

Molecular engineering of plant development using Agrobacteriummediated protein translocation

Khan, M.

Citation

Khan, M. (2017, March 22). *Molecular engineering of plant development using Agrobacterium-mediated protein translocation*. Retrieved from https://hdl.handle.net/1887/47374

Version: Not Applicable (or Unknown)

License: License agreement concerning inclusion of doctoral thesis in the

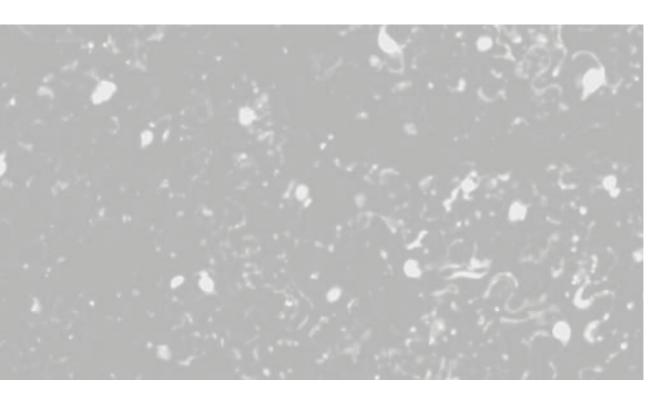
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/47374

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden



The handle $\underline{\text{http://hdl.handle.net/1887/47374}}$ holds various files of this Leiden University dissertation

Author: Khan, M.

Title: Molecular engineering of plant development using Agrobacterium-mediated

protein translocation **Issue Date:** 2017-03-22

A GENERIC SPLIT-GFP-BASED REPORTER SYSTEM FOR AGROBACTERIUM-MEDIATED PROTEIN TRANSLOCATION IN PLANTS

Majid Khan^{1,2}, Remko Offringa¹

¹Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, Netherlands ²Institute of Biotechnology & Genetic Engineering, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan Agrobacterium tumefaciens is well characterized for its ability to transfer DNA to plant and fungal cells, but the fact that it also translocates proteins to its host cells was only revealed more recently. Agrobacterium-mediated protein translocation (AMPT) was first detected by restoration of a resistance marker or GFP reporter following translocation of a Cre recombinase-VirF/VirE2 protein fusion. Later the split-GFP system was used to detect translocation of GFP 11-Vir fusions to recipient reporter lines overexpressing GFP₁₋₁₀. Unfortunately, these translocation reporter systems are not easily applicable to Agrobacterium-mediated transformation (AMT) resistant and regeneration recalcitrant plants such as sweet pepper and tulip, for which the generation of reporter lines are difficult. Here, we designed a generic split-GFP-based reporter system for AMPT to be used directly in wild-type plants. In this system, the $GFP_{_{1-10}}$ part is transiently expressed from a T-DNA that is co-transferred with a fusion protein comprising the GFP₁₁ part and the C-terminal translocation signal of VirF from the same Agrobacterium to any desired wild-type recipient cell. This modified generic protein translocation reporter system was successfully tested in a variety of tissues of different plant species, such as Nicotiana benthamiana, Nicotiana tabacum, Arabidopsis thaliana, Capsicum annum and Tulipa gesneriana. The system reported efficient AMPT to these plant species, and also appeared to be useful for optimization of AMT of tulip, and for the visual selection of transgenic tulip shoots.

Keywords: Agrobacterium tumefaciens, Protein translocation, Split-GFP, Generic system, Tulip

INTRODUCTION

The soil born gram negative plant pathogenic bacterium *Agrobacterium tumefaciens* is the most common and successful tool for plant transformation (Ziemienowicz, 2014). The capacity of *A. tumefaciens* to transfer DNA to plant cells is determined by an extrachromosomal circular DNA molecule called tumor inducing (Ti) plasmid, which the bacterium normally uses to induce crown gall tumors on its host plants (Larebeke et al., 1974). After the discovery that the crown gall disease was caused by transfer of a copy of a specific region of the Ti plasmid, the transfer or T-region, to the host cells, *A. tumefaciens* became a tool for plant transformation (Ziemienowicz, 2014).

The process of Agrobacterium-mediated DNA transfer starts with the induction of genes in the vir-region on the Ti plasmid by signaling molecules exuded by wounded plant tissues (Subramoni et al., 2014). Phenolic compounds, such as acetosyringone, are the most potent inducers of vir gene expression in wounded plant exudates (Stachel et al., 1985). Other signals, such as temperature, low pH and certain aldose-type monosaccharides, can enhance vir gene induction (Melchers et al., 1989). All these signals are perceived by the transmembrane receptor VirA (Melchers et al., 1989), which subsequently activates the transcriptional regulator VirG through a typical bacterial two-component phosphorylation system (Jin et al., 1990). VirG subsequently activates the transcription of the vir operons, resulting in the production of 11 VirB proteins that together with VirD4 assemble into the type-4 secretion system (T4SS) translocation pilus (Chandran Darbari and Waksman, 2015). The VirB proteins make up the T-pilus through which T-DNA and Vir proteins are translocated into the host cell, while VirD4 acts as a coupling protein that recognizes DNA and proteins that are to be translocated (Lai and Kado, 2000; Kumar and Das, 2002; Zupan et al., 2007). Among the Vir proteins, VirD1 and VirD2 form a relaxase that introduces a nick in the bottom strand of the Ti plasmid at the position of imperfect border repeats that delineate the T-region (Wang et al., 1987; Vogel and Das, 1992). During this nicking, VirD2 becomes covalently attached to the 5' end of the single stranded T-DNA where it serves to recruit and guide the T-DNA during translocation by the T4SS to the nucleus of the host cell (Lacroix et al., 2006). By using a Cre recombinase Reporter Assay for Translocation (CRAfT) it was demonstrated that the T4SS system can also mediate transfer of Vir proteins, such as VirE2 and VirF, to the host cells independent of the T-DNA, and that the signal peptide responsible for protein translocation is located in the C-terminal part of these Vir proteins (Vergunst et al., 2000). The function of these translocated Vir proteins is to maintain the integrity of T-DNA inside the host cell and help its integration in the host genome (Lacroix and Citovsky, 2013).

Detection of protein translocation by the CRAfT system involved Cre-Vir fusion protein-mediated excision of a *lox*-flanked (floxed) DNA segment that disrupted a kanamycin resistance selection marker or a *GFP* reporter gene (Vergunst et al., 2000; Vergunst et al., 2005). However, the CRAfT system did not allow to follow translocated proteins in the recipient cells. As GFP-VirF or GFP-VirE2 fusions were not translocated by the *Agrobacterium* T4SS, probably because of the complex structural folding of the GFP protein (Vergunst et al., 2005), the split-GFP system was adapted for visualization of *Agrobacterium*-mediated protein translocation (AMPT) (Li et al., 2014; Sakalis et al., 2014). This split-GFP system was specifically developed to detect protein

translocation by the type III secretion system (T3SS) of *Salmonella enterica* into human cells (Van Engelenburg et al., 2010). Adaptation of this system for the visualization of AMPT to yeast and plant cells involved expression of GFP_{11} -Vir fusion proteins in *Agrobacterium* cells and generation of yeast or plant reporter lines that stably express the complementary GFP part (GFP_{1-10}) in the recipient cells (Li et al., 2014; Sakalis et al., 2014). Upon its translocation to recipient cells, the GFP_{1-10} -Vir fusion will recreate a functional GFP protein by interacting with the GFP_{1-10} part in the reporter line and thus result in fluorescent signals (Sakalis et al., 2014).

Visualization of AMPT is not only important for fundamental studies on the bacterial protein translocation process itself, but also for application of AMPT to check the efficiency of protein translocation, and whether the protein of interest is correctly localized in the target recipient cells. One drawback of the split-GFP system is that the recipient organism must be transformed a priori with a construct that expresses the GFP₁₋₁₀ part. Especially for transformation resistant or regeneration recalcitrant plants this step can be time consuming and difficult. Here we report on the construction of a new generic split-GFP system for visualization of AMPT in wild-type plants. In the new system the GFP₁₋₁₀ part and the GFP₁₁ part are delivered into the host cell from the same *Agrobacterium* strain, with GFP₁₋₁₀ expressed from the T-DNA following *Agrobacterium*-mediated transformation (AMT) and GFP₁₁ as part of a Vir protein fusion by AMPT. The GFP₁₋₁₀ coding region was modified with an intron sequence (Pang et al., 1996) to prevent GFP₁₋₁₀ expression in *Agrobacterium*. Using this new generic reporter system we successfully visualized AMPT in a variety of tissues from different plant species, among which the recalcitrant crop species *Capsicum annuum* and *Tulipa gesneriana*.

RESULTS

Testing GFP-intron versions and Agrobacterium strains in tobacco leaf infiltration

As a first step in developing a generic split-GFP system for visualization of AMPT, we verified that the GFP version that was originally used for the split-GFP assays (GFP) was sufficiently bright by comparing it to the previously reported plant-enhanced GFP (pGFPi) version (Pang et al., 1996). The pGFPi coding sequence was disrupted by the intron IV sequence of the potato ST-LS1 gene introduced at a splicable position (Pang et al., 1996). Synthetic introncontaining coding regions GFP(i) and pGFP(i) placed on a T-DNA under control of the CaMV 35S promoter were introduced into A. tumefaciens strains LBA1100 and AGL1. As expected, the intron-containing reporters p35S::GFP(i) and p35S::pGFP(i) did not lead to GFP expression in Agrobacterium (Fig. S1). When the resulting strains were used to infiltrate intact leaves on N. benthamiana plants, there was no obvious difference in the number of plant cells that showed GFP expression or the intensity of the GFP fluorescence (Fig. 1 a and b). As this indicated that both constructs were equally suited as transformation reporter, we continued to use the GFP(i)gene construct for our experiments. A comparison of A. tumefaciens strains AGL1 35S::GFP(i) and LBA1100 35S::GFP(i) in N. benthamiana and N. tabacum leaf infiltration experiments showed that the super virulent AGL1 strain was more efficient in AMT than LBA1100 (Fig. 1c and d). The absence of green fluorescence in leaves infiltrated with the virD4 mutant strain

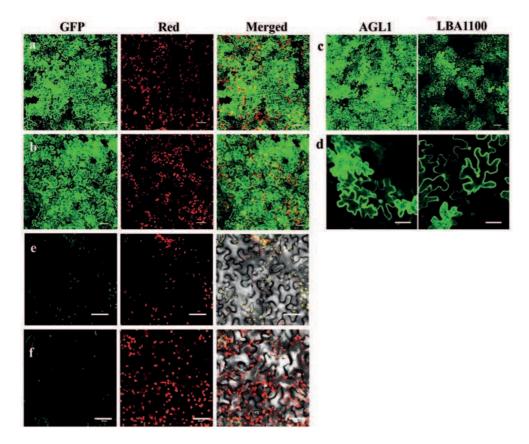


Figure 1. Comparison of AMT efficiencies using different *Agrobacterium* strains and GFP-intron versions in tobacco leaf infiltration experiments. a-f) Representative confocal laser scanning microscopy images of *Nicotiana benthamiana* (a, b, c, e) or *Nicotiana tabacum* (d, f) leaf tissues 3-4 days after infiltration with *Agrobacterium* strains AGL1 *p35S::GFP(i)* (a, c and d left panel), AGL1 *p35S::gFP(i)* (b), LBA1100 *p35S::GFP(i)* (c and d right panel) or LBA2587 (*virD4* deletion mutant) *p35S::GFP(i)* (e, f). Left, middle and right panel in (a, b, e, f) show GFP channel, red channel and merged image of GFP, red and transmitted light channels, respectively. GFP channel images are shown in (c, d). Scale bar is 0.1 mm.

LBA2587 (Sakalis et al., 2014) containing 35S::GFP(i) (Fig. 1e and f) showed that the GFP signals observed with the other strains were the result of AMT.

Construction of a generic split-GFP system for visualization of AMPT

After the confirmation that the 35S::GFP(i) construct was an effective reporter in plant cells, we modified the original split-GFP system (Fig. 2a) (Sakalis et al., 2014) by generating an intron-containing version of GFP_{1-10} . In addition, we fused a nuclear localization signal (NLS) to the N-terminus of the GFP_{1-10} part, as we expected that nuclear accumulation would facilitate the detection of the generally weak fluorescent signals in the nuclei after AMPT. The resulting plasmid 35S::NLS- $GFP_{1-10}(i)$ was introduced into Agrobacterium strain AGL1 already containing construct pvirF:: GFP_{11} -dvirF. In this bacterium, expression of the GFP_{11} part fused to the 50

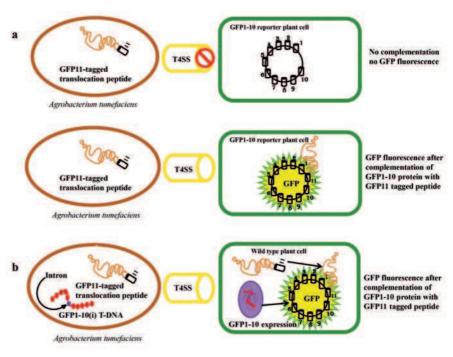


Figure 2. A schematic representation of the original and the generic split-GFP-based reporter system for AMPT in plant cells. a) The original split-GFP system for visualization of AMPT. Agrobacterium tumefaciens strains AGL1 $pVirF::GFP_{II}$ -dVirF (lower) and LBA2587 (VirD4 mutant) $pViF::GFP_{II}$ -dVirF (upper) both express a GFP₁₁-tagged protein fused with the C-terminal VirF translocation signal. Strain LBA1143 will not translocate the fusion protein because it lacks a functional T4SS, and therefore no GFP₁₋₁₀ complementation and GFP fluorescence will be observed in cells of the GFP₁₋₁₀ reporter plant line (upper). Translocation of the GFP₁₁-protein-VirF fusion by the AGL1 strain will result in complementation of GFP₁₋₁₀ in the recipient GFP₁₋₁₀ reporter plant cells that thus become green fluorescent (b). In the new generic split-GFP-based reporter system Agrobacterium strain AGL1 containing $PVirF::GFP_{II}$ -dVirF and $35S::GFP_{I-10}(i)$ will translocate both the T-DNA containing the $35S::GFP_{I-10}(i)$ gene (with a splicable intron (i)) and the GFP₁₁-tagged fusion protein to cells of wild-type plants. The translocated GFP₁₁-tagged fusion protein will complement the partial GFP₁₋₁₀ protein that is expressed from the T-DNA in the plant cell nucleus, thus leading to GFP fluorescence.

C-terminal amino acids of VirF (dVirF) was controlled by the *virF* promoter. Cocultivation with this *Agrobacterium* strain should only result in GFP positive cells if both the *35S::NLS-GFP*₁₋₁₀(i) T-DNA and the GFP₁₁-dVirF fusion are translocated to the same plant cell (Fig. 2b). This modified split-GFP system was tested by infiltrating leaves of *Nicotiana benthamiana*, *Nicotiana tabacum* and *Arabidopsis thaliana* (Fig. 3). For all three plant species the generic split-GFP system allowed us to detect successful AMPT to leaf epithelial cells, but surprisingly in *Arabidopsis* no nuclear GFP signals were observed, even in cells expressing the NLS-GFP(i) protein. This suggests that GFP fusions are inhibited or not able to cross the nuclear pore in *Arabidopsis* (Fig. 3d-f). In contrast, simultaneous expression of the NLS-GFP₁₋₁₀ fusion protein and translocation of GFP₁₁-dVirF resulted in a strong fluorescent signal in nuclei of the recipient cells in tobacco plants, indicating that NLS-GFP₁₋₁₀ was able to efficiently recruit the complementing

Figure 3. Visualization of AMPT using the new generic split-GFP system in leaves of wild-type tobacco and Arabidopsis plants. a,b) Representative confocal laser scanning microscopy images of Nicotiana benthamiana (a) and Nicotiana tabacum (b) leaf tissues 3-4 days after infiltration with Agrobacterium strain AGL1 containing $pVirF::GFP_{11}$ -dVirF and $35S::NLS-GFP_{1-10}(i)$. c-f) Representative confocal laser scanning microscopy images of Arabidopsis thaliana leaf tissues 3-4 days after infiltration with Agrobacterium strain AGL1 containing 35S::GFP(i) (c), $pVirF::GFP_{11}$ -dVirF and $35S::GFP_{1-10}(i)$ (d), 35S::NLS-GFP(i) (e) and $pVirF::GFP_{11}$ -dVirF and $35S::NLS-GFP_{1-10}(i)$ (f). Left, middle and right panel in (a-f) show the GFP channel, the red channel and a merged image of the GFP, red and transmitted light channels, respectively. Arrows indicate GFP fluorescent nuclei. Scale bar is 0.1 mm.

GFP₁₁ part to the nucleus. This nuclear localization enabled us to easily score the number of GFP positive cells and calculate and compare AMPT and AMT efficiencies (see below).

Optimization and efficiency of the new generic split-GFP system

A disadvantage of the new generic split-GFP-based reporter system for AMPT is that both components are located on separate plasmids that are maintained in Agrobacterium by antibiotic selection. Since the bacteria are not under antibiotic selection during the infiltration/ cocultivation period, plasmids might be lost, leading to a reduced efficiency of T-DNA and/ or protein translocation. To simplify the new generic split GFP system and possibly also to enhance the efficiency of this new system, we generated a single plasmid containing both the p35S::NLS-GFP₁₋₁₀(i) and the pvirF::GFP11-dvirF part. Protein translocation via this 'fused' generic split-GFP system was confirmed through N. benthamiana leaf infiltration (Fig. 4c). In the same experiment we also infiltrated N. benthamiana leaves with strain AGL1 35S::NLS-GFP(i) to monitor AMT efficiency, and with strain AGL1 containing $p35S::NLS-GFP_{1,10}(i)$ and pvirF::GFP11-dvirF to monitor AMPT from the separate system (Fig. 4a,b). Quantification of the percentage of fluorescent recipient cells showed that there was no significant difference between AMPT via the separate or fused generic split-GFP system, while AMT resulted in two-fold more GFP positive nuclei (Fig. 4d). This difference between AMT and AMPT might relate to the fact that in the case of AMPT two components have to be translocated simultaneously to the recipient plant cell. Alternatively, the possibly low number of translocated GFP,, proteins might limit the detection of protein translocation in some of the recipient plant cells.

AMPT of potential regeneration-enhancing proteins to Capsicum annuum

Capsicum annuum (sweet pepper) is regarded as one of the crop plants that is most recalcitrant to AMT (Kotharet al., 2010). Previously, it was shown that DEX-mediated activation of a BABY BOOM-Glucocorticoid Receptor (BBM-GR) fusion protein enabled the selection of transgenic shoots after AMT by enhancing the shoot regeneration process (Heidmann et al., 2011). A disadvantage of this method is that first a transgenic line with the 35S::BBM-GR construct has to be generated that can subsequently be used for AMT by BBM-enhanced regeneration of transgenic shoots. Here we tested the possibility of AMPT of BBM and AT-HOOK CONTAINING NUCLEAR PROTEIN-LIKE 15 (AHL15) to tissues of C. annuum. In Chapter 3 we showed that both of these proteins enhanced shoot regeneration from tobacco leaf discs. If successful, this would allow the use of AMPT as an alternative method to enhance regeneration and selection of transgenic C. annuum plants. Our new generic split-GFP reporter system was used to visualize the translocation of GFP, -BBM-VirF or GFP, -AHL15-VirF fusion proteins to C. annuum cells. Cotyledon explants were syringe infiltrated with Agrobacterium strain AGL1 containing either the pvirF::GFP₁₁-virF, pvirF::GFP₁₁-BBM-virF or pvirF::GFP₁₁-AHL15-virF construct together with the 35S::NLS-GFP₁₋₁₀(i) T-DNA construct on another plasmid. Confocal microscopy of the infiltrated cotyledon tissues showed nuclear GFP signals in the epithelial cells for all three Agrobacterium strains (Fig. 5), indicating successful AMPT. Because the background fluorescence was quite high, it was difficult to determine the efficiency of AMPT in C. annuum. Although we did not score for an immediate positive effect on shoot

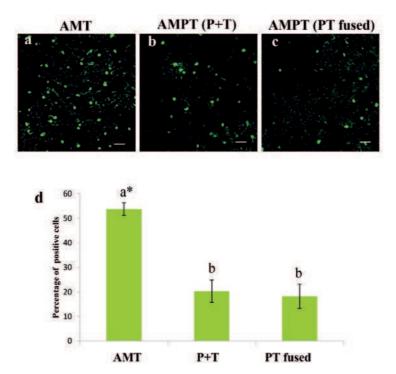


Figure 4. The efficiency of AMT in infiltrated tobacco leaves is two-fold higher compared to AMPT. a-c) Representative confocal laser scanning microscopy images of wild-type *Nicotiana benthamiana* leaves three days after infiltration with *Agrobacterium* strain AGL1 containing 35S::NLS-GFP(i) for detection of AMT (a), or AGL1 $35S::GFP_{1-10}(i)$ with $pVirF::GFP_{11}-dVirF$ (P+T, b)), or AGL1 $35S::GFP_{1-10}(i)-pVirF::GFP_{11}-dVirF$ (PT fused, c) for detection of AMPT. Scale bar is 0.1mm. d) Graph showing the AMT or AMPT (P+T or PT fused) efficiencies as percentage of positive cells. The efficiency was calculated based on the number of GFP-positive nuclei over the total number of nuclei in a single image. Bars represent average percentages determined from confocal images from three different parts of three leaves (n =9) of an infiltrated plant. Error bars depict the SEM. Significantly different values are differently labeled with a and b (Post ANOVA Tukey's test, p<0.05).

regeneration in our experiments, these results show that our new generic split-GFP-based reporter system can be used in crop plants to optimize the conditions for enhanced selection and regeneration of transgenic plants by combined AMPT and T-DNA delivery.

Successful protein translocation and T-DNA transfer to tulip cells

The AMT of monocot plant species is generally more difficult than that of dicot plant species. Different methods other than *A. tumefaciens* transformation can be used, such as the gene gun, but generally these result in lower transformation efficiencies (Barampuram and Zhang, 2011). After confirmation and successful application of the GFP(i)-based generic split-GFP AMPT reporter system in tobacco and *C. annuum*, it was also applied on one of the most recalcitrant monocot species *Tulipa gesneriana* (tulip). DNA transformation to tulip has previously been reported, but with low efficiency (Wilmink et al., 1992). Based on these results, we expected to see only low AMPT efficiencies in tulip using the generic split-GFP reporter system. To our

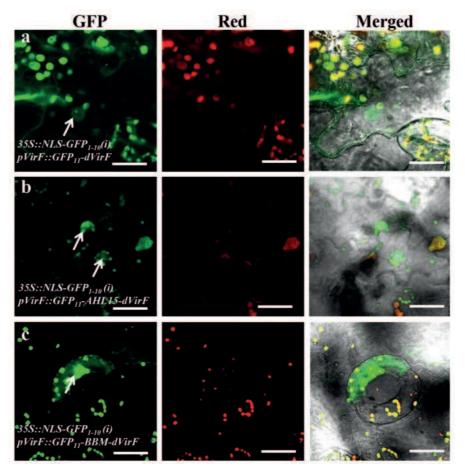


Figure 5. Visualization of AMPT of plant developmental regulators to Capsicum annuum cotyledon cells using the generic split-GFP system. a-c) Syringe infiltrated cotyledons of Capsicum annuum visualized under a confocal microscope after 3 days of cocultivation with Agrobacterium strain AGL1 containing $35S:NLS-GFP_{11}$. along with either construct $pVirF::GFP_{11}-dVirF$ (a), $pVirF::GFP_{11}-AHL15-dVirF$ (b) or $pVirF::GFP_{11}-BBM-dVirF$ (c). GFP fluorescent nuclei of the recipient cells are indicated by arrows. Left panel shows the GFP channel, middle panel shows the autofluorescence in the red channel, and right panel shows the merged image of the green, red and transmitted light channels. Scale bare is $30\mu m$.

surprise, however, nuclear GFP fluorescence was observed at an unexpectedly high efficiency either after AMT or after AMPT, especially in vertically cut thin layer sections of regenerated shoot explants (Fig. 6a,b). These results of T-DNA and protein translocation to tulip cells stimulated us to investigate possibilities to optimize the protocol for genetic modification of this economically important plant species.

As there is no standard protocol available yet for the *Agrobacterium*-mediated transformation of tulip, we performed a time-lapse experiment where the optimum duration of co-cultivation was investigated by multiple observations using confocal laser scanning microscopy. *In vitro* tulip tissues were co-cultivated for up to 9 days with the *Agrobacterium* strain AGL1 containing

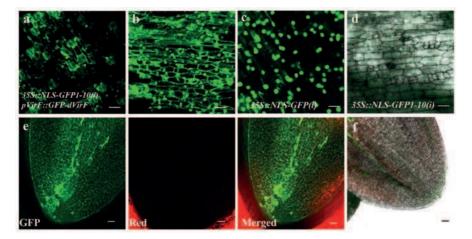


Figure 6. Visualization of AMPT and stable AMT in tulip cells. a,b) Representative confocal laser scanning microscopy images of transverse (a) or vertical (b) sections of tulip explants after 7 days of cocultivation with Agrobacterium strain AGL1 containing $35S::GFP_{1.10}(i)$ and $pVirF::GFP_{11}$ -dVirF to detect AMPT. The transverse section shows GFP fluorescence in nuclei of the cells and also in stomatal cells (a), while in the vertical section most of the nuclei are brightly fluorescent along with cytosolic signals (b). c,d) Confocal laser scanning microscopy images of transverse sections of tulip explants after 7 days of cocultivation with Agrobacterium strain AGL1 35S::NLS-GFP(i) to detect AMT (c) or with AGL1 $35S::NLS-GFP_{1.10}(i)$ as negative control (d). e,f) Representative confocal laser scanning microscopy images of regenerated tulip shoots 4-5 weeks after cocultivation with AGL1 35S::NLS-GFP(i) (e), or with negative control strain AGL1 $35S::NLS-GFP_{1.10}(i)$ (f). (Left, middle and right panels in (e) show the GFP channel, the red channel, and a merged image of the GFP and red channel while pannel (f) shows a merged image of GFP, red and transmitted light channels, respectively). Scale bar in all images is 0.1 mm.

35S::NLS-GFP₁₋₁₀(i) and pvirF::GFP₁₁-dvirF. The tulip tissues were observed at different time points (5, 7 and 9 days). The results showed increased GFP fluorescence after 7 days of co-cultivation (Fig. S2). Extending the co-cultivation period up to 9 days resulted in overgrowth of bacteria and in tissue necrosis accompanied by high autofluorescence, which interfered with observation of GFP signals. The optimized conditions of 7 days co-cultivation of tulip explants on hormone free MS medium with 40mg/L acetosyringone, resulted in enhanced protein translocation, whereas longer co-cultivation damaged the explant tissues as a result of the bacterial overgrowth. Strikingly, the use of growth hormone containing medium with acetosyringone during co-cultivation prevented this overgrowth of Agrobacteria for up to two weeks, but resulted in reduced AMPT efficiencies, most likely because the proliferating cells on hormone medium produced antibacterial compounds that prevented Agrobacterium growth.

In the time lapse experiments we also infiltrated tulip tissues with *A. tumefaciens* containing 35S::NLS-GFP(i) for T-DNA transfer as positive control. After 7 days of co-cultivation, some of the tissues were transferred to hormone containing medium without selection. Some of the regenerated shoots obtained after 4-5 weeks on this medium showed nuclear GFP signals in all cells (Fig. 6e), suggesting stable integration and expression of 35S::NLS-GFP(i). DAPI staining confirmed that the observed GFP signals were located in the nuclei of tulip cells (Fig. S3). Although, the regeneration efficiency of tulip varies per explant, these experiments

showed that efficient AMPT and AMT can be achieved in tulip by using the *35S::NLS-GFP(i)* construct as a reporter for stably transformed regenerating shoots. These first results pave the way for the establishment of a stable AMT system for tulip.

DISCUSSION

Previous studies have shown that the most acceptable tool for generating transgenic plants, Agrobacterium tunefaciens, can also be used to translocate desired proteins into plant or yeast cells (Vergunst et al., 2000; Schrammeijer et al., 2003). Two reporter systems have been developed to study and optimize this AMPT, but until now these methods relied on the construction of stably transformed reporter lines, either containing a marker gene disrupted by a floxed insert to detect translocation of the Cre recombinase, or a split-GFP-based system where a stable line is generated that expresses the non-fluorescent GFP₁₋₁₀ to detect translocation of the complementing GFP₁₁ part (Li et al., 2014; Sakalis et al., 2014). The advantage of the latter system is that it allows to follow the translocated protein in the recipient cells to its predominant final localization (Li et al., 2014; Sakalis et al., 2014). Here we generated a generic split-GFP-based reporter system for direct visualization of AMPT in wild-type recipient cells. The advantage of this generic split-GFP system is that both the GFP₁₋₁₀ and the GFP₁₁ parts are transferred by the same Agrobacterium strain, thereby circumventing the time consuming step to generate a GFP_{1,10} expressing reporter line, but also to make the method applicable to transformation resistant plants species. This new generic split GFP system has been successfully used to show AMPT to cells of tobacco and Arabidopsis, and to the transformation recalcitrant crops sweet pepper and tulip.

Using the original version of split-GFP, most of the observed GFP signals localized to the cytosol of the plant cells (Sakalis et~al., 2014; Chapter 3). The cytosolic signals were generally weak and difficult to score because they were hard to distinguish from background fluorescence. To avoid this problem, a nuclear localization signal (NLS) was added to the GFP₁₋₁₀ moiety. Using this, we could show that AMPT is only 2-fold less efficient than AMT, which is still surprisingly high in view of previously published efficiencies (Sakalis et al., 2014). One has to keep in mind, however, that the observed AMPT efficiency is likely to be an underestimation, since detection of AMPT with the generic system requires translocation of both T-DNA and protein and might be limited by the number of GFP₁₁-dVirF fusion proteins translocated. Having the $35S::NLS-GFP_{1-10}(i)$ and $pvirF::GFP_{11}$ -dvirF parts at separate or at one construct did not change the AMPT efficiency. However, in some tissue explants we even obtained more GFP positive cells with AMPT than with AMT, suggesting that infiltration handling, leaf tissue damage and tissue type also considerably contribute to the AMPT efficiency, and that in fact the AMT and AMPT efficiencies do not differ that much.

Application of our new generic split-GFP-based AMPT reporter system to the AMT resistant crops sweet pepper and tulip showed that both crop species are not resistant to AMT or AMPT, but rather that efficient regeneration of the transformed cells into transgenic plants is problematic. For sweet pepper this was already reported previously (Heidmann et al., 2011), but for tulip the high AMT and AMPT efficiencies came as a surprise. For sweet pepper, usually cotyledon explants are used for AMT (Heidmann et al., 2011), and by applying our syringe infilteration

technique on these tissues, we observed many cells with GFP signals in both the nucleus and cytosol. However, due to the sensitivity of the sweet pepper tissues to *Agrobacterium*-infiltration induced necrosis, the high intensity of autoflourescence made it also difficult to detect GFP signals. Our results showed that it is possible to introduce regulatory proteins, such as BBM and AHL15, to sweet pepper cells via AMPT, and besides the enhancement of regeneration, as has been shown for BMM in sweet pepper (Heidmann et al., 2011), this method could be used to translocate proteins that reduce the tissue necrosis reaction.

Tulip inflorescence stem explants harvested from bulbs appeared to be relatively insensitive to cocultivation with *Agrobacterium*, and leaving the co-cultivation at hormone free medium for an extended period of 7 days led to high AMT and AMPT efficiencies. Subsequent transfer to hormone-containing medium not only started the regeneration, but at the same time induced the production of some anti-bacterial activity that prevented tissue overgrowth by *Agrobacterium*. This has been reported previously for *Centella asiatica* (Bibi et al., 2011). Explants co-cultivated with the AGL1 *35S::NLS-GFP(i)* strain produced homogenous GFP positive shoots after 4 to 5 weeks on hormone medium, suggesting that it is possible to obtain stably transformed tulip plants without selection, purely based on GFP visualization. Our results indicate that this new generic split-GFP system can not only be used to report AMPT, but also to optimize the co-cultivation and tissue culture conditions to efficiently generate and obtain mutant or transgenic lines from plant species that are currently considered to be recalcitrant to AMT or AMPT.

MATERIAL AND METHODS

Bacterial strains and media

Agrobacterium tumefaciens strains are listed in Table 1. All strains were grown in LC medium (10 g/l tryptone, 5 g/l yeast extract and 8 g/l NaCl, pH 7.5) containing (if required) rifampicin, (rif, 20 μg/ml), spectinomycin, (spc, 250 μg/ml), carbenicillin, (cb, 75μg/ml) gentamicin (gent, 40 μg/ml) and kanamycin (km, 100 μg/ml). Ten ml cultures were inoculated with a single colony and incubated under continuous shaking (180 rpm) in 200 ml flasks for two days in an incubator at 30°C. 10-20 ng of plasmids DNA was electroporated into 50 μl electrocompetent cells (Den Dulk-Ras and Hooykaas, 1995; McCormac et al., 1998) of *A. tumefaciens* strains LBA1100 (Beijersbergen et al., 1992) and AGL1 (Lazo et al., 1991) using prechilled cuvettes and by applying electric pulse at 12.5 kv/cm with a constant time of approximately 4.7 msec (Mersereau et al., 1990). For cloning *Escherichia coli* strain DH5α was used and grown at 37°C in LC medium containing (if required) 100 μg/ml cb, 25 μg/ml gent, and 25 μg/ml km.

Plant material

The plant lines used in this study were: *Nicotiana tabacum* streptomycin resistance-1 (SR-1), *Nicotiana benthamiana*, *Arabidopsis thaliana* Col-0, *Capsicum annuum* (Bruinsma wonder and Fire flame) and tulip cultivar 'Strong Gold'. *Arabidopsis* seedlings and tulip bulb explants were cultured at 21°C, 50% relative humidity and at 16 hours photoperiod. Nicotiana and Capsicum plants were grown at 25°C, 50% relative humidity and 16 hours photoperiod.

Table 1. List of Agrobacterium strains used in this study for Agrobacterium infiltration.

Strains	Chromosomal background	Antibiotic resistance	Source
AGL1	C58	rif cb	Jin et al., 1987
LBA1100	C58	rif spc	Beijersbergen et al., 1992
LBA2587($\Delta virD4$)	C58	rif spc	(Sakalis et al., 2014)

rif: rifampicin; spc: spectinomycin; cb: carbenicillin; Δ : deletion.

Agro-infiltration and co-cultivation

Agrobacterium strains were grown in LC medium as described above and subsequently diluted in AB-sucrose minimal medium containing appropriate antibiotics and grown for overnight at 30°C. Bacterial cultures were induced at gentle rotation (50rpm) and room temperature for 14-24 hours by adding 3,5-dimethoxy-4-hydroxy-acetophenone (acetosyringone AS) [Sigma Aldrich] dissolved in dimethyl sulfoxide (DMSO) to a final concentration of 100µM, as described (Gelvin et al ,2006). Fifteen days old Arabidopsis seedlings were infiltrated with the bacterial culture (OD₆₀₀ 0.6) using vacuum infiltration (Rossi et al., 1993) or bacterial cultures were directly injected (Wroblewski et al., 2005) into leaves using a blunt tipped plastic 10 ml syringe (Nissho NIPRO Europe N.V., Zaventem, Belgium). N. tabacum and N. benthamiana non-sterile leaves of 3-4 weeks old soil grown plants were syringe infiltrated with bacterial cultures of OD₆₀₀ 0.6-0.8. N. tabacum surface sterilized leaf discs (Baltes et al., 2014) and C. annuum cotyledons from 2 weeks old in vitro grown seedlings were also syringe infiltrated (Fig. S4) with bacterial cultures of OD₆₀₀ 0.3-0.4, in the sterile environment of a down flow laminar flow hood and cultivated for 3 days on 40mg/L AS containing MS medium. The tulip tissues were inoculated with ASinduced bacterial culture of ${\rm OD}_{600}$ 0.6 for overnight in the dark and, after wiping excess bacteria with sterile tissue paper, co-cultivated for up to 9 days on 40mg/L AS containing hormone free MS medium at 21°C, 50% relative humidity.

Leaf samples of *N. tabacum*, *N. benthamiana* and *A. thaliana* were analyzed 3-4 days after infiltration while tulip samples were analyzed at day 5, day 7 and day 9 of co-cultivation period. For DAPI staining samples were incubated for one hour in 1 mg/l DAPI solution.

Tulip transformation

The sterile tulip bulb (Podwyszyńska and Sochacki, 2010) stem explants (10-12 mm thick), precultured for 3-4 weeks on MS medium supplemented with 1mg/l thidiazuron (TDZ) and 1mg/l 1-naphthalene acetic acid (NAA), were cut into 2-3 mm thin layer explants. After bacterial inoculation and 7 days of co-cultivation (as described above) on hormone free MS medium the explants were transferred back to the pre-culture medium for shoot induction. After 4-5 weeks the regenerated shoots were analyzed for transformation.

Microscopy

All fluorescent microscopy was performed using a Zeiss Imager M1 or a Zeiss observer confocal laser scanning microscopy (CLSM) both equipped with an LSM 5 Exciter scanning module

(Zeiss, Oberkochen, Germany) and 10x, 20x and 40x objectives (numerical aperture 1, 0.8 and 0.65, respectively). GFP signals were detected using an argon 488 nm laser and a 505-530 nm band pass (BP) emission filter. Chloroplast- and other auto-fluorescence were detected using a 650 nm long pass (LP) emission filter following excitation at 488 nm. DAPI was excited using a 405 nm diode laser and emission detected using a 420-480 nm (blue) BP filter.

Plasmid construction

All plasmids used in this study are listed in Table 2. For the T-DNA transfer a modified version of the plasmid pSDM3764 was used which harbors a $\mathit{GFP}_{\scriptscriptstyle{I-10}}$ sequence under control of the 35S CaMV promoter and the 35S CaMV terminator (Sakalis et al., 2014). For the intron splicing validation and GFP sequence fluorescence comparison, synthetic fragments (Eurofin) of the full length original GFP (GFP(i)) and a plant enhanced full length GFP (pGFP(i)) (Appendix 1) coding sequences, containing a splicable 84 nucleotide intron IV sequence of the potato ST-LS1 gene (Pang et al., 1996), were ligated into the BstEII and NcoI digested pSDM3764 vector backbone, thereby replacing the GFP₁₋₁₀ sequence (Cabantous et al., 2005) and generating p35S::GFP(i) (pSDM6506) and p35S::pGFP(i) (pSDM6505). For the new generic split-GFP system, synthetic fragments (Eurofin) containing the $\mathit{GFP}_{\scriptscriptstyle{1-10}}(i)$ sequence harboring the intron with and without NLS (Appendix 2) were cloned into BstEII and NcoI digested pSDM3764, thereby generating $p35S::NLS-GFP_{1-10}(i)$ (pSDM6509) and $p35S::GFP_{1-10}(i)$ (pSDM6508). For the translocation of fusion proteins a modified version of the plasmid pSDM3760 (Sakalis et al., 2014) was used, containing the GFP,, coding region under the virF promoter and fused to the N-terminal part of dvirF (Chapter 3). Additionally, for AMPT of plant developmental regulators AHL15 and BBM, AHL15 and BBM coding regions were cloned as translational fusions between GFP,, and dvirF (Table 2). All cloning steps were performed in E.coli strain DH5α (Bethesda Research Laboratories, 1986). Ligations were checked by restriction enzyme digestion and confirmed by PCR analysis using 1µg plasmid DNA and 0.3µl dream taq polymerase (for primers see Table 3). All constructed plasmids were sequenced for verification (Macrogen, Amsterdam, Netherlands).

ACKNOWLEDGMENTS

We would like to thank Omid Karami for providing tulip explants and related information about tulip tissue culture, Ivo Gariboldi for help in making the constructs, Muhammad Ibrahim for helping with statistical analysis, Ward de Winter for help with plant media and plant growth and Gerda Lamers for the assistance with microscopy and staining of plant material.

Table 2. List of binary vectors used for Agrobacterium infiltration.

Name	Properties	Source
pSDM6500 [pvirF::GFP ₁₁ - L_2 -dvirF]	pSDM3760 backbone with the coding sequence of GFP_{11} -L2-dvirF under control of the virF promoter (L2 is Chapter 3 the linker sequence having multiple unique restriction sites).	Chapter 3
$pSDM6503[pvirF::GFP_{II}\text{-}AHL15\text{-} \Delta virF]\\ pSDM6504[pvirF::GFP_{II}\text{-}BBM\text{-} \Delta virF]$		Chapter 3 Chapter 3
pSDM3764[35S::GFP _{1,10}] pSDM6506[35S::GFP(i)]	PCambia1302 with $GFP_{1,10}$ coding sequence under control of the 35S promoter and the $CaMV$ terminator. pCambia1302 with $GFP(i)$ coding sequence under control of the 35S promoter and the $CaMV$ terminator.	(Sakalis et al., 2014) This study
pSDM6507[35S::NLS-GFP(i)]	p. P. Cambia 1302 with NLS-GFP(i) coding sequence under control of the 358 promoter and the CaMV terminator.	This study
pSDM6505[35S::pGFP(i)]	pCambia1302 with the $pGFP_{1:11}(i)$ coding region under control of the 35S promoter and the $CaMV$ terminator.	This study
${\tt pSDM6508[35S::GFP_{1:10}(i)]}$	pCambia1302 with the $GFP_{1:10}(i)$ coding region under control of the 35S promoter and the $CaMV$ terminator.	This study
$p\text{SDM}6509[35S::NLS-GFP_{t\cdot 10}(i)]$	pCambia1302 with NLS-GFP $_{1,10}(i)$ coding region under control of the 35S promoter and the $CaMV$ terminator.	This study
pSDM6514 [35S::NLS-GFP ₁₋₁₀ (i)- pvirF::GFP ₁₁ -L2- Δ virF]	pCambia1302 with NLS-GFP _{1.10} (i) coding region under control of the 35S promoter and the CaMV terminator and pSDM3760 backbone with GFP_{11} -L2- $\Delta virF$ coding sequence under control of the $virF$ promoter. (L2 is the linker sequence having multiple unique restriction sites).	This study
$\begin{array}{l} \operatorname{pEX-A2}[\mathit{GFP}_{1:10}(i)] \\ \operatorname{pEX-A2}[\mathit{NLS-GFP}_{1:10}(i)] \end{array}$	$GFP_{1:10}(i)$ coding sequence $NLS-GFP_{1:10}(i)$ coding sequence	Eurofins Eurofins

Table 3. List of primers used in this study

Primer name	Sequence (5' → 3')		
Xbal-GFP1-10 Fw	GCTCTAGAATGGTTTCGAAAGGCGA		
Xbal-GFP1-10 Rv	CCCTCGAGTTATTTCTCGTTTGGGT		
NcoI-GFP ₁₋₁₀ -Fw	GCCCATGGTTTCGAAAGGCGAGGA		
BstEII-GFP ₁₋₁₀ -Rev	GGGTCACCTTATTTCTCGTTTGGGTCTT		
Plant GFP Fw	CGAGAATATTCGGATCCCATGGGCAA		
Plant GFP Rev	TGAATTCGCTGCAGGTCACCTCACTT		
pEX-A2-Fw	GGAGCAGACAAGCCCGTCAGG		
pEX-A2-Rev	GCCGGAAGCATAAAGTGTAAAGCCTG		
FW GFP1-11nls	TCATTTGGAGAGAACACGGGGG		
Rev GFP1-11nls	GGAAATTCGAGCTGGTCACCTTA		
35Sgfp11-dVirF-Fr	TCATTTGGAGAGAACACGGG		
35Sgfp11-dVirF-Rv	TAATCATCGCAAGACCGGCA		

4

REFERENCES

- Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26: 151–163
- 2. Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701: 1–35
- 3. **Beijersbergen A, Dulk-Ras AD, Schilperoort RA, Hooykaas PJJ** (1992) Conjugative transfer by the virulence system of *Agrobacterium tumefaciens*. Science 256: 1324–1327
- 4. Bethesda Research Laboratories (1986) E. coli DH5 alpha competent cells. Focus Bethesda Res Lab 8: 9
- Bibi Y, Zia M, Nisa S, Habib D, Waheed A, Chaudhary FM (2011) Regeneration of *Centella asiatica* plants from non-embryogenic cell lines and evaluation of antibacterial and antifungal properties of regenerated calli and plants. J Biol Eng 5: 13
- Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered selfassembling fragments of green fluorescent protein. Nat Biotechnol 23: 102–107
- 7. **Chandran Darbari V, Waksman G** (2015) Structural biology of bacterial type IV secretion systems. Annu Rev Biochem 84: 603–29
- 8. **den Dulk-Ras A, Hooykaas PJJ** (1995) Electroporation of *Agrobacterium tumefaciens*. Methods Mol Biol 55: 63-72
- 9. Gelvin SB (2006) Agrobacterium virulence gene induction. Methods Mol Biol 343: 77-84
- Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K (2011) Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep 30: 1107–1115
- Jin S, Prusti RK, Roitsch T, Ankenbauer RG, Nester EW (1990) Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: Essential role in biological activity of VirG. J Bacteriol 172: 4945–4950
- 12. **Jin SG, Komari T, Gordon MP, Nester EW** (1987) Genes responsible for the supervirulence phenotype of *Agrobacterium tumefaciens* A281. J Bacteriol 169: 4417–4425
- 13. **Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N** (2010) Chilli peppers A review on tissue culture and transgenesis. Biotechnol Adv 28: 35–48
- Kumar RB, Das A (2002) Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol Microbiol 43: 1523–1532
- 15. **Lacroix B, Citovsky V** (2013) The roles of bacterial and host plant factors in *Agrobacterium*-mediated genetic transformation. Int J Dev Biol 57: 467–481
- 16. **Lacroix B, Li J, Tzfira T, Citovsky V** (2006) Will you let me use your nucleus? How *Agrobacterium* gets its T-DNA expressed in the host plant cell. Can J Physiol Pharmacol 84: 333–345
- 17. Lai EM, Kado CI (2000) The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8: 361-369
- 18. **Lazo GR, Stein PA, Ludwig RA** (1991) A DNA transformation-competent *Arabidopsis* genomic library in *Agrobacterium*. Biotechnology **9**: 963–967
- 19. Li X, Yang Q, Tu H, Lim Z, Pan SQ (2014) Direct visualization of *Agrobacterium*-delivered VirE2 in recipient cells. Plant J 77: 487–495
- 20. McCormac AC, Elliott MC, Chen DF (1998) A simple method for the production of highly competent cells of *Agrobacterium* for transformation via electroporation. Mol Biotechnol 9: 155–159
- Melchers LS, Regensburg-Tuïnk TJ, Bourret RB, Sedee NJ, Schilperoort RA, Hooykaas PJJ (1989)
 Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens.
 EMBO J 8: 1919–1925

- 22. Mersereau M, Pazour GJ, Das A (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90: 149–151
- 23. Pang SZ, DeBoer DL, Wan Y, Ye G, Layton JG, Neher MK, Armstrong CL, Fry JE, Hinchee MA, Fromm ME (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol 112: 893–900
- 24. **Podwyszyńska M, Sochacki D** (2010) Micropropagation of tulip: production of virus-free stock plants. Methods Mol Biol 589: 243–256
- 25. **Rossi L, Hohn B, Tinland B** (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of *Agrobacterium tumefaciens*. Proc Natl Acad Sci USA 93: 126–130
- 26. **Sakalis PA, van Heusden GPH, Hooykaas PJJ** (2014) Visualization of VirE2 protein translocation by the *Agrobacterium* type IV secretion system into host cells. Microbiol Open 3: 104–117
- 27. Schrammeijer B, den Dulk-Ras A, Vergunst AC, Jácome EJ, Hooykaas PJJ (2003) Analysis of Vir protein translocation from *Agrobacterium tumefaciens* using *Saccharomyces cerevisiae* as a model: Evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31: 860–868
- 28. **Stachel SE, Messens E, Van Montagu M, Zambryski P** (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in *Agrobacterium tumefaciens*. Nature 318: 624–629
- 29. **Subramoni S, Nathoo N, Klimov E, Yuan Z-C** (2014) *Agrobacterium tumefaciens* responses to plant-derived signaling molecules. Front Plant Sci 5: 322
- 30. van Engelenburg SB, Palmer AE (2010) Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nat Methods 7: 325–30
- 31. van Larebeke N, Engler G, Holsters M, van Den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974)
 Large plasmid in *Agrobacterium tumefaciens* essential for crown gall-inducing ability. Nature 252: 169–170
- 32. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CM, Regensburg-Tuïnk TJ, Hooykaas PJJ (2000) VirB/D4-dependent protein translocation from *Agrobacterium* into plant cells. Science 290: 979–82
- Vergunst AC, van Lier MCM, den Dulk-Ras A, Stüve TAG, Ouwehand A, Hooykaas PJJ (2005) Positive
 charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of
 Agrobacterium. Proc Natl Acad Sci USA 102: 832–7
- 34. **Vogel AM, Das A** (1992) Mutational analysis of *Agrobacterium tumefaciens* virD2: Tyrosine 29 is essential for endonuclease activity. J Bacteriol 174: 303–308
- 35. Wang K, Stachel SE, Timmerman B, Van Montagu M, Zambryski PC (1987) Site-specific nick in the T-DNA border sequence as a result of *Agrobacterium* vir gene expression. Science (80-) 235: 587–591
- Wilmink A., van de Ven BCE, Dons JJM (1992) Expression of the GUS-gene in the monocot tulip after introduction by particle bombardment and *Agrobacterium*. Plant Cell Rep 11: 76–80
- 37. **Wroblewski T, Tomczak A, Michelmore R** (2005) Optimization of *Agrobacterium*-mediated transient assays of gene expression in lettuce, tomato and *Arabidopsis*. Plant Biotechnol J 3: 259–273
- Zaenen I, van Larebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crowngall inducing Agrobacterium strains. J Mol Biol. doi: 10.1016/S0022-2836(74)80011-2
- 39. **Ziemienowicz A** (2014) *Agrobacterium*-mediated plant transformation: Factors, applications and recent advances. Biocatal Agric Biotechnol 3: 95–102
- 40. **Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P** (2007) VirB1 promotes T-pilus formation in the vir-type IV secretion system of *Agrobacterium tumefaciens*. J Bacteriol 189: 6551–6563

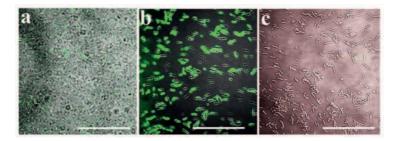


Figure S1. An intron in the GFP_{1-10} coding sequence effectively prevents bacterial GFP expression in the generic split-GFP system. a,b) Confocal images of $Agrobacterium\ tumefaciens$ strain AGL1 containing $p35S::GFP_{1-10}$ and $pVirF::GFP_{11}$ -dVirF after overnight induction with acetosyringone (a) and after co-cultivation with N. tabacum leaf discs (b). c) Confocal images of $Agrobacterium\ tumefaciens$ strain AGL1 containing $p35S::GFP_{1-10}(i)$ and $pVirF::GFP_{11}$ -dVirF where the GFP_{1-10} coding region is disrupted by an intron (i). Shown are merged images of the GFP channel and the transmitted light channel. Scale bar is $10\ \mu m$.

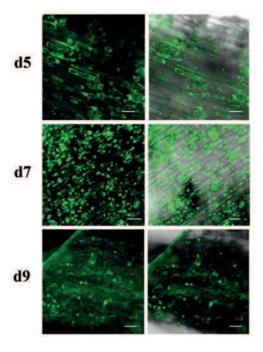


Figure S2. AMPT to tulip cells peaks after 7 days of cocultivation with *Agrobacterium*. a-c) Confocal images of *in vitro* regenerated shoot tissues (from tulip bulb stem explants) cocultivated with *Agrobacterium tumefaciens* strain AGL1 containing $p35S::GFP_{1.10}(i)$ and $pVirF::GFP_{11}-dVirF$ and cocultivated for 5 (a), 7 (b) or 9 days (c) on hormone free medium. Left panel shows the GFP channel, right panel shows a merged image of the GFP channel and the transmitted light channel. Scale bar is 0.1 μm.

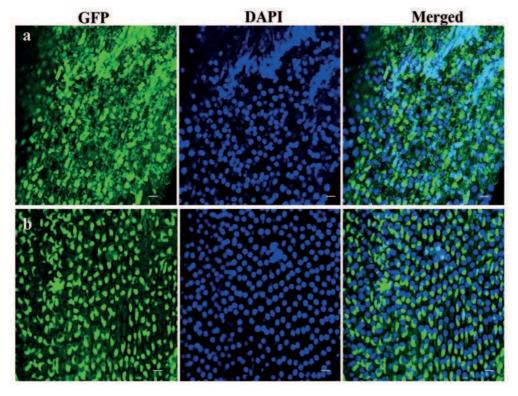


Figure S3. DAPI staining confirms nuclear GFP fluorescence in tulip cells after AMPT or AMT. a,b) Confocal laser scanning microscopy images of DAPI stained tulip tissues shown in figure 5 after cocultivation for 7 days with *Agrobacterium* strain AGL1 containing $p35S::GFP_{1-10}(i)$ and $pVirF::GFP_{11}-dVirF$ (a) or with strain AGL1 35S::NLS-GFP(i) and subsequent regeneration for 4-5 weeks (b). Left panel shows GFP channel, middle panel shows DAPI stained nuclei in blue channel, and the right panel shows a merged image of the GFP and DAPI channels. Scale bar is 0.1mm.

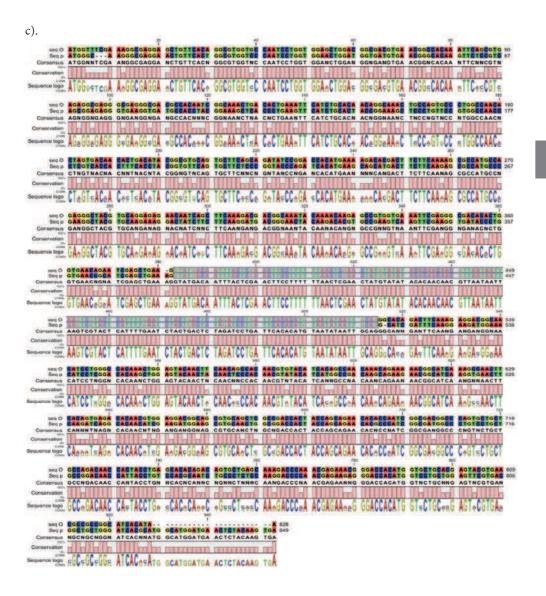
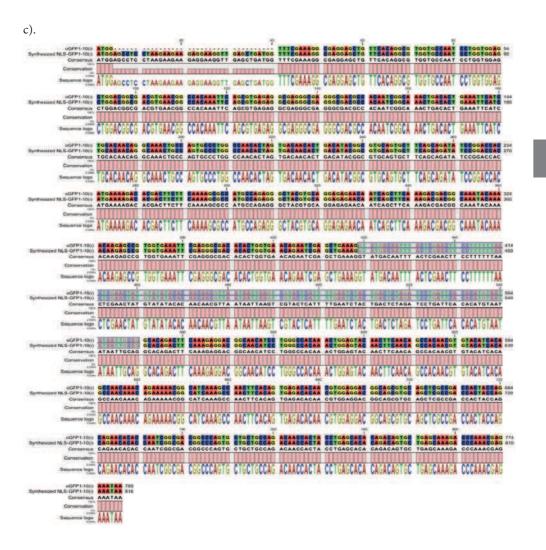


Figure S4. Syringe infiltration method of sterile *Capsicum annum* cotyledons (left and middle panel) or *Nicotiana tabacum* leaf discs (right panel).

Appendix 1. a,b) DNA sequences of the original GFP (GFP(i)) (a) and the plant-optimized GFP (pGFP(i)) (b) showing the inserted intron (i) sequence in red. c) Alignment of GFP(i) sequence with pGFP(i) sequence shows intron position and DNA sequence differences.

a). Full length $GFP_{1-10+11}(i)$ (GFP(i)); intron sequence is RED and underlined ATGGTTTCGAAAGGCGAGGAGCTGTTCACAGGCGTGGTGCCAATCCTGGTGGAGCT GGACGCGACGTGAACGCCACAAATTCAGCGTGAGAGGCGAGGGCGAGGG CGACGCCACAATCGGCAAACTGACACTGAAATTCATCTGCACAACAGGCAAACTGC CAGTGCCCTGGCCAACACTAGTGACAACACTGACATACGGCGTGCAGTGCTTCAG CAGATATCCGGACCACATGAAAAGACACGACTTCTTCAAAAGCGCCATGCCAGAG GGCTACGTGCAGGAGAGAACAATCAGCTTCAAAGACGACGGCAAATACAAAA CAAGAGCCGTGGTGAAATTCGAGGGCGACACACTGGTGAACAGAATCGAGCT GAAGGTATGACAATTTACTCGAACTTCCTTTTTTAACTCGAACTATGTATATACA CAACAACGTTAATAATTAAGTCGTACTCATTTTGAATCTACTGACTCTAGATCCT **GATTCACACATGTAATATTGCAG**GGCACAGACTTCAAAGAGGACGGCAA CATCCTGGGCCACAAACTGGAGTACAACTTCAACAGCCACAACGTGTACATCA CAGCCAACAAACAGAAAAACGGCATCAAAGCCAACTTCACAGTGAGACACAACGT GGAGGACGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACACCAATCGG GAGCAAAGACCCAAACGAGAAACGGGACCACATGGTGCTGCACGAGTACGT GAACGCCGCCGGCATCACATAA

b). Full length plant enhanced $pGFP_{1-11}(pGFP(i))$; intron sequence is RED and underlined ATGGGCAAGGCGAGGAACTGTTCACTGGCGTGGTCCCAATCCTGGTGGAACTG GATGGTGATGTGAACGGGCACAAGTTCTCCGTCAGCGGAGAGGGTGAA GGTGATGCCACCTACGGAAGCTCACCCTGAAGTTCATCTGCACTACCG GAAAGCTCCCTGTTCCGTGGCCAACCCTCGTCACCACTTTCACCTACGGTGT TCAGTGCTTCTCCCGGTACCCAGATCACATGAAGCAGCATGACTTCTTCAAGAG CGCCATGCCCGAAGGCTACGTGCAAGAAAGGACTATCTTCTTCAAGGATGACGG GAACTACAAGACACGTGCCGAAGTCAAGTTCGAAGGTGATACCCTGGTGAACCG CATCGAGCTGAAAGGTATGACAATTTACTCGAACTTCCTTTTTTAACTCGAAC TATGTATATACACAACAACGTTAATAATTAAGTCGTACTCATTTTGAATCTACT **GACTCTAGATCCTGATTCACACATGTAATATAATTGCAG**GCATCGATTTCAAG GAAGATGGAAACATCCTCGGACACAAGCTGGAGTACAACTACAACTCCCACAACG TATACATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGAT CAGGCACAACATCGAAGATGGAAGCGTGCAACTGGCGGACCACTACCAGCAGAA CACGCCCATCGGCGATGGCCCTGTCCTGCTGCCGGACAACCATTACCTGTCCACG ${\tt CAATCTGCCCTCTCCAAGGACCCCAACGAGAAGAGGGACCACATGGTCCTGCTG}$ GAGTTCGTGACGCTGCTGGGATCACGCATGGCATGGATGAACTCTACAAGTGA



4

Appendix 2. a,b) DNA sequences of $GFP_{1-10}(i)$ (a) and NLS- $GFP_{1-10}(i)$ (b) showing inserted intron in red and the nuclear localization signal (NLS) in purple. c) Alignment of $GFP_{1-10}(i)$ with NLS- $GFP_{1-10}(i)$ sequence shows intron and NLS positions and DNA sequence differences.

a). GFP₁₋₁₀(i); intron sequence is RED and underlined. ATGGTTTCGAAAGGCGAGGAGCTGTTCACAGGCGTGGTGCCAATCCTGGTGGAGCT GGACGCGACGTGAACGCCACAAATTCAGCGTGAGAGGCGAGGGCGAGGG CGACGCCACAATCGGCAAACTGACACTGAAATTCATCTGCACAACAGGCAAACTGC CAGTGCCCTGGCCAACACTAGTGACAACACTGACATACGGCGTGCAGTGCTTCAG CAGATATCCGGACCACATGAAAAGACACGACTTCTTCAAAAGCGCCATGCCAGAG GGCTACGTGCAGGAGAACAATCAGCTTCAAAGACGACGGCAAATACAAAACAA GAGCCGTGGTGAAATTCGAGGGCGACACACTGGTGAACAGAATCGAGCTGAAA GGTATGACAATTTACTCGAACTTCCTTTTTTAACTCGAACTATGTATATACACAA CAACGTTAATAATTAAGTCGTACTCATTTTGAATCTACTGACTCTAGATCCTGAT **TCACACATGTAATATTGCAG**GCACAGACTTCAAAGAGGACGGCAACATCCT GGGCCACAAACTGGAGTACAACTTCAACAGCCACAACGTGTACATCACAGC CAACAAACAGAAAAACGGCATCAAAGCCAACTTCACAGTGAGACACAACGTG GAGGACGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACACCAATCGG GAGCAAAGACCCAAACGAGAAATAA

b). NLS:GFP₁₋₁₀(i); NLS is purple and intron sequence is RED and underlined. ATGGAGCCTCCTAAGAAGAAGAGGAAGGTTGAGCTGATGGTTTCGAAAGGC GAGGAGCTGTTCACAGGCGTGGTGCCAATCCTGGTGGAGCTGGACGGCGACGT GAACGGCCACAAATTCAGCGTGAGAGGCGAGGGCGAGGGCGACGCCACAATCGG CAAACTGACACTGAAATTCATCTGCACAACAGGCAAACTGCCAGTGCCCTGGC CAACACTAGTGACAACACTGACATACGGCGTGCAGTGCTTCAGCAGATATCCG GACCACATGAAAAGACACGACTTCTTCAAAAAGCGCCATGCCAGAGGGCTACGTG CAGGAGAGAACAATCAGCTTCAAAGACGACGGCAAATACAAAACAAGAGCCGT GGTGAAATTCGAGGGCGACACACTGGTGAACAGAATCGAGCTGAAAG<mark>GTATGA</mark> CAATTTACTCGAACTTCCTTTTTTAACTCGAACTATGTATATACACAACAACGT TAATAATTAAGTCGTACTCATTTTGAATCTACTGACTCTAGATCCTGATTCA CACATGTAATATATTGCAGGCACAGACTTCAAAGAGGACGGCAACATCCTG GGCCACAAACTGGAGTACAACTTCAACAGCCACAACGTGTACATCACAGCCAA CAAACAGAAAAACGGCATCAAAGCCAACTTCACAGTGAGACACAACGTGGAG GACGCCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACACCAATCGG GAGCAAAGACCCAAACGAGAAATAA

