

Development of personalized health monitoring using ultra-weak photon emission based on systems medicine concepts Sun, M.

Citation

Sun, M. (2017, April 13). *Development of personalized health monitoring using ultra-weak photon emission based on systems medicine concepts*. Retrieved from https://hdl.handle.net/1887/47850

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/47850

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/47850</u> holds various files of this Leiden University dissertation

Author: Mengmeng Sun Title: Development of personalized health monitoring using ultra-weak photon emission based on systems medicine concepts Issue Date: 2017-04-13

Development of personalized health monitoring using ultraweak photon emission based on systems medicine concepts

Mengmeng Sun

孙濛濛

Mengmeng Sun

Development of personalized health monitoring using ultra-weak photon emission based on systems medicine concepts

Thesis, Leiden University, 2017

ISBN/EAN: 978-94-6299-561-1

Printed by: Ridderprint BV

Cover designed by Mengmeng Sun

Cover painted by Lei Zhuang

Thesis layout by Mengmeng Sun

Development of personalized health monitoring using ultraweak photon emission based on systems medicine concepts

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnifcus prof.mr. C.J.J.M. Stolker,

volgens het besluit van het College voor Promoties

te verdedigen op donderdag 13 april 2017

klokke 11:15 uur

door

Mengmeng Sun

孙濛濛

Geboren te Changchun, Jilin Province, P. R. China

In 1985

Promotor

Prof. Dr. Jan van der Greef

Co-promotores

Dr. Mei Wang, Dr. Eduard van Wijk

Promotiecommissie

Prof. Dr. Hubertus Irth Leiden University, The Netherlands
Prof. Dr. Meindert Danhof Leiden University, The Netherlands
Prof. Dr. Franco Musumeci University of Catania, Italy
Prof. Dr. Rudi Bauer University of Graz, Austria
Prof. Dr. Jacqueline Meulman Leiden University, The Netherlands
Prof. Dr. Aalt Bast

Maastricht University, The Netherlands

This research described in this thesis was financially supported by the Chinese Scholarship Council (CSC) with "Chinese government graduate student overseas study program" as a PhD scholarship (File no. 201208220167).

Contents

Chapter 1: 7	
Introduction	
Chapter 2:	
A Chinese literature overview on ultra-weak photon emission as promising technology for studying system-based diagnostics	
Chapter 3: 43	
Measuring ultra-weak photon emission as a non-invasive diagnostic tool for detecting early-stage type 2 diabetes: a step toward personalized medicine	
Chapter 4: 67	
Delayed luminescence: an experimental protocol for Chinese herbal medicines	
Chapter 5: 93	
Effects of growth altitude on chemical constituents and delayed luminescence properties in medicinal rhubarb	
Chapter 6: 123	
Characterization of the therapeutic properties of Chinese herbal materials by measuring delayed luminescence and dendritic cell-based immunomodulatory response	
Chapter 7: 155	
Summary, conclusions, and perspectives	
Samenvatting 165	
Curriculum Vitae 169	
List of publications 170	
Acknowledgements	