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ABSTRACT

Since decades the urokinase plasminogen activator (uPA) system has been associated 
with the invasion of malignant cells. The receptor of urokinase (uPAR) is one of the key 
players in this proteolytic cascade, because it focuses uPA’s proteolytic activity to the 
cell surface and in addition functions as a signaling receptor. uPAR is highly expressed 
in virtually all human cancers, suggesting possible clinical applications as diagnostic 
marker, predictive tool of survival or clinical response, and as a target for therapy and 
imaging. This review summarizes the possibilities of uPAR in clinical applications for 
cancer patients.
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INTRODUCTION

The urokinase-type plasminogen activator (uPA) system plays an important role in many 
normal physiological processes in which tissue remodeling is involved (Fig. 1A), includ-
ing embryogenesis and wound healing [1]. The first association of the uPA system with 
cancer was found in 1961, before the function and source of uPA were even established 
[2]. More than 25 years later, Duffy et al. suggested that a high tumor tissue level of uPA 
could be a powerful prognostic marker for survival of breast cancer patients [3]. The less 
obvious association of over-expression of the uPA inhibitor PAI-1 as prognostic factor 
of the metastatic potential of breast tumors was made in 1992 [4]. At present, uPA and 
PAI-1 are actually the first biomarkers that are recommended as level-1 tumor markers 
by the American Society of Clinical Oncology, as predictors of recurrence and adjuvant 
chemotherapy response for breast cancer patients [5, 6]. The receptor of uPA (uPAR), the 
third essential member of this system, was identified in 1985 [7]. The binding of single 
chain uPA (scuPA or pro-uPA) to uPAR is a pre-requisite for efficient cell surface activation 
of scuPA into the two-chain proteolytic form (tcuPA), culminating into the activation 
of plasmin, a powerful proteolytic enzyme involved in extracellular matrix degradation 
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Figure 1 Schematic overview of the urokinase type plasminogen receptor (uPAR) mechanism (A), and 
uPARs potential clinical role in tumor targeting (B) and as tumor marker (C). ATF: aminoterminal fragment of 
urokinase,uPA:urokinase plasminogen activator, PAI-1: plasminogen activator inhibitor type 1, MMP: matrix 
metalloproteinase D: domain of uPAR
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[8]. Moreover, ligand occupancy of uPAR by scuPA initiates various signaling pathways, 
leading to alterations in cell motility and adhesion (Fig. 1A) [1]. The association between 
uPAR and cancer was recognized in 1991 [9]. Since then, numerous studies have studied 
the expression of uPAR during carcinogenesis and metastasis, using various techniques, 
like immuno-histochemistry, iodinated forms of uPA, specific ELISAs and northern blots/ 
quantitative PCR, see Fig. 2 [10-13]. The majority of studies using tumor and adjacent 
normal tissues indicate that uPAR levels are enhanced in virtually all investigated can-
cer types (Table 1). After the discovery of the shedding of uPAR from cell membranes 
(Fig. 1a) by Ploug et al. in 1992 [14], considerable levels of soluble uPAR (suPAR) have 
been found in blood and urine of various inflammation- associated diseases, including 
rheumatoid arthritis, AIDS and most, if not all, sorts of cancer, underscoring the possibili-
ties for uPAR as tumor marker [15-19]. In this paper we give an overview of the evidence 
for the clinical value of uPAR and suPAR in the diagnosis, prognosis, targeted therapy 
and imaging of cancer.
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Figure 2 Number of urokinase receptor (uPAR) related publications per cancer type per year (source: ISI 
Web of Knowledge dd 24/02/2011).
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Table 1: Chronical overview of the expression of (s)uPAR in various human cancers and its prognostic 
value for the patient.

Technique, 
(antibody)

Tumor  pos/
high

Specific 
comment

Prognostic Year Ref

Bladder

McGarvey RT-PCR 29 T/N=2.2 nd 1998 (172)

Nakanishi IHC(AD3936) 136/154 nd 1998 (173)

Casella ELISA-quartiles 75/122 urine 2002 (45)

Champelovier ICC 65/129 OS↓ 2002 (174)

Seddighzadeh, RT-PCR - median 87/175 OS↓ 2002 (175)

Shariat ELISA - median 25/51 urine ns 2003 (50)

Shariat ELISA - median 19/38 plasma ns 2003 (176)

Bhuvarahmurthy IHC 17/20 nd 2004 (177)

Bhuvarahmurthy ISH 17/20 nd 2004 (177)

El-Kott IHC (AD3936) 46/100 nd 2004 (178)

Vivani IHC (R2) 23/40 nd 2004 (179)

Ecke ELISA 31/39 serum nd 2005 (48)

Breast

Pyke IHC (R2,R4) 49/51 N: 0/10 nd 1993 (11)

Bianchi IHC (AD3936) 21/59 N: 0/14 nd 1994 (180)

Carriero IHC (R2,3936,399) 10/10 nd 1994 (181)

Dugan ELISA – opt cut 104/134 COP DFS↓, OS↓ 1995 (182)

Grøndahl-Hansen ELISA –quartiles 252/505 cytosol DFS↓, OS↓ 1995 (183)

Grøndahl-Hansen ELISA –quartiles 251/505 Triton extract DFS ns, OS↓ 1995 (183)

Costantini IHC (AD3936) 9/10 6/9 nd 1996 (184)

Kim IHC (AD3936) 65/104 high relapse 1997 (185)

Kennedy IHC, 17/36 nd 1998 (186)

Hildenbrand IHC (HU277) 22/50 nd 1998 (187)

Dublin IHC 69/117 nd 2000 (188)

Fisher ISH 21/23 IBC N: 4/5 nd 2000 (189)

Foekens ELISA 2117/2780 DFS↓, OS↓ 2000 (24)

Gong ELISA - median 134/268 cytosol OS ns 2000 (190)

Guyton IHC (AD3937) 28/70 DCIS DFS↓ 2000 (191)

Hildenbrand IHC (AD3932)
IHC (IID7)
IHC (HU277)
ISH

24/50
39/50
24/50
50/50

DCIS N:46/50
DCIS N:39/50
DCIS N:9/50
N:50/50

nd
nd
nd
nd

2000 (21)

Rha ELISA - median 80/161 OS ns 2000 (60)

De Witte ELISA -  op cut 439/878 DFS↓, OS↓ 2001 (26)

Meijer-van Gelder ♂ 2001 (192)

Pacheco NB - median 40/81 OS↓ 2001 (193)

Borstnar ELISA – opt cut 257/460 IBC DFS ns 2002 ((25)
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Table 1: Chronical overview of the expression of (s)uPAR in various human cancers and its prognostic 
value for the patient. (continued)

Technique, 
(antibody)

Tumor  pos/
high

Specific 
comment

Prognostic Year Ref

Riisbro serum/tissue 2002 (194)

Giannopoulou IHC (AD3932) 104/173 IBC stroma 
112/173

DFS↓ 2007 (195)

Hurd IHC (AD3932) 15/60 DCIS N:19/58 nd 2007 (196)

Hildenbrand IHC (IID7)
IHC (HU277)
IHC (AD3936)
IHC (IID7)
IHC (HU277)
IHC (AD3936)

28/30
27/30
17/30
28/30
20/30
19/30

IBC N:5/10
IBC N:4/10
IBC N:3/10
DCIS
DCIS
DCIS

nd
nd
nd
nd
nd
nd

2009 (197)

Kotzsch IHC (IID7) 176/270 IBC DFS↓ 2010 (198)

Brain

Yamamoto ISH 12/12 N:0/7 nd 1994 (199)

Yamamoto RT-PCR 21/27 nd 1998 (200)

Garcia-Monco ELISA - median 74/148 serum/CSF nd 2002 (201)

Knappe IHC 76/84 nd 2003 (202)

Salajegheh IHC 65/65 No COP nd 2005 (203)

Colon/rectum

Ganesh ELISA – opt cut 13/161 OS↓ 1994 (29)

Pyke IHC (R2,R4) 19/30 nd 1994 (20)

Suzuki IHC (AD3937)
IHC (AD3937)
ISH
ISH

14/100
39/80
30/100
68/80

adenoma
carcinoma
adenoma
carcinoma

nd
nd
nd
nd

1998 (31)

Abe ELISA - opt cut 15/90 OS↓ 1999 (204)

Stephens ELISA – median 295/591 plasma OS↓ 1999 (205)

Saito IHC (PC) 62 stromal cells nd 2000 (206)

Yang IHC (AD3936) 7/59 OS↓ 2000 (207)

Fernebro ELISA-median 86/173 blood OS↓ 2001 (208)

Konno ELISA 31/71 OS↓ 2001 (209)

Baker ELISA ?/101 T/N=4.2 nd 2003 (210)

Seetoo IHC 29/56 OS↓ 2003 (211)

Kim ELISA 22/22 nd 2006 (212)

Kaneko IHC 33/101 OS ns 2007 (213)

Illeman IHC(R2)
ISH

14/14
14/14

nd 2009 (32)

Lomholt TR-FIA 46/77
36/77

blood
adenoma

nd
nd

2009 (214)
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Table 1: Chronical overview of the expression of (s)uPAR in various human cancers and its prognostic 
value for the patient. (continued)

Technique, 
(antibody)

Tumor  pos/
high

Specific 
comment

Prognostic Year Ref

Lomholt TR-FIA
TR-FIA - D1

347/516
114/484

Serum
serum

OS↓
OS↓

2010 (215)

Thurison ELISA - D1,D2D3 199/298 plasma OS↓ 2010 (66)

Minoo IHC(AD3936) `372/811 MMR proficient OS↓ 2010 (34)

Endometrium

Foca NB 28/34 nd 2000 (216)

Tecimer ELISA – median 27/54 ns 2001 (217)

Memarzadeh IHC(AF807) 35/38 nd 2002 (218)

Nordengren ELISA – 80th perc. 37/185 DFS ns 2002 (219)

Esophagus

Hewin ELISA 11/18 No COP nd 1996 (220)

Shiomi IHC (), ISH 14/56 OS ns 2000 (221)

Kidney

Nakanishi IHC(AD3936) 71/154 DFS↓,OS↓ 1998 (173)

Swiercz ELISA median
IHC (3936/3937)

25/52
16/16

nd
nd

1998 (222)

Bhuvarahamurthy IHC
ISH

13/18
13/18

nd
nd

2005 (223)

Ohba IHC 34/106 OS↓ 2005 (224)

Leukemia

Plesner IHC (R2,R4) 12/27 nd 1994 (225)

Lopez-Pedrera ISH (Mo3f) 9/18 nd 1997 (226)

Lanza IHC (3B10,VIM5) 60/74 nd 1998 (227)

Mustjoki IHC(R3,R4)
FACS

31/38
10/32 plasma

nd
nd

1999 (228)

Scherrer NB 6/33 nd 1999 (229)

Mustjoki ELISA 30/36 nd 2000 (16)

Aref ELISA 43 T/N=12,4 OS↓ 2003 (230)

Graf FACS 16/53 BM DFS↓ 2005 (231)

Liver

Morita ISH
IHC(AD3936)

22/31
11/20

DFS↓
DFS↓

1997 (232)

Akahane IHC 4/32 nd 1998 (233)

De Petro RT-PCR 23/53 OS ns 1998 (234)

Dubuisson IHC 6/26 nd 2000 (235)

Zheng IHC (rbPC) 19/22 nd 2000 (236)

Zhou ELISA
IHC(AD3937)

13/14
11/19

nd
nd

2000 (237)

Schoedel WB (AD) 13/21 N-, FBL- nd 2003 (238)
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Table 1: Chronical overview of the expression of (s)uPAR in various human cancers and its prognostic 
value for the patient. (continued)

Technique, 
(antibody)

Tumor  pos/
high

Specific 
comment

Prognostic Year Ref

Lung

Pedersen ELISA - median 42/84 OS↓ 1994 (239)

Pappot ELISA
IHC

32/64
49/64

NSCLC OSns
OSns

1997 (39)

Morita ISh 25 nd 1998 (240)

Ferrier ELISA 5 nd 1999 (241)

Volm IHC(3932) 76/129 NSCLC OSns 1999 (242)

Salden ELISA – median 44/88 ns 2000 (40)

Jumper ELISA 22 T/N=1.5 Serum 2002 (243)

Montuori WB 33/35 NSCLC nd 2003 (244)

Cobos ELISA 48 serum T/N=1.8 Nd 2003 (245)

Werle ELISA - opt cut 19/105 T/N=1.3 OS↓ 2004 (38)

Almasi ELISA D1 32/63 SCC OS↓ 2005 (246)

Almasi ELISA D1,D2D3 16/32 serum/plasma OS↓ 2009 (64)

Melanoma

De Vries IHC (AD3936) 6/11 nd 1994 (247)

Weidle IHC 25/77 Nd 1994 (248)

De vries IHC 15/45 all metastases nd 1995 (249)

Ferrier ELISA – median 23 nd 1999 (241)

Maguire ELISA - median 23/45
26/52
13/26
8/16

benign
BCC
SCC
melanoma

nd
nd
nd
nd

2000 (250)

Rømer ISH 7/14 BCC neg nd 2001 (251)

Ferrier IHC 33/85 nd 2002 (252)

Oral

Nozaki IHC 10/34 nd 1998 (253)

Lindberg IHC(R2) 15/20 nd 2006 (254)

Baker ELISA 38 T/N=8 nd 2007 (255)

Kumamoto IHC 45/45 nd 2007 (256)

Bacchiocchi IHC(R2,R4) 74/189 N:0/8 OS↓ 2008 (35)

Ovarium

Casslén 125I assay 10 nd 1991 (10)

Chambers ELISA 36 ascites nd 1995 (257)

Chambers IHC (AD3936) 33/103 nd 1998 (258)

Sier ELISA - median 48/96 Serum T/N=2.0 OS↓ 1998 (59)

Tecimer DFSns, OSns 2000 (41)

Borgfeldt ELISA - median 25/51 OS↑ 2003 (43)
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Table 1: Chronical overview of the expression of (s)uPAR in various human cancers and its prognostic 
value for the patient. (continued)

Technique, 
(antibody)

Tumor  pos/
high

Specific 
comment

Prognostic Year Ref

Sier ELISA 12/25 urine nd 2004 (46)

Wang IHC(AD3936) 88/100 DFS↓ 2009 (44)

Kenny IHC(ATN615) 82/162 DFSns,OSns 2011 (42)

Pancreas

Cantero IHC (AD3936) 24/30 nd 1997 (259)

Harvey IHC(AD3932) 14/27 ns 2003 (260)

Xue RT-PCR 46 T/N=5.6 OS↓ 2008 (261)

Hildenbrand IHC(Hu277)
ISH
IHC(Hu277)
ISH

38/70
39/70
48/50
50/50

pan IN
pan IN
ductal
ductal

OS↓
OS↓
OS↓
OS↓

2009 (36)

Prostate

Wood ISH 80/117 UAR nd 1997 (262)

Miyake 1999 (263)

Miyake ELISA 39/72 serum OS↓ 1999 (264)

McCabe ELISA-median 8/16 serum nd 2000 (265)

Gavrilov IHC
ISH

25/25
19/25

all high grade
all high grade

nd
nd

2001 (266)

Riddick RT-PCR ? 2005 (267)

Usher ISH 8/16 nd 2005 (268)

Cozzi IHC(AD3936) 94/230 N:6/40 nd 2006 (269)

Piironen ELISA D1,D2+D3 224 Serum T/N=1.1 2006 (67)

Shariat ELISA - median 214/429 plasma BP-FSP↓ 2007 (270)

Steuber TR-FIAD1,D2+D3 236 T/N=1.1 nd 2007 (271)

Gupta IHC 126/230 ns 2009 (272)

Kogianni IHC(R4) /169 nd 2009 (273)

Kumano IHC(COP) 72/163 DFS↓ 2009 (274)

Milanese ELISA 30 serum T/N=1.7 DFS↓ 2009 (49)

Thomas IHC(Z0454) 33/52 BM
blood

DFS↓
DFS↓

2009 (275)

Almasi ELISA D1,D2D3 66/131 serum OS↓ 2010 (65)

Kjellman-quartiles TR-FIA D1, D2D3 94/375 serum OS↓ 2011 (276)

Sarcoma

Taubert ELISA-median 40/80
39/79

Tumor
serum

OS↓
OS↓

2010 (277)

Stomach

Heiss IHC 132/189 OS↓ DFS↓ 1995 (30)

Ganesh ELISA – opt cut 24/50 OS↓ 1996 (278)

Allgayer IHC 132/189 DFS↓,OS↓ 1997 (279)
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Table 1: Chronical overview of the expression of (s)uPAR in various human cancers and its prognostic 
value for the patient. (continued)

Technique, 
(antibody)

Tumor  pos/
high

Specific 
comment

Prognostic Year Ref

Plebani ELISA 13/20 COP T/N=2.8 OS↓ 1997 (280)

Allgayer IHC 43/55 OS↓ 1998 (281)

Kawasaki IHC(AD3936)
ISH

30/91
19/91

nd
nd

1998 (282)

Ho ELISA 32 plasma T/N=1.6 nd 1998 (283)

Taniguchi IHC(#39) 38/102 ns 1998 (284)

Migita IHC (R2) 16/104 ns 1999 (285)

Heiss IHC(AD3937) 97/105 DFS↓,OS↓ 2002 (286)

Kaneko IHC(AD3936) 63/101 OS↓ 2003 (287)

Lee RT-PCR 24/35 N:23/35 OS↓ 2004 (288)

Beyer IHC(AD3937) 90/102 ns 2006 (289)

Zhang ISH 70/105 OS↓ 2006 (290)

Kita RT-PCR
RT-PCR

431/846
404/846

BM
blood

DFS↓
DFS↓

2009 (291)

Alpizar-Alpizar IHC(R2,rb-pc) 37/67 int+dif nd 2010 (292)

Testis

Ulisse RT-PCR median
IHC

7/14
9/10

T/N=6.25
N:3/10

nd
nd

2010 (293)

Thyroid

Kim IHC (AD3936) 22/62 ns 2002 (294)

Ulisse WB 13 T/N=4 nd 2006 (295)

Buergy ELISA 69 T/N= 3.1 OS↓ 2009 (296)

Nowicki RT-PCR 21 T/N= 5.6 nd 2010 (297)

Ulisse RT-PCR 76 DFS↓ 2011 (298)

T/N=ratio tumor vs. normal
OS=overall survival, DFS=disease free survival, ▫arrows=worse survival
BM bone marrow
IHC=immunohistochemistry, ISH=in situ hybridization, WB=western blot, NB=northern blot, PCR, TR-FIA= 
time-resolved fluorescence immunoassays
opt cut= optimized cut-point
rb=rabbit
pc=polyclonal antibody
NL=normal liver, FBL=fibrolamellar hepatocellular carcinoma
nd=not determined, ns=not significant,
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DIAGNOSIS-PROGNOSIS

Enhanced levels of uPAR in tumor tissues have been demonstrated in numerous studies 
(Fig. 2). uPAR over-expression is not only associated with malignant cancer cells, but also 
with stromal cells, like macrophages, neutrophils, fibroblasts and endothelial cells [20, 
21]. Clearly, the up-regulation of uPAR in various cell types provides biological advan-
tage to the tumor in various pathophysiological aspects like angiogenesis, invasion, and 
metastasis. Therefore, uPAR levels are suggested to be associated with the progression of 
the tumor. Accordingly, the possible use of uPAR as tumor marker has extensively been 
studied in comparison with traditional diagnostic tools like tumor size, differentiation 
grade, invasion stage, and the presence of metastasis. By definition, tumor markers rep-
resent qualitative or quantitative alterations or deviations from normal, or a molecule, 
substance or process that can be detected by an assay [22]. Regarding uPAR, most stud-
ies have utilized enzyme-linked immunosorbent assays (ELISA), immunohistochemical 
staining, or mRNA detection to evaluate enhanced tumor uPAR expression (Table 1). 
Variations in the preparation of the homogenates or detergent extracts, the different 
procedures of tissue preparation (frozen or paraffin-embedded), and the use of different 
antibodies complicate the overall comparison of these data. Still, the results of most 
studies point in the same direction: up-regulation of the expression of uPAR in tumor 
cells and stromal cells, regardless of the tumor type, which is to some extent reflected in 
the levels of suPAR in blood and urine (Table 1). The next section summarizes the clinical 
value of uPAR up-regulation for specific tumor types.

Breast Carcinoma
Breast carcinoma is not only the most common cancer type in women, but also by far 
the most studied cancer with respect to uPAR (Fig. 2). This is mainly caused by the avail-
ability of relatively large collections of breast cancer cytosols. Clinically, lymph node 
involvement is considered as the most valuable prognostic factor for breast cancer. The 
additional value of extra markers for the assessment of patients with especially low or 
high risk has been extensively investigated for uPA and PAI-1 as prognostic indicators 
[23, 24]. There are, however, remarkably few studies directly comparing the diagnostic 
or prognostic value of uPA and or PAI-1 with uPAR. In a study of 460 tissue extracts from 
breast cancer patients, uPAR’s prognostic value for 3 years disease free survival (DFS) was 
found to be less than for PAI-1, but slightly stronger than for uPA. Only PAI-1 turned out 
to be an independent marker in this cohort [25]. A comparable study, measuring uPAR 
in 878 patients, found high uPAR levels to be an independent predictor for overall and 
disease free survival [26], whereas in a previous study with basically the same group of 
patients uPA as well as PAI-1 were equally predictive [27]. The study design of the latter 
study is illustrative for the variable results obtained in studies using different materials: 
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The pellets and cytosols from the same tissue extract do not give comparable prognostic 
information, indicating that parameters like the extraction method, buffer type and pH, 
antibodies, etc., influence the outcome considerably. Standardized methods of tissue 
collection and measurement methods, like have been established for the measurement 
of uPA and PAI-1 as identification factors for adjuvant therapy after breast surgery, are 
essential for the evaluation whether the presence of uPAR in tumors could ultimately be 
used as a diagnostic or prognostic factor [28].

Gastrointestinal Carcinomas
Carcinomas of the gastrointestinal tract, including pancreas and hepatic cancers, cause, 
after lung cancer, the most cancer-related deaths world-wide. Colorectal and stomach 
cancer have been studied extensively for the presence of uPAR, but the groups of pa-
tients are small compared to those in breast cancer studies (Table 1). Still, the data are 
very similar, indicating enhanced uPAR levels in the majority of the tumors, associated 
with a worse survival of the patients [29, 30]. Up-regulated levels of uPAR have been 
found in premalignant colorectal adenomas, especially those with severe dysplasia, 
indicating the association with the neoplastic development of tumors [31]. Comparing 
the expression pattern of uPAR in a small group of primary colon tumors with their liver 
metastasis revealed 2 distinct uPAR profiles, correlating with specific growth patterns 
in especially stromal cells, which might have implications for the treatment of meta-
static disease [32]. The prognostic significance of uPAR up-regulation in colon cancer 
has also been recognized in endothelial cells in a group of more than 400 patients [33]. 
These semi-quantitative immuno-histochemical studies, showing predictive value of 
enhanced uPAR expression not only in cancer cells but also in other cell types within the 
tumor, emphasize the use of homogenates/ lysates for diagnostic/prognostic purposes, 
because of the accumulated overall score of uPAR in this type of assay [29]. A recent 
RT-PCR study, establishing the prognostic value of enhanced uPAR expression in tumor 
cells isolated from bone marrow and peripheral blood cells in more than 800 stomach 
cancer patients, confirms and support these findings [34]. There are few studies pub-
lished determining uPAR in cancers of the liver, pancreas and mouth and the number 
of included patients per study are less than 50 (Table 1). In general, uPAR levels are 
enhanced, but there is no or little association found with survival. More recent studies 
in oral and pancreatic cancer, using slightly larger groups of patients, were indeed able 
to identify highrisk groups based on enhanced uPAR expression, comparable with what 
is found in breast or colorectal cancer [35, 36]. To establish whether uPAR, or in fact any 
other biological marker, is a predictive tool for these cancer types, multi-center studies 
are necessary for these cancer types to obtain larger numbers of patients with long time 
follow up. Based on the experience with breast and gastrointestinal samples, in case of 
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uPAR the detection method should preferably be ELISAs rather than semi-quantitative 
immunohistochemical staining.

Lung Carcinoma
Although lung tumor is the most common cancer type, it is relatively infrequently studied 
with respect to the plasminogen activation system. This is somewhat surprising, because 
nicotine, the main cause of lung cancer, is shown to stimulate epithelial-mesenchymal 
transition (EMT) of cancer cells, mediated by the Erk/5-LOX signaling pathway via up-
regulation of MMPs, urokinase and uPAR [37]. In the most recent and largest study in 
NSCLC patients so far, uPAR and PAI-1 were the only independent prognostic indicators 
amongst 10 immunohistochemically detected parameters, including uPA [38]. Earlier 
ELISA-based studies in tissue extracts found weak associations with survival [39, 40], 
suggesting that more studies with larger groups of patients are needed to determine 
the prognostic value of uPAR for lung cancer patients.

Bladder, Prostate and Ovarian Carcinoma
Bladder, prostate and ovarian carcinoma tissues have been studied for uPAR content 
(Table 1). In general, uPAR is also upregulated in these cancers, but whether high uPAR 
levels are prognostically relevant is still under discussion. For ovarian cancers the results 
are probably the most intriguing, with studies finding respectively no [41, 42], positive, 
[43] and negative correlation [44] with survival. Because of the different approaches 
of these studies, these diverse results are difficult to compare or explain. Recently, the 
research for especially these types of cancers has been focused on suPAR in urine and 
blood rather than on tumor tissue levels.

Soluble uPAR in Urine and Blood of Cancer Patients
Urine: For obvious reasons the first tumor type for which urine derived suPAR was 
measured and evaluated for its prognostic value was bladder cancer [15, 45]. Measuring 
suPAR in urine derived from bladder cancer patients could indeed provide an easy and 
noninvasive method to determine the state of the tumor. Interestingly, ELISA measure-
ments specific for human uPAR showed the presence of human suPAR in urine from 
mice xenografted with human ovarian and breast tumors, suggesting that urine suPAR 
levels reflect the presence of tumor uPAR also in non-bladder cancers [46]. Enhanced 
urinary suPAR levels have now been detected in patients with bladder, colorectal, 
ovarian, prostate cancer and leukemia, see Table 1 [15, 16, 45-48]. Preliminary studies 
showed that the diagnostic sensitivity of suPAR for bladder carcinoma was comparable 
with other recently established urinary tumor markers [45, 47-50]. The mechanism how 
uPAR, or other proteins like MMPs, end up in the urine of cancer patients, despite the 
glomerular barrier, is not solved yet [46, 51]. Recent studies have shown that tumor cell 
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derived exosomes might be involved. Exosomes are endocytic nanovesicles that are 
released from cells and are present in urine of patients with urological tract cancers [52]. 
Tumor cell derived exosomes have been shown to contain tumor associated membrane 
proteins like CEA, EpCAM, PCNA, and EGFR, but also proteolytic enzymes like MMPs and 
urokinase [53, 54]. Recently, exosomes have been found in other body fluids like blood, 
ascites, and saliva and exosomes are now regarded as tools of tumor cells to communi-
cate signals to local and remote cells or tissues [55]. Tumor cell derived exosomes have 
been shown to ‘prepare’ sentinel lymph nodes for tumor metastasis [55]. Considering the 
established relationship between uPAR and (micro)metastases, the discovery of uPAR in 
exosomes seems only a matter of time (Fig. 1C). Like for tissue determinations of uPAR, 
there are still some issues that need attention before the value of suPAR for diagnostic/
prognostic purposes can be confirmed. Next to full-size suPAR urine contains several 
suPAR-derived fragments [46, 56]. The value and detectability of these fragments need 
to be established before large sample sizes are measured. Comparable results require 
a general protocol for the sampling time, storage and dilution correction of the urine 
samples. Furthermore, enhanced suPAR levels could also origin from normal physiologi-
cal changes like menstruation period or be induced by (temporary) inflammation, for 
which should be corrected [15].
Blood: Soluble uPAR was first identified in fairly high amounts in plasma and ascites of 
ovarian cancer patients in 1993 [57]. Soon after, enhanced levels of suPAR were reported 
in blood from a small group of breast cancer patients compared with healthy controls 
[58]. Serum suPAR levels were measured in a small group of cancer patients and a pre-
liminary comparison was made with an established diagnostic marker [59]. In the same 
study, a relation between high pre-operative suPAR levels and worse survival was found, 
suggesting a possible role of suPAR as a prognostic marker. The measurement of suPAR 
from blood has obvious advantages compared with tissue derived uPAR. Detection of 
suPAR from blood is non-invasive and independent from surgery and could therefore be 
performed before therapy and during follow-up. Whether blood suPAR measurements 
reflect the tumor tissue levels is still under debate. A study comparing pre-operative su-
PAR levels in blood from 161 breast cancer patients with the level of uPAR in correspond-
ing tumor tissue homogenates indicated a much stronger correlation for uPAR (r2=0.61) 
than for uPA or PAI-1 [60]. As for the measurement of urinary suPAR, complicating aspects 
for the clinical use of blood suPAR levels are the expression of uPAR on multiple cell 
types, the unresolved mechanism(s) of release and the existence of suPAR fragments, 
see Fig. 1C [61]. Different patterns in the levels of uPAR-fragments have recently been 
established in blood of patients with various types of cancer [62-65]. Future studies 
are likely to focus more on the determination of cleaved suPAR fragments rather than 
full-size uPAR. Because uPA is an important mediator of cleavage, liberated domain 1 of 
uPAR might be an indicator of enhanced overall uPA activity on the cell surface rather 
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than just enhanced uPAR levels [66]. The development of more specific and sensitive as-
says will allow the evaluation of the value of suPAR and its fragments in urine and blood, 
not only for prognosis of survival, but also as predictors of response to therapy, like for 
uPA and PAI-1 [64, 67, 68]. The few studies comparing urine and plasma levels of suPAR 
show that both levels are correlated, but that individual differences exist in overall levels 
and fragment profile, indicating the complexity of the subject [15, 18, 69]. In conclusion, 
the determination of uPAR seems to have diagnostic and/or prognostic value, compa-
rable to what has been found for uPA or PAI-1. Like these parameters, uPAR will probably 
never be used as a single parameter test. uPAR might at best have additional value in 
multi-parameter assays, like recently has been shown in a cluster analysis for signaling 
pathways in breast cancer [70]. The value of uPAR measurements from surgically derived 
cancer tissue as a purely diagnostic tool is limited. However, surprisingly homogenous 
results have been reported for most tumor types in survival studies. The possibility that 
uPAR levels could divide patients into groups with a good or bad prognosis is still under 
investigation. The presence of soluble variant(s) in the circulation, which levels might 
correlate with the enhanced expression in tumors, underscores the possible use of uPAR 
as a diagnostic/prognostic tool. Because suPAR seems to be enhanced in a range of 
inflammatory responses as well, e.g. rheumatic arthritis, and HIV [71], careful interpreta-
tion of the results is required. This is similar to the use of several other genes/proteins, 
discovered via their role in cancer, like BRAF, MYC, RAS, RET, and SRC, as they are recently 
shown to play a role in inflammation as well [72].

GENETIC BACKGROUND, UPAR SINGLE NUCLEOTIDE POLYMORPHISMS(SNPS)

Single nucleotide polymorphisms (SNP) are DNA sequence variations in a single nucleo-
tide, which are inherited in a Mendelian way and therefore vary between populations. 
SNPs in coding sequences could affect the protein, leading to truncated or even inactive 
forms. For uPAR, more than 25 SNPs are identified, including 4 in the promoter region of 
the gene. These promoter-located SNPs may result in changed transcription efficiencies. 
Compared with other cancer-associated proteins like MMPs, relatively little research 
has been performed on the association of the uPAR genotype with cancer [73]. This 
is probably because the uPAR gene (PLAUR) is located in a relatively stable region, in 
contrast to uPA/PLAU, with exceptionally high differentiation of allele frequencies [74]. 
The first cancer-related uPAR-genotyping study determined L317P (rs4760) in a Cauca-
sian cohort of patients with lung cancer [75]. A relation of this coding region-located 
SNP with overall survival prognosis was not established, but because of the low power 
of the study, a certain association could not be excluded. In the same study, two SNPs 
in respectively the PAI-1 and PAI-2 gene were indeed associated with the outcome of 
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the patients, whereas a SNP for uPA was not [75]. Variations in rs4760 are frequently 
found in Caucasian populations. The promoter-located uPAR SNP rs344781 variations 
are rather common in Asia and have been investigated in patients with various cancer 
types [76- 78]. In a study comprising 102 patients with hepato-cellular cancer (HCC) in 
a Taiwanese population, heterozygote individuals (T/C) and carriers of the C/C variant 
had a significant risk (3 fold and 2 fold AOR respectively) for HCC compared with T/T 
wild-type homozygotes [76]. However, this relation was absent in a study consisting of 
253 patients with oral carcinoma by the same authors [77]. Genotype frequencies of 
variant homozygotes of uPAR were significantly different between 375 non-small cell 
lung cancer patients and 380 control subjects [78]. Individuals with homozygous uPAR 
variant CC had lower ORs for NSCLC (adenocarcinoma and squamous cell carcinoma) 
compared with those carrying wild-type allele (TT or TC genotype). Subjects carrying 
a T allele genotype had a tendency to develop advanced disease [78]. SNP rs344781 
has recently be studied in a large Caucasian population with systemic sclerosis and was 
found to be associated with vascular complications [79]. The uPAR rs344781 GG gene 
variant is associated with vasculopathy and impaired angiogenesis, which might influ-
ence microvessel densities and could therefore be protective against cancer progression 
[80]. Next to SNPS, also other genetic variations of the uPAR gene have been described 
[81]. Determination of a mRNA splice variant of uPAR, (exons 4 and 5) in a group of 43 
breast cancer patients revealed a significant association with shorter DFS [82]. In conclu-
sion, the evaluation of the association of uPAR gene variations with diseases like cancer 
has just begun. Less than a handful of SNPs have been investigated in small groups of 
cancer patients. The present data are not consistent enough to draw firm conclusions. 
The determination of uPAR SNPs might turn out to be a valuable tool as predictor, espe-
cially in case of uPA(R)-targeted therapy, like has been proposed for other monoclonal 
antibody -based treatments of cancer [83].

TARGETING OF UPAR -  THERAPY

Over-expression of the urokinase receptor on cancer cells and tumor-surrounding stro-
mal cells in a broad range of tumor types makes uPAR a potential and attractive target for 
therapeutical applications [84-87]. Several strategies are being investigated: Like several 
other tumor-associated receptors like HER2/neu and EGF, uPAR is used as a plain recog-
nizing tool for tumor cells to deliver anti-cancer agents to evoke cell death. Alternatively, 
interference with uPA-uPAR interactions blocks the activity of the proteolytic enzyme, 
hereby down-regulating the ability of the tumor cells to invade and metastasize. For the 
latter, also the options of gene therapy have been explored. In this section we give an 
evaluation of the different approaches of using uPAR in a therapeutical setting.
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Peptide Antagonists and Fusion Proteins
The first uPAR targeting peptide was developed by isolating the N-terminal fragment 
of uPA (ATF), containing the first 135 amino acids including the growth factor domain 
in 1987 (Fig. 3B) [88]. ATF has high affinity for uPAR and competes with uPA, reducing 
the enzymatic activity in vitro and in animal model systems [89- 91]. The possibility to 
conjugate ATF to a functional moiety has led to several hybrid proteins with different 
functionalities. ATF linked to a radio-isotope was successfully used for alpha-emitter 
therapy of advanced ovarian cancers in a nude mouse model [92]. Examples of ATF-based 
fusion proteins are, HSA-ATF with human serum albumin [93], PAI-2-ATF with human 
uPA inhibitor PAI-2 [94], UTI-ATF with human urinary trypsin inhibitor [95], BPTI-ATF with 
bovine pancreas trypsin inhibitor [96], TIMP1-ATF with human inhibitor of MMPs [97, 98], 
ATF-methioninase [99], and ATFVAS with vasostatin, an inhibitor of angiogenesis [100]. 
These constructs inhibit specific protein activity localized at the cell surface. ATF has 
also been conjugated to bacterial or plant cytotoxins like gelonin [101], saporin [102], 
anthrax [103], diphteria toxin [104], and pseudomonas toxin [105]. Synthetic peptides, 
based on the growth factor domain (GFD) of uPA or binding specifically to domain D3 
of uPAR offer several advantages compared to ATF with respect to size or affinity [106-
111] (Fig. 3B). ATF or GFD-based constructs are meant to induce (tumor)cell death after 
delivery via internalization. The majority of these ATF constructs were tested in a proof-Figure 3 
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Figure 3 Diagrams of uPAR, urokinase and ATF. A) uPAR is attached to the cell membrane via a glyco-
sylphosphatidylinositol (GPI) anchor. The three domains are depicted by numbers D1-D3. The arrow in-
dicates the interaction site with the amino-terminal fragment or the growth factor domain of urokinase. 
(courtesy of Paola Llinas [171]). B) Schematic overview of urokinase. The amino-terminal fragment (ATF) 
and the growth factor domain (GFD), relevant for targeting and imaging purposes, are indicated.
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of-principle 0like study, using human tumors in animal models. Despite the positive 
results in most studies, showing tumor regression and dormancy, ATF-constructs have 
not been clinically evaluated yet. A general difficulty with the testing of ATF and ATF-
hybrids in xenograft models and the translation of the results to the clinic is the strong 
species specificity of the binding between uPA and uPAR [112, 113]. Either the human 
tumor cells or the stromal cells of animal origin will be targeted, depending on the spe-
cies of ATF [97]. Obviously, also data from syngeneic animal models cannot be directly 
translated to the clinic, because findings found in animal cancers do not always reflect 
the situation in humans [85, 114, 115]. Problems might be expected with the use of ATF-
targeted cytotoxins in humans, because of immune responses against the specific toxins 
as shown with other toxin-fusion proteins [116]. A more specific disadvantage is that AT, 
like uPA, will only bind unoccupied uPAR, which might be a disadvantage compared to 
certain antibodies.

Antibodies
More than 200 monoclonal antibodies are being tested in clinical trials, around 20 are 
FDA approved, and some of these antibodies are commonly accepted as therapeutical 
intervention, e.g. bevacizumab, cetuximab, gemtuzumab, ibritumomab, panitumumab, 
trastuzumab. Besides the blockage of the receptor from their ligand, therapeutic 
antibodies can have natural cell-destructive capabilities via complement activation. 
Moreover these antibodies can also be used as targeting component in combination 
with a functional moiety, like a radio-ligand, drug or toxin (Fig. 1B). Large numbers of 
anti-uPAR antibodies against various epitopes have been developed and tested in vitro 
and in animal models [117, 118]. Antibodies directed against rat uPAR decreased tumor 
volume by apoptosis in a syngeneic breast cancer model [119]. Recently, positive results 
were achieved using ATN-658 antibodies against human uPAR in xenografted mice with 
ovarian, colon and prostate cancer [120-122]. Interestingly, this antibody is not selected 
for its uPA blocking capacity. This antibody is able to bind to D2D3 of uPAR, even when 
uPA is bound. A humanized version of the antibody is expected to enter a phase 1 
clinical cancer study [122]. Overall, despite encouraging results in animal tumor models, 
therapeutical applications based on uPAR antibodies are still not available. Complicat-
ing factors are uPARs multi-ligand nature [123, 124], the different configurations of uPAR 
(D2D3 after release of D1), and the possibility of release from the cell (suPAR) [1]. These 
issues could probably be solved by the choice of uPAR epitope to target. Other difficul-
ties to be solved are the association of uPAR up-regulation with the invasive front of the 
tumor, which would impede penetration and the enhanced expression of uPAR by a 
range of stromal cells.
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Nanoparticles
An alternative way of delivering therapeutical active moieties to tumors is through tar-
geted particles, which offer great transport capacity, but with rapid uptake and clearance 
by the liver and spleen and limited penetration in poorly vascularized or necrotic tumor 
regions [125]. The use of uPAR as a target was initially tested in vitro with micro-silica 
particles coated with uPA and antibodies against uPAR [126]. Recently, smaller nano-
particles directed to uPAR were described. A GFD-derived peptide in a self-assembled 
liposome was used to deliver DNA to uPAR positive cells [127]. ATF-conjugated multi-
functional nanoparticles, detectable with MRI and near infrared imaging and containing 
a toxin have been developed for the treatment of prostate cancer [128]. Nanorods, 
rod-shaped gold nanocrystals conjugated with ATF showed similar results as EGFR and 
integrin αvβ3 targeting ligands in vitro [125]. These studies indicate the potential of nano 
particles in cancer treatment, but the data are still preliminary and the possibilities have 
to be verified further in animal models.

Interventional Gene Therapy
A promising approach to regulate uPAR expression is to block or interfere in the protein 
synthesis using antisense nucleotide inhibition, RNA interference (RNAi) or other gene-
based approaches. An anti-sense uPAR transcript was used for the first time in 1994 to 
demonstrate reduced invasive potential of a highly invasive cell line in vitro, and in the 
chorioallantoic membrane model system [129].The in vivo use of antigene approaches 
for down-regulating uPAR as a potential therapy for cancer has been extensively 
reviewed by Pillay et al. [130]. Various tumor types have been treated with different 
approaches and model systems. The reported results were in general positive, ranging 
from partial reduction of colon, prostate tumors and gliomas to complete inhibition of 
primary breast tumors or metastases [131-140]. Especially RNA interference has proven 
to be an efficient method to block uPAR expression [141, 142]. Recent studies have 
been focusing on combinations with other genes and the effect on of uPAR expression 
blockage on angiogenesis [143-147]. All together, uPAR interference therapy seems to 
be a potential approach for cancer treatment. Although inhibition of enhanced uPAR 
expression by cancer cells, endothelial cells, and tumor-associated fibroblasts will down-
regulate tumor development, the effect on uPAR expressing infiltrating cells is largely 
unknown, but could be opposite. Nevertheless, various preclinical studies with different 
tumor types show extensive anti-cancer effects suggesting a prompt translation into a 
clinical setting [130, 148].
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TARGETING OF UPAR - IMAGING

Apart from tumor characteristics like stage and differentiation grade, complete surgical 
removal is pivotal for the prognosis of the cancer patient. Although there are numerous 
imaging technologies in pre-operative settings available to assess the extent of the 
tumor, during surgery only ultrasonography can be used. Therefore, surgeons rely on 
visual inspection and palpation to detect residual disease. As a consequence, the resec-
tion margins are not always tumor-free. Despite curative-intended surgery, up to 30% 
of gastrointestinal cancer patients develop local recurrences as the only site of relapse 
[149]. The same holds for the surgical treatment of liver metastases from colorectal 
cancer, for which local recurrences are mainly determined by resection margin status. 
In breast-conserving surgery for non-palpable lesions, irradical resection rates up to 40 
percent are reported. Often secondary surgery is required with associated morbidity. 
Image-guided surgery (IGS) is the technology where the surgeon intra-operatively is 
guided by images of the tumor. IGS is based on a fluorescent label which could be con-
jugated to a tumor targeting determinant [150-153]. Near-infrared fluorescent probes 
(NIRF) are mostly used because this region of the spectrum offers advantages such 
as high photon penetration, low autofluorescence and even more important, the NIR 
spectrum is invisible to the human eye and therefore NIR light will not interfere with the 
surgical field. The targeting component consists generally of a cell-surface recognizing 
protein or peptide [154, 155]. In this section we will give an overview of the studies 
which used uPAR for tumor imaging purposes and evaluate the clinical potential for 
imaging purposes. Because uPAR is up-regulated in most tumor types and only mod-
erately expressed in normal tissues [1, 156], uPAR is considered a possible candidate 
for tumor imaging. The principle use of uPAR for primary tumor imaging was shown in 
vitro in human breast carcinomas with 125-Iodine-labeled scuPA in 1994 [157]. One year 
later, uPAR expression was found on disseminated tumor cells in bone marrow biopsies, 
suggesting a role for uPAR also as target for micro-metastasis imaging [158]. uPAR plays 
an important role in lymphatic dissemination of tumor cells and micro-metastases for-
mation, as has been shown for stomach cancers: 67% of metastatic lymph nodes stained 
strongly for uPAR, with a higher intensity than in the corresponding tumor [159, 160]. 
Recently, an integrated bioinformatics analysis, using publicly available genomic profiles 
has elucidated uPAR as one of the most potential imaging targets, next to well known 
imaging targets like somatostatin receptor, HER2/neu, integrin αvβ3, and epidermal 
growth factor receptor [161]. Like for therapeutic purposes, there are several options 
to target uPAR: labeled (pro)uPA or uPA-derived fragments (ATF, GFD, peptides, nano 
particles), or anti-uPAR antibodies or smaller versions. The uPA activatable compounds, 
not directly targeting the uPA-receptor, will not be discussed.
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Labeled uPA, Derived Fragments, and Peptides
The use of labeled full-size or fragments of uPA for imaging implies that mainly unoc-
cupied uPAR will be detected (Fig. 1B). Free and occupied uPAR differ in mobility and 
localization on the cell membrane [162]. Although clear data about uPAR occupancy 
in tumors are not available, in most cancers uPAR up-regulation coincides with a rise in 
uPA and PAI-1. Therefore, in tumors the majority of uPAR is expected to be occupied or 
even internalized and will not be available for imaging by uPA-based targeting peptides 
or proteins [163]. Radioactive labeled linear uPA-based peptide binding to human uPAR, 
labeled were used to image human glioblastoma, breast tumors and intraperitoneal 
disseminated ovarian tumors in immunodeficient mice using microPET-scan and other 
detection systems [92, 164, 165]. Analysis of the biodistribution showed high tumor 
uptake with tumor/background ratios from 4 to almost 10, with rapid elimination from 
the blood via the renal/urinary route. ATF or uPA-derived peptides are shown to be 
particularly suited to coat to iron oxide (IO), or other nanocrystals. Imaging studies using 
these nanoparticles have been performed in orthopically xenografted nude mice with 
human breast, prostate and pancreas tumors [125, 128, 166, 167]. Because of their high 
loading capacity, nanoparticles could even be used to carry simultaneously therapeuti-
cal as well as imaging components [168]. Another possibility is an uPAR-targeted nano 
particle consisting of iron oxide, for detection by MRI, carrying a NIR fluorescence probe 
[166]. The data from these animal models indicate that labeled uPAR peptide antagonists 
may find application in imaging and therapy of uPAR-expressing cancers in patients. The 
point discussed in the previous therapeutic targeting section that animal models might 
not be representative enough for human tumors might be less relevant for imaging 
[85], because for imaging the issue which cells are exactly targeted is less important, as 
long as they are present within or directly around the tumor. The use of relatively small 
uPA-derived peptides offers a number of advantages. First, because of their origin these 
peptides are minimally immunogenic. Furthermore, the size and weight of a peptide or 
protein are major determinants of the route of excretion, i.e. via the liver or kidney. Gen-
erally, a protein size below 60 kDa, the renal threshold for glomerular filtration, results 
in clearance via the renal system, accompanied by high accumulation in the kidney. The 
use of ATF (15kDA) or even smaller peptides would be favorable for the imaging of liver 
neoplasms, but would be a specific problem for kidney tumors in terms of background. 
Recent strategies to reduce renal absorption of peptides and antibodies include co-
injection of cationic antibodies or gelofusine and will also reduce the accumulation of 
the imaging ligand in the liver [92, 169].

Antibodies
Because of their large size (150.000 kDa), injected antibodies possess longer half-life 
and prolonged elimination times than ATF or smaller peptides. Antibodies have the 
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advantage that they can be targeted to specific epitopes on the uPAR receptor and 
could for instance be designed to recognize all forms of uPAR (grand total) or particular 
forms, like complexed to uPA, or fragmented. Dullin et al. published recently the use of 
an uPAR antibody labeled with Cy5.5, to visualize mammary carcinomas in an orthotopic 
mouse model in vivo, showing tumor specificity versus the control antibody [170]. The 
disadvantage of using relative large antibodies could be reduced or eliminated by using 
antibody fragments like F(ab)2, Fab or scFv with kDa’s of respectively 110, 50 and 45, or 
camel-based nanobodies (kDa 15). Use of these antibody fragments will decrease liver 
uptake, reducing background signaling. In summary, despite a long historical interest 
in the role of the plasminogen activation system and cancer, relatively few studies 
have been performed using uPAR targeted ligands in animal cancer models for in vivo 
imaging. The preliminary results with ATF and specific uPAR-targeting peptides and 
antibodies have been encouraging and considering the growing arsenal of peptides 
and antibodies available we will probably see more of this application in the near future.

CONCLUSION AND PERSPECTIVES

Despite more than 25 years of research, the clinical applications of uPAR for cancer 
therapy seem still less pronounced than previously expected. This is partly due to the 
complicated role(s) of uPAR in various biological systems, which are only recently being 
elucidated. Also the characteristic that enhanced uPAR expression is found on cancer 
cells as well as tumor-associated stromal cells does not contribute to a fast translation 
from laboratory findings to the clinic. Still, there are several promising developments 
that encourage further evaluation of uPAR’s role in cancer care. There could indeed be 
a role for uPAR and/or suPAR as predictive tumor marker(s), probably in a panel with 
others. Especially for the identification of patients with poor prognosis for neo-adjuvant 
treatment and, perhaps even more interesting, as predictor of therapy response. The 
new antibodies and the more specific and sensitive detection techniques which are 
developed, used in larger groups of patients, will confirm previous research and extend 
our vision on the possible usefulness of (s)uPAR as biomarker. Also the development 
of drugs which target tumors via uPAR-recognition has proven its potential in animal 
models. Especially, because these drugs will not only challenge the malignant cells, but 
also supporting stromal cells like fibroblasts, macrophages and angiogenic endothelial 
cells. The presence of uPAR on these cells could be an important advantage for the third 
application, image guided surgery. The proteins used presently for tumor targeting are 
either present on cancer cells (CEA, EGFR, EpCAM), angiogenic endothelial cells (αvβ3) 
or tumor-specific stromal cells, like macrophages in necrotic areas; uPAR is highly ex-
pressed on exactly those cells.
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