patients with PGL/PCC) developed new and/or
sustained haematological effects. Five patients (four patients with NET and one PGL/PCC
patient) were noted to have more significant consequences, including the development of
myelodysplasia (two patients), acute myeloid leukaemia (two patients) or chronic myeloid
leukaemia (one patient). Number of cycles received and cumulative dose were significantly
higher in this subgroup compared with those who did not develop haematological
malignancy inthis cohort. Compared with ourincluded studies, Sze et al** noted a substantial
increase in the number of haematological events, including haematological malignancies.
Probably, this is because of the longer follow-up of their patients. The median follow-up
from commencement of first *'I-MIBG therapy was, respectively, 47-5 and 46-5 months for
the patients with NET and patients with PGL/PCC. Therefore, it is important to realize that
although in our study the haematologic toxicity was mild, with prolonged follow-up and
probably also with higher doses severe adverse events may become evident.

More recently, studies assessing targeted therapies, such as sunitinib, have shown promising
results in the treatment of malignant PGL/PCC.** Sunitinib is an oral tyrosine kinase inhibitor
with antiangiogenic and antitumour activity. Currently, the published data are limited to
only afew case reports,®® but a single arm open-label phase Il trial with sunitinib is currently
underway with an estimated study completion date of December 2013 (clinicaltrials.gov).
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Chapter 7

Abstract

Background: Chemotherapy with cyclophosphamide, vincristine and dacarbazine (CVD)
can be used for palliative treatment of malignant pheochromocytoma and paraganglioma.
However, the precise effect of this chemotherapeutic regimen on tumor volume is unclear.
The main objective of this study was to perform a systematic review and meta-analysis
assessing the effect of chemotherapy with CVD on tumor volume in patients with malignant
paraganglioma/pheochromocytoma.

Methods: A literature search was performed in October 2013 to identify potentially relevant
studies. Main outcomes were the pooled percentages of complete response, partial
response and stable disease after chemotherapy with CVD. A meta-analysis was performed
with an exact likelihood approach using a logistic regression. Pooled percentages with 95%
confidence intervals (Cl) were reported.

Results: Four studies concerning a total of 50 patients with malignant paraganglioma/
pheochromocytoma reported on treatment with a combination of CVD chemotherapy. A
meta-analysis of the effect of chemotherapy on tumor volume showed pooled percentages
of complete response, partial response and stable disease of, respectively, 4% (95% Cl: 1%-
15%), 379%(95% Cl: 25%-51%) and 14% (95% Cl: 7%-27%). Only two studies concerning a
total of 35 patients assessed the response on catecholamine excess; pooled percentages for
complete, partial and stable hormonal response were 14% (95% Cl: 6%-30%), 40% (95% Cl:
25%-57%) and 20% (95% Cl: 10%-36%), respectively. Duration of response was also reported
in only two studies with a median duration of response of 20 months and 40 months.

Conclusions: Data on the effects of a combination of CVD chemotherapy on malignant
paraganglioma/pheochromocytoma suggest that a partial response concerning tumor
volume can be achieved in about 37% of patients and a partial response on catecholamine
excess in about 40% of patients. However, in the included studies, the protocol when to
initiate treatment was not well described. Therefore, it can not be excluded that the reported
effect of chemotherapy on tumor volume reflects the natural course of the disease, at least
partially.
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Introduction

Background

Paragangliomas (PGLs) are rare vascular, neuroendocrine tumors (NETs) of paraganglia.
They derive from either sympathetic chromaffin tissue in adrenal and extraadrenal
locations (sympathetic PGL or sPGL) or from parasympathetic tissue of the head and neck
(HNPGL)." Approximately 80% of PGLs arise from the adrenal medulla and are referred
to as pheochromocytoma (PCC)."? Although the majority of PGLs are benign, there is a
risk of malignant degeneration of 10% for PCC and 10-20% for sPGL.? Malignant disease
is defined as the presence of metastatic lesions at sites where neuroendocrine tissue is
normally absent.*” The prognosis in malignant PGL/PCC is known to be poor and treatment
remains basically palliative. The overall 5-year survival in patients with malignant PGL/
PCC is less than 50%.3%° Patients with metastatic tumors also have high morbidity rates
from excessive catecholamine secretion, hypertension and cardiovascular complications.
Systemic treatment options include radionuclide therapy with 'I-MIBG'® or radiolabelled
somatostatin analogues."” A recent meta-analysis on the effects of 'I-MIBG therapy on
malignant PGL/PCC suggests that stable disease concerning tumor volume and a partial
hormonal response can be achieved in over 50% and 40% of patients respectively.'”
Combination chemotherapy of cyclophosphamide, vincristine and dacarbazine (CVD)
for the treatment of malignant PGL/PCC was introduced in 1985 by Keiser et al. ™ Three
years later, Averbuch et al. presented a study in which 14 patients with malignant PGL/PCC
were treated with this combination regimen of CVD. They reported a tumor response rate
(complete and partial) of 57%.'* Combination chemotherapy with CVD produced responses
of 80% in children with advanced neuroblastoma, neuroendocrine tumors with similar
clinical and biologic characteristics as PCC."”

At present, the precise effect of CVD chemotherapy for the treatment of malignant PGL/PCC
is unclear. In 2007, Scholz et al. published a review on the current treatment of malignant
PCC, including CVD chemotherapy.’® They concluded that the CVD scheme seems to be
effective at modest toxicity in a significant proportion of patients; however, remissions are
rather short and are often followed by complete therapeutic failure after relapse.’® A meta-
analysis assessing this effect has never been performed.

Objective of the study

The aim of the present study was to perform a systematic review and meta-analysis of
the effects of CVD chemotherapy on tumor volume in malignant PGL/PCC. Secondary
objectives were to assess biochemical response (i.e. hormonal overproduction), overall
survival, progression-free survival and toxicity.
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Materials and methods

Eligibility criteria

Studies assessing the effect of the combination of chemotherapy with CVD on tumor
volume of malignant PGL/PCC were eligible for inclusion. Malignant PGL/PCC was defined
as the presence of metastases in non-neuroendocrine tissue distant to the primary tumor.*’
Studies concerning patients with non-malignant PGL/PCC according to this definition were
excluded, e.g. locally invasive PGL/PCC without metastases, unless data for patients with
metastatic PGL/PCC could be extracted separately.

The analysis aimed to assess the percentage of PGL/PCC-patients with tumor response
after chemotherapy, with biochemical response (i.e. levels of catecholamines and/or their
metabolites), overall survival, progression-free survival and toxicity as secondary outcomes.
According to the “Response evaluation in solid tumors (RECIST) criteria”version 1.1, a partial
treatment response is defined as “at least a 30% decrease in the sum of diameters of target
lesions, taking as reference the baseline sum diameters”'” However, the RECIST criteria have
not (yet) widely found their way in the field of PGLs. Therefore, it was decided not to restrict
inclusion of studies to RECIST criteria only for tumor response.

To accurately assess response rates, only studies determining treatment response (tumor
volume) by radiologic imaging were eligible for inclusion. Furthermore, only studies
reporting a population of five or more PGL/PCC-patients were included, in order to avoid
the inclusion of cases or case series which might be prone to selection and publication
bias. In case of multiple studies describing the same cohort, the study which comprised the
highest number of subjects and/or the longest duration of follow-up was included. Eligible
studies were restricted to languages familiar to the authors (English, French, German and
Dutch). When reported data were not sufficient for accurate data-extraction, we tried to
contact the authors for clarification.

Search strategy

In October 2013 PubMed, MEDLINE, EMBASE, Web of Science, COCHRANE, CINAHL,
Academic Search Premier and ScienceDirect were searched to identify potentially relevant
studies (search strategy provided upon request). References of key articles were assessed
for additional relevant articles.

Data extraction

All studies obtained from the search strategy were entered into reference manager software
(Reference Manager version 12, Thomson Reuters, Philadelphia, PA) and were screened
on title and abstract. Potentially relevant studies were retrieved for detailed assessment.
For eligible studies, data were independently extracted by two reviewers (NN and GA).
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Disagreements between reviewers were resolved by consensus, but when doubt remained,
a third reviewer (EC) decided.

Risk of bias assessment

The present meta-analysis is based on observational studies. Risk of bias assessment was

based on study components that potentially bias an association between the intervention

under study (combination of chemotherapy with CVD) and the primary outcome (tumor

volume). The following elements were assessed for all studies:

1. Risk of selection bias. Inclusion of consecutive exposed patients or a random sample of
the inception cohort was considered a low risk of bias.

2. Adequacy of reporting of intervention (chemotherapy). When dose per cycle and
number of cycles of chemotherapy were reported, this was considered adequate.

3. Adequacy of measurement of tumor volume. The effect of chemotherapy on tumor
volume should have been measured by either MRI or CT scanning.

4. Adequate definition of tumor response. A prespecified definition of objective tumor
response was considered adequate.

5. Adequacy of follow-up. Loss to follow-up < 5% was considered to represent a low risk of
bias.

Statistical analysis

The main outcome of the present meta-analysis was the pooled percentage of PGL/PCC-
patients with tumor response after CVD chemotherapy. The pooled percentage of PGL/PCC-
patients with biochemical response after CVD chemotherapy was the secondary outcome.
For all studies, the percentage of PGL/PCC-patients with tumor response was calculated
as the number of PGL/PCC-patients with tumor response divided by the total number of
PGL/PCC-patients treated with CVD chemotherapy. The same procedure was applied to the
proportion of PGL/PCC-patients with biochemical response. For all percentages exact 95%
confidence intervals (95% Cl) were calculated.

Meta-analysis was performed using an exact likelihood approach. The method used was a
logistic regression.'® We considered a random-effects regression analysis by default, unless
less than 5 studies contributed to a certain endpoint, because the between study variance
can then not be assessed reliably. In such a case a fixed effect analysis was performed.
For meta-analysis of proportions, the exact likelihood approach based on a binomial
distribution has advantages compared to standard models based on normal distributions."
Firstly, estimates from a binomial model are less biased than estimates from models based
on a normal approximation.” This is especially the case for proportions that are close to 0
or 1. Secondly, no assumptions are needed for the exact approximation when dealing with
zero-cells. All analyses were performed with STATA 12.0 (Stata Corp, Texas, USA).
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Results

Study selection

The initial search resulted in 459 unique records; 12 were selected for detailed assessment
(Figure 1). After detailed assessment, 6 articles were excluded for the following reasons:
outcome other than tumor response (n = 2), no original data (n = 1) and the number of
PGL/PCC-patients did not exceed five (n = 3). Furthermore, 2 studies comprised a cohort
also described in another publication; the studies with the smallest sample sizes were
excluded."?' No new articles were found in references of key articles. Finally, a total of 4
studies were included in the present analysis, all written in English.?>%

Study characteristics

Study characteristics are displayed in Table 1. Included studies were published from 2008
to 2013. All included studies were classified as cohort studies.?® A total of 50 patients
were included in this meta-analysis. The largest study contained 18 subjects. Mean age of
included patients ranged from 34 to 47 years.

459 potentially relevant studies 447 studies not included:

identified from electronic search

- population/intervention not in
title/abstract (247)

- casereport (63)

- other language (26)

- no abstract/full text available (2)

- editorial/letter to the editor (7)

- abstract/poster for congress/meeting (14)

- animal study (3)

v - no radiologic evaluation (1)

- nooriginal data (71)

- n<5(13)

N

12 publications retrieved for detailed
assessment

8 studies not included:

- outcome other than tumor response (2)
- nooriginal data (1)

- n<5Q)

- cohort already reported (2)

A

A\ 4

4 studies included in the systematic
review

Figure 1. Flow-diagram of search strategy and study selection.
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Risk of bias assessment

Summary characteristics of the risk of bias assessment are shown in Table 2. In all 4 studies
included patients were explicitly described as consecutive exposed patients or as a random
sample of the inception cohort. The intervention under study (i.e. CVD chemotherapy)
was adequately described in 2 studies (50%). The effect of therapy on tumor volume was
adequately measured (i.e. by CT and/or MRI) in all 4 studies. One study did not report
prespecified definitions for assessment of tumor response. Actual loss to follow-up was
reported in 3 of 4 studies (75%). In 2 of these 3 studies, loss to follow-up exceeded 5%.

Effect of CVD chemotherapy on tumor volume

Table 3 gives an overview of reported outcomes after CVD chemotherapy. To assess tumor
response, one study used the RECIST criteria** and one study the RECIST 1.1 criteria.”® One
study used its own modified standard criteria”® and one study did not report how tumor
response was assessed.”? Percentages of complete response after CVD chemotherapy
ranged from 0% to 11%. For partial response, this was 24% to 50% and for stable disease
0% to 24%.

Results of the fixed effects meta-analysis are displayed in Figure 2. Pooled percentages of
complete response, partial response and stable disease were 4% (95% Cl: 1%-15%), 37%
(95% Cl: 25%-51%) and 14% (95% Cl: 7%-27%), respectively.

Effect of CVD chemotherapy on catecholamine excess

Hormonal response was measured by only two studies. These two studies did not use
standard criteria. The criteria used by the two studies are outlined in the appendix of Table
3. Percentages of complete response were 12% and 17%, partial response 24% and 55%
and stable disease 17% and 24%.

The fixed effects meta-analysis resulted in pooled percentages of complete response,
partial response and stable disease of, respectively, 14% (95% Cl: 6%-30%), 40% (95% Cl:
25%-57%) and 20% (95% Cl: 10%-36%) (Figure 3).

Survival and side-effects of CVD chemotherapy

Information about survival and side-effects was only reported in three studies (Table 3).
Side-effects comprised mainly gastrointestinal toxicity and myelosuppression.
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Table 2. Risk of bias assessment of included studies

Consecutive
First author patients or

(Year of publication) random sample of

Determination
of intervention
adequately

Adequate
measurement
of tumor

Adequate
definition
of tumor

Number of
patients lost
to follow-up

inception cohort

Huang (2008)* Yes
Szalat (2011)* Yes
Ayala-Ramirez (2012)*>  Yes
Tanabe (2013)* Yes

a Dose and number of cycles not reported.

reported
Yes

No?
Yes
No¢

response

Yes
Yes
Yes

Yes

response

Yes
Yes
No®

Yes

(%)
1(5.5%)
n..

0 (0%)
6(26%)?

b Response by tumor size was defined as any objective reduction in the size of the tumor on cross-sectional
imaging studies during the first chemotherapy regimen. No definition of progressive disease.

¢ Number of cycles not reported.

d Three cases were excluded because of inadequate follow-up. CVD chemotherapy was discontinued in 3
cases because of poor general condition or adverse effects (e.g. severe bone marrow suppression and liver

dysfunction).
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Effect of Chemotherapy on tumor volume

Response
Qutcome Studies in % (95% Cl)
Complete response 4 — 4(1,15)
Partial response 4 —_—— 37(25,51)
Stable disease 4 —— 14(7,27)

Figure 2. Effect of chemotherapy on tumor volume.

Effect of Chemotherapy on Cathecholamine excess

Response
Outcome Studies in % (95% Cl)
Complete response 2 — 14 (6, 30)
Partial response 2 —_— 40 (25,57)
Stable disease 2 —_— 20 (10, 36)

T
0 25 50 75 100

Figure 3. Effect of chemotherapy on catecholamine excess.
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Discussion

The present systematic review and meta-analysis aimed to assess tumor response and
hormonal overproduction of malignant PGL/PCC after CVD chemotherapy. Our meta-
analysis showed that partial response on tumor volume following CVD chemotherapy
could be achieved in about 37% of the patients and a partial hormonal response in about
40%. Complete response on tumor volume could be achieved in only 4% of patients.
Toxicity leading to discontinuation of therapy was reported several times. With the results of
this study, it is possible to inform both patients with malignant PGL/PCC and their treating
physicians more adequately concerning the expected tumor response and the effect on
survival after CVD chemotherapy.

In the included studies, the protocol when to initiate treatment was not well described.
Only one study included patients with progressive metastatic disease; however, a definition
of progression was not given.”? The other three studies did not describe whether there
was evidence of progressive disease. Hescot et al. recently published a study in which
the natural history of patients with malignant PGL/PCC was assessed.” They found that
half of the patients with metastatic PGL/PCC have stable disease at 1 year without any
intervention. Therefore, they recommended a wait-and-see policy as first line management
in asymptomatic patients with malignant PGL/PCC#" With regard to the results of our
review, it can not be excluded that the reported effect of chemotherapy on tumor volume
reflects the natural course of the disease, at least partially. CVD chemotherapy is a therapy
regimen with potentially serious side effects like myelosuppression. Therefore it is important
to realize that a wait-and-see policy might be a better option in asymptomatic patients.
Our meta-analysis showed that a partial response concerning catecholamine excess could
be achieved in 40% of patients. This is a meaningful finding because reduced tumor function
and, as a consequence, symptom palliation is an important treatment goal in patients with
malignant PGL/PCC. Because quality of life was not an endpoint in the included studies, the
question remains if the reduction in tumor function will lead to a better quality of life. Future
studies with quality of life as an endpoint may probably point this out.

There are some limitations that should be taken into account when interpreting this meta-
analysis. We could include only four studies with a total of 50 patients and only two studies
reported effects of CVD therapy on catecholamine excess. This is, however, inevitable in
view of the extremely low prevalence of malignant PGL/PCC. This means that results should
be interpreted with caution as the reported effects may not be precise. In addition, because
of the limited number of patients, a separate meta-analysis for PCC and PGL patients was
not possible. Also, it would be of interest to assess responsiveness in different groups, for
example men vs women, high vs low Ki67 index and presence or absence of a genetic
syndrome, however, due to the low number of patients included in our meta-analysis, a
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separate analysis for these different groups would lack statistical power.

We cannot rule out that the four cohorts listed might be different from each other
concerning, for example progressiveness of the disease. Prior treatment regimen differed
between 3 studies and was not reported in the other study. This difference in prior treatment
regimen might be the result of more or less aggressive tumors in the included patients. This
should be taken into account when interpreting these results.

Of the four included studies, two studies used RECIST and RECIST 1.1 criteria to assess tumor
response. In one study, there was no adequate definition of tumor response?” and another
study used its own criteria.”® Because of this heterogeneity, it is more difficult to compare
the studies objectively. This may have contributed to differences in response rates. Also,
when interpreting the data, it should be kept in mind that the analysis is based on four
studies only, and that these four studies show clinical heterogeneity.

More recently, studies assessing targeted therapies, such as Sunitinib, have shown
promising results in the treatment of malignant PGL.?® Sunitinib is an oral tyrosine kinase
inhibitor with antiangiogenic and antitumor activity. Currently, the published data are
limited to only a few case reports and retrospective reports,®3° but a single arm open-label
phase Il trial with sunitinib is currently underway with an estimated study completion date
of December 2013 (clinicaltrials.gov). Also, a first international, randomized, double blind,
phase Il, multicenter study has started in December 2011. This study aimed to determine
the efficacy of Sunitinib on the progression-free survival at twelve months in subjects with
progressive malignant PCC and PGL. The estimated study completion date of this study is
December 2019 (clinicaltrials.gov).

In conclusion, with CVD chemotherapy a partial response concerning tumor volume can
be achieved in about 37% of patients and a partial response on catecholamine excess in
about 40% of patients with malignant PGL/PCC. However, the possibility remains that the
reported effect on tumor volume reflects, at least partially, the natural course of the disease.
Data are scarce and large clinical trials are lacking; therefore, more studies are needed to
determine the precise effect of CVD chemotherapy.
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Summary and conclusions

In the current thesis, we evaluated the clinical characteristics of SDHx mutation carriers,
described genotype-phenotype correlations, assessed which (nonparaganglionic) tumors
can also be linked to SDHx mutations and reviewed various treatment options for malignant
pheochromocytoma (PCC)/paraganglioma (PGL).

Mutations in any one of the genes encoding succinate dehydrogenase (SDH) complex
subunits or co-factors (SDHA, SDHB, SDHC, SDHD, and SDHAF2) can lead to formation of
hereditary PGL syndromes. Mutations in SDHB and SDHD are generally the most common.
In the Netherlands, the majority of the SDH mutation carriers harbor one specific mutation
of SDHD, the c274G>T, pAsp92Tyr.? SDHB mutations are less common, but the majority
of SDHB mutation carriers also harbor known Dutch founder mutations, specifically the
c423+1G>A mutation or the exon 3 deletion, ¢.201-4429_287-933del." The reported
penetrance of SDHB mutations (26-75%) is lower than the penetrance of SDHD or SDHAF2
mutations (88-100% and 87-100%, respectively).'? In chapter 2, an extended family with
a founder exon 3 deletion in the SDHB gene was studied. From the 17 mutation carriers,
6 were clinically affected PGL patients. The calculated penetrance in this study was 9% at
50 years. The lower penetrance found in this study might reflect a clinical characteristic
of this specific Dutch SDHB founder mutation, or the influence of a shared genetic or
environmental modifier of penetrance in this family. However, it might also reflect an
overestimation of SDHB-linked penetrance in the literature due to various forms of bias. In
the literature, penetrance calculations are prone to overestimation because of the limited
inclusion of unaffected mutation carriers and because the mutation carriers are identified
via index patients. This might give a higher chance of selecting other mutation carriers
with the disease (ascertainment bias). We included a relatively large number of unaffected
mutation carriers and corrected for ascertainment bias. Also we excluded the index patient
from the calculations. This resulted in reduced estimates of SDHB-linked penetrance and
might be very important in the (genetic) counseling of SDHB-linked patients.

In chapter 3, we determined phenotypical characteristics of a large Dutch cohort of SDHB
mutation carriers and assessed differences in clinical phenotypes related to specific SDHB
mutations. We conducted a retrospective descriptive study in seven academic centers and
included 196 SDHB mutation carriers. The study contained 65 (33.2%) index patients and
131 (66.8%) relatives. Fifty-four mutation carriers (27.6%) had one or multiple head and neck
PGLs (HNPGLs), 4 (2.0%) had a PCC and 26 (13.3%) had one or more sympathetic PGLs. The
figures for PCC en sPGL we found in our study were lower than that reported in previous
studies that have assessed clinical characteristics in SDHB mutation carriers.>”'3'* Because
we included a large number of unaffected mutation carriers, ascertainment bias might
play only a minor role. Furthermore, percentages mentioned in previous studies took into
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account only disease-affected subjects. However, if we excluded all unaffected mutation
carriers from our cohort, we still found lower figures for PCC and sPGL.

The frequency we found for HNPGLs (27.6%) was relatively high compared with other studies
(6-31%)>""3*, and when we excluded all unaffected mutation carriers, our prevalence was
as high as 65.1%. This might in part be explained by the observation that in our study the
proportion of HNPGL patients with a positive family history (i.e. non-index HNPGL patients)
is 29-6% (16/54). The large majority of these patients had no symptoms and had not yet
come to medical attention. The genetic testing of relatives and structured follow-up
protocols of persons with a SDHB mutation in the Netherlands identifies a relatively high
number of asymptomatic mutation carriers, with or without tumors, allowing for a more
accurate representation of the phenotype of SDHB mutation carriers.

Only 15 patients (7.7%) developed a malignant PGL and 17 patients (8.7%) developed non-
paraganglionic tumors, including 5 renal cell carcinomas (RCCs) and 2 gastric gastrointestinal
stromal tumors (GIST).

Statistical analyses showed no significant differences in the number and location of HNPGLs,
sPGLs or PCC, nor in the occurrence of malignant disease or other tumors between carriers
of the two founder SDHB mutations (exon 3 deletion versus c.423+1G>A).

This study underlines the importance of the inclusion of unaffected identified carriers in
studies that assess phenotypes of germline mutations. The results from this study are
important to consider in the clinical management and genetic counseling of families with
PCC/PGL syndromes. Including unaffected carriers provides a more accurate insight into
the spectrum of disease.

In chapter 4 we investigated which nonparaganglionic tumors belong to the SDH-
associated tumor spectrum. If mutations occur in the SDHA, SDHB, SDHC, SDHD, or SDHAF2
genes with corresponding loss of the wild-type allele or a second inactivating mutation,
SDHB immunohistochemical staining will become negative.”® This negative staining for
SDHB is now a validated and highly sensitive marker for germline mutations of any of the
SDH subunits and is a broadly accepted indication of pathogenicity of an SDH mutation.'
In addition, SDHA immunohistochemistry is a proven marker for SDHA mutations,
showing loss of immunoreactivity exclusively in SDHA-mutated tumors.” We analyzed 35
nonparaganglionic tumors from 26 SDH mutation carriers. Eight tumors showed negative
staining for SDHB and positive staining for SDHA: a pancreatic neuroendocrine tumor
(NET), a macroprolactinoma, two gastric GISTs, an abdominal ganglioneuroma, and three
RCCs. A prolactinoma in a patient with a germline SDHA mutation was the only tumor
immunonegative for both SDHA and SDHB. Sanger sequencing of this tumor revealed a
somatic mutation (p.D38V) as a likely second hit leading to biallelic inactivation of SDHA. Our
study strengthens the etiological association of SDH genes with pituitary neoplasia, renal
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tumorigenesis, and gastric GISTs. Furthermore, our results indicate that pancreatic NET also
falls within the SDH-related tumor spectrum. Our report was the first report of an association
between a germline SDHD mutation and pancreatic NET. This finding might have potential
implications for the surveillance of patients with a germline SDHD mutation, because in the
existing surveillance protocol, abdominal imaging is only advised when there is evidence
of catecholamine excess. It might be advisable to amend surveillance protocols, with the
addition of standard abdominal imaging studies. However, the occurrence rate in our study
was rare, and further studies are needed to definitely amend surveillance protocols.

Paragangliomas in the head and neck region can arise from the carotid body, vagal body,
or jugulotympanic tissue (i.e. paraganglioma of the temporal bone). Due to their location
in close proximity to important neurovascular structures, tumor growth may lead to serious
morbidity and cranial nerve impairment. With removal of these tumors, branches of the
carotid sinus nerves may not be spared. Bilateral carotid body tumor resection (bCBR) may
thus result in arterial baroreflex dysfunction. In chapter 5 we investigated the role of the
baroreflex during sleep. We found that bCBR was associated with decreased low frequency
power during sleep, suggesting impaired baroreflex function. The effect of sleep on heart
rate was similar in bCBR patients and their matched controls, suggesting that the sleep-
related heart rate decrease primarily results from non-baroreflex mediated pathways.

The risk of malignant transformation is 10% for PCC and 10-20% for extra-adrenal non-
HNPGLs."” Treatment of malignant disease remains basically palliative. Radionuclide therapy
using "'-MIBG has been investigated in several studies, however, with varying success
rates. Because the precise effect of *'I-MIBG therapy for the treatment of malignant PCC/
PGL remained unclear, we performed a systematic review and meta-analysis. The results of
this meta-analysis assessing the effects of "*'I-MIBG therapy on tumor volume in patients
with malignant PCC/PGL are reported in chapter 6. We included 17 studies in our meta-
analysis, with a total of 243 patients. We showed that stable disease following "*'I-MIBG
therapy could be achieved in 52% of the patients and a partial hormonal response in 40%.
Reported 5-year survival rates were 45% and 64% and mean progression-free survival
times 23-1 and 28-5 months. The most frequent side effect was haematologic toxicity. In
the included studies, the protocol when to initiate treatment differed widely. Many of the
studies included patients irrespective of evidence of progressive disease. Therefore it might
be possible that stable disease is not merely a therapy effect, but also a reflection of the
natural course of the disease, with slow progression in a subset of patients.

Chemotherapy is another treatment option for patients with malignant PCC/PGL.
Combination chemotherapy of cyclophosphamide, vincristine and dacarbazine (CVD) was
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introducedin 1985 by Keiseretal.'® Ameta-analysis assessing the effect of CVD chemotherapy
has never been performed. Therefore, in chapter 7, we performed a systematic review
and meta-analysis addressing this effect. We included four studies concerning a total of
50 patients with malignant PCC/PGL. The meta-analysis of the effect of chemotherapy on
tumor volume showed pooled percentages of complete response, partial response and
stable disease of respectively 4% (95% Cl: 1%-15%), 37% (95% Cl: 25%-51%) and 14% (95%
Cl: 7%-27%). Only two studies concerning a total of 35 patients assessed the response
on catecholamine excess; pooled percentages for complete, partial and stable hormonal
response were 14% (95% Cl: 6%-30%), 40% (95% Cl: 25%-57%) and 20% (95% Cl: 10%-36%),
respectively. In the included studies, the protocol when to initiate treatment was not well
described. Therefore it might be possible that the reported effect of chemotherapy on
tumor volume reflects the natural course of the disease, at least partially.

Conclusions
The findings of this thesis can be summarized in the following conclusions:

1. The penetrance of the germline exon 3 SDHB mutation might be lower than previously
described.

2. The inclusion of unaffected identified carriers in studies that assess phenotypes of
germline mutations is very important to provide a more accurate insight into the
spectrum and penetrance of disease.

3. The pancreatic NET is a new component of the SDH-related tumor spectrum. This
might have potential implications for the surveillance of patients with a SDHD mutation,
because at the moment abdominal imaging is not a standard part of the surveillance
protocol.

4. After bilateral carotid body tumor resection, patients exhibit baroreflex dysfunction.
Sleep-related heart rate changes are similar between bCBR patients and controls,
suggesting that the effects of sleep on heart rate are predominantly generated through
central, non-baroreflex mediated pathways.

5. In patients with malignant PCC/PGL, concerning tumor volume, stable disease following
3'-MIBG therapy can be achieved in 52% of the patients and a partial hormonal response
in 40%.

6. With CVD chemotherapy, a partial response concerning tumor volume can be
achieved in about 37% of patients with malignant PCC/PGL and a partial response on
catecholamine excess in about 40% of patients.
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Nederlandse samenvatting

Paragangliomen (PGL) zijn zeldzame, vaatrijke neuroendocriene tumoren van het autonome
zenuwstelsel. Ze zijn afkomstig van paraganglia; dit zijn orgaantjes die zijn ontstaan uit de
embryonale neurale lijstcellen en die zijn gegroepeerd rondom het autonome zenuwstelsel.
PGL kunnen voorkomen van het hoofd-halsgebied tot het bekken. PGL gelokaliseerd in
het hoofd-hals gebied worden ook wel‘glomustumoren’genoemd. Als het PGL uitgaat van
het bijniermerg, noemen we het een feochromocytoom (PCC). PGL buiten het hoofd-hals
gebied maar niet in de bijnier, noemen we sympathische paragangliomen (sPGL). Deze
kunnen voorkomen in de borstholte (thorax), in de buikholte (abdomen) en in het bekken
(pelvis). Een groot deel van de PGL is erfelijk. Erfelijke PGL syndromen kunnen ontstaan
door mutaties in het succinaat dehydrogenase (SDH) gen. Het SDH gen codeert voor
SDH, een eiwitcomplex dat bestaat uit vier subunits (SDHA, SDHB, SDHC en SDHD) en wat
zich bevindt op de binnenmembraan van mitochondrién. Het is een belangrijk enzym in
zowel de elektronentransportketen (ademhalingsketen) als in de citroenzuurcyclus. In de
elektronentransportketen staat het ook bekend als complex Il. De vier SDH genen (SDHA,
SDHB, SDHC en SDHD) coderen voor de vier subunits van complex Il. Mutaties in één van
deze vier subunits van het SDH gen veroorzaken dus de familiaire PGL syndromen. Hoewel
alle vier de subunits (SDHA, SDHB, SDHC en SDHD) deel uitmaken van hetzelfde complex,
geven mutaties in de verschillende genen andere fenotypische (klinische) effecten.

Indit proefschrift hebben we gekeken naar de klinische kenmerken van SDHx mutatiedragers,
we beschrijven genotype-fenotype correlaties en we hebben onderzocht welke andere
(niet-PGL) tumoren kunnen worden gerelateerd aan SDHx mutaties. Tevens geven we
een overzicht van de verschillende behandelingsopties voor patiénten met een maligne
(kwaadaardig) PCC/PGL.

De meest frequent voorkomende mutaties zijn mutaties in het SDHB en het SDHD gen.
In Nederland heeft de meerderheid van de SDH mutatiedragers één specifieke mutatie in
het SDHD gen, namelijk de c.274G>T, pAsp92Tyr mutatie."” SDHB mutaties komen minder
frequent voor, maar de meerderheid van de SDHB mutatiedragers heeft ook één van de
bekende Nederlandse founder mutaties, met name de c423+1G>A mutatie of the exon
3 deletie, c201-4429_287-933del." Bij SDHx mutatiedragers hoeft de ziekte niet altijd
volledig tot uiting te komen. Het begrip dat weergeeft hoe vaak de ziekte tot uiting komt
bij individuen met de (SDHx) genmutatie noemt met de penetrantie. De gerapporteerde
penetrantie van SDHB mutaties (26-75%) is lager dan de penetrantie van SDHD mutaties
(88-100%).5"? In hoofdstuk 2 beschrijven wij een familie met een SDHB exon 3 deletie. Van
de 17 mutatiedragers waren er 6 die klinisch waren aangedaan. De berekende penetrantie
in deze studie was 9% op de leeftijd van 50 jaar. De lagere penetrantie die wij vonden in deze
studie, kan een klinisch kenmerk zijn horend bij deze specifieke Nederlandse SDHB founder
mutatie. Het kan ook het gevolg zijn van het védérkomen van bepaalde genetische of
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omgevingsfactoren in deze specifieke familie. Het kan echter ook zo zijn dat de penetrantie
van SDHB mutaties in de bestaande literatuur wordt overschat door verschillende
vormen van bias. In de bestaande literatuur zijn de penetrantie berekeningen onderhevig
aan overschatting. Dit komt doordat er vaak weinig niet-aangedane mutatiedragers
worden geincludeerd en tevens doordat de mutatiedragers worden gevonden via index
patiénten. Dit geeft een hogere kans op het selecteren van andere mutatiedragers met
de ziekte (“ascertainment bias"). Wij includeerden een relatief hoog aantal niet-aangedane
mutatiedragers en corrigeerden voor ascertainment bias. Ook werd de index patiént
uitgesloten van de penetrantie berekeningen. Dit resulteerde in een lagere penetrantie
voor SDHB mutatiedragers, wat belangrijke consequenties kan hebben bij de (genetische)
counseling van SDHB mutatiedragers.

In hoofdstuk 3 beschrijven we de fenotypische kenmerken van een groot Nederlands
cohort van SDHB mutatiedragers. Tevens evalueren we mogelijke verschillen in fenotype als
gevolg van specifieke SDHB genmutaties. We hebben een retrospectieve studie verricht in
zeven academische centra in Nederland en konden 196 SDHB mutatiedragers includeren.
De bestudeerde studiepopulatie bestond uit 65 (33.2%) index patiénten en 131 (66.8%)
familieleden van index patiénten. Vierenvijftig mutatiedragers (27.6%) ontwikkelden één of
meerdere hoofd-hals PGLs (head and neck paragangliomas, HNPGL), vier patiénten (2.0%)
een PCCen 26 (13.3%) één of meerdere sPGL. De aantallen die wij vonden voor PCC en sPGL
zijn lager dan de getallen die worden gerapporteerd in eerder onderzoek naar de klinische
kenmerken van SDHB mutatie dragers.3”'3'* Doordat wij een hoog aantal niet-aangedane
mutatiedragers hebben geincludeerd, zal ascertainment bias mogelijk een kleinere rol
spelen. In het merendeel van de eerder verrichte studies wordt namelijk een groter aantal
index patiénten geincludeerd en een kleiner aantal niet-aangedane mutatiedragers.
Tevens zijn bij de berekeningen van de genoemde percentages in eerdere studies alleen
klinisch aangedane mutatiedragers meegenomen. Indien wij echter alle niet-aangedane
mutatiedragers uitsluiten in onze studie, vonden wij nog steeds lagere percentages voor
het voorkomen van PCC en sPGL.

Het percentage mutatiedragers in onze studie met één of meerdere HNPGL (27.6%)
was relatief hoog vergeleken met eerdere studies (6-31%).>”">1* Wanneer wij alle niet-
aangedane mutatiedragers excluderen, wordt onze prevalentie zelfs 65.1%. Dit kan deels
worden verklaard door het feit dat het percentage HNPGL patiénten met een positieve
familie anamnese (dat wil zeggen niet-index HNPGL patiénten) in onze studie 29.6% is.
De meerderheid van deze patiénten had geen symptomen en was dus nog niet onder
de aandacht gekomen. Het genetisch onderzoek wat wordt aangeboden aan familieleden
van mutatiedragers en tevens de gestructureerde follow-up protocollen in Nederland van
patiénten met een SDHB mutatie zorgt voor de identificatie van een relatief hoog aantal
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asymptomatische mutatiedragers, met of zonder tumoren. Dit zorgt voor een meer accurate
representatie van het fenotype van SDHB mutatiedragers.

Vijftien patiénten (7.7%) ontwikkelden een maligne PGL en 17 patiénten (8.7%) ontwikkelden
andere (niet-PGL) tumoren, inclusief vijf tumoren van de nier en twee gastro-intestinale
stroma tumoren van de maag.

Een vergelijking van de fenotypen van de twee meest voorkomende SDHB genmutaties
in ons cohort, de SDHB exon 3 deletie en de SDHB c423+1G>A mutatie, toonde geen
significante verschillen.

Deze studie geeft weer dat het belangrijk is niet-aangedane mutatiedragers te includeren
in studies die het fenotype van genmutaties evalueren. De resultaten van deze studie zijn
belangrijk bij de klinische behandeling en genetische counseling van families met erfelijke
PCC/PGL syndromen. Het includeren van niet-aangedane mutatiedragers geeft een beter
inzicht in het spectrum van de ziekte en de penetrantie van de mutatie.

In hoofdstuk 4 hebben we onderzocht welke dndere (niet-PGL) tumoren behoren tot het
SDH-geassocieerde tumor spectrum. Als er een mutatie optreedt in één van de SDH genen,
met daarbij verlies van het wild-type allel of een tweede inactiverende mutatie, wordt de
SDHB immunohistochemische kleuring negatief.”® Een immunohistochemische kleuring is
een kleuring die kijkt of het eiwit nog in de tumor aanwezig is. Deze negatieve eiwitexpressie
in de tumor voor SDHB is een gevoelige marker voor het bestaan van een kiembaanmutatie
in één van de SDH subunits. Het is wereldwijd geaccepteerd als indicator van pathogeniciteit
(= ziekte veroorzakend) van een SDH mutatie.’® Naast deze SDHB immunohistochemische
kleuring is SDHA immunohistochemie een marker voor SDHA mutaties, waarbij er alleen in
SDHA-gemuteerde tumoren verlies van SDHA immunohistochemie wordt gevonden.” Op
basis van deze gegevens hebben wij 35 tumoren van 26 SDH mutatiedragers geévalueerd.
Acht tumoren toonden een negatieve SDHB kleuring en een positieve SDHA kleuring: een
neuroendocriene tumor van de alvleesklier, een macroprolactinoom, twee gastrointestinale
stroma tumoren van de maag, een abdominaal ganglioneuroom en drie nierceltumoren.
Een prolactinoom van een patiént met een kiembaan SDHA mutatie was de enige tumor
die negatief was voor zowel SDHB als SDHA. Sanger sequencing van deze tumor toonde een
somatische mutatie (p.D38V) als een mogelijke tweede hit leidend tot biallelische inactivatie
van SDHA. Concluderend toont deze studie aan dat er een oorzakelijke associatie lijkt te
bestaan tussen SDH genen en hypofyse tumoren, nierceltumoren en gastro-intestinale
stromale tumoren van de maag. Tevens tonen onze resultaten dat de neuroendocriene
tumor van de alvleesklier ook binnen het SDH-gerelateerde tumor spectrum valt. Onze
studie was de eerste beschrijving van een associatie tussen een kiembaan SDHD mutatie en
een neuroendocriene tumor van de alvleesklier. Deze bevinding kan potentiele implicaties
hebben voor de surveillance van patiénten met een kiembaan SDHD mutatie. In het huidige
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surveillance protocol wordt afbeeldend onderzoek van de buik namelijk alleen geadviseerd
als er sprake is van hormonale overproductie van catecholamines. Misschien moeten de
surveillance protocollen worden aangepast, met de toevoeging van standaard afbeeldend
onderzoek van de buik. Wel was het véérkomen van een neuroendocriene tumor van de
alvleesklier in onze studie zeldzaam, waardoor meer onderzoek noodzakelijk is voordat we
definitief de protocollen gaan aanpassen.

PGL in de hoofd-hals regio kunnen uitgaan van het glomus caroticum (ter hoogte van de
carotisbifurcatie, de halsslagader), het glomus vagale (gelegen nabij de 10° hersenzenuw),
of van het glomus jugulotympanicum (gelegen nabij het middenoor). Omdat deze HNPGL
vaak gelegen zijnin de nabijheid van belangrijke neurovasculaire structuren, kan tumorgroei
leiden tot ernstige morbiditeit en hersenzenuwuitval. Bij resectie van deze tumoren
kunnen takken van de sinus caroticum niet altijd worden gespaard. De sinus caroticum is
betrokken bij de regulatie van de hartfrequentie en de bloeddruk. Bilaterale verwijdering
van glomus caroticum tumoren kan daarom resulteren in arteriéle baroreflex dysfunctie,
dat wil zeggen dat de regulatie van de bloeddruk niet meer adequaat is. In hoofdstuk 5
hebben we onderzocht wat de rol is van de baroreflex tijdens slaap. We hebben hiertoe
de polysomnografie (slaapregistratie) van negen patiénten die een bilaterale glomus
caroticum resectie (bCBR) hadden ondergaan vergeleken met de polysomnografie van
negen gezonde vrijwilligers (met gelijke leeftijd, geslacht en BMI). Wij vonden dat bCBR
geassocieerd was met een verminderde baroreflex functie gedurende de slaap. Het effect
van slaap op het hartritme was gelijk voor de bCBR patiénten en de controles. Dit suggereert
dat de slaap-gerelateerde afname in hartfrequentie voornamelijk het gevolg is van niet-
baroreflex gemedieerde pathways.

Het risico op maligne (kwaadaardige) ontaarding is voor een PCC 10% en voor een sPGL 10-
20%."” De behandeling van gemetastaseerde (uitgezaaide) ziekte is met name palliatief. In
verschillende studies is het effect van radionuclidentherapie met *'I-MIBG onderzocht, met
wisselende succespercentages. Radionuclidentherapie is behandeling met radioactieve
stoffen. Omdat het exacte effect van *'I-MIBG therapie voor de behandeling van maligne
PCC/PGL onduidelijk was, hebben wij een systematische literatuurstudie en meta-analyse
uitgevoerd. De resultaten van deze meta-analyse naar het effect van "*'I-MIBG therapie op
tumor volume en hormonale parameters bij patiénten met een maligne PCC/PGL staan
beschreven in hoofdstuk 6. Wij konden in onze meta-analyse 17 studies includeren met
een totaal aantal van 243 patiénten. Wij vonden dat wat betreft tumorvolume stabiele ziekte
kon worden bereikt in 52% van de patiénten en een partiéle hormonale respons in 40%.
De gerapporteerde 5-jaarsoverleving was 45% en 64% en de gemiddelde progressievrije
overlevingstijd was 23.1 en 285 maanden. Hematologische toxiciteit werd het meest
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frequent gemeld als bijwerking van "*'I-MIBG therapie. Het protocol wanneer de "*'I-MIBG
therapie werd gestart verschilde echter evident in de geincludeerde studies. Veel van de
studies includeerden patiénten onafhankelijk van het feit of er sprake was van progressieve
ziekte. Daarom is het mogelijk dat de stabiele ziekte niet alleen een therapie effect is, maar
ook het natuurlijk beloop van de ziekte weergeeft, met langzame progressie in een deel
van de patiénten.

Chemotherapie is een andere behandeloptie voor patiénten met maligne PCC/PGL.
Combinatie chemotherapie met cyclofosfamide, vincristine en dacarbazine (CVD) werd
in 1985 geintroduceerd door Keiser et al'® Een meta-analyse naar het effect van CVD
chemotherapie op tumorvolume en hormonale parameters is nog nooit verricht. Daarom
hebben wijin hoofdstuk 7 een systematische literatuurstudie en meta-analyse verricht naar
dit effect. We konden vier studies includeren met een totaal aantal van 50 patiénten met
maligne PCC/PGL. De meta-analyse naar het effect van chemotherapie op tumorvolume
toonde gepoolde percentages van complete respons, partiéle respons en stabiele ziekte van
respectievelijk 4% (95% Cl: 1%-15%), 37% (95% Cl: 25%-51%) en 14% (95% Cl: 7%-27%). Maar
twee studies met in totaal 35 patiénten evalueerden het effect van CVD chemotherapie
op hormonale parameters (catecholamine overproductie). Gepoolde percentages voor
complete, partiéle en stabiele hormonale respons waren respectievelijk 14% (95% Cl: 6%-
30%), 40% (95% Cl: 25%-57%) en 20% (95% Cl: 10%-36%). In de geincludeerde studies werd
het protocol wanneer de behandeling werd gestart niet goed beschreven. Het is daarom
mogelijk dat het gerapporteerde effect van chemotherapie op tumorvolume het natuurlijk
beloop van de ziekte weergeeft, in ieder geval partieel.

Conclusies
De bevindingen in dit proefschrift kunnen worden samengevat in de volgende conclusies:

1. De penetrantie van de SDHB exon 3 mutatie is mogelijk lager dan zoals beschreven in
eerdere studies.

2. Hetincluderen van niet-aangedane mutatiedragers in studies die het fenotype van een
kiembaanmutatie evalueren is erg belangrijk om een meer accuraat inzicht te krijgen in
het spectrum en de penetrantie van de ziekte.

3. De neuroendocriene tumor van de alvleesklier kan worden gezien als een nieuwe
component van het SDH-gerelateerde tumorspectrum. Dit kan potentieel van invioed
zijn op het surveillance protocol van patiénten met een SDHD mutatie, omdat op dit
moment beeldvorming van de buik hier geen deel van uitmaakt.
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4.
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Bij patiénten die een bilaterale resectie van een glomus caroticum tumor hebben
ondergaan, is er sprake van baroreflex dysfunctie. Er is geen verschil in de slaap-
gerelateerde hartfrequentie veranderingen tussen bCBR patiénten en controles. Dit
suggereert dat de effecten van slaap op het hartritme met name worden gegenereerd
door centrale, niet-baroreflex gemedieerde pathways.

Bij patiénten met maligne PCC/PGL kan, wat betreft tumorvolume, stabiele ziekte na
31-MIBG therapie worden bereikt in 52% van de patiénten en een partiéle hormonale
respons in 40%.

Met CVD chemotherapie kan, wat betreft tumorvolume, een partiéle respons worden
bereikt in 37% van de patiénten met maligne PCC/PGL. Een partiéle hormonale respons
kan worden bereikt in 40% van de patiénten.
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