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Introduction 

CHAPTER 1 INTRODUCTION 

1.1 X chromosome 

The X chromosome is about 160Mb in length (1) and contains an estimated 2500-5000 genes. 

The X chromosome has many special features that distinguishes it from the autosomes. The most 

obvious is that it is one of the sex determining chromosomes; XX individuals are female and XY 

individuals are male. All other chromosomes (the autosomes) are always present in two identical 

copies but the sex chromosomes differ greatly from each other, not only in size and morphology 

but also in gene content. Homologies and differences between the sex chromosomes are 

discussed in 1.1.1. Since the X chromosome is present in either one or two copies, unequal 

dosage of transcripts of X chromosomal genes in males and females would occur if not X 

inactivation would compensate for this. Dosage compensation in XX individuals is provided by 

transcriptional inactivation of a large fraction of the genes on one X chromosome; this is 

discussed in 1.1.2. 

1.1.1 XIY homology 

TheY chromosome is 50Mb (2) in length and based on its size could contain an estimated 750-

1500 genes, however, this amount is an overestimation since theY chromosome is gene poor (see 

below). TheY chromosome has two main functions: it is required for the male phenotype and 

provides a pairing partner for the X chromosome during male meiosis. The gene (or genes) 

required for initiating male development is called the testis determining factor (TDF). Only one 

gene has been identified that is a candidate for TDF; sex-determining region Y (SRY) (3). Very 

few other Y-specific genes have been isolated thus far (2) (the Deleted in Azoospermia gene 

cluster (DAZ) gene family (4,5), Spermatogenesis gene on theY (SPGY) (6), testis-specific 

protein, Y -encoded (TSPY) gene family (7), Ribonucleic acid binding motifs (RBM) gene family 

(8)). 

Only a small portion of the genes on the X and Y chromosome are shared, consequently 

most genes on the X chromosome are haploid in males. The shared genes are transcribed from 

both X and Y chromosome and are located in the pseudoautosomal regions (PAR) which 

effectively behave as autosomal genes. The P AR1 region on the Xp and Yp telomeres is a region 

of 2.6 Mb (2), delimited by the pseudoautosomal boundary (PAB). The PAR2 region (9) on 

subtelomeric Xq and Yq is much smaller (320 kb ). So far only two genes have been cloned from 
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Cha ter I 

this region: the Interleukin 9 Receptor (IL9R) (10) and a Synaptobrevin~like gene (SYBLl) (I I). 

The genes identified in PAR I and P AR2 are indicated in Figure 1. In contrast to the genes in 

PARI, SYBLl in PAR2 is subject to X inactivation. Even more remarkable is that theY copy 

is also inactive. The (in)activation state of IL9R is not known and if this gene shows the same 

pattern as SYBLl, a position effect caused by the heterochromatin on Yq may play a role in this. 

Another explanation is that these -although located in the PAR- are pseudo-genes. 

Xp22.3 

Xq13 

Xq28 

.... 
PAR1 

.... 

CSF2RA 
IL3A 
ANT3 

ASMT 
XE? 

MIC2R.: 
MIC2 ' 

. ·· : ··~ . 
........ SYBL1 / 

:.. .. .. .. .. . IL9R • 

X PAR2 

V 

Yp11.3 

Yq12 

Figure 1: The pseudoautosomal regions. 

PARI has a size of2.6 Mb, PAR2 has a size of 

320 kb. The pseudoautosomal regions are 

identical in X and Y. The border of P ARl is an 

Alu repeat, the border of P AR2 is a LINE 

repeat. XIC localised in Xq 13 is discussed 

in 1.1.2. 

Pairing between the X and Y chromosome during male meiosis seems to involve only 

part of the short arm of the X and Y and includes an obligatory cross-over in PARI. However, 

recent reports have been published in which pairing at PAR2 is described (9,12,13). The rate of 

recombination in PAR2 is 168 kb/cM (14), in PARI it is 55 kb/cM (15). These rates are very 

high compared to the average for the genome (1 Mb/cM), due to the fact that these regions, while 

I2 



Introduction 

small, have an obligate cross-over (at least in PAR1). 

Other regions of homology between X and Y mainly consist of pseudo-genes on the Y, 

and are believed to have arisen through non-homologous pairing between the X and Y (16) 

followed by inversions (2). These regions are hotspots for illegitimate recombination and are 

located in Xp22.3/Y q 11.21, involving recombination between the KAL-X and KAL-Y gene (17), 

in Xp22.3/Ypll, involving recombination between PKXl and PKY1 (18), and in Xp22.3/Yp11 

in a region just proximal from the PAB, involving recombination between sequences (1/3 in 

repeats) that have a high homology (96-98%) between X and Y (19,20). 

1.1.2 X inactivation 

To compensate for the unequal dose of X genes in males and females, one of the X chromosomes 

is inactivated at an early stage of embryogenesis in all somatic tissues in the female. This 

phenomenon is called X inactivation or lyonisation after Mary Lyon who first described it in 

1961 (21). X inactivation takes place at the time of uterine implantation (22), occurs in all cells 

except the germ cells and is random and maintained during all further cell divisions. This 

mechanism of dosage compensation is unique to mammals (23). 

Basically, all but very few genes on the inactivated chromosome (Xi) are thought to be 

inactive except for the genes in PARI and the gene(s) at the X inactivation center (XIC) itself. 

On the active chromosome (Xa) all genes are active except for the gene(s) of the X inactivation 

center. Amongst the few genes outside P ARl that escape X inactivation are for example; SMCX 

(24), SB1.8 (25) and ubiquitin-activating enzyme (UBEl) (26). These genes do not have 

detectable Y homologues, so their transcription levels are likely to be different in male and 

female, the functional significance of this difft;:rence is not yet known. The existence of 

functional homologues on the Y chromosome with widely divergent or different sequence can 

not be ruled out. 

The X inactivation center (XIC) has been localised to Xql3 (Figure 1) (27). X 

inactivation spreads from the XIC across the chromosome. The XIST gene (specifying an X

inactive specific transcript) maps to the XIC and is only transcribed from the Xi (28). X 

inactivation is preceded by XIST expressio'l (29) and as no other genes have been found in the 

XIC it is assumed that XIST is the gene causing X inactivation. XIST does not code for a protein 

and only inactivates the X it is expressed from (in cis). Recent studies using XIST knockout 

mice have proven that XIST is essential for X inactivation (30). 
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The Xi (also known as the Barr body) replicates late in S phase and is visible as 

condensed heterochromatin in the nucleus, even in G 1. Although the mechanism is not 

completely clear, inactivation seems to be maintained by methylation of the 5' -region of genes 

(31). Experiments with patient-derived cell lines with supernumery X chromosomes have shown 

that XIC also is involved as part of a counting mechanism to ensure the appropriate activity state 

of X-linked genes by allowing only one active X per two sets of autosomes (32). 

When one of the X chromosomes harbours a gene that through a mutation is deleterious 

to cells in a specific tissue, a skewed X inactivation is observed. This results in the presence of 

-in all or most of the cells in this tissue- the non-mutant X as the active chromosome. This is not 

caused by a change in the activity state of the X chromosomes but by a selection against the cells 

that contain the X chromosome with the mutant gene as the Xa (for example in Incontinentia 

Pigmenti (IP) (33)). The opposite effect is often found when larger deletions of the X 

chromosome or X/ autosome translocations are present, in those cases the normal X chromosome 

is inactivated. X/autosome translocations (34) have been found in, for example, patients with 

Duchenne muscular dystrophy (DMD) (35), magnesium-dependent hypocalcemia (HSH) (36), 

and Hunter disease (37). 

1.1.3 Evolutionary origin of the sex chromosomes 

In mammals XX individuals are female and XY individuals are male, but in birds this is the other 

way around (38). In the much more distantly related D. melanogaster XX are females and XY 

males, while in C. elegans XX are hermaphrodites and XO are males (39). Three different forms 

of sex chromosomes are found in fish; some fish have almost identical X and Y chromosomes, 

others have an X and Y which hardly recombine and finally there are fish that have lost the Y 

completely (38). Obviously, many species have developed sex chromosomes independently 

during evolution so there must be a strong evolutionary force pushing all these species to 

solutions of similar nature but different in endpoint. 

The most likely reason for the initial cosexual species (hermaphrodites) to have favoured 

the evolution of separate sexes, is that self-fertilisation is more likely to produce unfit progeny 

than sexual reproduction (40). Cosexual species have all genes required for both 'male' and 

'female' reproductive organs located on their autosomes. A simple form of acquiring a difference 

between sexes is seen in C. elegans, where missing one of these chromosomes causes male 

development instead of hermaphroditic. This X-monosomy however causes non-disjunction 
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during meiosis, resulting in non viable embryos in part of the progeny. 

In general, X and Y chromosome are believed to have evolved from an autosomal pair 

of chromosomes (two 'pre-XY' chromosomes). The first difference between these two 

chromosomes may have been the occurrence of a large deletion or inversion on one of them, 

disturbing homologous recombination locally. Once homologous recombination was disturbed, 

more and more of this mutated (Y) chromosome was lost because it became prone to 

rearrangements and steady loss and inactivation of genes (41). In addition, a range of pseudo

genes originating from autosomal genes have accumulated on the human Y chromosome, 

probably through retrotransposition (16). These processes have generated a chromosome which 

can only have retained and/or accumulated genes that would enhance male fitness, and will 

otherwise only have been selected for appropriate size for efficient meiotic segregation. 

Whether the evolution of a dosage compensation system was required before the 

degeneration of theY chromosome could start (42) or whether it evolved as a consequence has 

not been proven. In C. elegans, transcription of both X's in hermaphrodites is reduced to -50%, 

regulated by at least 8 genes and depending on X:A ratio (43). This suggests that dosage 

compensation was already available, independent of the presence of a Y chromosome. Dosage 

compensation in Drosophila is mainly obtained through increased expression of genes on the 

male X (regulated by male-specific lethal genes on the Y), although there is also evidence for a 

parallel dosage compensation pathway thit~down regulates some genes on the X in females. In 

mammals dosage compensation involves inactivation of most genes on one X in females (see 

1.1.2). In many species unique dosage compensation systems have evolved that allowed 

development of separate sexes and thereby opened the way to evolution into a 'higher' order of 

species. 

The mammalian sex chromosomes The size of the X chromosome has been strongly 

conserved amongst eutherian ('placental') mammals, being 5% of the haploid genome, and it is 

also strongly conserved in gene content ( 44 ). Many genes on the human X chromosome have also 

been localised to the X chromosome in a wide variety of other eutherian mammals. Comparison 

with other therian mammals, the metatheria (marsupials) and prototheria (monotremes), shows 

that Xq is part of the X in all therians. Human Xp genes, in contrast, are located autosomally in 

both marsupials and monotremes. For instance, in monotremes the human Xp-linked genes 

Synapsin 1 (SYN1), DNA polymerase a (POLA) and Ornithine transcarbamylase (OTC) are 
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located in one block on chromosome 1, while the Xp-linked genes Dystrophin (DMD), 

Synapsin1 (SYN1), Cytochrome b heavy chain (CYBB) and Monoamine Oxidase A (MAOA) 

are located in one block on chromosome 2 (45) (Figure 2). In marsupials, MAOA, ZFY, OTC, 

DMD, STS, POLA, SYN1 and OATLl have also been shown to be autosomal (46). This means 

either that this region was lost from an ancestral X chromosome in the marsupial and monotreme 

lineages or was acquired by an ancestral X in the eutherian lineage. Not much is known yet about 

the gene content of the Y chromosome in other therians. 

~~~A·.::.· ....................... . 

~~~B ·.:·.~·>.;.·:·.::::::::::""""'":::::: ....... . 
OTC ·.. \ 

~~~1A··.·.··:,,.,·.·.:>·.:::,.~: 

........ ................ :·.::··::.;:~.: .... . 
·········· 

OTC 

············ 
······ Human X ............. .. 

X 

2 

SYN1 
POLA 

Platypus 

1 

ZFX 
CYBB 
DMD 

MAOA 

Figure 2. Assembly of the therian X 

chromosome. Human Xq genes are found on X 

in prototheria as well, human Xp genes are 

present in two blocks on prototheria 

chromosomes 1 and 2. 

Not only the gene content of the X chromosome is highly conserved among eutherian 

mammals, so is the order. Although blocks of genes have been rearranged, the order of genes 

within these blocks is conserved. These rearrangements (through several inversions) are typical 

for each subclass. As an example the mouse X is compared to the human X in Figure 3. 
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Xq11 
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Xq21.1 
Xq21.2 
Xq21.3 

Xq22 

Xq23 

Xq24 

Xq25 

Xq26 

Xq27 

Xq28 

Human X 

8 
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1.1.4 Deletions in Xp, contiguous deletion syndromes 

Introduction 

Figure 3: Comparison of the human 

and mouse X chromosomes. Through 

several inversions in both mouse and 

human X the order of the genes 

became different but the 9 conserved 

blocks can still be recognised. Note: 

mouse chromosomes do not show 

banding 

Deletions and rearrangements of chromosomal regions can greatly facilitate the mapping of 

disease genes. Comparison of the deletions or phenotypes in patients with contiguous deletion 

syndromes can be used to assign disease genes to a distinct region. For the X chromosome, 

deletion mapping has been very useful for the characterisation of several genomic regions, for 

example Xp22.3 (47-49) and Xp21 (50-52) (Figure 4). In Xp22.3 amongst others, the 

identification of the genes for Kallmann syndrome (53,54) and X-linked ichthyosis (STS)(55) 

have been facilitated by the available patients with deletions and contiguous deletion syndromes. 

Many of these deletions are thought to be a result of aberrant recombination between the X and 

Y chromosome (see 1.2.1). In Xp21, for instance the genes for Duchenne muscular dystrophy 

(DMD) (56), McLeod syndrome (XK) (57), and X-linked chronic granulomatous disease 

(CYBB) (58) have been identified using deletion mapping. 
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Xp 
Xp22.3 
Xp22.2 

Xp22.1 

Xp21.3 

Xp21.2 

Xp21.1 

Xp11.4 

Xpi 1.3 

Xp11.23 

Xp11.22 
Xp11.21 
Xp11.1 

.· ~5Px I interstitial and terminal 
/ MRX deletions found in 

·· KAL males and females 
STS 
MLS, AIC, FDH - male lethal 

..... AHC 

GK I DMD 
XK 
CYBB 
RP3 

..... AIED 

interstitial deletions 
found in males and 
females 

Figure 4. Contiguous deletion syndromes on Xp. 

Contiguous deletion syndromes on Xp have been found in Xp22.3 and in Xp2l (extending into Xp11.4). 

In Xp22.3 contiguous deletion syndromes are either interstitial or terminal deletions that can involve 

combinations of short stature (SS), chondrodysplasia punctata (CDPX), Kallmann syndrome (KAL), 

mental retardation (MRX) and X-linked ichthyosis (STS) in both males and females. Microphthalmia with 

linear skin defects (MLS), Aicardi syndrome (AIC) and focal dermal hypoplasia (FDH, also known as 

Goltz syndrome) are male lethal and therefore almost exclusively found in females. The phenotypes of 

these three syndromes overlap so they probably result from a defect in the same gene (64) or are due to a 

contiguous deletion syndrome (65). In Xp2l contiguous deletion syndromes are interstitial deletions that 

can involve combinations of Duchenne muscular dystrophy (DMD), chronic granulomatous disease 

(CYBB), McLeod syndrome (XK), retinitis pigmentosa (RP), mental retardation (MRX, not indicated in 

figure since location is still unclear), glycerol kinase deficiency (GK), adrenal hypoplasia congenita (AHC) 

and Aland island eye disease (AIED). No contiguous deletion syndromes have been found in Xp22.1-

p22.2. 
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In contrast, in the stretch of DNA between these two regions (Xp22.1-p22.31), deletions 

are rare. Deletions found in this region are in general due to inheritance of an X/autosome 

translocation and are only found in females where the phenotypic effect is either generated by 

spreading of X inactivation onto the autosome, nullisomy of the missing autosomal region, or by 

inactivation of the normal X, causing functional nullisomy of the deleted region (35,59). No large 

terminal or interstitial deletions (other than through a translocation event) of this region have 

been found. The apparent lack of large deletions in the Xp22.1-p22.31 suggests that one or more 

genes may be present in this region that, when present in single copy in female, or absent in male, 

would be lethal. Consistently, three syndromes in Xp22.31 have been found, microphthalmia 

with linear skin defects (MLS), Aicardi syndrome (AIC) and focal dermal hypoplasia (FDH, also 

known as Goltz syndrome), that appear to be male lethal. 

Mutations in the genes that have been isolated so far from the Xp22.1-p22.2 region are 

seldomly due to deletions and when deletions are detected these are small. In the PEX gene, 

mutated in X-linked hypophosphatemic rickets (HYP), in only 4 patients out of 150 families 

tested, deletions were detected that ranged in size from less than 1 kb to over 55 kb (60). In 

PHKA2 (phosphorylase kinase liver a-subunit), the gene mutated in X-linked liver glycogenosis 

type I and II (XLG) initial studies showed 1 deletion (of 3 bp) out of 2 XLG I families studied 

and 1 deletion (of 3 bp) out of 4 XLG II families studied (61,62). In RSK2, the gene mutated in 

Coffin-Lowry syndrome (CLS) an initial screen of76 families revealed two deletions of 118 bp 

and -2kb respectively (63). 
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1.1.5 Disease genes in Xp22.1-p22.2 

Several disease genes have been localised in the Xp22.1-p22.2 region (see Figure 5), some of 

which were recently found. X-linked glycogenosis type I and II (XLGI and II, MIM 306000) are 

caused by mutations in PHKA2 (61,62,66), X-linked hypophosphaternic rickets (HYP, MIM 

307800) by mutations in PEX (60), Coffin-Lowry syndrome (CLS, MIM 303600) by mutations 

in RSK2 (63). We have focused on RS and KFSD which are discussed below. 

X-Iinked juvenile retinoschisis 

X-linkedjuvenile retinoschisis (RS, MIM 31270) is an eye disease that causes acuity reduction 

and peripheral visual field loss, typically beginning early in life. The first report of what is now 

known as RS was by Haas in 1898 (77) who reported the simultaneous findings of changes in 

retina and choroid and already suggested hereditary degeneration as possible cause. The term 

retinoschisis was introduced by Wilczek in 1935 (78). The first suggestion of sex-linked 

inheritance however was by Sorsby in 1951 (79). The frequency is about 1:10.000 (80). Most 

patients are diagnosed at school age, although pathological changes are probably already present 

at birth and progression is in general slow. Folding and splitting of the macula (simulating cysts) 

cause the visual acuity loss (81), intra retinal splitting through the nerve fiber layer causes the 

peripheral visual field loss. Severity can range from mild acuity reduction to total blindness at 

an early age due to complete retinal detachment (82,83).The RS disease gene has a high 

penetrance, with variable expression between families but little variation within a family, this 

phenotypic variation may be due to different mutations in one gene. Other explanations for the 

phenotypic variation are differences in expression, modifying genes, or environmental factors. 

No evidence for genetic heterogeneity has been found (84,85). 

Figure 5. Disease gene regions in Xp22.1-p22.2. 

The markers and scale (in Mb) are according to the 6'h X Chromosome Workshop (1). Markers are 

indicated above the bar, known genes are indicated under the bar. SEDL= spondylo-epiphyseal dysplasia 

(MIM 313400) (67), NHS= Nance-Horan syndrome (MIM 302350) (68), RP15= X-linked cone-rod 

degeneration (MlM 300029) (69), DFN6= sensorineural deafness (DFN6, MIM 300066) (70), PRTS= 

X-linked mental retardation with dystonic movements of the hands (MIM 309510) (71), MRX= non

specific X-linked mental retardation (MIM 309540) (72-74), RS= X-linkedjuvenile retinoschisis (MIM 

312700) (75), KFSD= keratosis fqllicularis spinulosa decalvans (KFSD, MIM 308800) (76), HSH= 

hypomagnesemia with hypocalcemia (HSH, MIM 307600)(36). 
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Except in one case of a female with RS, who was probably a homozygote due to a 

consanguineous marriage (86), all reported patients are male. Vision in female carriers is usually 

normal. Although publications have stated for a long time that female carriers do not have any 

symptoms of the disease (81 ,87 -90) closer examination showed abnormal cone-rod interactions 

in some of the carriers (91) and peripheral lesions of the retina in 4 of 5 carriers (92). Features 

as reported in these carriers however can also be found in the normal population (93). 

The most characteristic clinical finding in RS are macular changes, consisting of any of 

the following: splitting, radial folds, pigment dissemination and development of macular scars 

(81 ). Other findings include white areas in the peripheral retina, hyperopia, liquefaction of the 

vitreous body, vitreous strands, peripheral retinoschisis (in 50% of cases (94)), constricted nasal 

r<visual field, subnormal ERG, and a range of rarer fmdings (81). 

The biochemical defect of RS is unknown, but histopathologic and electrophysiologic 

studies suggest a defect in the Muller cell (93-96) possibly an inability of these cells to remove 

the extracellular potassium ions resulting from exposure to light (93,97). In normal eye 

development the Miiller cell has a function as a migration determinant for retinal development. 

Another theory proposes that the retinoschisis arises from delayed development of the retinal and 

choroidal vasculature, causing the retina to outgrow its blood supply (98) but this does not 

explain the fovea! schisis. No treatment is available, although surgical intervention is sometimes 

performed with varying success rates and often leading to complete retinal detachment and other 

complications (83,99,100). 

Table I. RS candidate region 

Genetic analyses in the RS disease gene region. A= Wieacker et al. 1983 (102), B= Alitalo et al. 1987 

(103), C= Gellert et al. 1988 (90), D= Dahl et al. 1988 (90), E= Alitalo et al. 1988 (89), F= Sieving et 

al. 1990 (84), G= Alitalo et al. 1991 (104), H= Kaplan et al. 1991(92), I= Oudet et al. 1992(105), K= 

Bergen et al. 1993 (106), L= Biancalana et al. 1994 (107), M= George et al. 1994 (85), N= Bergen et 

al. 1995 (80), 0= Pawar et al. 1995 (82), P= Shastry et al. 1996 (108), Q= Van de Vosse et al. 1996 

(I 09). Marker order is according to the 6th international workshop on X chromosome mapping (110). 

* indicates a marker used in lilikage analysis, e indicates the marker with the highest lod score . .A. and 

T indicate a recombination between the marker and the RS disease gene. Based on the recombinations 

in column M and Q the candidate region for RS is located between DXS418 and DXS999 (hatched 

region). The recombinants identified in earlier studies may provide a valuable further refinement of the 

region when analysed with markers that have become available more recently between DXS418 and 

DXS999. 
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The first linkage studies and recombination events using RFLP markers placed RS in 

Xp22 between DXS43 and DXS41. Further studies using microsatellite markers placed the RS 

locus in decreasing intervals (see Table 1), until the present localisation ofRS in a 1Mb interval 

between DXS418 and DXS999 (see also Chapter 2). 

Candidate genes Recently, several candidate genes for retinoschisis have been cloned by 

members of the Retinoschisis Consortium (see note). The frrst two, PPEF (111) and Txp3 (112) 

have been excluded as the genes mutated in RS (see Chapter 5). Two others; SCMLI (113) and 

Txp7 (114) are still being tested. Recently, the complete RS candidate region has been sequenced 

by the Sanger Centre based on clones provided by the Retinoschisis Consortium. Analysis of this 

sequence will reveal many novel genes present in the region that can be tested as candidates for 

RS. 

Note: The Retinoschisis Consortium consists of the following groups: 

B.Franco, A. Ballabio in Milan, Italy. 

T.Alitalo, A. De la Chapelle in Helsinki, Finland. 

D.Trump, J.R.W.Yates in Cambridge, United Kingdom. 

W. Berger, H.H. Ropers in Berlin, Germany. 

A.A.B. Bergen in Amsterdam, the Netherlands. 

T.E. Darga, P.A. Sieving, Michigan, U.S.A. 

E. Van de Vosse, J.T. Den Dunnen ln Leiden, the Netherlands. 

Note: other forms of hereditary retinoschisis are; autosomal recessive, autosomal dominant and 

some unclear hereditary forms of retinoschisis·. Acquired forms of retinoschisis; degenerative 

retinoschisis, also called senile retinoschisis and secondary retinoschisis associated with various 

diseases, of which diabetic retinopathy is the most common (101). 

Keratosis follicularis spinulosa decalvans 

Keratosis follicularis spinulosa decalvans (KFSD, MIM 308800) is an extremely rare disorder 

affecting skin and eyes. Patients show hyperkeratosis (thickening) of the skin of the neck, ears, 

palms and soles, loss of eyebrows, eyelashes and beard, thickening of the eyelids with blepharitis 

and ectropion, corneal degeneration, photophobia and baldness (alopecia) in winding streaks. The 

symptoms diminish with age. KFSD was first described by Lameris in 1905 (115). The name 
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KFSD was given by Siemens (116) and the disorder has also been called Siemens syndrome. 

Siemens (117) described KFSD in 1925 as the first dominant sex-linked disease, however, only 

about half of the carriers show (mild) clinical symptoms, which is more suggestive of skewed 

X inactivation than of KFSD being a dominant sex-linked disease. 

Essentially five families have been described thus far, located in Germany (117), the 

Netherlands (76), France (118), Finland (119) and the UK (120). Linkage analysis using RFLPs 

placed the genefor KFSD in Xp22 between DXS 16 and DXS269 (121 ), analysis of recombinants 

using microsatellite markers further refined the region to between DXS7161 and DXS 1226 (76) 

(see also Chapter 2). KFSD has been reported to show genetic heterogeneity (122,123) but since 

few families are available for research this may just reflect a variation in phenotype between 

families. 

Since there are so few families with KFSD available, no systematic efforts had been 

undertaken yet to specifically clone the KFSD gene prior to this study. However, because the 

KFSD candidate region overlaps with other disease candidate regions, several genes have been 

cloned that can be tested as KFSD candidate genes purely based on location. The biochemical 

defect in KFSD is still unknown. 

1.2 Positional cloning of disease genes 

To identify the molecular mechanism underlying a hereditary disease, the mutant gene needs to 

be identified. If a cellular defect resulting from the mutation is identified, cloning by functional 

complementation is possible. If the (defective) protein is known, its identification can lead to the 

cloning of the corresponding gene. In most hereditary diseases however, neither protein nor 

cellular function are known and in those cases positional cloning is used to identify the disease 

gene. In the early days of gene identification, functional cloning was the only way of gene 

identification. Since the mid-SO's positional cloning has rapidly taken over simply because 

techniques became available that allowed the analysis of larger regions. The ideal approach is 

when both functional and positional information can be used to identify a gene. 

Positional cloning is usually done following a strategy (illustrated in Fig. 6) that narrows 

the search from the complete genome to a small region, preferably a single gene. The first step 

is genetic mapping: the region on a chromosome where the disease gene is localised is defined 

by linkage and recombinant analysis (discussed in 1.2.1 ). The second step is physical mapping; 

identification and isolation of genoinic clones (e.g. YAC, Pl, BAC, cosmid) that are located in 
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the disease gene region, construction of contigs and assembly of a restriction map (discussed in 

1.2.2). The final stage is isolation of transcripts for candidate genes amongst which the disease 

gene may be present (discussed in 1.3). 

Linkage analysis Isolation of clones, Digestions, Gene 
and recombinants contig construction hybridisations identification 

Xp22.2 Noli 

Xp22.1 

X 
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~~/.. . 
Genetic map Physical map Restriction map Transcript map 

Figure 6: From chromosome to gene. 

1.2.1 Genetic mapping 

In order to isolate a gene through positional cloning, the genetic location of the gene needs to be 

known. Cytogenetically visible chromosomal aberrations, such as translocations or large 

deletions, may give a direct indication of the region. When these are not present in the patients, 

systematical scanning of the genome with polymorphic markers (linkage analysis) in a subset of 

families is sufficient to acquire an approximate chromosomal location. Once an approximate 
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chromosomal localisation has been established, more refined linkage analysis is used to detect 

markers close to a disease gene by measuring whether certain marker alleles are statistically more 

often inherited together with the disease than the frequency of the allele in the general population 

would suggest. The further two markers are apart, the more likely it becomes that a cross-over 

between the two markers occurs during meiosis. The general rule for such cross-overs is that 

when, amongst every 100 meioses, typically 1 recombination occurs (1% recombination): this 

is an interval of 1 centiMorgan (cM). This 1 cM interval on average represents a physical region 

of around 1 Mb, but this can differ greatly between regions, due to local differences in 

recombination rate along our chromosomes. 

In recombinant analysis, usually employed for finer localisation, individual meioses are 

analysed to see whether a recombination has taken place between any of the markers and the 

disease gene. Identification of recombinations located either distal or proximal to the gene is used 

to reduce the candidate region. 

The interval to which a disease gene can be localised using genetic mapping is limited 

(124). In principle, these limitations are set by the number and distribution of the available 

polymorphic markers, the distance (in cM) between these markers (affecting the chance of 

detecting cross-overs), the heterozygosity of the markers and the number of available patients. 

In practice, however, through the large abundance of genetic markers currently available, the 

genetic mapping is mainly limited by the number of patients and hence the number of cross-overs 

in the candidate region. The point at which the genetic interval in which the disease gene is 

localised is small enough to start physical mapping is hard to define. Starting physical mapping 

with a too large genetic interval is a waste of time and energy, while continuing genetic mapping 

for too long may not provide the increased refinement of localisation due to lack of informative 

recombinants. However, one should always remain alert to new patients and family extension, 

i.e. classical advances, since, if a new recombinant appears, this often greatly limits the scan 

region. 

1.2.2 Physical mapping 

Isolation of clones Once a sufficiently small interval has been established by genetic mapping 

or by chromosomal aberrations, physical mapping is initiated. One physical method is the 

isolation of Y AC clones as these contain inserts of -1 Mb, are easy to handle and are readily 

available. Markers located in the region can be used to isolate Y AC clones either by hybridisation 
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of gridded YAC libraries (125), PCR screening of YAC pools (126), or -since about 1993- by 

screening databases (127). In regions where markers are sparse, chromosome walking can be 

done using end-clones (128), jumping and linking libraries (129), Alu-PCR products of 

previously isolated YACs (130) or of radiation-hybrids (131). Many whole-genome or 

chromosome-specific YAC libraries are available (125,132-134). 

Positive genomic clones must be rescreened and their marker content established. 

Because a relative high percentage of Y AC clones are derived from ligation of DNA fragments 

from different genomic regions, chimerism should be checked. This is done either by fluorescent 

in situ hybridisation (FISH) of the whole Y AC -which will at the same time confirm its 

chromosomal localisation-, by mapping YAC end clones using FISH, or by hybridisation to 

panels of hybrid cell-lines. The disadvantage of using entire Y ACs in a FISH experiment is that 

small chimeric regions may not be detected. The additional advantage of generating end clones 

is that these can be used as markers in subsequent experiments. The length of the Y ACs is 

determined by pulsed-field gel electrophoresis (PFGE). 

Contig assembly A contig is assembled based on marker content, on fingerprinting of shared 

restriction or PCR fragments or on a combination of the two. The oldest fingerprinting method 

is based on comparison of the hybridisation patterns after restriction digestion of the clones and 

hybridisation with a repetitive element (e.g. Alu, Line-1, THE) (135-137). The PCR based 

methods are based on radioactive PCR using Alu specific or random primers on the clones and 

analysing the PCR products after electrophoresis on a sequencing gel (138,139). All approaches 

generate a unique pattern of bands for each clone that can be analysed using computer programs. 

Because Y AC clones frequently show qeletions, rearrangements and chimerism (132, 140) 

it is important to analyse several coverages of the whole contig rather than a minimum tiling path 

ofYACs. Better still is to have a contig cloned in different cloning systems (e.g. PI-clones and 

BACs) to analyse clones from independent sources. An additional advantage of constructing a 

contig from different cloning systems is that when certain genomic regions are unclonable or 

unstable in one system they may be obtained from another system. 

Restriction mapping Y ACs in general have inserts too large to construct detailed restriction and 

transcript maps. A frequently used step to improve the resolution of a contig and to allow the 

construction of a restriction map is the isolation of clones that are an order of magnitude smaller 
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than the Y AC clones in the original contig. The isolation of smaller clones can be performed by 

screening of Pl- (up to 100 kb), BAC- (up to 100 kb) or cosmid (up to 40 kb) libraries (or 

subcloning of the YACs into one of these vectors), or by an alternative approach, YAC 

fragmentation. 
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Figure 7: Principle of Y AC fragmentation. 

Upon transformation of yeast containing a YAC with plasmid pBP108/ADE2, homologous recombination 

between an Alu in the YAC and the Alu in pBP108/ADE2 will occur in part of the yeast cells. Growing 

of the yeast on medium lacking tryptophan and adenine allows selection of fragmented YACs (which 

contain both ADE2 and TRP 1). A panel of fragmented YACs with various insert sizes is thus generated. 

YAC fragmentation Since Y AC fragmentation was first described by Pavan et al. in 1990 

(141), several improvements of the YAC fragmentation vectors (142,143) made it a rapid and 

simple way of generating a panel of clones of decreasing size that can be used for clustering of 

markers and clones to defined, consecutive regions ('binning') and restriction mapping. YAC 
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fragmentation is based on the homologous recombination between a repeat in the Y AC insert and 

a repeat in a YAC-vector arm containing a selectable marker not present in the original vector 

arms. After the recombination the replaced vector arm plus part of the insert is lost and a smaller 

YAC is obtained (Figure 7). A panel of fragmented Y ACs can be used to generate a restriction 

map without having to use partial digestions of YACs that are usually difficult to interpret (144 ). 

Panels of fragmented Y ACs have also been used to delimit a duplicated chromosomal region 

(145) and to refine translocation breakpoints (146). 

1.3 Identification of transcripts 

Methods to identify transcripts can roughly be divided in transcript dependent (cDNA based) and 

independent (genomic DNA based) techniques. Not one technique is capable of identifying all 

genes in a region, so two or more complementary techniques are required to construct a complete 

transcription map. 

The advantage of cDNA based techniques is that when a cDNA is identified this will 

immediately tell something about the tissue and stage it is expressed in and it is proof that the 

region is transcribed. The quality of the cDNA is very important, the presence of genomic DNA, 

incompletely processed RNA and rRNA should be avoided (by polyA+selection). 

The advantage of genomic DNA based techniques is that they are independent of the time 

and tissue of transcription, thus enabling the isolation of genes expressed only transiently, in a 

specific subset of cells, or at extremely low levels just as well as genes that are expressed 

ubiquitously and/or at high levels. 

1.3.1 cDNA based gene identification 

To identify a gene based on cDNA can be done following three different approaches; screening 

of cDNA libraries, cDNA selection and transcript sequencing. The choice of approach mainly 

depends on the goal. 

Screening cDNA libraries Screening of cDNA libraries is used to identify a specific gene. The 

screening is usually done with a specific probe, for instance a genomic fragment deleted in 

patients or evolutionary conserved. The technique is simple, as it requires only hybridisation of 

a probe to cDNA filters. Many (gridded) cDNA libraries are available and these have been 

generated from a range of different tissues and developmental stages. Alternatively, one may 

30 



Introduction 

generate a new cDNA library from mRNA of any desired tissue. A complementary approach can 

be used to identify genes from a more complex source. This involves the hybridisation of 

radiolabeled cDNAs (from oligo(dT) primed RNA) to arrays of genomic clones to identify the 

clones that contain genes (147) and use those for further analysis. 

cDNA selection cDNA selection is the more common approach to isolate transcripts from a 

large region and is often used to generate a transcript map from a contig. The first two articles 

on cDNA selection were published simultaneously by Lovett et al. ( 148) and Parirnoo et al. ( 149) 

in 1991. Several variations have been published since (150,151) but all are based on 

hybridisation of cDNA to immobilised DNA, elution, amplification and subsequent rounds of 

hybridisation to emich for specifically binding cDNA (Figure 8). The genomic target DNA can 

be derived from YAC, P1, BAC and cosmid clones. Clones propagated in bacteria have the 
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advantage of generating less background than YAC clones. cDNA selection has led to the 

· identification of a variety of novel genes amongst which the disease genes for glycerol kinase 

deficiency (GKD) (150), hereditary breast and ovarian cancer (BRCAl) (152) and Wiskott

Aldrich syndrome (WAS) (153). 

The disadvantage of cDNA selection is that during the selection not only genuine 

transcripts but also pseudo-genes and homologous genes will be isolated that are located in a 

different region (usually on another chromosome). On the other hand, these 'artefacts' can be 

used to specifically isolate members of a gene family (or the 'parental' gene to a pseudo-gene). 

cDNA selection is further limited by the abundance of a transcript in a cDNA library, transcripts 

that are present at less than 0.01% are unlikely to be selected for (154). 

Transcript sequencing Sequencing random transcripts is not an approach to isolate genes in 

a specific region but an approach to isolate all genes present in the genome and one of the major 

goals of the Human Genome Project (155). From both the 5' and 3' ends of each transcript a 

sequence (200-400 bp) is generated, called an expressed sequence tag (EST). All ESTs are 

deposited in a specific database; dbEST, and can thus be screened using sequences from the 

region of interest. ESTs that have already been assembled into contigs are present in a separate 

database called Unigene. These in silica cloned genes of course need to be verified as to whether 

they are derived from the region of interest (and not a homologue on another chromosome) and 

whether they are not constructed from two separate genes that happen to share a domain and are 

thus 'software-merged' into an overlapping transcript. Recently, many genes have been 

identified by in silica cloning, i.e. defined by comparative software analysis, based on homology 

to a gene in another species, like the human,thymic shared Ag-1/stem cell Ag-2 gene (TSA-

1/SCA-2) that was identified based on the mouse homologue (156), and two human peroxisome 

biogenesis disorder genes (PXR1 and PXAAA1) as the yeast PAS8 and PASS (peroxisome 

assembly genes) homologs (157). At least one group has started to systematically compare all 

known phenotype-causing genes in one species (D. melanogaster) to human ESTs, in order to 

define in silica all homologues and thus to identify potential candidate diseases for these genes 

based on their genomic localisation and a potential correspondence of association between 

phenotypes of -in this case- Drosophila and human (158). 
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1.3.2 Genomic DNA based gene identification 

The four DNA based techniques that can be used to identify genes are evolutionary conservation, 

isolation of CpG islands, exon trapping and genomic sequencing. 

Evolutionary conservation Functionally important regions in the genome (for instance exons 

and regulatory sequences) are conserved through evolution. Thus evolutionary conserved 

sequences are likely to be an element of a gene. Evolutionary conservation is detected by 

hybridisation of DNA of different species to one another. 

Analysis of evolutionary conservation is frequently used to test the presence of a gene 

by hybridisation to so-called 'zoo-blots'. Zoo-blots are blots containing DNA from a range of 

species, typically DNA of mammals (for instance human, ape, bovine, rodent), birds, fish, etc. 

Hybridisation of a genomic fragment to such a blot gives an indication of the extent to which the 

fragment is conserved. Although a gene like the DMD-gene was discovered using this approach, 

it is a laborious method and is less suitable for analysis of large regions. 

A suitable approach for larger scale analyses is the comparison with only one other 

species using a protocol similar to cDNA selection. Several rounds of hybridisation and 

amplification of genomic DNA from another species to immobilised or biotinylated genomic 

DNA of the region of interest will enrich for the conserved sequences (159). Unlike the zoo-blot 

method this does not only give an indication of conservation but also provides the homologous 

region as an actual clone for further analysis. 

[solation of CpG islands A CpG island is a relative short stretch of a G+C rich region (up to 

~ kb) in which the frequency of (unmethylated) <;pG nucleotides is significantly higher than 

~lsewhere in genomic DNA. About 60% of human genes are associated with CpG islands. They 

~re typically located at the 5' -ends of genes in, or close to the promoter region and often include 

he first exon of a gene. CpG islands can be identified by restriction enzymes that recognise 

tretches of C and G nucleotides and at least one CpG (these restriction enzymes are known as 

are cutter enzymes). A CpG island contains a cluster of these restriction sites while normally in 

enomic DNA these restriction sites are widely spaced (10s or lOOs ofkb apart). CpG islands are 

!so called HTF islands because the enzyme which revealed these sequences, HpaTJ., produced 

pall tiny fragments (HTF) (160). There are an estimated 45,000 CpG islands present in the 

human genome (161). 
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Isolation of CpG islands is applicable to both large and small regions and different 

techniques can be used. The easiest involves the subcloning of any source DNA using one rare 

cutter enzyme and one frequent cutter enzyme and ligating these in a plasmid vector. In this way 

a transcription map has been succesfully generated from the Huntington disease gene region 

(162) where 24 out of 42 clones contained putative exons and three novel genes were isolated. 

A slightly different method involves digestion of the source DNA with a rare cutter enzyme and 

ligating linkers to the digested DNA. PCR using one primer directed at the linker and one primer 

directed atAlu-repeats will allow the amplification of the CpG islands (163). 

A second, more elaborate, approach involves denaturing gradient gel electrophoresis 

(DGGE) and is based on the difference in melting temperature between regions with a normal 

and a high G+C content. In a denaturing gradient gel, fragments that are G+C rich will melt later 

than G+C poor fragments and will therefore have a higher electrophoretic mobility. These faster 

fragments can than be isolated from the gel and Cloned. The source DNA needs to be digested 

using several enzymes (in this case: Msel, Tsp509I, Nlaiil and Bfal) to provide fragments of 

appropriate size prior to DGGE (164). 

A third approach involves the digestion of the source DNA with a frequent cutter that 

leaves CpG islands in tact (Msel) after which the CpG islands are isolated using a column that 

specifically binds methylated DNA (165). 

Exon trapping In vivo identification of splice acceptor and splice donor sites, or 'ex on trapping' 

as it was first described by Auch and Reth in 1990 (166), has been used for both small and large 

scale gene identification. Genomic fragments are cloned into a vector containing an exon trap 

cassette (a gene preceded by a strong promoter and with a multiple cloning site introduced in one 

of its introns) and subsequently transfected into a cell line. Transcription of the ex on trap cassette 

gene will incorporate exons present in the genomic fragment, which will then (in principle) be 

included in the subsequent splicing (Figure 9). Reverse transcription (RT) and PCR on the RNA 

isolated from the cell-line will reveal the trapped exons which can be used for further analysis. 

Depending on the vector chosen and RT-PCR protocol applied, one can isolate internal, 3'

terminal or 5' -terminal exons. Internal exons can be trapped using several vectors (166-171). 3 '

terminal exons can be trapped using pTAG4 (172). One system allows both internal and 3'-exon 

trapping; pETV-SD2 (173,174). 

The major disadvantage of exon trapping is that it is sensitive to artefacts: spliced 
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products, involving cryptic splice sites and sequences with fortuitous homology to splice sites, 

as well as non-specific polyT/polyT primed products (in 3 '-terminal exon trapping). The exon 

trap vectors mentioned above can only contain plasmid size inserts, thereby allowing at best one 

or only a few exons to be trapped in one product. Moreover, the loss of the genomic context 

through the small insert size gives rise to the isolation of sequences which are recognised as 

exons although in nature they are intronic or never even transcribed. Furthermore, the order in 

which the trapped exons are present in the genome is lost, which makes further analysis tedious. 

Since an average internal exon has a length of 137 bp (175) the products tend to be small and not 

especially suitable for screening cDNA libraries or databases. 

To overcome these prQblems, two vectors have recently been developed that can contain 

larger inserts and will thus allow the simultaneous trapping of multiple exons, leaving the order 

intact. The exon trap products generated with these vectors make further analysis easier. These 

vectors are the sCOGH-vectors ( 17 6) allowing the isolation of internal, 3 '-terminal and 5'

terminal exons and pTAG5 (177) suitable for 3'-terminal exon trapping. The most well known 

gene that has been identified using exon trapping is IT15, the Huntington disease gene (178) . 
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Figure 9. Exon trapping using sCOGH2. 
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Inserts are cloned in a multiple cloning site in intron 2 of the human growth hormone gene (GH). After 

transfection of DNA from the clone into a cell line, in vivo transcription of the GH gene will incorporate 

exons from the insert present in the same orientation as the growth hormone gene into the exon trap 

product. When no exons (or exons in the wrong orientation) are present in the insert an empty product will 

result. mMTl= mouse metallothioneine gene promoter. GHl-5= human growth hormone exons. 
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Genomic sequencing The most detailed information of any region is obtained by sequencing 

it completely. First one can perform database searches to find homologies with known genes or 

ESTs and in addition one can use computer programs to predict the location of genes. Large scale 

genomic sequencing has been undertaken to analyse large regions of DNA that are covered with 

contigs ( 179) and ultimately the complete human genome will be sequenced as part of the Human 

Genome Project. 

Before searching databases with long genomic sequences, repeat masking is essential to 

prevent the analysis of large series of repetitive sequences. Subsequent database searches can 

involve comparison with all known nucleotide or protein sequences, or subsets that are for 

instance species-specific, contain only functional motifs, or contain only new sequences (180). 

A selection of these database search programs and their application is presented in Table 2. A 

range of programs is available to further analyse the output of these searches, many of which 

have been adapted for specific projects. Most programs are accessible through email or via the 

World Wide Web (WWW) (181). 

Further analysis of the sequence can involve a number of computer programs. Programs 

predicting exons, open reading frames (ORFs), promotors, and assembling potential genes are 

called gene structure prediction programs. An overview of available gene structure prediction 

programs is given in Table 3. 

Table 2: Database search programs 

" = sequences are translated into 6 reading frames before searching. 

b =Blitz is also known as SSEARCH or as the Smith-Waterman method. 

' = Nucleotide sequence databases: Genbank, dbEST, Unigene, EMBL, DBBJ, HTGS, dbSTS, or a 

locally generated database. 

d =Protein sequence databases: PIR, SWISS-Prot, GenPept, PDB. 

'=Pattern databases: EC pattern, PIMA, PROBMIN, BLOCKS, PRINTS, PIR-ALN, FSSP, PROSITE, 

PRODOM, Sbase. 

f = Many options are available to search species-specifiC sequences or only new entries. 
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Table 3: Gene structure prediction programs 

"=Integrated approach includes analysis of initiation signal, stopcodon, poly A signal (AATAAA) and 

promoter (TATA box). 

b = This approach is not especially suitable when more than one gene is present, when overlapping genes 

are present or to detect alternative·splicing. 

' = Approach especially suitable for partial sequences or when more than one gene is present in the 

sequence. 

ct =Short sequences, not genes (321 coding, 249 non-coding). 

e = May have improved. 

r =Used in comparison by Burset et al.(!82) see text. 

g = Database searches are used to compare ORF with existing proteins, output not shown. 

Extensive comparison of a subset of the gene structure prediction programs (indicated in 

Table 3) by Burset and Guig6 (182), showed that 33- 51% of exons are predicted perfect (with 

exact splice boundaries), 22- 36% of exons are totally missed, 13 - 27% of predicted exons are 

completely wrong. A slightly different evaluation method looks at overlap between actual and 

predicted exons, this ranges from 62- 71%. Programs that also predict an amino acid sequence, 

generate proteins that show 52- 62% similarity to the actual protein sequence. 

The accuracies of the predictions were lower using only new sequences than when using 

sequences that were partly available in the databases at the time the programs were trained. 

Furthermore, the programs seem to perform worse on long stretches than on short stretches which 

will be a problem when large-scale sequence analysis is needed (183). 

It is important to realise that the programs bave different, complementary strengths and 

the choice of programs depends on emphasis (sensitivity or specificity) and desired features. 

However, these programs generate predictions which must be verified as no prediction program 

so far is capable of predicting all exons of a gene accurately, and all have a significant false 

positive rate. The programs develop rapidly however, and are likely to improve constantly, but 

will always stay one or more steps behind of the evolving needs of genomic research. 
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1.4 Testing candidate genes 

Once a gene has been identified it can be tested as a candidate gene for a specific disorder. The 

techniques that are available to test a candidate gene are once again complementary, no single 

technique can identify all mutations in a given gene. These techniques can be either DNA based 

or RNA based. Once it has been proven that mutations in the candidate gene cause the disease, 

the same techniques can be used for further mutation analysis. The choice of technique for 

mutation analysis depends on the mutation spectrum of the gene, the size of the gene and the 

number and size of the exons. The most common techniques are described below, other less 

frequently used techniques have been described by R.q.H. Cotton, 1997 (184). 

Hybridisation Hybridisation of a gene- or, in an earlier stage of the identification of the gene, 

of a genomic fragment- to Southern blots with digested DNA of patients, will reveal genetic 

rearrangements caused by deletions, duplications, inversions, or nucleotide changes that alter 

restriction sites. Aberrant fragments involving larger genomic regions can best be identified using 

pulsed-field gel electrophoresis (185). 

Sequencing Sequencing is sometimes chosen, especially for smaller genes, in an initial stage 

-when no information is available about the type of mutations to expect- to identify the first 

mutations. To reduce the work load, sequencing of a candidate gene in a few patients is usually 

performed on RN A-derived material but can also be performed on genomic DNA when a small 

gene is involved. 

Single Strand Conformation Analysis (SSCA) SSCA is based on the conformational change 

of denatured DNA induced by a mutation. In short, DNA fragments (typically 200-400 bp) are 

amplified using specific primers in a PCR and these fragments are denatured and run on a 

polyacrylamide gel. Missing or smaller products may indicate a deletion of (part of) the fragment 

or a mutation at one of the primer sites. The mobility changes are caused by single nucleotide 

changes or small deletions. Since analysis of the full length of the genomic DNA of a given gene 

is laborious, SSCA primers are usually designed in intron sequences flanking exons to amplify 

specifically the latter. A major disadvantage of this is that many mutations in introns that alter 

splice sites will be missed (186). Also, rearrangements will be missed in which the exons are 
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present, but no longer in the right place or orientation. This was found for the factor VIII gene, 

which is inverted in a large fraction(> 40%) of severe hemophilia A patients (187). 

Denaturing Gradient Gel Electrophoresis (DGGE) In short, (double-stranded) PCR products 

are separated on a polyacrylamide gel with an increasing temperature or an increasing 

concentration of denaturant (urea/formarnide). When the temperature or concentration of 

denaturant in the gel has been reached at which the low-temperature melting domain will become 

single-stranded, the electrophoretic mobility of the product is greatly reduced. The precise 

conditions in which this happens and thus the precise position in the gel are highly dependent on 

the specific nucleotide sequence. Any change in this by a mutation is likely to cause an altered 

migration. Due to the PCR-process, when generating the fragments in heterozygous samples, 

besides the normal and mutant strands also heteroduplexes are generated. These are even less 

stable and their gel position tends to differ even between the heteroduplexes with normal and 

mutant sequence in the two different strands. However, only mutations in the low-temperature 

melting domain of a PCR product can be detected. In order to analyse the original high

temperature domain as a low-temperature domain, a new high-temperature domain is created 

by addition of a 'GC-clamp' (by a GC-rich tail on one of the primers) that will alter the melting 

characteristics of the product (194). Single base mutations and small deletions will cause an 

increase or decrease in the melting temperature that can be detected as a product that runs higher 

or lower in the gel than the wild type product. 

RT-PCR and protein truncation test The Protein Truncation Test (PTT) (188) is a technique 

based on the analysis of the encoded protein. cDNA is generated by reverse transcription (RT) 

of patient-derived RNA The cDNA is amplified using PCR to generate stretches of 1-2 kb. One 

of the primers used for the PCR contains a transcription initiation signal and a T7 promotor ( 189) 

to facilitate transcription and the subsequent translation (Figure 10). The first check for 

aberrations is done by running the PCR products on an agarose gel. 

In vitro translated products, analysed on SDS/P AGE gel, reveal mutations that directly 

or indirectly (through a frame-shift) cause a premature translation termination. This technique 

has been successfully used to identify a large number of mutations in hereditary cancers, e.g. the 

gene for hereditary breast and ovarian cancer (BRCA1) (190) and adenomatous polyposis coli 

(APC) (191). Also, PTT has allowed to find the first protein truncating mutation in CBP in 
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Rubinstein-Taybi syndrome (RTS) patients and thus to unambiguously implicate CBP in causing 

RTS (192). 

One of the requirements for the application of this technique is that the gene is transcribed 

in the tissue that is used for RNA isolation (usually lymphocytes). However, illegitimate 

transcription (193) of many genes normally not expressed in lymphocytes often provide enough 

transcripts to produce a PCR product. 

A B 
RNA RNA ---·····~······ • Reverse • In frame deletion transcription 
DNA Protein-..... _ ...... 

~ • PCR (one primer 
with T7-tail) 

RNA 
7;,_ • • Stop mutation 
~ Protein 

• Transcription 
mRNA AUG RNA 

• Translation • Frame shift 
Protein Protein 

Figure 10. PTT principle. 

A. RNA is reverse transcribed into cDNA. The cDNA is then amplified using a primer containing a T7 -tail 

and a translation initiation signal. In vitro transcription and translation results in a protein that can be 

analysed on a SDS/P AGE gel. B. In frame deletions in the RNA will result in a decreased protein size, 

the decrease proportional to the size of the deletion. Stop mutations will result in a smaller protein, the size 

of the protein depending on the position of the stop mutation. Frame shift mutations usually result in a 

premature stop downstream thus also generating a smaller protein. 
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1.5 DISCUSSION 

Since the beginning of the 90s, major improvements have been made to existing gene 

identification techniques but no revolutionary new techniques have been developed to identify 

genes in the human genome. Most groups are using a combination of the available techniques, 

usually including either ex on trapping or cDNA selection and gratefully make use of the rapidly 

expanding EST database, which is of enormous assistance in the isolation of disease genes (195). 

New genes are found and published every week. In 1996, in the monthly journal Nature Genetics 

alone, up to 12 new genes were published per month (in total 105), on average 6-7 monthly. 

The Human Genome Project (HGP), started in February 1988 with the National Research 

Council (NRC) report: 'Mapping and Sequencing of the Human Genome' (155). The three main 

objectives for the years 1990-2005 of the HGP were: 1) to improve the research infrastructure 

of human genetics, 2) to help establish DNA sequence as the primary interface between 

knowledge of human biology and knowledge of the biology of model organisms 3) to launch an 

open-ended effort to improve the analytical biochemistry of DNA. 

To reach these goals the HGP aimed to develop genetic and physical maps of the human 

genome and to sequence the human genome by the year 2005. In addition genetic and physical 

maps of mice, worm, flies and yeast would be developed as these are valuable model organisms 

for studying development, diseases and treatments. In the early years there was considerable 

skepticism about whether the available technology would be adequate. Technical advances 

however, especially in PCR, FISH and Y AC cloning, have been so great that the speed of genetic 

and physical mapping has rapidly gone up (196). 

Since the start of the HGP, many human genome maps have been published based on 

genetic or physical data or an integration of both (127,137,197-204). Systematic sequencing of 

contigs has already generated many megabases of human sequence ( 44 Mb at 28/2/97, 170 Mb 

predicted at 28/2/98 (205)) and it will not be long before the complete sequence of the human 

genome will be available. That is not however, the end of the human genome analysis, but merely 

a step along the way toward understanding of the genes and their functions. 

In conclusion, the time when the genome sequence of many organisms will be publicly 

available to boost biological research, is not far away. In a few years therefore, in what tends to 

be called the 'post-genome era', the focus of many groups will transcend from building contigs 

and transcript maps to the (large scale) functional analysis of the genes that have been identified 
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in silica. Developmental expression patterns, differentially spliced products, protein folding and 

processing, protein-protein interactions, biochemical pathways and regulatory networks need to 

be analysed. 

The impact of these developments is already fundamentally altering positional cloning. 

Genome sequence based approaches will more and more replace parallel and serial transcript 

mapping on constructed contigs. Thus, the elucidation of the gene causing RS seems not far off. 

While two novel RS candidate genes have recently been cloned 'the old way', meanwhile, using 

a clone contig provided by the Retinoschisis Consortium, the candidate region for RS has 

recently been rapidly sequenced by the Sanger Centre (Hinxton, UK) and made available on the 

internet, thus providing the kick-off for using novel in silica approaches. So it seems only a 

matter of time to prove which of the genes cloned or predicted in the region is mutated in RS 

patients. 

The candidate region for KFSD has not been sequenced yet. Several genes in the region 

have been cloned that have not even been tested yet as candidates. The identification of the 

KFSD gene will take longer primarily because it will be harder to prove which gene causes the 

disorder since only so few families are available . 

Once found, the functional analysis of the RS and KFSD genes will lead to an 

understanding of the mechanisms underlying these diseases. As RS only involves the eye, there 

is good hope for a potential therapy once developed, as the retina may be more easily accessible 

for delivery of normal genes through viral vectors (206). KFSD is mainly a skin disorder, which 

also makes it more easily accessible than the organs affected in several other severe genetic 

diseases, like skeletal muscle in muscul¥ dystrophies or the immune system in 

immunodeficiencies. However, much biological research is still required and it is even possible 

that the outcome of the genome-based research will allow the development of pharmacological 

rather than genetic means of intervention. 

44 

I 



Outline 

1.6 OUTLINE OF THE THESIS 

In this study we aimed at the positional cloning of disease genes in Xp22.1-p22.2. To this end 

we constructed a Y AC contig covering this region including the markers from DXS414 to 

DXS451. The contig enabled us to order new markers in the region and to refine the localisation 

of the genes for X-linked juvenile retinoschisis (RS) and for keratosis follicularis spinulosa 

decalvans (KFSD) (Chapter 2.1). One of the key YACs in the RS candidate region was used in 

Y AC fragmentation experiments to generate a panel of fragmented Y ACs used for 'binning' 

clones and to construct a 2.5 Mb restriction map ofthis region (Chapter 2.2). 

To identify candidate genes for the diseases localised in this region we have applied ex on 

trapping. Initially, exon trapping was performed with cosmids subcloned in the vector pSPL3, 

isolating -among others- exons from a known gene: the liver a-subunit of phosphorylase kinase 

(PHKA2). To analyse larger genomic regions more efficiently, we have designed a new ex on trap 

vector (sCOGH2) which allows the direct analysis of cosmid-size clones (Chapter 3). We have 

subcloned key Y ACs from the region into the sCOGH vectors and used these in ex on trap 

experiments. We have isolated several novel transcripts from the region, of which one was 

analysed in detail (Chapter 4.1). 

Two genes, PPEF and Txp3, which have been isolated by members of the Retinoschisis 

Consortium were tested as candidate genes for RS (Chapter 5) but no mutations could be detected 

thus far. 
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ABSTRACT 
Genetic linkage studies have mapped several diseases, including retinoschisis (RS), keratosis 
follicularis spinulosa decalvans (KFSD), Coffin-Lowry syndrome (CLS), X-linked 
hypophosphatemic rickets (XLH, locus name HYP) and X-linked dominant cone-rod 
degeneration (locus name RP15) to the Xp22-region. To facilitate the positional cloning of the 
genes involved, we have extended the molecular map of the region. Screening of several Y AC
libraries allowed us to identify 63 Xp22 YACs, 52 of which localize between markers DXS414 
(P90) and DXS451 (kQST80Hl). Analysis of their marker content facilitated the construction 
of aY AC contig partially overlapping the existing map from the region and extending 1.5 Mb 
centromeric. The markers were ordered as follows: DXS414- DXS987- DXS207- DXS1053-
DXS197- DXS43- DXS1195- DXS418- DXS999- PDHA1- DXS7161- DXS443- DXS7592 
- DXS1229- DXS365- DXS7101- DXS7593- DXS1052- DXS274 -DXS989- DXS451. The 
region between DXS414 and DXS451 covers about 4.5 to 5Mb, 1.5Mb of which is in the newly 
mapped DXS1229-DXS451 region. Three additional markers (PDHA1, DXS7161 and 
DXS7592) were placed in the previously mapped region, thereby increasing the genetic 
resolution. Considering the known genetic distances, this region shows a significantly increased 
recombination frequency, of0.2 Mb per cM. Using the deduced marker order, the analysis of key 
recombinants in families segregating RS allowed us to refine the critical region for RS to 0.6 Mb, 
between DXS418 and DXS7161. Similarly, the candidate region for KFSD could be limited to 
a 1Mb region between DXS7161 and DXS1226. 

INTRODUCTION 
To facilitate the isolation and study of disease genes, one has set out to completely characterize 
the human genome. This involves three main stages; mapping (both genetic and physical), 
cloning and sequencing. The first two steps are carried out in parallel and global physical and 
genetic maps have been published [1,2]. These crude maps subsequently require verification and 
refinement by detailed characterization of each region specifically. The human X chromosome 
is one of the best mapped human chromosomes and, at present, has the highest proportion of 
known markers and genes. Nonetheless, the Xp22.1-p22.2 region has a relative shortage of 
markers and is consequently bare in cloned genes [3]. On the other hand, linkage analysis 
mapped a number of disease loci to the Xp22.1-p22.2 region [ 4], including spondylo-epiphyseal 
dysplasia (SEDL, MIM 313400), retinoschisis (RS, MIM 312700), keratosis follicularis spinulosa 
decalvans (KFSD, MIM 308800), Coffin-Lowry syndrome (CLS, MIM 303600), X-linked 
hypophosphatemic rickets (XLH, locus name HYP, MIM 307800) and X-linked dominant cone
rod degeneration (locus name RP15, MIM 268000) [5]. Our group has a special interest in RS 
and KFSD. Linkage studies have placed the gene for RS, a rare hereditary vitroretinal 
degeneration, between DXS43 and DXS365 [6,7]. Recently, we have shown that KFSD, a rare 
X-linked disorder characterized by follicular hyperkeratosis of the skin, scarring alopecia of the 
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scalp, absence of eyebrows and corneal degeneration, to be located between DXS 16 and DXS269 
[8]. Contiguous gene syndromes and large deletions, which have greatly contributed to the 
unravelling of other regions of the X chromosome, have not been reported in the Xp22.1-p22.2 
region. 

As a first step to resolve this lack of knowledge and towards identification of RS and 
KFSD, we have used known STS markers, Alu-PCR products of Y ACs isolated in the course of 
the project and new Genethon markers to screen Y AC libraries and isolate Y ACs from the Xp22-
region. An Alu-PCR-based fingerprinting method ([9], and Coffey et al. unpublished data) was 
used to assemble crude contigs and to determine overlaps between the YACs. Subsequently, we 
have used PCR and hybridization analysis to refine the contig, order the markers and construct 
a physical map. The deduced map spans about 4.5 to 5Mb and includes the loci for RS, KFSD, 
CLS and HYP. While this work was ongoing, Alitalo et al. [10] published an Xp22-contig, which 
overlaps ours from DXS414 to DXS 1229 and which is in complete agreement with the map we 
will present here. We place three additional markers (PDHA1, DXS7161 and DXS7592) in the 
overlapping region and our map extends at least 1.5 Mb proximally, spanning eight other 
markers. The mapping data were used to refine the localization of RS by linkage analysis to 0.6 
Mb between DXS418 and DXS7161, and the localization of KFSD to 1Mb between DXS7161 
andDXS1226 [11]. 

MATERIALS AND METHODS 
YAC library screening 
Y AC library screening was performed by hybridization. High-density gridded filters from the ICI 
library [12] and the X-specific subset of the CEPH megabase library ([13] and unpublished) were 
provided by the EU-sponsored YAC Screening Center Leiden (The Netherlands). GriddedAlu
PCR product filters from ICRF-library 900 [14] were provided by the ICRF (London, U.K.). 

Filters' were hybridized in 0.5 M Sodiumphosphate pH 7.2, 7% SDS, 1% BSA, 1 mM 
EDTA for 16 hours at 65oC. Filters were washed twice at RT in 40 mM Sodiumphosphate 
pH7.2, 0.1% SDS before scanning using a Phosphorlmager (Molecular Dynamics). Alu-PCR 
products and cosmid probes were prehybridized with 100 flg sheared human placental DNA 
(Sigma) and 25 flg Alu-dimer DNA. 

Probes 
Probes used for the YAC library screening included unique probes and cosmids containing 
markers known to be located in Xp22 and Alu-PCR products derived from positive YACs 
isolated in the course of the project. Alu-PCR products were generated using primer PDJ34 [ 15]. 
Probes used for detailed Y AC analysis included Pvull!BamHI fragments of pBR322 to identify 
the pYAC4 vector arms, CRI-L1391 (DXS274) [16], P122 (DXS418) [17], pD2 (DXS43) [18] 
and PCR products derived from the markers listed in Table 1. Probes for the analysis of 
recombinant patient samples included, in addition to the markers used for YAC analysis, 782 
(DXS85) [19], pXUT23 (DXS16) [20], C7 (DXS28) [21] and p99-6 (DXS41) [18]. 

YAC analysis 
Yeast clones were colony purified and high molecular weight DNA was isolated in LMT agarose 
plugs (Seaplaque, FM C) as described [22]. Initial characterization of YACs was performed by 
PFGE, FISH and PCR. Hindill-digested YACs were electrophoresed on 0.8% SeaKem LE 
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agarose gels. 

Pulsed Field Gel Electrophoresis (PFGE) 
PFGE-analysis, using a CHEF-system, was performed under standard conditions [22]. Agarose 
gels ( 1%) in 45 mM Tris, 45 mM Boric acid, 0.5 mM EDT A, pH 8.3 were electrophoresed for 
24 hat 180 V, with pulse times ranging from 20 to 70s. Lambda oligomers and AB1380 yeast 
genomic DNA were used as size standards. After electrophoresis, gels were stained, 
photographed, blotted on Hybond-W [22] and fixed by DV crosslinking. Filters were washed to 
1x SSC at 65°C before autoradiography. 

Fluorescent In Situ Hybridization (FISH) 
FISH-experiments, including two-colour FISH, were performed according to Dauwerse et al. 
[23]. Total yeast DNA was labelled by nick translation in the presence of Dig-11-UTP and biotin-
14-dATP and detected by FITC (green) and TRITC (red) respectively. 

Polymerase Chain Reaction (PCR) 
PCR was carried out in a Perkin-Elmer Cetus thermal cycler in 30 J.!l reactions containing 50 mM 
Tris-HCl pH 9.0, 50 mM KCl, 1.5 mM MgCl2, O:Dl% gelatin, 0.1% Triton X-100, 0.2 mM each 
dNTP, 0.2 mg/ml BSA, 25 pmol of each primer and 0.25 U Taq polymerase (SuperTaq, HT 
Biotechnology) with 50 J.ll mineral oil overlay. An initial denaturation step of 5 min 94 oc was 
followed by 30 cycles of 94 oc 1 min, 50-65 oc (Table 1) 1 min, 72 oc 1 min. Products were 
separated on a 2% agarose gel. 

PCR for linkage analysis in the RS families was performed in 15 J.ll reactions containing 
150-210 ng DNA, 1.5 mM MgCl2, 10 mM Tris-HCl pH 9.0, 50 mM KCl, 0.01% gelatin, 0.1% 
TritonX-100, 0.2mMdATP, 0.2mMdGTP, 0.2mMdTTP, 0.025 mMdCTP, 0.6 U Amplitaq™ 
(Cetus Inc), 0.27 pmol a 32P-dCTP, 5 pmol of each primer with 50 J.ll mineral oil overlay. An 
initial denaturation step of 5 min 94 oc was followed by 30 cycles of 94 oc 1 min, 50°C 1 min 
(or according to Table 1), 72°C 2 min and a fmal step of 10 min 72oC. Products were separated 
on a sequencing gel. 

Alu-PCR fingerprint analysis 
Primary Alu-PCR was performed as described previously [9] using primers ALE1 and ALE3 
together in a combined reaction [24]. A dilution of the primary PCR (Fig.1a) was used in a 
secondary PCR for 10 cycles in the presence of end-labelled ALE1 and ALE3. The products were 
run on a gel (Fig.1b) as described previously [25]. After autoradiography, the fingerprints were 
analyzed using the semi-automated gel scanning and analysis system used for the C.elegans 
cosmid fingerprinting project [26]. The positions and intensities of the products are compared 
and the probability of overlap between Y ACs is analyzed. In the resulting contig the length of 
a clone is depicted as the number of products it contains (Fig.1c). 

Recombinants analysis 
For RS, linkage analysis has been carried out with at least six Xp22.2 markers in 21 families, 15 
of which have been published previously [6,7]. From these studies, two families with key
recombination events were selected. DNA samples of 13 individuals from these two families 
were analyzed with 10 (family P 22.337) or 11 (family P 24.130) polymorphic markers. 
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Locus Marker Product T. Reference 

size (bp) 

DXS414 P90 330 55 [27] 

DXS987 AFM120xa9 206-224 55 [27] 

DXS207 pPA4B 500 52 [27] 

DXS1053 AFM164zd4 194-206 60 [2] 

DXS197 pTS247 250 52 [27] 

DXS43 pD2 86-130 55 [28] 

DXS1195 AFM207zd6 235-239 56 [2] 

DXS418 P122 140-158 58 [29] 

DXS999 AFM234yf12 260-276 50 [27] 

PDHA1 PDHA1 125 58 [27] 

DXS7161 AFM291wf5 240-254 55 [4] 

DXS443 pRX-324 204-210 50 [30] 

DXS7592 AFMa244zg1 225-233 55 J.W. 

DXS1229 AFM337wd5 202-230 56 [2] 

DXS365 pRX-314 201-217 50 [30] 

DXS7101 AFMa176zb1 156-164 55 J.W. 
I 

DXS7593 AFMa346zc1 209-223 55 J.W. 

DXS1052 AFM163yh2 143-159 62 [31] 

DXS989 AFM135xe7 173-199 50 [27] 

DXS451 kQST80H1 182-204 55 [30] 

Table 1. PCR markers used in the analysis. 
T. =annealing temperature. J.W.= Jean Weissenbach (unpublished). 
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Figure 1. Alu-PCR fingerprinting. (A) 5 111 of primary Alu-PCR products of 9 Y AC clones run on a 2.5 
% agarose minigel. Marker (M) is a 1 kb ladder. (B) Autoradiograph showing the Alu-PCR fingerprint of 
the 9 YAC clones. Marker (M) is a Sau3AI digested 35S-labelled lambda DNA marker. Sizes are indicated 
on the left of the autoradiograph. (C) Contig constructed after analysing the Alu-PCR bands using software 
originally written by J.Sulston for the C.elegans project [26]. 
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RESULTS 
YAC Library Screening 
The CEPH [32], ICI [12] and ICRF [14,33] YAC libraries were screened with 21 probes which 
resulted in the isolation of 156 potential positive clones. To rapidly obtain a rough physical map, 
including potential overlap data, all 156 YACs were first Alu-PCR fingerprinted. An example 
of theAlu-PCR-based fingerprinting is shown in Fig.1. YACs 36BE8, 28AB7, 26BF4 and 32BE2 
share several bands (Fig.1a and b) and therefore clearly overlap and form a contig (Fig.1c). 
Analysis of all156 YACs revealed the presence of ten Alu-PCR-based contigs, containing a total 
of 52 YACs. Four of these contigs, 13, 23,25 and 82 (Fig.2) were located in the Xp22.1-22.2 
region as described below. The remaining 6 contigs were in other regions of the X chromosome 
and not further analyzed. Due to screening of the YAC library with Alu-PCR products of a 
chimeric Y AC, contig 25 originally contained Y ACs that were located on chromosome 4 or 5 
as deduced from FISH analysis. 

contlg 23 contig 82 contig 13 contig 25 
--90683' 

932E3 93BC1o'----
--911F3 - 90001030 

764D7* 931E8 --

-- 681F6 900E08102 '---
-- 810E1 966F1'----

-- 9000053 - 40GH7' 980A5 ----

-- 90000287 39GH4 - 85003 

--- 961E6' 25HA10- ---- 939H7 

__ ?BBC8 -- 900G0537 

-- 850G2 --- 9018128 

69301 --- --_-_•_ooA:7 

9=~~= ====-=-- 68188 ---90060732 ---
90060437--

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ! I I I I 

LJ 10 A/u-PCA bands 

Figure 2. Alu-PCR fingerprinting contigs 13, 23, 25 and 82. The size of the clones is determined by the 
number of Alu-PCR bands it contains. An asterisk indicates YACs that give FISH-signals on Xp22 as well 
as on other chromosomes. Not all YACs in these contigs have been analyzed in detail. 

YAC analysis 
Guided by the contigs derived from the fingerprinting, the YACs were tested for the presence of 
Xp22 markers. Out of the 156 YACs, 63 were positive for at least one marker, and 23 were 
positive for two or more markers. Since the density of Y ACs was high enough to construct a 
good contig, we only analyzed Y ACs containing two or more markers in greater detail and we 
did not analyze the 40 YACs containing only one marker. The remaining set of 93 Y ACs which 
were not positive for any of the markers, includes both false positives and Y ACs which, while 
located in an Alu-PCR contig, did not contain a reference marker. 

The 23 Y ACs analyzed in detail ranged in size from 210 to over 1400 kb with an average 
size of 1050 kb (Table 2). The 19 CEPH YACs ranged in size from 590 to 1400 kb (1150 kb 
average), the 2 ICRF YACs were 580 and 1180/1300 kb (1020 kb average), and the 2 ICI YACs 
were 210 kb and 500 kb (380 kb average). These sizes do not differ significantly from those 
publish~d (900 kb average for the CEPH library [32], 620 kb average for the ICRF library [14] 
and 350 kb average for the ICI library [12]). Sizes for specific YACs (Table 2) were usually 
consistent with available data (that is Genethon database [1] and [10]). One exceptional case was 
939H7, which we find to be 1300 kb while it is reported as 270 kb in the database [1]. Since we 
performed a colony purification of the Y AC clones it is possible that we have isolated the minor 
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component of a mixed YAC population. However, our data are consistent with those of Alitalo 
et al. [ 10] who report a length of 650 to 1500 kb and state that this Y AC is unstable. 

YAC size (kb) FISH 

CEPH 961E6 1350 + >1400 (1680) Xp22 + 4q + 16p 

CEPH 810E1 1050 (1100) Xp22 

CEPH 681F6 950 (1060) Xp22 

CEPH743A8 830 (700) Xp22 

ICI40GH7 420 + 210 Xp22 + 6qcen 

CEPH764D7 N.A. (1420) Xp22 + 8q1/2 

CEPH 932E3 1280 (900) Xp22 

ICI25HA10 430 Xp22 

CEPH 811D11 1450 (800) Xp22 

CEPH 911F3 1150 (950) Xp22 

ICRF 900H0623 1180+1300 Xp22 

CEPH939H7 1300 (270) Xp22 

ICRF 900E08102 580 Xp22 + ( 3p) 

CEPH742H9 580 + 850 (1250) Xp22 

CEPH 966F1 950 (N.A.) Xp22 + 19qtel 

CEPH960A5 1300 (1310) Xp22 

CEPH 850C3 590 (N.A.) Xp22 

CEPH789C8 >1200 (1430) Xp22 

CEPH 85002 1300 (1000) Xp22 

CEPH 693Dl 1400 (1720) Xp22 

CEPH965H5 1150 (1200) Xp22 

CEPH 681B8 930 (980) Xp22 

CEPH 933D5 900 (890) + 1450 Xp22 + 9ptel 

Table 2. Detailed characterization of the Y ACs. 
The Y AC lengths as reported in the Genethon database are given between brackets. All Y ACs hybridized 
to Xp22, six Y ACs hybridized to other chromosomes as well. 900E081 02 does not hybridize to #3 in all 
metaphases. YACs 742H9 and 960A5 were found to be non-chimeric by FISH, but have been found to 
be chimeric by Alitalo et al. [10] by analysis of YAC endclones. N.A.= not analyzed. 

FISH analysis 
To verify the chromosomal localization of the YACs and to assess potential chimerism, we 
performed FISH analysis of all 23 Y ACs. Seventeen YACs showed a hybridization signal on 
Xp22 only, while six YACs gave more than one hybridization signal (Table 2). The CEPH data 
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of hybridizations of Y AC-derived Alu-PCR products to gridded somatic cell hybrids confirm 
these data; 966F1 hybridizes to X and 18, 764D7 hybridizes to X and 8, 961E6 hybridizes to X, 
10, 14, 16 and 18 and 933D5 hybridizes to X, 1 and 9. Two of the six, 900E08102 and 966F1, 
contained a single YAC as determined by PFGE and are thus most likely chimeric. Four clones 
contained more than one Y AC. Since we performed a colony purification, they probably result 
from eo-cloning of two different Y ACs in one yeast cell. Four Y ACs hybridized to Xp22 as well 
as to the heterochromatic regions on chromosome 1, 9 and 16. These YACs were not analyzed 
in detail because they did not contain more than one reference marker. However, this observation 
indicates that there is probably homology between Xp22 and these heterochromatic regions. Our 
data are not sufficient to localize this homology to a specific region within the contig. 

For the ICI and ICRF Y ACs too few were studied to draw any significant conclusion 
about the chimerism frequency (ICRF less than 25% according to [34,35]). From the CEPH mega 
YACs only 2 out of 19 (11 %) were chimeric. Alitalo et al. [10] analyzed YAC endclones and 
report chimerism in two more YACs (742H9 and 960A5). Small regions in YACs originating 
from other chromosomal regions are unlikely to be detected by FISH analysis which explains the 
differences observed. 

DXS207DXS10530XS197DXS43DXS11950XS418 DXS999 OXS71S1 OXS~43,DXS7592 I DXS1229 DXS365 DXS71011 OXS75931 DXS105Z OXS274 DXS989 

~Fi..t<OJ,_j> pAX-1<• ~FMII2'"~1 AFM:lJ7wd5 pfiX·3U AF .... 176<bl AFM•l<5l<1 AFMIO:ryl\2 Cll~liJ01 AFI.OI:l5,.7 

Figure 3. Marker based contig of the YACs. Closed circles indicate presence of the marker (after PCR or 
hybridization analysis), open circles indicate absence of the marker. Wavy lines indicate chimeric YACs. 
Multiplicity of YACs consistent with this order. Boxed markers are reagents additional to those previously 
located in contigs covering the region. 

YAC contig and marker order 
Figure 3 shows the marker based contig of the Y ACs which could be constructed. Y ACs 

961E6, 681F6, 25HA10, 939H7, 811Dll and 850G2 together span the entire region. Three 
YACs, 40GH7, 811Dll and 911F3, appear to contain internal deletions, since several markers 
were negative. In order to increase the marker density in the region and to locate markers which 
could not be ordered by genetic mapping, we tried to localize 18 new Genethon markers within 
the Xp22 region (Table 3). A first rough localization was achieved by testing on the somatic cell 
hybrids TG2sc1 [36] and AM445x393 [37]. TG2sc1 is a hamster hybrid containing Xp21.3-pter 
as the only human material, while AM445x393 contains Xp22.2-qter in a mouse background. 
DXS 1223 and AFMa282vd1 were localized to Xp22.3 and fell outside our target region. Twelve 
markers located in the Xp21.3-p22.2 region, i.e. positive in both cell lines, were tested on the 
Y ACs from the contig. Five markers did not give discernable PCR products or gave inconclusive 
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data. We were able to localize DXS1195 between DXS418 and DXS43, DXS7161 between 
DXS443 and PDHAl, DXS1229 between DXS443 and DXS365, DXS7592 between DXS443 
and DXS1229, DXS7101 between DXS365 and DXS1052, DXS1052 between DXS365 and 
DXS274, and DXS7593 between DXS7101 and DXS1052. DXS7105 is probably located 
between DXS365 and DXS7593 but only one Y AC was positive with this marker (Table 3). 

Marker Total AM445 
human TG2scl x393 Localization YAC results 

DXS1028 + ? (not on X) N.A. 
DXS1043 + + + Xp21.3-p22.2 no positives 

DXS1052 + + + Xp21.3-p22.2 see Figure 3 

DXS1061 + + + Xp21.3-p22.2 no positives 

DXS1065 smear + (Xqtel-Xp21.3) N.A. 
DXS1195 + + + Xp21.3-p22.2 see Figure 3 

DXS1202 + + + Xp21.3-p22.2 yeast also positive 

DXS1223 + + Xp22.3 N.A. 
DXS1224 ? N.A. 
DXS1229 + + + Xp21.3-p22.2 see Figure 3 

DXS1233 ? N.A. 
DXS7101 + + + Xp21.3-p22.2 see Figure 3 

DXS7105 + + + Xp21.3-p22.2 811D11 

DXS7161 + + + Xp21.3-p22.2 see Figure 3 

AFMa152xfl 400bp 400bp ? N.A. 
DXS7592 + + + Xp21.3-p22.2 939H7, 850C3 

DXS7593 + + + Xp21.3-p22.2 see Figure 3 

AFMa282vdl + + Xp22.3 N.A. 

Table 3. Localization of the new Genethon markers. TG2scl contains Xp21.3-pter as the only human 
material in a hamster background. AM445x393 contains Xqter-Xp22.2 in a mouse background. '+' = a 
product of the expected length was detected, '-' =no product of the expected length was detected. Between 
brackets; additional products or products with unexpected sizes amplified by the PCR. 

Candidate regions for KFSD and RS 
The new data on the marker order generated was used to refine the localization of the candidate 
regions for RS and KFSD. For RS we have carried out linkage analysis with at least six Xp22.2 
markers in 21 RS families, 15 of which have been published previously [6,7]. From these studies, 
two key-recombination events were identified, further refining the RS-gene candidate region 
(Fig.4). In family P 22.337 the recombination between RS and DXS418, observed in patient III-3, 
places the disease gene proximal to DXS418. In family P 24.130, the recombination between RS 
and DXS7161 observed in patient III-3, places the disease gene distal to DXS7161. 
Unfortunately, DXS999 was not informative in this family. 
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A 
p 22.337 

B 
p 24.130 

Markers # Alleles Markers # Alleles 
DXS16 2 DXS85 5 
DXS987 4 DXS987 4 
DXS207 4 DXS207 4 
DXS43 2 DXS1195 4 
DXS1195 4 DXS418 4 

11-1 11-2 DXS418 4 11-1 11-2 DXS7161 4 

I i I ~I 
DXS999 4 
DXS443 3 
DXS365 5 
DXS451 5 

DXS443 3 
DXS365 5 
DXS41 2 
DXS451 5 r 1~1 

111-1 111-2 111-3 

~~ 1~1 "!i 
IV-1 

I i 
Figure 4. Refined critical region for RS. (A) In family P 22.337 the RS disease locus cosegregates, in 
general, with the haplotype 1 (DXS16)- 2 (DXS987)- 2 (DXS207)- 1 (DXS43)- 1 (DXS1195)- 1 
(DXS418)- 1 (DXS999)- 1 (DXS443)- 2 (DXS365)- 1 (DXS451). The recombination observed with 
patient ill-3, between RS and DXS16, DXS987, DXS207, DXS43, DXS1195 and DXS418, places the 
disease gene proximal to these loci. (B) In family P 24.130 the phase of the markers could be obtained 
through the analysis of the haplotypes of male ill-1 and female ill-2. Healthy male ill-1 inherited the X
chromosome; 2 (DXS85)- 2 (DXS987)- 2 (DXS207),- 2 (DXS1195)- 2 (DXS418)- 2 (DXS7161)- 2 
(DXS443)- 3 (DXS365)- 3 (DXS451)- 2 (DXS41) from his mother (ll-2). The phase of the maternal X 
chromosomal alleles of female ill-2 is also 2-2-2-2-2-2-2-2-3-2, since she inherited the X chromosome 
characterized by 2-1-1-3-l-1-1-2-1-1 from her father. Thus, patient ill-3 is most likely recombinant for 2 
(DXS7161)- 2 (DXS443)- 3 ((DXS365)- 2 (DXS41)- 3 (DXS451). The analysis of the recombination 
breakpoints in this family suggest the order Xpter-(DXS85, DXS987, DXS207, DXS 1195, DXS418, RS) -
(DXS7161, DXS443, DXS365, DXS41, DXS451) -Xcen. DXS999 was not informative. 

For KFSD, recombinants were selected from a large Dutch pedigree Oosterwijk 1992[11]. 
Twenty polymorphic markers, 19 of which were informative, were tested (Fig. 5). Two 
individuals, VII-10 and VI-13 show key recombinations that refine the localization of the disease 
gene. VII-10, an affected male, determines the proximal border since the alleles of the affected 
chromosome recombine proximal to DXS257/DXS7161 with the healthy chromosome. VI-13, 
an affected male, determines the distal border by a recombination between DXS365 and 
DXS1229 [11]. 
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TEL Vl-13 Vll-10 

DXS85 782 • 0 
DXS16 pXUT23 0 
DXS987 AFM120xa9 • 0 
DXS43 p02 • 
DXS418 P122 • 0 
DXS999 AFM234yf12 • 

[DXS257 pQST1H3 • 0 
DXS7161 AFM291wf5 0 
DXS443 pRX-324 • • DXS1229 AFM337wd5 KFSD 
DXS365 pRX-314 • • .I 
DXS1226 AFM316yf5 0 • 
DXS1052 AFMa163yh2 • 
DXS274 CRI L 1391 0 
DXS989 AFM135xe7 0 • 
DXS451 kQST80H1 0 • 
DXS41 99.6 

DXS67 824 

DXS28 C7 

DXS1235 STR50 • 
DXS1236 STR49 0 • Figure 5. Refinement of the localization of the 
DXS269 P20 0 • critical region for KFSD. Family members, 
CEN with a recombination in the Xp22-region, were 

selected from a large Dutch pedigree [ 11]. VI-
13 and Vll-10 are affected males. 

DISCUSSION 
We have generated a contig map of Xp22.1-p22.2, thereby evaluating the use of two 
complementary methods: Alu-PCR fingerprinting and direct STS-content analysis of individual, 
overlapping YACs. Ultimately, the most informative data were obtained by testing specific 
markers directly on the individual YACs. However, the Alu-PCR fingerprinting method was 
found to be a fast and simple initial step to decrease the total workload allowing to divide the 
Y ACs into groups with overlapping sequences. The contigs derived by Alu-PCR fingerprinting 
are consistent with the contig based on marker content of theY ACs. The four contigs generated 
on the basis of the fingerprinting alone were found to be all part of a single contig based on the 
STS content of the YACs. Similar results were obtained in a large chromosome 22 contig by 
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Coffey et al. (unpublished data). Chimerism of the YACs at the extremities of the contigs seems 
to play an important role. The gaps between contigs 23/82 and contigs 13/25 are both bordered 
by chimeric YACs, 764D7/40GH7 and 938C10/906B3 respectively. Furthermore, an overlap 
between a YAC that contains many Alu-PCR products and a YAC that contains only a few, will 
not be scored by the ContigC software used, since a 40% cut -off value of shared bands was used 
to determine overlap. This may explain why there is a gap between contigs 82 and 13, flanked 
by 25HA10 (producing 6 PCR-products) and 939H7 (producing 58 products). 

Alu sequences are known to have a non-random distribution. Giemsa-positive bands -like 
Xp22.1- have a low Alu-repeat content [38]. The average number of Alu-PCR products of the 
YACs in our contig was 3.4 per 100 kb, varying from 1.2 to 10. Although our contig is supposed 
to span the Xp22.1/Xp22.2 border, we did not observe any significant differences in the number 
of Alu-PCR products derived from the YACs throughout the contig. However, we did observe 
a significantly decreased frequency of chimerism for the CEPH Y ACs isolated; 11% compared 
with the 40-50% chimerism reported [1]. Since a major cause of chimerism is probably 
recombination during the cloning step at homologous, mainly repetitive DNA sequences [39] the 
low frequency of chimerism in this region also indicates that it contains a lower number of highly 
repetitive DNA sequences. 

Marker order and physical distances 
The marker order that was obtained, DXS414- DXS987- DXS207- DXS1053- DXS197-
DXS43 - DXS1195 - DXS418 - DXS999 - PDHA1 - DXS7161 - DXS443 - DXS7592 -
DXS1229- DXS365- DXS7101- DXS7593- DXS1052- DXS274- DXS989- DXS451 is in 
agreement with the consensus map of the 5th X -chromosome Workshop [ 4] and as published by 
Alitalo et al.[10]. Markers DXS443 and PDHA1, not separated previously [4], could be 
physically ordered by YACs 742H9 and 966F1, which both contain PDHA1 and DXS999, but 
not DXS443. Consequently, PDHA1 is distal to DXS443. Markers DXS7161, DXS7592, 
DXS7593 and DXS7101 were not physically mapped before. 

Given that Y ACs are deletion prone and may rearrange, we have tested for the criterium 
that two or more Y ACs needed to be consistent with the derived marker position. This criterium 
applies for the entire contig (2-7 Y ACs multiplicity, average 4) except for the distal end and the 
interval DXS43-DXS1195 which was mapped independently by Alitalo et al. [10]. Combining 
the YAC marker content (Fig.3) and YAC length (Table 2) allows the construction of a physical 
map of the region (Fig 6). For example, YAC 25HA10 is relatively small (430 kb), indicating 
that the markers DXS1053-DXS418 map close to each other. 932E3 overlaps with 25HA10 and 
measures 1280 kb. Since only DXS 1053-DXS43 are shared, 932E3 extends at least 850 kb to the 
telomeric side, a region which contains DXS207 (present in 932E3, absent in 25HA10). 
Similarly, the 830 kb Y AC 743A8 extends in the same direction, although it misses DXS43. 
Combining the data of 810E1 and 681F6leads to the conclusion that DXS987 is separated by 
about 900 kb from the start of a 400 kb cluster containing DXS1053, DXS197, DXS43, 
DXS1195 and DXS418, while DXS207 maps somewhere in between. 

The combined data shows that the region between DXS414 and DXS451 measures 4.5 
to 5Mb (Fig.6). We were not able to determine the distance between DXS414 and DXS987, 
since only one chimeric YAC (961E6) was analyzed and since no markers telomeric ofDXS414 
were tested. The physical distances reported by Francis et al. [40] and Alitalo et al. [10], are in 
full agreement with the map presented here. 
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The ratio between physical and genetic distance is roughly 1 Mb/cM for the entire human 
genome. The available genetic data indicate that the Xp22.1-p22.2 region analyzed here has a 
highly increased recombination frequency (Fig.6). The estimated physical distances, in 
combination with the published genetic distances [31,41], give an average ratio of approximately 
0.2 Mb/cM for the region between DXS987 and DXS989. This effect is more pronounced 
proximal to DXS1053 and reaches a peak value of 8 cM over 900 kb, about 1 cM per 100 kb, 
between DXS7161 and DXS1052. 
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Figure 6. Physical map of the Xp22.1-p22.2 region. Physical map of the region obtained after combining 
marker content and length of all 23 YACs analyzed in detail. Only theY ACs that form the minimal contig 
covering the entire region are shown. The indicated disease gene candidate regions are according to the 
5'h X-chromosome Workshop [4] and updated with the results published in this paper. The genetic 
distances (in cM) indicated at the bottom of the figur~ are according to -Weissenbach et al. [41] and 
'Francis et al. [ 40] 

Disease gene candidate regions 
The candidate regions for the HYP, CLS, RS, KFSD and RP15 disease genes are indicated in the 
physical map (Fig.6). The candidate region for HYP was localized between DXS365 and 
DXS27 4 by Franc is et al. [ 40], a localization which was refined recently to between DXS365 and 
DXS1683 (a new marker between DXS365 and DXS1052) [4]. In our contig, this region 
measures less than 0.3 Mb. The CLS candidate region was first localized between DXS7161 and 
DXS1052 [42], a localization refined recently to between DXS7161 and DXS1683 [4], in our 
contig a region of approximately 1 Mb. The RP15 candidate region was localized between 
DXS1048 and DXS1229 by McGuire et al. [5]. 

The results presented here, combined with linkage data of Oosterwijk et al. [11], refine 
the localization ofKFSD to less than 1Mb between DXS7161 and DXS 1226. The localization 
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of RS is refined to 0.6 Mb between DXS418 and DXS7161. Strikingly, and illustrating the 
relative underdevelopment of this region in terms of reagents, the limiting factor for each of these 
candidate regions to further refine the localization of the disease genes still is the lack of 
informative polymorphic markers rather than the absence of recombinants. The contig 
constructed allowed us to outline the specific requirements for a marker which will further 
narrow down the disease candidate regions. For instance in the case of KFSD, an informative 
marker between DXS7161 and DXS365 would be especially valuable and could potentially, 
decrease the candidate region from 1 Mb to less than 200 kb. Similarly, the candidate region for 
RS now spans a 600 kb region devoid of any informative marker. Development of new 
polymorphic markers, based on the clones in the contig presented, is therefore a rewarding effort 
which we are currently undertaking. On the other hand, the candidate regions for the diseases 
mentioned have now become small enough to consider establishing a transcriptional map in order 
to isolate the gene(s) involved in these diseases. 
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AbstracL The disease loci for X-linked Retinoschisis (RS), Kera
tosis follicularis spinulosa decalvans (KFSD), and Coffin-Lowry 
syndrome (CLS) have been localized to the same, small region in 
Xp22 on the human X Chromosome (Chr). To generate a high
resolution map of the available contig in this area, we have used 
the YAC fragmentation vectors pBPI08/ADE2 and pBPI09/ADE2 
and generated fragmented YACs from a 2.5-Mb YAC (y939H7) 
spanning the mentioned disease gene candidate regions. Forty
seven fragmented YACs were generated and analyzed, ranging in 
size from 170 kb to over 2400 kb. The resulting YAC fragmenta
tion panel was used to construct a detailed restriction map of the 
region and has been used to bin clones and markers. As a deletion 
panel, it will present a valuable resource for further mapping. 

Introduction 

Nearly the complete human genome has been cloned in Y AC 
contigs (Chumakov et al. 1995), and several whole genome maps 
have been published, based on radiation hybrids (Gyapay et al. 
1996), genetic linkage (Dib et al. 1996), or physical data (Chuma
kov et al. 1995). These maps, however, have insufficient resolution 
to be directly useful for the next stage: the localization of tran
scripts. A frequently used subsequent approach to construct more 
detailed physical maps is to screen genomic libraries of smaller 
clones (Pl, BACs, cosmids) and to order and characterize these. 
Compared with these bacterial systems, Y ACs are considered to be 
difficult to handle, to give low DNA yields, and to contain too 
large inserts to efficiently construct detailed transcript and restric
tion maps. However, the large insert does give an attractive start
ing point for the construction of detailed physical maps, and YAC 
fragmentation provides an attractive and versatile approach for this 
task. It is a technique by which the insert DNA of the Y AC is 
reduced in size by homologous recombination directed at repeti
tive elements in the insert, introducing a new YAC telomere re
placing the original onl!: Existing Y AC fragmentation vectors were 
not suitable for directly fragmenting Y ACs in AB 1380, the stan
dard host strain of most Y AC libraries. Recently an improvement 
of the BP! 08/109 fragmentation vectors has been made, the addi
tion of the selectable marker ADE2 (Heus et al. 1996), which 
greatly facilitates the generation of a fragmented Y AC panel. 

We are interested in the Xp22.1-p22.2 region, which contains 
the disease loci for RS (MIM 312700; Van de Vosse et al. 1996); 
KFSD (MIM 308800; Oosterwijk et al. 1995); CLS (MIM 303600; 
Bird et al. 1995); and NHS (MIM 302350; Bergen et al. 1994). 
Several Y AC contigs have been published covering parts of this 
region (Alitalo et al. 1995; Ferrero et al. 1995; Trump et al. 1996; 
Van de Vosse et al. 1996). YAC y939H7 spans the entire candidate 
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regions of RS, CLS, and KFSD. We have used this 2.5-Mb YAC 
to generate a fragmentation panel spanning the entire region and 
used this to localize cosmids and markers and to construct a long
range restriction map. 

Materials and methods 

YACfragmentation. y939H7, propagated inS. cerevisiae strain AB1380 
[MATa, ura3-52, trpl, ade2, his5, lys2, ile, thr, canl-100 (Cohen et al. 
1993)], was cultured overnight in 100 ml YPD [2% glucose, 2% bacto 
peptone, I% yeast extract (Riley et al. 1992)] at 3o•c to 2 x 106-2 x 107 

cells/m!. Yeast cells were transformed using an alkali cation yeast trans
formation kit (BIO 101) with 5 11-g Sail-digested pBP108/ADE2 or 
pBP!09/ADE2 plasmid (Heus et al. 1996). Transformants were plated on 
medium lacking adenine and tryptophan. Loss of the URA3-arm of p Y AC4 
was checked by replica plating the colonies on medium lacking uracil, 
adenine, and tryptophan. 

Analysis of YACs. Plugs containing yeast DNA were prepared as de
scribed (Den Dunnen and Van Ommen 1991) in low melting temperature 
agarose (Seaplaque, FMC). YACs were analyzed directly on pulsed-field 
gel (I% Seakem LE in 45 DIM Tris, 45 DIM boric acid, 0.5 DIM EDTA, pH 
8.3) at 180 Volt, 30 h, in 4 cycles with a switch time increase from 40 to 
70s, or at 95 Volt, 48 h, in 12 cycles with a switch time increase from 50 
to 550 s. 

Yeast DNA in plugs was digested overnight with 15 Units Sfil, Nrul, 
Noti, or BssHI!, under the conditions recommended by the manufacturers, 
and analyzed by pulsed-field gel electrophoresis (PFGE) at 160 Volt, 20 h, 
in 4 cycles with a switch time increase from 20 to 40 s. Gels were Southern 
blotted on Hybond-W (Amersham) as described (Den Dunnen and Van 
Ommen 1991). Hybridization of Southern blots was performed in 0.5 M 

~a,HP04, pH7 .4, 7% SDS, I DIM EDTA at 6s•c. Probes were Iabeled with 
[ 2P]dCTP and a multiprime labeling kit (Amersham); membranes were 
washed at 65°C, twice with 2*SSC,O.l% SDS, twice with l*SSC, 0.1% 
SDS, and twice with 0.3*SSC,O.!% SDS. Autoradiography was performed 
with a Phosphorlmager (Molecular Dynamics). Probes used include 
pBlur8, ADE2, pBR322 Pvul/BamHI-fragments (to identify the pYAC4-
derived vector arms) and specific probes from the region (RDGC, PHKA2, 
PI22). 

Marker content analysis. PCR was carried out in a Perkin-Elmer Cetus 
thermal cycler; I 111 of an agarose plug was used in a 30-111 PCR reaction 
(75 DIM Tris-HCI, 20 IDM (NH.,),S04, 0.01% Tween 20, 1.5 DIM MgCI2, 

200 IJ.M dNTPs, 0.25 units Goldstar polymerase, lOO ng/111 BSA, 25 pmol 
of each primer) with 50 111 mineral oil overlay. Cycles; 5 min. 94•c, 
followed by 30 cycles of I min, 94•c, I min, T, (as recommended), I min. 
n•c (Table 1). Products were separated on a 2% agarose gel. 

Construction and analysis of sCOGH2-cosmids. sCOGH2 (Datson 
et al. !996b) was digested with Xba!, dephosphorylated and digested with 
BamHI. DNA plugs of y939H7 were Mho! digested, size fractionated,' and 
ligated in the BamHI site of sCOGH2. The ligated material was packaged 
with Gigapack ll Plus Packaging Extract (Stratagene) and transfected into 
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Table 1. Primers used in the analysis of the fragmentation YACs. Ta = annealing temperature; product lengths are given in base pairs. 

Locus Name 

DXS1317 sWXD170 
DXSJJ95 AFM207zd6 
DXS418 P122 
DXS8019 AFMa152xfl 

HYATI 
DXS6762 12691/12692 
DXS7593 AFMa346zc1 
DXS6760 12655112656 
DXS7176 GMll 
DXS999 AFM234yf12 
DXS7161 AFM291wf5 

PDHA1 
DXS7177 TG2-675 
DXS443 pRX-324 
DXS365 RX-314 

E. coli 1046. Clones containing a human insert were selected by hybrid
ization to pBlur8 (Deininger et al. 1993), total human DNA, and Alu-PCR 
products of Y ACs from the region. Cosmid DNA was isolated as described 
(Maniatis et al. 1989). EcoRI-digested cosmid DNA was analyzed on 0.8% 
agarose gels to determine insert sizes. Binning of the cosmids was done by 
hybridization to Southern blots of the Y AC fragmentation panel. 

Results 

Of Y AC y939H7, various sizes between 2300 kb and 300 kb have 
been reported, suggesting instability of the clone leading to dif
ferently sized isolates (Chumakov et al. 1995; Alitalo et al. 1995; 
Van de Vosse et al. 1996; Ferrero et al. 1995). We have analyzed 
24 individual y939H7 colonies from the original CEPH library and 
obtained one clone that appeared to contain the complete region, 
that is, 36 probes tested were positive. The YAC in this clone has 
a reproducible length of 2500 kb and is stable during propagation. 

To construct an overlapping panel of YACs with smaller sizes, 
we performed a Y AC fragmentation experiment. Over 200 trans
formants were obtained after transformation with vectors pBP108/ 
ADE2 and pBP109/ADE2 respectively. Upon recombination, these 
vectors exchange the p YAC4-derived URA3-arm with a new 
pBP108/109-derived arm containing ADE2. Selection on plates 
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Product length 
T a Reference (bp) 

50 Kere et al. 1992 67 
56 Dib et al. 1996 235-239 
56 Van de Vosse et al. 1993 142-158 
50 Dib et al. 1996 156-174 
58 Huopaniemi et al. (in press) 160-186 
50 Ferrero et al. 1995 114 
50 Dib et al. 1996 209-231 
50 Ferrero et al. 1995 144 
55 Ferrero et al. 1995 224 
50 Schaefer et al. 1993 260-276 
55 Dib et al. 1996 240-254 
58 Schaefer et al. 1993 125 
50 Ferrero et al. 1995 192 
50 Schaefer et al. 1993 204-210 
50 Browne et al. 1992 201-217 

lacking uracil, tryptophan, and adenine showed that 90% of the 
Y AC transformants had the correct phenotype, that is, containing 
ADE2 and TRP 1 and lacking URA3. Forty-seven Y ACs were ana
lyzed further by PFGE: 46 of these contained a fragmented Y AC 
(98%). The fragrnentation-YACs varied in size from over 2400 to 
170 kb (Fig. 1). To verify the STS content of the YACs, the panel 
was hybridized with specific probes and subjected to PCR with 
specific primers (Fig. 2a). 

To obtain a detailed physical map, DNA of the fragmentation 
Y ACs was digested with Sfil, Nrui, Noti, or BssHIT and electro
phoresed on pulsed-field gels. Southern blots were hybridized with 
an ADE2 probe to identify the end fragment that contains the 
fragmentation vector (Fig. 3a) and with a pBR322 Pvui!BamiD
fragment to identify the opposite p YAC4-derived centromeric vec
tor arm. In parallel, pBlur8 hybridization (Deininger et al. 1993) 
was used to identify the human DNA-containing fragments (Fig. 
3b). As an example of this double analysis, we have indicated in 
Fig. 3a and 3b a 170-kb BssHIT fragment (arrows). This fragment 
appears as an end fragment, recombined with the fragmentation 
vector, in Y ACs 4, 5, and 6 by hybridization to both Alu and 
ADE2. Moreover, the full-sized fragment is present in fragmenta
tion Y ACs 7 and higher and hybridizes to Alu but no longer to 
ADE2. Other examples of newly appearing end fragments (Fig. 3a) 
turning into full-size fragments (Fig. 3b) are visible for YACs 1-3 

2300 kb 

1250 kb 

- 940/970 kb 

820 kb 

730 kb 

680 kb 

- 600 kb 

440 kb 

360 kb 

280kb 
230 kb 

Fig. 1. Southern blot of pulsed-field gel (180 
Volt, 30 h, 40-70 s, 4 cycles) of fragmented 
Y ACs hybridized with pBlur8 to determine the 
size of the Y ACs. The sizes of the AB 1380 yeast 
chromosomes, indicated on the right (in kb), were 
used as size standards. 
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and 7-22. This parallel mapping yields a 2.5-Mb restriction map of 
y939H7 in one single, easy-to-interpret experiment (Fig. 2b). 

To obtain a cosmid clone resource facilitating further detailed 
analysis of the region, we have subcloned y939H7 in cosmid vec
tor sCOGH2. Approximately 2000 cosmid clones were picked, 
gridded, and screened with an Alu probe and Alu-PCR products 
from y939H7; 100 positive clones were isolated and analyzed 
further. The localization of 25 cosmids was determined by hybrid
ization to the YAC fragmentation panel (Fig. 2a). 

Discussion 

Although published in 1990 (Pavan et al. 1990) as an attractive 
tool for detailed physical analysis of Y ACs, YAC-fragmentation 
has not yet fulfilled its promise by becoming a frequently applied 
research tool. The main reason for this is that the 'first generation' 
Y AC fragmentation vectors contain HIS3 as a selectable marker. 
This gene is intact in AB 1380, the standard host strain of most 
Y AC libraries. The HIS3 gene could, therefore, not be used di
rectly as a selectable marker in AB 1380. Transferring YACs from 
AB 1380 to a suitable host strain to select for Y AC fragmentation 
[for example, YPH925; MATa ura3-52 trpl/!;.63 ade2-101 cyh2R 
lys2-801 his3/!;.200 leu2!;.J karl/!;.15; (Spencer et al. 1994)] is a 
tedious procedure. The YAC fragmentation vectors we have used, 
pBP108/ADE2 and pBP109/ADE2, obviate this tedious step. Pres
ently, in our hands, YAC fragmentation has become a fast and 
simple method for mapping large YACs, of up to 2.5 Mb. 

The Y AC fragmentation panel we have constructed from 
y939H7 contains Y ACs that range in size from 170 kb to 2440 kb 
(Fig. 1). The panel was used to map specific markers and cosmid 
clones and to construct a long-range physical map for Notl, 
BssHll, Sfil and Nrul (Fig. 2). No aberrant bands were observed, 
which indicates that the fragmentation YACs are stable and that 
the fragmentation panel is a faithful representation of the insert in 
y939H7. In parallel reports, YAC fragmentation panels have been 
employed for high-resolution bin mapping panels (Potier et al. 
1996; Datson et al. 1996a), but they have not previously been used 
to construct restriction maps of large Y ACs. The typical problems 
with the construction of restriction maps of large YACs with par
tial digests-for example, limited resolution, some sites of the 
YAC may be difficult to digest, interpretation difficulties of the 
complex hybridization patterns-are obviated by the approach we 
have used. This is mainly because each datapoint is sampled in 
multiple parallel lanes, providing great robustness by data redun
dancy. Furthermore, a fragmentation panel gives a more detailed 
map of the region, since it adds resolution within a restriction 
fragment when this fragment has been targeted by the fragmenta
tion vector, thereby reducing its size. 

It is not clear why only one out of 24 isolates of y939H7 was 
stable in size; it might contain a stabilizing mutation. However, we 
have never observed any difference between the genomic map and 
the y939H7-derived map, indicating that, if present, this mutation 
is rather small. The order of markers as determined in our Y AC 
fragmentation panel is in agreement with those published by others 
(Alitalo et al. 1995; Ferrero et al. 1995; Trump et al. 1996). The 
only discrepancy is the reversed order of the markers DXS418-
DXS1195-DXSJ317 relative to Ferrero's map. This order in that 
map, however, could potentially be inverted without creating dis
crepancies in their contig. We were able to localize two markers 
that have not been localized before: HYATJ and DXS8019. One 
marker, DXS7593, which was localized between DXS7101 and 
DXS1052 previously (Van de Vosse et al. 1996) owing to a dele
tion in y900E08102 and a previous, unstable isolate of y939H7, 
could now be positioned between DXS6762 and DXS6760. Be
cause of the data presented here, we conclude that the size of the 
RS candidate region measures 1 Mb. 
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APPENDIX TO CHAPTER 2 

A CA-repeat polymorphism near DXS418 (P122) 

Van de Vosse, E., Booms, P.F.M., Vossen, R.H.A.M., Wapenaar, M.C., Van Ommen, G.J.B., 

and Den Dunnen, J.T. 

Human Molecular Genetics 2:2202, 1993 





Positional cloning in Xp22 

A CA-repeat polymorphism near DXS418 (P122) 

E. Van de Vosse, P.F.M. Booms, R.H.A.M. Vossen, M.C. Wapenaar, G.J.B. Van 
Ommen and J.T. Den Dunnen 
Department of Human Genetics, Leiden University, Wassenaarseweg 72, 2333 AL Leiden, The 
Netherlands 

Source/Description: A human genomic cosmid library was screened with probe Pl22 (DXS418) (1 ). 
Cosmid cHP122.4 contained a CA-repeat which was isolated and sequenced (2). The predicted length 
of the amplified fragment was 162 bp and contained a polymorphic (GC)6CGG(CA)31 repeat. 

Primer sequences: 
5'-TGTGAGGTTTTGTTCCCTCC-3' (AC strand) 
5'-GACTGTTGAGTTTCCTCACAGC-3' (GT strand) 

Allele frequency: Estimated from 52 unrelated female individuals. The observed heterozygosity was 
0.83. The 162 bp allele present in cosmid cHP122.4 was not present in the females analysed. 
Allele (bp) Frequency Allele (bp) Frequency 
A1 158 .03 A7 148 .21 
A2 157 .01 AS 146 .18 
A3 156 .03 A9 144 .05 
A4 154 .08 AlO 142 .03 
AS 152 .13 All 140 .05 
A6 150 .20 
CEPH: 1329 202 (152, 150), 1329 311 (152, 140). 

Chromosomal localization: Locus DXS418, probe Pl22, has been localized to Xp22.1 between patient 
deletion breakpoints BA236 and BA 162/BA140. This region also contains DXS9, DXS43, DXS69, 
DXS197, DXS207, DXS414 and the CEPH markerDXS987 (3). 

Mendelian Inheritance: eo-dominant segregation was observed in two informative families. 

PCR Conditions: PCR amplification was performed in 15 J.ll reaction volume containing 10 mM Tris
HC! (pH 9.0), 50 mM Kcl, 0.01% gelatine, 1.5 mM MgCl2, 0.1 % Triton X-100, 0.06 U Supertaq (HT 
Biotechnology Ltd.), 200 J.1M each dATP, dGTP and dTTP, 2.5 J.1M dCTP, 0.75 J.1Ci o:32PdCTP (at 
3000 Ci/mmol), 80 ng of each primer and 200 ng genomic DNA template. 28 cycles of denaturation at 
94°C for 30 sec, annealing at 58°C for 40 sec and extension at 72°C for 1 min were carried out with an 
initial denaturation step of 5 min at 94°C and a final extension step of 5 min at 72°C. The amplified 
products were run on a 6% polyacrylamide/bisacrylamide (19:1), 7 M urea sequencing gel at 40 mA 
and 65 Watts for approximately 3 hours with 0.5 x TEE-buffer in the upper buffer compartment and 
5/6 x TBE/0.5 M NaAc in the lower compartment. 

References: 1) Wapenaar, M. C., Petit, C., Easier, E., et al. (1992) Genomics 13, 167-175. 2) Booms, 
P., Wapenaar, M.C., Van Ommen, G.J.B., and Den Dunnen, J.T. (1993) EMBL DNA sequence data 
base, Z22550. 3) Schaefer, L., Ferrero, G.B., Grillo, A. et al. (1993) Nature Genet. 4, 272-279. 
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ABSTRACT 

To facilitate the scanning of large genomic regions for 
the presence of exonic gene segments we have 
constructed a cosmid-based exon trap vector. The 
vector serves a dual purpose since it is also suitable 
for contig construction and physical mapping. The 
exon trap cassette of vector sCOGH1 consists of the 
human growth hormone gene driven by the mouse 
metallothionein-1 promoter. Inserts are cloned in the 
multicloning site located in intron 2 of the hGH gene. 
The efficiency of the system is demonstrated with 
cosmids containing multiple exons of the Duchenne 
Muscular Dystrophy gene. All exons present in the 
inserts were successfully retrieved and no cryptic 
products were detected. Up to seven exons were 
isolated simultaneously in a single spliced product. 
The system has been extended by a transcription
translation-test protocol to determine the presence of 
large open reading frames in the trapped products, 
using a combination of tailed PCR primers directing 
protein synthesis in three different reading frames, 
followed by in vitro transcription-translation. Having 
larger stretches of coding sequence in a single exon 
trap product rather than small single exons greatly 
facilitates further analysis _of potential genes and 
offers new possibilities for direct mutation analysis of 
exon trap material. 

INTRODUCTION 

Exon trapping has become a widely used method which is 
generally acknowledged as a versatile tissue-independent 
approach to detect genes in cloned DNA. In contrast to 
RNA-based methods, such as cDNA selection and direct 
screening of cDNA libraries, exon trapping is independent of 
tissue-specific gene expression. It uses cloned DNA directly to 
select sequences ·surrounded by functional splice sites (l-3). 
Original exon trapping protocols have been improved with 
respect to speed and efficiency and improvements have been 
made to reduce the background consisting of cryptically spliced 

products and products arising from vector-vector splicing (4). 
However, some of the limitations of the original systems have 
remained unaddressed. 

A major limitation of current systems is the need for subcloning 
of the region of interest in a vector with a capacity for inserts 
typically measuring 1-2 kb. This has several consequences: (i) 
due to the small insert size after subcloning, multiple exons will 
only rarely be present in one insert, resulting in exon trap clones 
containing only a single exon. Consequently, many of the exon 
trap probes derived are small ( -80-150 bp) and frequently give 
poor signals or a high signal-to-noise ratio in subsequent 
experiments, e.g. the screening of cDNA-libraries or probing of 
Northern blots. Furthermore, since the individually trapped exons 
require the use of cDNA libraries in the next step to further define 
the gene, the initial advantage of working with an expression 
independent system is to a large extent lost in the subsequent step. 
(ii) Due to subcloning into plasmid-based exon trap vectors the 
gene(s) present are scattered into many separate, disconnected 
pieces. Any exons thus obtained have to be aligned to reconstruct 
their original order. Reconstruction of the gene from individually 
trapped exons requires a significant amount of time and effort and 
implies a major loss of information originally contained within 
the input material prior to subcloning. (iii) Subcloning disrupts 
the genomic context around the exons. Cloning of regions which 
are never transcribed or of intronic sequences without their 
naturally flanking exons often results in activation of cryptic splice 
sites, leading to recognition of false exons and a background of 
false positives. On the other hand, genuine exons will be missed 
due to poor recognition of the host system or due to unfavourable 
factors resulting from the cloning (e.g. spacing of restriction 
sites). (iv) Current exon trapping systems can only be used in 
combination with specific cell lines (e.g. COS cells), since they 
require a system of replication in the host cell, commonly based 
on the SV40 origin of replication (2). It is imaginable that some 
exons of genes with a highly tissue-specific expression pattern 
will not be included in the mature transcripts generated in a 
completely different cell type (5). 

Although the 3' ex on trapping recently described ( 6, 7) has 
some advantages in that it allows larger exons to be trapped, 
specifically identifies the end of a gene, and selects exons based 
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on two independent criteria i.e. splicing and polyadenylation; it 
does not, however, address the other limitations of small-insert 
exon trapping. 

We have designed a large-insert exon trapping vector capable 
of scanning 25-40 kb genomic regions for exons. The vector has 
a dual use: as cosmid vector for contig construction and physical 
mapping, and as exon trap vector for isolation of coding 
sequences. In the vector, inserts are cloned into intron 2 of the 
human growth hormone gene (hGH) and transcription is driven 
by a mouse metallothionein-1 promoter (mMT-1). This is a 
strong, ubiquitously expressed promoter which allows many 
different cell types to be used, thus obviating the restriction to 
COS cells applying to the SV 40-based systems used so far. 
During exon trapping the genomic context is maintained over the 
entire 25-40 kb region, reducing the false positive rate while 
yielding processed transcripts with multiple exons spliced 
together in the correct order. The efficiency of the system is 
demonstrated using cosmids containing up to seven exons of the 
duchenne muscular dystrophy gene (DMD). We believe that the 
system should greatly increase the speed and reliability of gene 
isolation by exon trapping by offering a solution for most major 
limitations of current exon trapping systems. 

MATERIALS AND METHODS 

Vector construction 

sCOGH1, schematically drawn in Figure 1, was constructed as 
follows: cosmid vector sCos I (8) was digested with EcoRl and the 
7.9 kb vector fragment was separated from the EcoRl tinker by 
agarose gel electrophoresis and elution. Similarly, plasmid 
pXGH5(9) was digested with EcoRl and the 4 kb fragment 
containing the mouse metallothionein-1 promoter (mMT-1) and 
the human growth hormone gene (hGH) was isolated by 
gel-purification. Both fragments were combined by ligation, 
resulting in the isolation of sCOGHOa and sCOGHOb, differing 
in the orientation of the mMTI/hGH-insert in sCos I. Subsequently 
a tinker composed of two complementary oligonucleotides 
(5'-AGCGGCCGCGAATTCGGATCCGGCGGCCGC-3' and 
5'-CTGCGGCCGCCGGATCCGAATTCGCGGCCG-3') was 
synthesized containing Notl, BamHl and EcoRl sites as well as 
Accl sticky ends, and introduced into intron 2 of the hGH gene by 
digestion of sCOGHOb with Accl and ligation. The resulting 
vector was designated sCOGHI. 

Subsequently specific variants of sCOGH1 were constructed 
(Fig. 1 ). To facilitate screening of human positive cosmids 
sCOGH2, a sCOGH1 variant without the Alu sequence in the 
3' -UTR ofhGH was constructed. Three sCOGH I fragments were 
ligated: fragment 1 was produced by digesting sCOGHI with 
EcoRl. The sticky ends were filled in using T4 DNA polymerase. 
After Clal digestion the 7.9 kb vector fragment was isolated from 
a gel. Fragment 2 was the gel-purified 2.4 kb Clai-BamHl 
fragment of sCOGH1 containing the 5' part ofhGH. To obtain the 
third fragment the 1.6 kb EcoRl fragment of sCOGH1, containing 
the 3' part of hGH, was first subcloned in pGEM7zf (Promega). 
The resulting clone, pGHE1.6, was digested with BamHl and 
Sspl and the 0.9 kb 3' hGH fragment was gel purified. 
Combination of the three fragments resulted in sCOGH2. 

sCOGH3 is a promoterless variant of sCOGHI, constructed for 
trapping promoter/first exon regions of tissue-specific genes. 
sCOGH2 was digested with EcoRl and ligated, resulting in 
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Figure 1. Vector sCOGHI (11893 bp) contains the entire hGH exon trap 
cassette driven by a rnMT-1 promoter. The MCS located in intron 2 of hGH 
contains sites for EcoRI and BamHI flanked by two Not[ sites, which can be 
used to release the cosmid insert. Several variants of sCOGHl were 
constructed, marked in the outer ring of sCOGHl by a corresponding number. 
In sCOGH2, sCOGH3, sCOGH4 and sCOGH6 the Alu repeat in the 3'-UTR 
ofhGH has been removed (2). sCOGH3lacks the rnMT-1 promoter and exons 
I and 2 of hGH (3). sCOGH4 and sCOGH6 lack the EcoRI site at the 5' end 
of hGH (4). In sCOGH6 the SVneo selectable marker has been removed 
between the Pvul and Nrui sites and has been replaced by a fragment from 
pUC19 (6). 

sCOGH3 lacking the 2.4 kb 5' hGH fragment. A variant lacking 
the EcoRl site at the 5' end of the mMT-1 promoter, sCOGH4, 
was constructed to allow use of the EcoRI site in the polylinker 
for cloning of cosmid inserts. sCOGH2 was partially digested 
with EcoRl followed by filling in of the ends with T4 DNA 
polymerase. The linear band of 11.3 kb was isolated from a gel 
and ligated, resulting in sCOGH4. In another variant, sCOGH6, 
the SV2neo marker was removed to allow cloning of larger 
cosmidinserts. For this purpose sCOGH4 was digested withNrul 
and Pvul, the 6.6 kb vector fragment was isolated from gel and 
ligated to the 1.3 kb Pvui-Pvull fragment containing the 
ampicillin resistance gene and E.coli origin of replication of 
pUC19 which was gel purified. 

Construction of cosmid libraries in sCOGHl 

All sCOGH-derivatives were propagated in E. coli strain HB10B 
(kindly provided by Pieter de Jong). For cosmid cloning, vector 
DNA was linearised with Xbal, dephosphorylated and sub
sequently digested with BamHI. Agarose plugs containing 
genomic yeast DNA and YAC DNA of yDMD(0-25)C, contain
ing the human DMD-gene from 100 kb upstream of the brain 
exon I to 100 kb downstream of exon 79 (10), were partially 
digested with Mbol, size fractionated and ligated into the 
BamHI-site of sCOGHl. The ligated material was packaged 
using Gigapack 11 Plus Packaging Extract (Stratagene) and used 
to infectE.coli 1046. Cosmids containing specific regions of the 
DMD-gene were isolated and analysed using standard protocols 



(11) by hybridization with specific DMD cDNA sequences (10). 
The exon content was established by PCR with exon primers and 
by hybridisation of the Hindlll-digested cosmids with the DMD 
cDNA. The inserts of screened cosmids were reversed by 
Notl-excision of the insert, religation and transformation to 
E. coli. The orientation of the insert was determined by restriction 
digestion. 

Cell culture and electroporation 

Initially COS-I cells were used for transfection experiments. We 
found, however, that exon trapping results strongly improved 
using hamster V79 cells. Higher yields were obtained of full 
length PCR fragments. Therefore later experiments were per
formed with this cell line. We explain the improvement by a lower 
degree of homology between the hGH-primers and the endo
genous hamster growth hormone gene compared to the corres
ponding sequences in COS-1 cells. The cells were cultured in 
DMEM with 10% inactivated fetal calf serum (Gibco-BRL). 

Cosmid DNA was introduced by electroporation: actively 
growing cells were collected by centrifugation, washed in cold 
PBS (without bivalent cations) and resuspended in cold PBS at a 
density of 2 x 107 cells/rnl. Cell suspension (0.5 rnl) was added 
to 20 J.1l of PBS containing 10 Jlg cesium-chloride purified cosmid 
DNA and placed in a pre-chilled electroporation cuvette (0.4 cm 
chamber, BioRad). After 5 min on ice, the cells were electro
porated in a BioRad Gene Pulser [300 V (750 V/cm); 960 J.LF], 
and placed on ice again. After 5 min the cells were transferred 
gently to a 100 mm tissue culture dish containing 10 inl of 
pre-warmed, equilibrated DMEM + 10% FCS. Transfection 
efficiency was monitored by assaying the hGH concentration in 
100 J.1l of the culture medium of cells transfected in parallel with 
pXGH5 using the Allegro hGH Transient Gene Assay kit 
(Nichols Institute, San Juan .Capistrano, USA) (9). 

RNA isolation, RNA-PCR and product analysis 

48-72 h after transfection, the cells were harvested and total RNA 
was isolated using RNazolB (CINNA/BIOTECX). First-strand 
cDNA synthesis was performed by adding 50 pmol of primer 
hGHfto 2J.Lg total RNA in a volume of 16J.Ll. The mixture was 
incubated at 65°C for 10 min and chilled on ice. 14 J.1l of a mix 
containing 3 J.1l 0.1 M DTT, 3J.Ll10 mM dNTPs, 0.5Jll RNasin 
( 40 U/J.Il; Promega), 6 J.ll5x RT buffer (250 mM Tris-HCI pH 8.3, 
375 mM KCI, 15 mM MgCb; Gibco-BRL) and 150 U 
SuperScript Reverse Transcriptase (Gibco-BRL) were added to 
a fmal volume of 30 J.ll, and incubated at 4ZOC for 1 h. 
Subsequently, the solution was heated to 95°C for 5 min and 
chilled on ice. RNase H (2.25 U; Promega) was added and the 
solution was incubated at 37°C for 20 min. An aliquot of the 
solution (10 J.ll) was used in a PCR reaction containing 12.5 pmol 
of primer hGHe, 50 mM KCI, 1.5 mM MgCl2, 10 mM Tris-HCI 
pH 8.0, 0.2 mM dNTPs, 0.2 mg/rnl BSA and 0.25 U SuperTaq 
(HT Biotechnology Ltd) in a reaction volume of 50 J.ll, followed 
by an initial denaturation step of 5 min at 94 o C, 30 cycles of 
amplification (1 min at 94 °C, 1 min at 60°C and 2 min at 72 °C) 
and a fmal extension of 10 min at 72°C. No additional hGHf 
primer was added in the PCR reaction. Nested PCR, using either 
internal hGH primers or combinations of a hGH primer and a 

_DMD primer, was performed on 1 J.1l of the primary PCR material 
with 12.5 pmol of each primer and PCR conditions identical to the 
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first PCR. The internal hGH primers used were hGHa and hGHb. 
When RNA-PCR products were used for in vitro transcription
translation, primer hGHa was replaced by hGHORF1, hGHORF2 
or hGHORF3. Direct sequencing of PCR products was per
formed using the Sequenase 1M PCR Product Sequencing kit 
(USB). 

Oligonucleotides and hybridisation probes 

hGHa: 5'-CGGGATCCTAATACGACTCACTATAGGCGTCTG
CACCAGCTGGCCTTTGAC-3' 
hGHb: 5'-CGGGATCCCGTCTAGAGGGTTCTGCAGGAATG
AATACTT-3' 
hGHe: 5'-ACGCTATGCTCCGCGCCCATCG'r-3' 
hGHf: 5'-ACAGAGGGAGGTCTGGGGGTTCT-3' 
D69F1: 5'-GCCATAAAAATGCACTATCCA-3' 
D72F1: 5'-CCTCAGCTTTCACACGATGA-3' 
D72R1: 5'-TCATCGTGTGAAAGCTGAGG-3' 
D73R1: 5'-ATCCATTGCTGTTTTCCATTTC-3' 
D74R1: 5'-GCAGGACTACGAGGCTGG-3' 
polyT-REP: 5' -GGATCCGTCGACATCGATGAATTC(T)25-3' 
hGHORF1: 5'-CGGGATCCTAATACGACTCACTATAGGAC
GACCACCATGCAGCTGGCCTTTGACACCTACCAGG
AG-3' 
hGHORF2: 5'-CGGGATCCTAATACGACTCACTATAGGAC
AGACCACCATGGCAGCTGGCCTTTCACACCTACCAG
GAG-3' 
hGHORF3: 5'-CGGGATCCTAATACGACTCACTATAGGAC
AGACCACCATGGGCAGCTGGCCTTTGACACCTACCA
GGAG-3'. 
hGHUTR1: 5'-CAGGAGAGGCACTGGGGA-3' 

hG:H primers were designed from the sequence M13438 and 
DMD primers from the sequence M18533 (EMBL sequence 
database). cDNAprobe 63-113 is a subclone of the DMD cDNA 
and was used to screen for cosmids containing specific regions of 
the DMD gene. Probe 63-113 contains exons 65-74. Probe P20 
contains exon 45 and part of intron 44 of the DMD gene (12). 

In vitro transcription-translation 

Modified primers, containing a T7 promoter and an eukaryotic 
translation initiation sequence, were used to generate PCR 
products suitable for in vitro transcription-translation. T7-PCR 
product (200-400 ng) was added to the TnTm coupled reticulo
cyte lysate system (Promega). The synthesized protein products 
were separated on a 15% SDS-polyacrylarnide minigel system. 
Fluorography was obtained by washing the gels in DMSO/PPO. 
Dried gels were exposed 16-40 h for autoradiography. 

RESULTS 

Outline of cosmid-based exon trapping procedure 

Vector sCOGH1 contains all the essential elements of a cosmid 
vector, i.e. origin of replication, antibiotic resistance marker 
(ampicillin and neomycin) and two cos sites (Fig. 1). In addition 
it contains an exon trap cassette consisting of a mMT-1 promoter 
driving expression of the hGH gene, containing a multicloning site 
(MCS) located between exons 2 and 3 (see Materials and Methods 
for details of vector construction). The ubiquitous mMT-1 
promoter allows the use of many cell types. The vector is 
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Figure 2. Entire cosmids constructed in vector sCOGHl are transfected into V79 cells in which the introduced DNA is transcribed and processed. Spliced transcripts 
are amplified from isolated RNA. (A) Internal exons are amplified using 2 vector-derived primers. 5' first exons can be amplified in a 5' RACE using a single 
vector-derived primer. Similarly, 3' terminal exons can be isolated in a 3' RACE. (B) Trapping of cosmids containing inserts in the antisense orientation with respect 
to hGH will not result in formation of a chimeric hGH/unknown gene product. Instead, an 'empty' hGH transcript will be amplified by RT -PCR. 

constructed such that the inserts can easily be excised and 
religated to obtain the opposite transcriptional orientations. 

Cosmids are introduced into the cell type of choice by 
electroporation. We have tested and compared various cell lines 
and found V79 Chinese hamster lung cells to be a very efficient 
general host cell type. Upon expression, the hGH-initiated 
transcript will incorporate putative exons from the insert, cloned 
between exons 2 and 3 of the hGH gene, thus giving a chimeric 
product. After processing of the primary transcript, the putative 
RNA containing the exons to be trapped is amplified by RT -PCR 
using flanking vector-derived primers (Fig. 2A). In the specific 
event of 5' and 3' ends of genes being present in the insert, these 
will be skipped by the processing system or lead to alternatively 
initiated or terminated transcripts. They can be detected in the same 
mixture by 5' or 3' RACE, using opposite vector-derived primers 
separately (13). Gene inserts cloned in an antisense orientation will 
not be trapped, resulting in amplification of hGH sequences only 
(Fig. 2B). 

RT -PCR analysis of V79 cells transfected with the sCOGHl 
and sCOGH2 vectors yielded the expected 'empty' products (data 
not shown). A PCR with primers hGHa and hGHb gave the 
spliced 132 bp product containing hGH exons 2 and 3. Similarly, 
a 3' RACE using primers hGHa and polyT-REP yielded a spliced 
720 bp product starting in hGH exon 2 and ending in the poly( A) 
tail of the transcript. These experiments show that the insertion of 
the MCS into hGH intron 2 does not effect splice site selection. 

Trapping of multiple DMD-exons in a single spliced 
product 

To demonstrate the ability of the present method to isolate exonic 
gene segments from eukaryotic mammalian DNA, we subcloned 
YAC yDMD(0-25)C known to contain the human DMD gene 
(1 0). Two cosmids were isolated and used for exon trapping: 
cDMD2 and cDMD3. cDMD2 contains exons 72-76 and 
cDMD3 exons 68-74 (Fig. 3). RNA was isolated from V79 cells 
transfected with the cosrnids and vector-derived transcripts were 
amplified by RT -PCR using either two vector-derived primers 
(hGHa and hGHb; Fig. 3, lane A,) or a combination of a 

98 

vector-derived and DMD exon primers (Fig. 3; lanes B and C). 
In all cases, RNA-PCR analysis yielded products containing the 
expected exonic DMD-segments. 

In the case of cDMD2, RNA-PCR analysis using two 
vector-derived primers produced a product of 0.85 kb containing 
DMD exons 72-76 (Fig. 3). Direct sequencing confirmed that the 
PCR products contained the expected DMD exons, spliced 
together between growth hormone exons. All exon-exon transi
tions between DMD exons were perfect and DMD exon 72 was 
spliced correctly to hGH exon 2. DMD exon 76 was not spliced 
to hGH exon 3, but instead to a unknown sequence of 18 bp 
preceding the cloning site, resulting in insertion of an extra 61 bp. 

Analysis of cDMD3 yielded a product of 0.88 kb containing 
DMD exons 68-74. DMD exon 68 was spliced correctly to hGH 
and all DMD exon-exon transitions were correct. Sequence 
analysis showed that not the hGH exon 3 splice acceptor site was 
used but a new site direct! y at the BamHI cloning site. This results 
in a 43 bp insert of MCS and hGH intron 2 between DMD exon 
74 and hGH exon 3. 

Inserts in antisense orientation 

Exon trapping of cDMD2r, containing the exonic DMD segments 
in the antisense orientation, gave no insert-derived products. The 
only product amplified was the 132 bp empty hGH exon 2/exon 
3 product (Fig. 4, lane 1 ). This shows that, using this system, the 
false-positive rate of an entire 30 kb insert is effectively zero. 
Exon trapping of cDMD3r resulted in a PCR product of -0.25 kb 
(Fig. 4, lane 4 ), either corresponding to a cryptic product or to an 
unknown exon derived from the antisense strand. Hybridisation 
of this product to a Hindill-digest of cDMD3 showed that it 
mapped to the cosrnid and was spliced. The 339 bp product visible 
in lanes 2 (cDMD2r) and 3 (cDMD3) represents unspliced 
hamster growth hormone and results from traces of contamina
tion of V79 genomic DNA in the RNA preparation. 

In vitro transcription-translation 

The 0.73 kb RT-PCR product of cDMD3 (Fig. 3B, lane B) was 
reamplified, replacing the hGH ex on 2 forward primer with three 
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orientation; -, cosmid insert in antisense orientation. Marker, 100 bp ladder 
(Gibco-BRL). 

different primers, hGHORFl-3, containing a T7 promoter, a 
translation initiation sequence and either no, one or two additional 
nucleotides inserted between the ATG translation initiation codon 
and the hGH-sequence. The resulting RT-PCR products, each 
introducing a different reading frame, were used in an in vitro 
transcription-translation assay to scan for the presence of an open 

reading frame (ORF). As a control, a 0.6 kb PCR product of the 
hGH gene was synthesized in the three reading frames, using the 
same forward primers in combination with primer hGHUTRl, 
located in the 3' -UTR of the hGH gene. The control hGH product 
synthesized using primer hGHORFl (Fig. 5), was predicted to 
contain an ORF of 172 amino acids and yielded the expected 
peptide of -20 kDa, while no product was obtained in the two 
other reading frames. Similarly, in vitro transcription-translation 
of the cDMD3-derived hGHORFl RT -PCR product yielded a 
peptide slightly over 30 kDa, as expected for the 230 amino acid 
ORF. (Fig. 5). This system is based on our earlier published 
'protein truncation test' (PTT) system for the detection of open 
reading frames by in vitro transcription-translation (14 ). 

DISCUSSION 

The cosmid-based exon trapping method described in this paper 
copes with several limitations of currently available exon trapping 
methods. Using large genomic inserts of 30 kb and larger, we 
isolated all exons present as a complete set, eliminating the need 
of subcloning and reordering of individually isolated exons and 
verification of their continuity from isolated cDNAs. If the cosmid 
inserts were in the antisense orientation, either nothing or a small 
product (i.e. cDMD3r) was trapped. The relevance of the latter 
product is still unclear; it either contains several cryptic exons or 
is part of a newly identified transcription unit. We did not trap any 
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false exons and the false positive rate obtained was in fact zero. 
Splicing was perfect between all DMD exoiH:xon transitions and 
hGH exon 2 and DMD exons. In both cosmids analysed the last 
DMD exon was not spliced to the splice acceptor of hGH exon 3, 
but to a site directly upstream of or in the multiple cloning site. This 
indicates the existence of cis-active 'higher order' effects in splicing, 
further underscoring the advantage of concerted trapping of a series 
of unknown exons, selected during evolution to cooperate· in their 
parent gene. When separate exons are inserted in an 'alien' context 
this fine-tuning will be lost, which is probably the explanation for the 
differences in trapping efficiency of different exons using current 
systems. Alternatively, but not mutually exclusive, the selection of 
cryp~c splice si~ could be related to the maintenance of an open 
reading frame which has recently been shown to be an important 
factor influencing splice site selection (15). 

We have constructed several variants of sCOGHl. In sCOGH2 
the Alu repeat in the 3'-UTR of hGH has been removed, 
facilitating the screening of human positive cosmids with 
radiolabelled human DNA after subcloning of, for example, 
YACs from a mixture of YAC and total yeast DNA. In sCOGH6 
a 4.7 kb fragment containing the SV2neo selectable marker has 
been removed, facilitating cloning of larger inserts. sCOGH3 
c!iffers from sCOGHl by a deletion of the mMTl/hGH-exons 1 
to 2 region (i.e. the promoter and 5' end of the gene). Due to the 
removal of the promoter and 5' end of the hGH-gene no RNA will-
be produced unless an insert contains a 5' -first exonic gene 
segment and a promoter which is active in the chosen cell line. 
These 5' -exonic sequences can be isolated efficiently from the 
RNA using a 5' RACE protocol ( 13). 

RNA production can be boosted by super-inducing the mMT-1 
promoter with heavy metal ions such as Zn2+ and Cd2+ (16). 
Neomycin selection can be used to select transfected clones 
specifically, but the system as described works so efficiently that 
we have never applied this selection, and in fact removed the neo 
gene in the sCOGH6 vector to generate 4.7 kb more space. The 
vectors used do not require a specific system for replication in the 
ho~t cell and can be used in combination with any in vivo or in 
vitro system able to produce correctly processed RNA. In 
particular, due to the use of a strong ubiquitously expressed 
promoter, the necessity to use COS-1 cells for the initiation of 
transcription from the SV40 promoter is eliminated. The 
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sCOGH-system allows one to use other cell types (e.g. hamster 
V79), opening up several possibilities including targeting of 
tissue specific genes, e.g. in combination with sCOGH3, and 
functional complementation in specific cell types. 

The results described in this paper deal with single cosmids 
containing part of a large gene. Iri gene rich regions more than one 
gene might be present in the cosmid insert and it is unclear what 
would happen in such an event. Most likely, transcripts initiated at 
the strong mMT-1 promoter will overrun cloned promoters, a 
situatign similar to known genes with multiple promoters ( L7). We 
expect that the presence of cloned 3' exons will usually cause 
transcription termination. Still, examples are known where genes 
have multiple 3' exons, often expressed in a tissue specific manner, 
indicating that transcription can proceea and trap downstream 
sequences. Since with this system two RT -PCR reactions are 
standard, one with hGH exon 2 and 3 primers and one 3' RACE 
reaction, in most cases where multiple genes are cloned one should 
at least trap sequences from the most upstream gene. The 
identification of all genes from gene rich regions will depend on the 
use of a highly redundant cosmid contig covering the region. To 
scan large regions with the sCOGH-system, one has two possibi
lities: perform one experiment with a mixture of cosmids or use 
every cosmid in a single experiment. The feasibility of using 
complex mixtures remains to be tested. However, the situation will 
not differ significantly from that using small-insert vectors, where 
the high complexity of the input material introduces several 
technical problems. First, a large proportion of the clones will be 
empty and produce a PCR-favoured small product. Secondly, a 
wide range of products will be trapped with large size differences 
making it difficult to recognise the individual products. Consequent
ly, PCR conditions should be chosen carefully to allow amplification 
of a wide size-range of RT -PCR products, especially for the 
cosmid-based system e.g. by using long-range PCR protocols. Since 
each cosmid contains a 25-40 kb insert, covering extensive regions 
with a manageable number of clones should be possible. Therefore, 
we would opt to use multiple cosmids simultaneously but in a 
miniaturised exon trap experiment where the cosmids are not mixed. 

As demonstrated using RT -PCR and in vitro transcription
translation of products synthesized in all three possible reading 
frames derived from the hGH control and cDMD3, the exon 
~apping system can be coupled with a direct transcription
translation test (TTT) to detect the presence of large ORFs in the 
isolated sequences. This TTT approach provides an efficient tool 
to discriminate bona fide coding sequences from false positives. At 
the same time, this assay facilitates the identification of mutations 
by comparison of translated products derived from different 
sources of input genomic DNA, e.g. normal versus patient samples. 
Recently, we have shown that such a test can be performed even 
when only limited parts of a newly identified coding sequence have 
been elucidated (18). Since the proper connection of adjacent 
exons provides for correct translation, any disturbance in patient 
samples will become immediately apparent and highlight the area 
to be sequenced. In this way we could identify the CBP gene as the 
gene involved in Rubinstein-Taybi by the detection of translation 
terminating mutations in some patient-derived products. 
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ABSTRACT 

We have identified a new human developmental gene in Xp22 through our positional cloning 
studies of X-linked juvenile retinoschisis (RS). Using exon trap products from PAC and YAC 
clones we have isolated a set of exons which hybridize to a 3 kb mRNA. Expression of this RNA 
is detectable in a range of tissues but is most pronounced in skeletal muscle and heart. The gene, 
designated 'Sex comb on rnidleg like-1' (SCMLJ), maps 14 kb centromeric of marker DXS418, 
between DXS418 and DXS7994, with its transcriptional orientation from telomere to 
centromere. SCMLJ spans 18 kb of genomic DNA, consists of 6 exons and the transcript 
contains a 624 bp open reading frame. The predicted 27 kiloDalton SCMLJ protein contains two 
domains which each have a high homology with two Drosophila transcriptional repressors of the 
Polycomb group (PeG) genes and tqeir homologs in mouse and human. PeG genes are known 
to be involved in the regulation of homeotic genes and the mammalian homologs of the PeG 
genes repress the expression of Hox genes. SCMLJ is a new human member of this gene family 
and is likely to play an important role in the control of embryonal development. 

INTRODUCTION 

A number of disease genes have been mapped to Xp22, including X-linkedjuvenile retinoschisis 
(RS, MIM 312700) (1), Nance Horan syndrome (NHS, MIM 302350) (2), sensorineural deafness 
(DFN6, MIM 300066) (3), non-specific X-linked mental retardation (MRX19) (4) and Fried 
syndrome (5). We are pursuing positional cloning studies to identify the gene causing X-linked 
juvenile retinoschisis (RS), the commonest cause of juvenile macular degeneration in males (1). 

The RS locus has been mapped to Xp22.1-p22.2 by linkage analysis, with no evidence 
of genetic heterogeneity (6) and more recently, has been localised to the region between DXS418 
and DXS999 (7,8), a physical distance of approximately 1Mb (9,10). Haplotype conservation 
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and linkage analysis in Finnish RS patients suggests a location between DXS418 and DXS9911 
(11). In a significant proportion of diseases localized to Xp, extensive deletions have been found 
in patients which helped guide the search to the gene(s) involved (12). Intriguingly, in spite of 
extensive searches, deletions have not yet been identified in the RS-gene candidate region. 

Xp22 has been extensively mapped and several groups have published yeast artificial 
chromosome (Y A C) contigs, P !-derived artificial chromosome (P A C) contigs and restriction 
maps (7,10,13,14) of this region. Clones form these contigs are currently being used for gene 
isolation although to date only one gene has been identified in this region, PPEF (Protein 
Phosphatase with EF hand motifs) (15). Although this gene was the human homolog of the 
retinal degeneration gene C (rdgC) of Drosophila, no mutations could be found in RS patients, 
rendering it unlikely that PPEF is involved in RS (15,16). 

We have employed ex on trapping to identify new genes in the RS region. P ACs and 
YACs were selected from the contigs spanning DXS418 to DXS999 (7,10) and subcloned in the 
pSPL3b (17) and sCOGH2 (18) exon trapping vectors. A range of products containing putative 
exons were isolated and analyzed in further detail. Here we report the identification, 
characterization and analysis of a new gene from this region. It is highly homologous to the 
Drosophila Scm gene, a member of the Polycomb group (PeG) genes which are involved in the 
regulation of segmentation { 19) and we have therefore designated it 'Sex comb on rnidleg like- I' 
(SCMLJ). We have found no mutations in SCMLJ in RS patients but this developmental gene 
remains a candidate for other diseases in Xp22. 

MATERIALS AND METHODS 

Exon trap experiments 
YAC clones y939H7 (CEPH library) and y900E08102 (ICRF library) and PAC clone dJ389A20 
(de Jong PAC library) were obtained from the Sanger Centre (UK). 

Alul partial digests were performed on PAC clone dJ389A20. 2-6 kb fragments were 
size-selected for subcloning into EcoRV digested, pSPL3b (Integrated Genetics) (17,20) prior 
to transformation into XLI-blue E. coli cells by electroporation. The resulting DNA was extracted 
and transfected into COS-7 cells by lipofection. RNA isolation and cDNA synthesis were 
performed on the incubated COS-7 cells followed by PCR amplification, BstXI digestion, and 
ligation into pAMPIO (Gibco). Exon trap products were transformed into XLI-blue cells and 
sequenced using the AmpliCycle™ Kit (PerkinElmer). 

Y ACs y939H7 and y900E081 02 were partially digested with Mbol, ligated in the BamHI 
site of sCOGH2 ( 18), packaged using Gigapack II Plus Packaging Extract (Stratagene) and used 
to infect E. coli DH5a. Subclones containing human insert DNA were selected by hybridization. 
sCOGH exon trap experiments were performed as described by Datson et al. (18). Exon trap 
products were subcloned into pGEM-T (Promega) and sequenced using the AmpliCycle™ Kit 
(Perkin Elmer). 

Analysis of cDNAs, Northern blot hybridization 
cDNAs zal4f05, yq67g02 and zd45e08 were obtained from the HGMP Resource Centre and the 
Sanger Centre (Hinxton, UK). Aliquots of a fetal retinal cDNA library (Stratagene #937203) 
were used as.template for PCR. All cDNAs were sequenced using the AmpliCycle™ Kit (Perkin 
Elmer). Human multiple tissue Northern blots (#7760-1 and #7756-1) were purchased from 
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Clontech and hybridized with cDNAs za14f05 and zd45e08 according to manufacturer's 
recommendations. 

RNA analysis 
Human testis RNA was purchased from Clontech and RNA was isolated from human fetal brain 
using RNAzolB. cDNA was amplified from these using 1 Jll random primer (Promega) which 
was annealed to 2flg RNA at 65°C for 10 minutes. Reverse transcription was completed in 25 
mM Tris-HCl (pH 8.3), 37.5 mM KCl, 1.5 mM MgC12, 10 mM DTT, 1 mM dNTPs, 40 U 
RNAsin (Promega), 600 U SuperScript™II at 42°C for 60 minutes. RNA from lymphoblastoid 
cell lines was extracted using Trizol reagent (Gibco BRL #15596-026) and cDNA amplified 
using the Superscript Preamplification System (Gibco BRL #18089-011) with both oligo-dT and 
random hexamer primers according to manufacturer's instructions. 

Table 1 Primer sequences 

Primer Direction Localization 5' => 3' sequence 

SCML-AF4 for exon A1 TTTCCGAAGCGTCGAGTG 

SCML-AR1 rev exon A1 GCACGCGAGACCAGTGAT 

SCML-AR2 rev exon A1 TTCGGAAAGGTCCTGGCAC 

SCML-A2F for exon A2 CACAAATAAACCCTCCAGCA 

SCML-A3F for exon A3 AAACAAAACCTGAATTTGTCATAAA 

SCML-BF for exon B CAGGAACCGAATATTGTATCTG 

SCML-BR rev exon B GGCAATGAATAAGGACATCATC 

SCML-CR rev exon C GATTTGTCCACAGGGATCTCG 
SCML-DF2 for exon D GAGCAACCTTCCAAGGCCATCC 
SCML-DF for exon D AGGACCCGATCCTCAGCCGC 
SCML-DR2 rev exon D CTCGGAGTGCGGCTGAGGATC 
SCML-EF for exon E GTTACAAGGTCACCAGTTG 
SCML-ER rev exon E CAGGTTGAAGGGTGCTTAGTG 
SCML-FF2 for exon F ATTGACCGACTTAAACAAGG 
SCML-FR4 rev exon F GCCCAATCTAAATTTGCACAAGG 
SCML-FR5 rev exon F TTCTAATACTATCTAGCAG 
SCML-FR2 rev exon F TGGGTACAGCATCTTCATACAAAC 
SCML-FR1 rev exon F ACACCTGAGGACTGTTCAAGTGG 

PCR 
PCRs and nested PCRs were performed on 1111 RT product in 67 mM Tris-HCl (pH8.8), 16.6 
mM (NH4)2S04 , 6.7 mM MgC12 , 100 JlM dNTPs and 1 U Red hot polymerase or in 10 mM Tris
HCl, 50 mM KCl, 1.5 mM MgC12, 0.01% gelatin, 0.1% Triton X-100, 200 11M dNTPs, 0.1 
mg/ml BSA and 1 U Amplitaq polymerase in a total volume of 30-50 fll, with 10 pmol primer 
and an annealing temperature of 60°C. Primers are indicated in Table 1. 5'-RACE using the 
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human fetal brain Marathon-Ready™ cDNA (Clontech) was performed according to 
manufacturer's recommendations. 

DNA sequence analysis 
During the analysis of the gene, genomic sequence from PAC dJ389A20 became available. Ex on 
prediction programs (GENSCAN, Fexh, Fgeneh, Xpound, Grail3, Hexon) were used to identify 
putative exons in the same orientation as SCMLJ. Blast was used to search for sequence 
homologies and further analysis was performed using the Wisconsin GCG package. 

Patient samples and mutation analysis 
Patient DNA was isolated from peripheral blood lymphocytes as described (21) and from 
lymphoblastoid cell lines as above. For sequencing, PCR products were used as a template and 
purified using QIAquick (QIAGEN #28104). Sequencing was performed on an ABI373 
sequencer using the ArnpliCycle™ Kit (Perkin Elmer). 

RESULTS 

To identify genes in the RS gene candidate region in Xp22 we have subcloned PAC dJ389A20 
and YACs y939H7 and y900E08102 into exon trap vectors pSPL3b and sCOGH2 respectively. 
A range of exon trap products was obtained, cloned and sequenced. Using database comparisons, 
eight products identified ESTs (Genbank: R98881, R98971, N68481, N91325, W69543, 
W69459). Of the 3 cDNAs corresponding to these ESTs, two were derived from a fetal liver and 
spleen library (yq67g02 and za14f05) and one from a fetal heart library (zd45e08). The exon trap 
products and cDNAs are indicated in Figure lB. Sequence analysis of the cDNA clones showed 
that they were largely overlapping, producing a single transcript. Furthermore, sequencing of a 
PCR product (generated using primers SCML-AF4/CR) from a fetal retinal cDNA library 
contained identical5' sequence (indicated as FRL937202.1 in Fig.1C). The localization of the 
transcript, close to and centromeric ofDXS418, was determined by hybridization to Southern 
blots of a YAC fragmentation panel derived from y939H7 (9), by hybridization to PACs from 
across the region and by PCR using clones from the region (10) as templates (Fig.l). The gene 
maps between DXS418 and DXS7994. 

The genomic sequence revealed a stretch of 13 A residues at the position where the 3' end 
of the cDNAs contained a poly A tail (Fig.2, position 1334). Since no polyadenylation signal was 
present upstream of this site we reasoned that these clones might be generated by internal 
oligo-dT priming during cDNA-synthesis, and to isolate the remainder of the full length 
transcript, we designed primers from the cDNA sequence, other exon trap products isolated from 
the region, computer-predicted exons and ESTs localized up or downstream. These sequences 
were based on the genomic sequence of PAC dJ389A20 which became available during the 
course of the project (determined by the Sanger Centre (Hinxton, UK) in collaboration with the 
RS-consortium). Several combinations of these primers were used in RT-PCR analysis 
performed on RNA isolated from fetal brain and normallymphoblastoid cell lines. Primers were 
designed using EST H04958, derived from cDNA yj51e12, localized 3' to the cDNA contig 
(Table 1). Using primer SCML-DF (exon D) in combination with SCML-FRl and SCML-FR2 
(exon F) a 2 kb PCR product was obtained containing part of exon D, E and F. Moreover, EST 
H04958 contains a AATAAA-polyadenylation signal22 bp upstream from the poly A stretch at 
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Figure 1. Localization of SCMLJ in the Xp22.1-p22.2 region. 
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A. PAC dJ389A20. SCMLJ maps between the markers DXS418 and DXS7994. The RS candidate region 
has been localized between the markers DXS418 (telomeric) and DXS999 (centromeric, not indicated in 
this figure). 
B. SCMLJ gene. The genomic structure of SCMLJ is shown with its 6 exons (Al, B, C, D, E, F) varying 
in size from 81 bp to 1724 bp. The two potential alternate exons A2 and A3 are indicated. Exon trap 
productE1A7-13, which contains A2 spliced to B, was derived from cosmid E1A7. The other exon trap 
products dJ389A20blO, dJ389A20e10, dJ389A20a6, dJ389A20f6, dJ389A20h2, dJ389A20fll and 
dJ389A20g10 were derived from PAC dJ389A20. Exon A2 
(gagtagaggtttaccactcttaggtgactaagcagtatcacaaataaaccctccagcaagtttaaaaatattaggtccaactcagaggaagtggagtttc 
tcctgttgcacaaaaatgatgtctaacagctccagtgaaatcgatgtg) and A3 ( ctcgtgc-aancaaaacctgaatttgtcaataaa) are 
described in the text. 
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C. SCMLJ cDNA. The entire SCMLJ cDNA is shown with the cDNA clones indicated below the region 
of SCMLJ they contain. The cDNAs yq67g02, za14f05, zd45e08, yj51e12 and zt20c04 correspond to 
GenBank accession numbers: R98881 and R98971, N68481 and N91325, W69543 and W69459, H04958 
and H04957, and AA287232 respectively. 
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Figure 2 The nucleotide and deduced amino acid sequence of the SCMLJ gene. 
The exon boundaries are indicated by triangles1 The 13 genomic As at position 1334 and the 
polyadenylation signal are underlined. Primer sequences are boxed. 

its 3' end (Fig.2). No products were obtained from primers designed from 11 predicted exons and 
3 ex on trap products upstream of the transcript and orientated in the same direction or from 5' 
RACE experiments on fetal brain cDNA using primers SCML-AR1, SCML-AR2 and SCML
BR. 

Organizaton of the SCMLI gene 
To determine the exon/intron boundaries, we subcloned and sequenced genomic fragments of 
cosmid E1A7 and analyzed the genomic sequence of PAC dJ389A20. The 2635 bp cDNA 
sequence comprises 6 exons ranging in size from 81 to 1724 bp (Table 2). The complete gene 
spans 18 kb of genomic DNA and is transcribed from telomere to centromere. 

Northern blots, containing poly( At RNA of 8 adult and 4 fetal tissues, were hybridized 
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with cDNAs za14f05 and zd45e08. This revealed a major transcript of -3 kb in all tissues. 
Expression in adult tissues was most prominent in skeletal muscle and heart, while liver and 
placenta also gave strong signals. Expression is weaker but clearly detectable in pancreas, kidney, 
lung and brain (Fig.3A). Four tested fetal tissues, i.e. brain, lung, liver and kidney also showed 
strong expression (Fig.3B). A weak transcript of -12 kb was detected in the four fetal tissues and 
adult pancreas, placenta and skeletal muscle which may be due to cross-hybridization to a 
homolog or to alternative splicing of the transcript (Fig 3A and 3B). 

Table 2 Splice sites in SCMLI. Exonic sequences are capitalized. 

ex on 5' splice donor intron length 3' splice acceptor ex on 

exon A1 ACT AAAAT AGgtct 8337 bp gcagGAACCGAAT A exon B 

exon B TCATTGCCAGgtat 3301 bp atagGTTATATATG exon C 

exon C GACAAATCATgtaa 389 bp tcagAAGCGAT ATG exon D 

exon D CCACCTTCAGgtat 1521 bp gaagTT ACAAGGTC exon E 

exon E CAGAAGCCAT gtaa 1291 bp atagGAAATTGACG exon F 

We obtained evidence of alternative splicing upstream of exon B. Clone yq76g02 from 
a fetal liver and spleen cDNA library and the PCR product from th fetal retinal library 
FRL937202.1 consisted of exon A1 spliced to exon B. However, exon trap product E1A7-3-13, 
contained 149 bp of sequence derived from intron A (designated exon A2, Fig.lB) spliced to 
exon B and in addition, cDNA AA382396, a 332 bp testis derived cDNA, contained exon B, C, 
part of exon D and 26 bp of sequence derived from intron A (designated exon A3, Fig.lB). PCR 
of fetal brain cDNA using a forward primer in ex on A1, A2 or A3 in combination with a reverse 
primer in exon C yielded only products in combination with primers in exon A1 and cxon C. 
Lymphoblastoid cDNA, however gave a product witha primer from exon A1 and exon C and also 
a weaker product with a primer from exon A3 and exon C (confirmed by sequencing). These 
results indicate that A2 and A3 may be exons present in alternate trancripts of SCMLI. 

SCMLJ protein 
The largest open reading frame found consists of 208 amino acids. The translation initiation site 
lies at position 419 in exon D (Fig.2). The sequence around the ATG initiation codon has a score 
of 63 (on a scale from 0-100) compared to the Kozak consensus sequence 
(CCCGCCGCCACCATGG) (23,24). Database searches revealed homology with several other 
proteins (Fig.4). The highest homology (57% identity, 88% similarity in a 42 amino acid C
terminal domain) is found with the Scm-protein (Sex comb on midleg) of Drosophila 
melanogaster (19). The ORF extends 246 bp upstream ofthe translation initiation site at position 
419 but no other translation initiation site is present and furthermore, no homologies could be 
found between the predicted amino acid sequence and the PeG genes. 
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Analysis of RS patients 
To screen for deletions and mutations in genomic DNA we hybridized cDNA zal4f05 to 
Southern blots containing DNA of unrelated RS patients. DNA of 23 RS patients was digested 
with Mspl, BamHI, EcoRV and EcoRI and DNA of another 49 unrelated RS patients was 
digested with HindJJl. No aberrant fragments were detected. 

The complete coding region was amplified from 3 RS patients' lymphoblastoid cell RNA 
(using primers SCML-BF/-DR2, -EF/-FR4, -ER/-DF2, and -FF2/-FRS) and sequenced. No 
sequence variation was found. 

A 
Q) 

8 >-0 
·= Q) en Cl .... c: ::I !! c: Q) "C 

en E ..a .2 ~ :;;;: 
Ill iii 

Ill - iii iii Q) >- c: .! .! .... 
Q) a; Q) t:: - -0 .... .= .! .! Q) Q) 

c: c: a; Cl 0 Ill - -Ill "C 
Q) c: .!!! Ill Q) ~ ~ 

.... 
c.. :;;;: en .2 c.. ..a .r:. 

9.5 kb 
9.5 kb 7.5 kb 
7.5 kb 

4.4 kb 4.4 kb 

2.4 kb 
2.4 kb 

' 1.35 kb 
1.35 kb 

Figure 3. Northern blot analysis of SCMLJ 
A Multiple tissue Northern blot (Clontech, # 7760-1) hybridized with cDNA za14f05. 
B Multiple tissue fetal Northern blot (Clontech, #77,56-1) hybridized with cDNA zd45e08. 
A major transcript of -3 kb was detected in all tissues and a fainter transcript of 12 kb is present in all 4 
fetal tissues, and adult pancreas, placenta and skeletal muscle. 

DISCUSSION 

Using pSPL3b and sCOGH2 exon trapping on clones from the RS candidate region we have 
isolated a new gene, designated SCMLJ for Sex ,~;;omb on midleg like-1. The gene is 
localized close to marker DXS418, consists of 6 exons, has a transcriptional orientation from 
telomere to centromere and encodes a 3 kb transcript. Based on Northern blot hybridization and 
cDNA library clones, expression of SCMLJ was found in six fetal tissues analyzed (brain, lung, 
liver, kidney, retina and heart) and 10 different adult tissues, predominantly muscle and heart. 
Mutation screening of the gene in RS patients using hybridization analysis and sequencing did 
not reveal any mutations, rendering it unlikely that this gene is involved in retinoschisis. 

The size of the Northern signal (approximately 3 kb) is in accordance with the size of the 
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cDNA isolated (2,635 bp), excluding a poly A tail. Exon A lies in an HTF island and contains 4 
HpaJl sites. Another 8 HpaJl sites are present within the first 2 kb of intron A. NoT AT A-box 
and CCAAT-box sequences were found immediately 5' of exon A but the region does contain 
seven consensus Spl binding site sequences. These features are indicative of a promoter located 
in this region. The ORF can be extended 246 bp upstream of the translation initiation site through 
exon C to the beginning of exon B. No other initiation site is present within this sequence. 

SCMLJ protein 
The largest open reading frame found consists of 208 amino acids and encodes a predicted 27 
kiloDalton protein. Database searches revealed homology with several other proteins (Fig.4 ). The 
highest homology was found with the Scm-protein of Drosophila melanogaster (19). Scm is a 
member of the Polycomb group (PeG) of genes in Drosophila. High homologies were also found 
with another PeG gene, the polyhomeotic gene (Ph) in Drosophila (25), and three mammalian 
PeG homologs, a transcriptional repressor (Rae28/Mphl) in mouse (26) and two polyhomeotic 
homologs (HPHJ, HPH2) in human (27) (Fig.4). 

Although the SCMLI transcript contains a large 3' untranslated region (1,593 bp), the 
translational stop codon lies at the same position as that in the homologous proteins (see Fig.4), 
directly after the SPM domain. This domain is thus found exclusively at the extreme C-terminus 
of these proteins which is likely to reflect an important feature of its function. The SPM domain 
(19), has been named after three Drosophila proteins in which it was found first, S.cm, E..h, and 
l(3)m.bt (28), and is also known as the SEP (yeast .s.terility, Ets related, fcG proteins) domain. It 
has been found in several cytoplasmic proteins and members of the Ets family of transcription 
factors in yeast, nematode and Dictyostelium (26). The second domain of high homology we 
identified, designated the SP domain (after S.cm and .f!..h) has not been reported before and is not 
present in the l( 3 )mbt protein. 

Alternate splicing, of which there is some evidence, could extend this ORF further and 
lead to the encoding of a larger protein. However, searches or alternate spliced products using 
5'-RACE and RT -PCR with fetal brain RNA and lymphoblastoid RNA respectively failed to give 
products. It may be that alternate splice products are present in other tissues. 

SCMLI is smaller than Scm but contains two conserved domains SPM and SP which are 
likely to be functional. However, it lacks the potential zinc finger domains and the mbt repeats 
present in Scm (Fig. 4). The 5' potential extension of the ORF present in SCMLI has no further 
homology with Scm, but products of tissue specific alternate splicing might encode a second 
larger protein. 

Figure 4. 
A Domains in SCMLJ and related genes from the Polycomb group (PeG). Scm = Sex combs on midleg 
(Drosophila), Mphl =mouse homolog of the polyhomeotic gene, HPHJ and HPH2 are the human 
homologs of the polyhomeotic gene, Ph= Polyhomeotic gene (Drosophila). The SPM and SP domains 
are present in all sequences. Domains shaded with downward slopes represent potential zinc fingers. The 
two horizontal striped domains in Scm are mbt repeats and the other domains indicated are of unknown 
function. 
B Amino acid sequence alignment of SCMLJ and homologous regions in Scm, Mphl, HPHJ, HPH2 and 
Ph. Dark shading indicates amino acid residues that are present in 50% of the aligned sequences. Light 
shading indicates similar amino acid residues in 50% of the aligned sequences. The bottom line is the 
consensus sequence: * indicates identity in all 6 aligned sequences, • indicates similarity or identity in 

113 



"'' .... 
~ 

~ 

6 

.5 
"' § 
~ 

~ 
Cl) 

£j 

§ 
<.1:: 

~ 
0 a 
!5 
~ 
il< . 

Cl) .... 

£j ~ 
blli) 
I': "' "Cjj ~ 
;::lQ 
"0< 

fn:r: 
~~ 
eo 
Cl)~ 

" Cl) "'£i 8 ;>., 
l'l,D 
CI)"O g. Cl) 
Cl) e 

Cl) .... 

~..g 
8 Cl) 
I': 0.. 
Cl) "' §.«~ 

Cl) " 
"' bll "0 I': 
Cl) ·~ 
~=:"O 
bJlo:l 

~~ 
"0 ~ 
<l<~ 
;;; ~ 
.... 0.. 
~Cl 
~u 
<;j(j 

A SP SPM 

SCML1 11 ! •1 208 aa 

Se m I U -11~1-1~- ~ - n- • 877 aa 

Mph1 I R I ~ I • 1012 aa 

HPH1 [- B ~---~-~ =:- 1004 aa 

HPH2 1 1 W;j 1• 434 aa 

Ph I ~ I ~ I Ml 1589 aa 

B 
SCMLl. 1 
Scm 719 
Mph1 896 
HPHl 888 
BPH2 321 
Ph 1475 
consensus 1901 

SCMLl 94 RAD 

Scm 771 
Mph1 940 
BPHl 932 
HPR2 365 
Ph 1509 
consensus 1996 ••••••••••• * •••• . •........•... ·················· .. 
SCML1 187 
Scm 854 
Mph1 995 lili:lii!Uililll::::::::::::: HPH1 987 
HPH2 417 
Ph 1560 
consensus 2091 ••·•·•··········· 

.q 

.--< 



Isolation of retinoschisis candidate genes 

The PeG genes encode transcriptional repressors in Drosophila essential for proper 
spatial expression of homeotic genes and thus appropriate development. Murine homo logs of 
PeG genes that have recently been isolated (Bmil, M ell 8, M phi) seem likewise to be involved 
in transcriptional repression of the vertebrate counterparts of the homeotic genes, the Hox genes 
(26). Mice mutated in the Bmil or M ell 8 genes display axial skeletal malformations (with knock
out mutations causing posterior tranformation of the skeleton and overexpression leading to 
anterior transformation) associated with other abnormalities including large bowel obstruction 
and thymus hypoplasia (29-31). In keeping with this, the expression of Hox genes has been 
shown to be altered in these mutants. 

The SCMLJ gene is therefore likely to be involved in transcriptional repression of Hox 
genes. Mutations in this gene may cause developmental malformations rather than a retinal 
degeneration as is found in RS. Other diseases localized in this region for which SCMLJ remains 
a candidate are Nance-Horan syndrome (NHS) (2), sensorineural deafness (DFN6) (3), 
non-specific X-linked mental retardation (MRX19) (4), and Fried syndrome (5), although none 
of these conditions have a pattern of abnormality similar to that seen in the mouse Bmil or Mel18 
mutants. Two patients have been described with a combination of vertebral abnormalities, bowel 
atresia and thymus abnormalities (32), and a pair of brothers have been described with vertebral 
abnormalities and Hirschsprung disease in one and vertebral abnormalities and anal atresia in the 
other (33). Mutations in SCMLJ could be a cause of such syndromes. Alternatively, one could 
hypothesize that deletions in this gene are lethal due to disturbed embryonal development, 
perhaps explaining the absence of the identification of any deletion in this region of the 
X-chromosome in either males or females. Further studies are needed to elucidate the role of this 
gene in development, its relation with other human genes of the Polycomb group and the 
response of developmental genes such as Hox genes to SCMLI mutations. 
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Through our transcriptional mapping effort in the Xp22 
region, we have isolated by exon trapping a new 
transcript highly homologous to the Drosophila retinal 
degeneration C (rdgC) gene. rdgC encodes a serine/ 
threonine phosphatase protein and is required in 
Drosophila to prevent light-induced retinal degenera
tion. This human gene is the first mammalian member 
of the serine-threonine phosphatase with EF hand motif 
gene family, and was thus named PPEF (Protein 
Phosphatase with EF calcium-binding domain). The 
expression pattern of the mouse Ppef gene was studied 
by RNA in situ hybridization on embryonic tissue 
sections. While rdgC is expressed in the visual system 
of the fly, as well as in the mushroom bodies of the 
central brain, we found that Ppefis highly expressed in 
sensory neurons of the dorsal root ganglia (DRG) and 
neural crest-derived cranial ganglia. The selective 
pattern of expression makes PPEFan important marker 
for sensory neuron differentiation and suggests a role 
for serine-threonine phosphatases in mammalian 
development. 

INTRODUCTION 

Our group is involved in the construction of a transcription map 
of the human Xp22 region. To achieve this aim, we have 
constructed a detailed physical map of a 35 Mb region spanning 
human chromosome Xp22.3-Xp21.3. The backbone of the map 
is represented by a single contiguous stretch of 585 overlapping 
yeast artificial chromosome (YAC) clones covering the entire 
region (1). Several disease loci have been mapped in this region 
including Retinoschisis (RS), Nance-Horan syndrome (NHS), 
Coffm-Lowry syndrome (CLS), and Keratosis Follicularis 
Spinulosa Decalvans (KFSD) (1). As a first step toward building 
a transcription map of this region, we decided to concentrate our 

efforts on YAC clone 939H7 which spans the entire critical region 
for RS and partially spans the critical regions for NHS, CLS and 
KFSD. 

This effort led us to the isolation of a gene highly homologous 
to the Drosophila retinal degeneration C (rdgC) gene. The rdgC 
gene encodes a serine/threonine phosphatase protein (2) and is 
required in Drosophila to prevent light-induced retinal 
degeneration (3). rdgC is expressed in the visual system of the fly, 
as well as in the mushroom bodies of the central brain. We named 
this new gene PP EF, for Protein Phosphatase with EF hand motif. 

To test the involvement of PPEF in the pathogenesis ofRS, we 
isolated the full-length cDNA, established the genomic structure, 
and searched for mutations in RS patients by PTT (protein 
truncation test) and SSCP (single strand conformation 
polymorphism) analyses. Identification of the mouse homolog of 
this gene allowed us to perform RNA in situ hybridization studies 
on mouse embryo tissue sections, revealing a very specific pattern 
of expression localized in sensory neurons of cranial and dorsal 
root ganglia. 

RESUlTS 

Identification and characterization of the PPEF cDNA 

One hundred cosmid clones were selected by screening an 
X-specific cosmid library with Alu PCR products derived from 
YAC 939H7. Cosmid clones were grouped and used for exon 
trapping experiments. Several exon trapping products were 
sequenced and used to search non-redundant DNA and protein 
databases through the BLAST-X, BLAST-P and TBLAST-N 
algorithms. One of them (clone 3pn1D2) was found to be 
identical to EST H18854, which shows significant homology to 
the Drosophila rdgC protein (accession no. M89628). Clone 
3pnlD2 mapped back to YAC939H7 in the RS critical region and 
to cosmid 44Cl containing marker DXS999 (Fig. 1). The same 
transcript was subsequently identified in our laboratory, using a 
bioinformatic approach aimed at the identification of human 
homologs of Drosophila genes involved in the generation of 
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Figure 1. Map of the RS critical region. The map displays the onler of markers and the YACs positive for two or more markers. The RS critical region spans from 
DXS418 distally to DXS999 proximally. YAC clones are indicated by thin bars. Cosmid and phage clones are indicated by thick bars. The number and position of the 
exons are shown. 

mutant phenotypes, and found to correspond to DRESIO 
(Drosophila related expressed sequence #10) (4). 

The I.M.A.G.E. cDNA clone 51064 corresponding to EST 
H18854 was used to screen both an infant (5) and a fetal (Clontech) 
brain cDNA library. Six different cDNA clones were isolated and 
characterized by end-sequencing, restriction mapping and PCR, 
using specific primers in combination with vector primers. 
Subsequently, an additional cDNA (nt19) was isolated by 
screening a teratocarcinoma/neuron (mature hNT neuron: 
Stratagene 937233) cDNA library with a different exon trapping 
product (clone 8bb1a1). Characterization of each of the cDNA 
clones allowed us to establish a cDNA contig of 2872 bp (base 
pairs) (accession no. X97867). The authenticity of the 5' end of the 
cDNA was validated by sequencing the corresponding genomic 
region. The putative initiation codon was identified at position 484 
and is located within a nucleotide sequence that fulfills Kozak's 
criteria for an initiation codon (6). The first in-frame stop codon 
(TAA) was identified at nucleotide 2443, predicting a protein 
product of 653 amino acids. Sequence analysis of the predicted 
protein product revealed the presence of two putative functional 
domains. The first domain comprises amino acids 150-438 and 
shares sequence similarity with the catalytic domain of 
phosphoprotein phosphatases of the serine-threonine kind 
(Fig. 2A). The second domain is present at the carboxyl end of the 
predicted protein (amino acids 566--643) and contains potential 
ca++-binding sites as defined by the EF hand motif (7) (Fig. 2A 
and B). On the basis of these homologies, we therefore named the 
gene PPEF, for Phosphoprotein Phosphatase with EF hand motif. 
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Sequence analysis and comparison of PPEF with previously 
identified phosphoprotein phosphatases revealed conservation of 
several invariant residues including Asp59, Asp88, His61 and 
His139. Site-directed-mutagenesis experiments revealed that 
substitution of these residues results in abolishment of phosphatase 
activity (8,9). These data suggest that PPEF might be a functional 
phosphatase. 

A BLASTX search with PPEF disclosed the highest homology 
with the Drosophila rdgC gene, which also encodes for a 
serine-threonine phosphatase with EF motif and, when mutated, 
causes light-induced retinal degeneration in the fly. PPEF and 
rdgc are 60% identical at the nucleotide level, and 62% similar 
and 42% identical at the protein level. To the best of our 
knowledge, the rdgC and PPEF proteins are the only two 
molecules in which a phosphoprotein phosphatase domain 
coexists with EF hand motifs. Furthermore, within the 
phosphoprotein phosphatase domain, PPEF displays much higher 
homology with rdgC than with other members of the 
phosphoprotein phosphatase gene family (data not shown), 
indicating that PPEF and rdgC belong to a distinct subfamily of 
serine-threonine phosphatases. 

PPEF genomic structure and RS patient analysis 

The complete genomic structure of the PPEF gene was 
determined using the available cosmid clones. Genomic clones 
corresponding to exon 4 were obtained by screening a total phage 
genomic library using a specific PCR probe. EcoRI and Hindiii 
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Figure 2. Sequence analysis of the PPEF predicted protein. (A) Amino acid sequence comparison between PPEF (top) and Drosophila rdgC (bottom) proteins. The 
region of homology shared with other members of the protein phosphatase family is underlined. The EF calcium-binding domain is indicated by a dashed line. (B) 
Amino acid identity within the EF hand motifs between PPEF rdgC, Troponin C and Plastin. The positions of the ea++ chelating side chains are labeled X-Z. 

cosmid and phage fragments hybridizing to the cDNA were 
subcloned in pBluescript and sequenced using primers designed 
from the cDNA sequence. Seventeen exons were identified and 
the sequences of all intron-exon boundaries were determined. 
Exon sizes and splice junction sequences are shown in Table 1. 
Junction sequences are in agreement with 5' and 3' splice site 
consensus motifs, with the exception of the ex on 15 5' splice site 
which shows the sequence GCAAGTG, instead of the consensus 
5' splice site sequence GwoT10oA62A6sGs4T63· Differences in 
the GT dinucleotide-have been reported in 0.13% of splice site 
sequences (1 0). The ex on trapping products 8bb !AI and 3pn1D2 
were found to correspond to the first untranslated exon and to 
exon 14, respectively (Fig. I). Figure I shows the map of the 
genomic clones and the position of the exons. -

Sequence homology and mapping data identified the PP EF gene 
as a good candidate for retinoschisis and thus, a mutation study in 
RS patients was undertaken. Thirty-seven unrelated male patients 
with clinical features of RS, but with no reported chromosomal 
abnormality involving the Xp22 region, were tested for small 
rearrangements or point mutations in the PP EF gene by Southern 
and SSCP analyses (data not shown). Furthermore, PIT analysis 
was carried out on nine different RS patients (data not shown). No 
anomalies were found with either technique, thus suggesting that 
PPEF is not involved in the pathogenesis of RS. 

PPEF is alternatively spliced 

RT-PCR experiments, using nested primers, on RNA isolated 
from lymphocytes of RS patients and normal controls revealed 
several different size products (Fig. 3B). Similar results were 
obtained using RT-PCR on RNA isolated from seven other tissues 
(data not shown). Sequence analysis of these different products 
and comparison with the cDNA sequence confmned that they 
were the result of alternative splicing. Figure 3A shows a 
schematic representation of all the splice variants detected. 
RT-PCR1a corresponds to a product in which exon 5 was spliced 
out, resulting in a truncated protein of 600 amino acids. 
RT-PCR1 b is the result of using a cryptic splice site within exon 
11. This product lacks 84 bp and, therefore, encodes a protein 
deleted of 28 amino acids. RT-PCR2 corresponds to a product in 
which exons 12 and 13 were spliced out. This splicing event 
causes the premature termination of the protein. Finally, 
RT-PCR3 corresponds to a product in which only exon 12 was 
spliced out. This alternative spliced variant results in an in-frame 
deletion of 186 bp and, thus, in a protein which is missing 86 
amino acids. These variant forms have never been identified 
during cDNA library screening, and may not have any functional 
significance. 
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Table 1. Splice junction sequences of the PPEF gene 

Ex on Splice junctions Exon size 

number 3; splice site 5' splice site (bp) 

ttttctttcagCCCTCTG AAACAGgtaatatgtt 103 

2 tcctcattagAATCTAT A CA CAT gtgagtactg 168 

gggtctgcagCACTGA ATGCAGgtctgttttg 128 

4 ttttgtccagTTATCC AGCTAGgtaagtaaaa 61 

ccttttccagAATTAA CAACAGgtaagtggaa 161 

ccgctcacagATACTT TCTGTGgtaagtttca ll5 

tgcactgcagGTGATT TACAAGgtaaatgatg 47 

cttccacagAATGGT TCTGAGgtaacccag 167 

tttttttttagGTATGG TATAAGgtaagacatg 37 

10 ttacttacagCTACAT AACAAGgtaagaagta 150 

11 tgttttatagATGAAA GAACAGgtaggtaatc 153 

12 ttgttccaagATTATT GGGAAGgtaagctaaa 86 

13 ctttaaccagGTGGTG CCAAAGgtgtgtatac 143 

4 tttctttgcagAGTGG AATCAGgtaacaaatt 107 

15 ttgttgttagGAAAAC CAAGAGgcaagtgaaa 164 

16 tttattttagGCTCAT ACTCAGgtaaataaat 85 

last attcttttagGCCTGA 

Expression studies 

The expression pattern of the PP EF transcript was determined by 
both Northern analysis on human tissues and RNA in situ 
hybridization on embryonic mouse tissue sections. Northern blot 
analysis on both human adult and fetal tissues detected two 
transcripts (2.7 and 4.3 kb, respectively) selectively expressed in 
the brain. These transcripts were found to be strongly 
up-regulated during fetal life (Fig. 4 ). 

Previous zoo blot experiments indicated evolutionary 
conservation of the PPEF gene in several species including 
hamster, rat, mouse, pig, chicken and cow (data not shown). To 
obtain a probe for RNA in situ hybridization studies on mouse 
tissue sections, we screened a mouse embryonic E ll.S day cDN A 
library (Clontech) using probe c14-c22 obtained by PCR with 
primers c14 and c22. This PCR product corresponds to the region 
with the highest sequence homology (63.2% at the nucleotide 
level) between the human PPEF and the Drosophila rdgC genes. 
This screening led to the isolation of a partial cDNA clone 
(EM800; accession no. Y08234). Sequence analysis revealed 
82.4% identity at the nucleotide level, and 83.1% similarity and 
76.4% identity at the protein level between mouse and human 
(data not shown). The homology between the mouse and 
Drosophila proteins was revealed to be 6S.3% similarity and 
43.1% identity. 

RNA in situ hybridization was performed on mouse embryonic 
tissue sections from embryonic day lO.S (E10.S) to embryonic 
day 16.S (El6.S). These experiments revealed an expression 
pattern overtly different from that displayed by the rdgC gene in 
the fly. Ppef is almost exclusively expressed in the peripheral 
nervous system, within sensory neurons of neural crest origin. 
Ppef expression is up-regulated at E12.5 in dorsal root ganglia 
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Figure 3. (A) Schematic representation of different splice vruiants identified by 
RT-PCR experiments, using nested primers. (B) RT-PCR analysis on RNA 
isolated from lymphocytes of RS patients and normal controls. Lane 1 
corresponds to the products RT-PCRla and RT-PCR1b. Lane 2 to RT-PCR2, 
lane 3 to RT-PCR3. Lane 4 corresponds to a product identical to the cDNA 
described in the text. Lane 5 contains a 1 00 bp marker. 

(DRG), and in some sensory cranial ganglia (Fig. SA). Sensory 
neurons of the vertebrate peripheral nervous system have two 
distinct embryological origins. Several studies, mainly in the 
chick, have shown that neurons of the DRG, of the dorsa-medial 
part of the trigeminal ganglion, and of the superior ganglia of 
cranial nerves IX and X (jugular ganglion) are de1ived from the 
neural crest, while neurons of the ventrolateral part of the 
trigeminal ganglion, the geniculate, vestibuloacustic, petrosal and 
nodose ganglia, are derived from ectodermal placodes, i.e., 
thickening of the surface ectoderm (11 ). Ppef expression was 
found to be restJicted to neuronal populations of neural 
crest-derived sensory ganglia. In fact, Ppefis highly expressed in 
neurons of the DRG (Fig. 5C and D), in distinct neuronal 
populations of the trigeminal ganglion (Fig. 5B), and in the 
superior ganglia of the IX and X cranial nerves. No expression 
was observed in the geniculate, vestibuloacustic (Fig. SB), 
petrosal, and nodose ganglia. 

Although sensory ganglia are already formed in the mouse well 
before El2.5, this stage is believed to correspond with the start of 
neurogenesis in these structures (12). An enlarged view of Ppef 
expression within DRG and the trigeminal ganglion (Fig. SB) 
clearly demonstrated that most, but not all, neurons express Ppef 
A slightly decreased expression could still be detected in sensory 
ganglia at E16.5. We do not know if Ppef expression in sensory 
neurons persists in adult life. The discrepancy in the strength of 
the hybridization signals on Northem blot in adult and fetal brain 
is probably due to the inclusion of the cranial sensory ganglia in 
the brain sample of fetal origin. The only sites of Ppef expression, 
outside sensory neurons, were found in the irmer ear (Fig. SE) and 
in a small group of neurons located at the midbrain/pons junction 
(Fig. SF). We did not detect any expression signals above 
background level in the embryonic and adult mouse retina (data 
not shown). 
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Figure 4. Northern blot analysis of the PPEF gene. Poly A+ RNA from multiple adult and fetal tissues hybridized to cDNA corresponding to the PPEF gene. A 2.7 kb 
transcript is detected in both adult and fetal brain, while a less abundant 4.3 kb band is detected only in fetal brain. 

Linkage mapping of Ppefin mouse 

The finding in the N2 progeny of the BSS backcross (13) of male 
individuals carrying only B alleles (hemizygotes) led to the 
unequivocal assignment of Ppef to the murine X chromosome. 
The analysis of the strain distribution pattern (SDP) observed in 
the same progeny permitted the localization of Ppef to the distal 
third of the chromosome (Fig. 6). Ppef is in linkage with 
DXXrf132 (Spencer et al., in preparation) (6 = 1.41; 
LOD = 19.1), and was mapped using a probe containing dbEST 
122118 (accession no. F06456) with homology to the 
Saccharomyces cerevisiae G1R1 gene. fu the BSS map, Ppefis 
located telomeric to DXXrf132. Ppef maps -1.5 cM centromeric 
to Grpr, the gastrin releasing peptide receptor gene, identified 
using DXMit20 primers (Korobova and Arnheirn, unpublished) 
and Piga (6 = 1.37; LOD = 19.7). The locus order defined in 
mouse between the Amel (Korobova and Arnheirn, unpublished) 
and Ppef loci correlates with the physical map established in 
human (1). However, the position of the Oal gene with respect 
to the Clc4-I-Amel-(Piga-Grpr)-Ppeflinkage group confirms the 
prior notion of a rearrangement (inversion) within this region of 
human-mouse synteny (14). 

DISCUSSION 

PPEF is the first mammalian member of the protein 
phosphatase with EF hand motif gene family 

A wide variety of cellular functions, including cell signalling, 
gene expression, membrane transport and secretion and cell 
division, are regulated by the reversible phosphorylation of 
proteins on serine and threonine residues (15). The phosphatases 
that catalyze the dephosphorylation of these amino acids are a 
crucial component of this regulation. The serine-threonine 
phosphatases belong to a rapidly expanding gene family, and six 
different manunalian members (PP1, PP2A, PP2B, PP2C, PP4 
and PP5) have been described so far. They can be distinguished 
depending on their ability to dephosphorylase either the a.- or the 
~-subunit of phosphorylase kinase, and on their sensitivity to 
specific inhibitors (16). These phosphatases have been highly 
conserved during evolution from yeasts to vertebrates ( 17). 

fu Drosophila, the rdgC gene encodes a serine/threonine 
phosphatase. This phosphatase shares 30% homology with the 
catalytic domain ofPP1, PP2A and PP2B, but is unique due to the 
presence of five ca++-binding sites, as defmed by the EF hand 
motif in the C-terrninus. Owing to its particular features, rdgC is 
likely to be a member of a novel subfamily of protein 
phosphatases, characterized by the coexistence of the catalytic 
phosphatase domain and ea++ -binding sites. Very little is known 
about the function of this phosphatase and no evidence for 
vertebrate homologs has been produced so far. The rdgC gene is 
required in Drosophila to prevent light-induced degeneration of 
the retina. Drosophila rdgC mutants show normal retinal. 
morphology and photoreceptor physiology at a young age. The 
retina of one-day-old rdgC mutants has wild type structure, but by 
three days, the photoreceptors R1-R6 begin degenerating. By 
five days, degeneration of photoreceptors Rl-R6 is complete and 
photoreceptors R7 and R8 begin showing signs of degeneration 
(3). The rdgC gene is thought to be involved in the regeneration 
of rhodopsin and is expressed in the retina, ocelli, optic lobes and 
in the mushroom bodies of the central brain (2). 

We report here the isolation of the first manunalian member of the 
serine-threonine phosphatase with EF hand motif gene family. The 
new gene was named PPEF (Protein Phosphatase with EF 
calcium-binding domain) and is highly homologous to the 
Drosophila rdgC gene. fu order to study the expression pattern of 
PPEF during embryonic development, we isolated a partial murine 
homologous cDNA. This cDNA shows 82.4% identity at the 
nucleotide level and 83.1% similarity and 76.4% identity at' the 
protein level with the human PPEF gene. Linkage mapping 
experiments, performed in the mouse, established that this gene is 
located on the murine X chromosome in a region synthenic with 
human Xp22 (18). These data strongly indicate that the murine Ppef 
gene may be considered a boTUl fide ortholog for the human PPEF. 

PPEF expression is restricted to sensory neurons of 
neural crest origin 

In the fly, rdgC is highly expressed in the compound eye as well 
as in the ocelli, the other photoreceptor -containing organ, and is 
thought to participate in a rhodopsin-initiated pathway that 
regulates photoreceptor membrane renewal. The tissue 
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Figure 5. Expression pattern ofPPEF, as revealed by in situ hybridization in a 13.5 day old mouse embryo. (A) Autoradiography of a sagittal section shows expression. 
restricted to the trigeminal ganglion and the dorsal root ganglia. Sagittal sections through the head show PPEF expression in the trigeminal ganglion (B). A strong 
hybridization signal is present in the dorsal root ganglia. as displayed in a sagittal section (C) and in a transverse section (0). Ppef positive signal is also present in 
the inner ear (E) and in a group of neurons located at the pons/midbrain junction (arrow in F). Abbreviations: tg, trigeminal ganglion; g, geniculate ganglion; va. 
vestibuloacoustic ganglion; drg, dorsal root gangli~ se, spinal cord: ie. inner ear. 
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Figure 6. Haplotype and linkage analysis of Ppef and flanking loci in the 
murine X chromosome through the analysis of the BSS backcross (Jackson 
Laboratory, Bar Harbor, .ME). Empty squares indicate the M us spretus allele; 
solid squares indicate the C57BL/6J allele; stippled squares indicate genotype 
not determined. Numbers to the right, between rows, indicate recombination 
fractions ± standard error, and LOD scores. Columns represent different 
haplotypes observed on the X chromosome. Numbers below columns defme 
the number of individuals in the progeny sharing each haplotype. 

localization of the mouse Ppef gene was studied by RNA in situ 
hybridization on embryonic tissue sections. In contrast with the 
expression pattern of the Drosophila rdgC gene, we found that 
Ppef is selectively expressed in neurons of the DRG, in distinct 
neuronal populations of the trigeminal ganglion, and in the 
superior ganglia of the IX and X cranial nerves. No expression 
was observed in the geniculate, vestibuloacustic, petrosal and 
nodose ganglia. This selective pattern of expression correlates 
with embryological origin, with Ppef being a marker specific for 
sensory neurons of neural crest origin. Several genes have been 
found to be expressed in sensory neurons and RNA in situ 
hybridization studies have allowed the study of the distribution of 
specific transcripts within sensory ganglia. In addition, 
immunocytochemical and histochemical techniques have been 
used extensively to biochemically defme distinct neuronal 
populations in sensory ganglia by the presence of peptides, 
enzymes and specific carbohydrate groups (19,20). So far, 
however, the only other genes that show an expression pattern 
restricted to sensory neurons are the neurotrophin receptor genes 
(21). 

For their survival, sensory neurons of the developing peripheral 
nervous system rely upon specific members of the Nerve Growth 
Factor (NGF) family ofneurotrophins, which are secreted by their 
targets. It is believed that different neuronal populations in DRG 
are responsive to different neurotrophins and express different 
neurotrophin receptors (22,23). In vitro studies of neurons from 
cranial sensory ganglia have shown that there is a difference in the 
response of placode-derived and neural crest-derived neurons to 
neurotrophins; neural- crest-derived neurons are responsive to 
NGF, while placode-derived neurons respond to Brain-Derived 
Neurotrophic Factor (BDNF) (24,25). 

The selective expression of Ppef in cranial sensory ganglia of 
neural crest -origin and the lack of expression in placode-derived 
ganglia suggest that this gene is expressed by NGF-responsive 
neurons. NGF exerts its effect by eliciting a phosphorylation 
cascade through activation of the TrkA tyrosine-kinase receptor 
(26). Although the phosphorylation events mediated by the 
binding of NGF to the TrkA receptor have been extensively 
studied, very little is known about dephosphorylation pathways 
and the phosphatases involved. It is an appealing hypothesis that 
PPEF might be involved in the specific signalling pathway 
initiated by NGF in sensory neurons. Consistently, up-regulation 
of Ppef expression coincides with the time at which neurogenesis 
and TrkA receptor expression begins in sensory ganglia. 

Isolation of retinoschisis candidate genes 

In. conclusion, our study provides evidence for the presence of 
a mammalian protein phosphatase with EFhand motifs. Although 
this phosphatase is highly homologous to the Drosophila rdgC 
gene, expression studies seem to suggest that it represents a 
related gene with a different function. We do not exclude the 
possibility that additional members of this protein phosphatase 
gene family will be identified in the near future. Alternatively, 
PPEF might be the evolutionary equivalent of the Drosophila 
rdgC gene, but we must assume that the two genes have diverged 
in terms of function. Since mapping data placed PP EF within the 
critical region for RS, we have excluded its involvement in the 
pathogenesis of X -linked juvenile RS by searching mutations in 
RS patients. Future experiments, including the identification of 
sub-populations of sensory neurons expressing PPEF 
phosphatase and of the natural substrate of the protein, will 
greatly contribute to the understanding of the biological role of 
the PP EF gene in mammalian development and will allow testing 
for its possible involvement in NGF signal transduction. 

MATERIALS AND METHODS 

cDNA identification 

YAC clone 939H7 was converted into cosrnid clones by 
hybridization of long range Alu-PCR product obtained with a 
variety of human-specific Alu primers. PCR amplification was 
performed according to Gu et al. (27). Cosmid clones were 
grouped (10 clones per group), digested with BamHI/Bgffi, 
cloned in the pSPL3 vector, and used for the exon amplification 
experiments as described previously (28) and by Montini et al. 
(manuscript in preparation). In order to identify the PPEF 
full-length transcript, three human cDNA libraries were screened: 
a teratocarcinoma/neuron cDNA library (mature hNT neuron, 
Stratagene 937233), a fetal brain cDNA library (Clontech 
HL3003a), and the Bento Soares infant brain 1NIB arrayed 
cDNA library. For the isolation of a partial murine cDNA clone, 
an 11.5 day embryo (Clontech ML3003a) mouse cDNA library 
was used. Plating, hybridization and washing conditions were 
performed as previously described (29). Primers used to obtain 
the probe used to screen the mouse cDNA library were as follows: 

c14, AAGTCCTGAAGCAAATGCCG; 
c22, GCCATACCTCAGATICATC. 

cDNA sequence analysis 

cDNA sequence analysis and nucleotide and protein database 
searches were performed as previously described ( 4 ). Data on 
similarity/identity were obtained using the Bestfit program of the 
GCG software package, version 8.1. The multiple alignment 
analyses were generated using the PileUp program of the 
Wisconsin GCG software package, ver. 8.1. 

Expression studies 

Commercial Northern blots (Clontech) containing human RNA 
from fetal and adult tissues were hybridized and washed using the 
conditions recommended by the manufacturer. Mouse embryo 
tissue sections were prepared and RNA in situ hybridization 
experiments were performed as previously described (30). cDNA 
clone EM800 was linearized with appropriate restriction enzymes 
to transcribe either sense or antisense 35S-labelled riboprobes. 
Slides were exposed for I 0 days. Micrographs are double 
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exposures: red represents the in situ hybridization signal, and blut> 
shows the nuclei stained with Hoechst 33258 dye. 

RNA isolation and RT-PCR 

RNA isolation from blood and RT-PCR experiments were carried 
out as previously described (31). RT-PCR was carried out with 
nested primers. Primers 1F+ 1R were used for the first round, the 
resulting PCR products were then reamplified using primers 
2F+2R. Primers used for RT-PCR: 

1F, 5'-TGAAGGCCAGACAACACTATG-3'; 
1R, 5'-ACTAGGTCCAACCCAGTTfCT-3'; 
2F, 5'-TAATACGACTCACTATAGGAACAGACCACCAT 

GGAATATGCTGATGAACAAGGC-3' 
2R, 5'-CTITTCTCTGCTACTGACTATGAA-3'. 

Primers for sequencing: 

909, 5'-CTTGGAAGAATTCTATGCCTGG-3'; 
947, 5'-ATTGTACCGATTGGGAGCCA-3'; 
1528,5'-CCATAGTATCCACTCTTfGGCGA-3'; 
1501,5'-CCTCTTCGCCAAAGAGTGGATA-3'. 

Linkage mapping in mouse 

Genetic mapping was achieved utilizing a (C57.B.L/6j x 
SPRET/Ei)F1 x SPRET/Ei (BSS) backcross generated and 
distributed by the Jackson Laboratory (Bar Harbor, ME) (13). An 
Mspl RFLP was identified by hybridization of C57BL/6j and 
SPRET/Ei parental DNAs cut with each of the six restriction 
enzymes (EcoRI, EcoRV, Kpni, Mspi, Taqi and Xbai). Four 
Southern panels containing Mspi-cut parental DNAs and N2 
progeny (n = 94) DNAs were hybridized with a Ppef cDNA 
probe. The resulting strain distribution pattern (SDP) was 
analyzed with the Map Manager 2.6 program (32). 
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Abstract X-linked juvenile retinoschisis (RS) is a progressive 
vitreoretinal degeneration localised in Xp22.1-p22.2. A human 
homologue of the retinal degeneration gene C (rdgC), a gene 
that in Drosophila melanogaster prevents light-induced retinal 
degeneration, was localised in the RS obligate gene region. We 
have tested the gene, designated PPEF in humans, as a 
candidate gene in RS patients using RT-PCR and the protein 
truncation test on RNA and SSCP on DNA. No mutations were 
identified, making it highly unlikely that PPEF is the gene 
implicated in RS. The data presented facilitate mutation analysis 
of the PPEF-gene in other diseases which have been or will be 
localised to this region. 

Introduction 

X-linked juvenile retinoschisis (RS, MIM 312700) is a 
progressive vitreoretinal degeneration, with a frequency of about 
1 in 10 000 (Bergen et al. 1995). Symptoms vary from mild loss 
of visual acuity and peripheral field defects to total blindness 
due to complete retinal detachment; the age of onset is variable 
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(George et al.l996). The gene causing RS has been localised by 
extensive linkage analysis to a region on Xp22 between markers 
DXS418 and DXS999 (George et al.l994; Van de Vosse et 
al.l996; Huopaniemi et al.l997). Several YAC contigs have 
been constructed spanning the I Mb obligate gene region 
(Ferrero et al.l995; Alitalo et al.l995; Van de Vosse et al.l997). 
Gene identification techniques are currently used to isolate 
candidate genes for RS and to test these in mutation analysis of 
patients derived samples. 

Exon trapping experiments carried out on Y AC clone 
y939H7, covering the RS-gene candidate region, yield several 
products. Two of the identified exon trapping products 
corresponded to a novel human transcript (PPEF, Montini et 
al.l997) which was highly homologous to the retinal 
degeneration gene C (rdgC, M89628). In Drosophila 
melanogaster, this gene is required to prevent light-induced 
retinal degeneration (Steele and O'Tousa 1995; Steele et 
al.l992). PPEF was mapped back toY AC clone y939H7 close 
to DXS999 and resides therefore in the RS critical region (Fig 
1). The localisation in the RS obligate gene region and the 
phenotype observed in the fly, made PP EF an attractive 
candidate for RS. PPEF, Protein Phosphatase with EF hand 
motifs, encodes a serine/threonine protein phosphatase (Montini 
et al.l997). The gene consists of 17 exons, with a coding region 

/,YL-------~NH~S~/D~FN~6~/~M~R~X~1~9~----~7~ 
RS 

~~~------~--------~~ 
~----~---------------7~ VAC 939H7 

PPEF 
Fig. 1 Localisation of the PPEF gene in the retinoschisis (RS), 
Nance-Horan syndrome (NHS), DFN6 and MRX19 candidate regions. 
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of 1962 bp having a 61.7 % similarity on protein level with 
rdgC. Here we report testing of the PPEF gene as a candidate 
gene forRS. 

Materials and methods 

Patient samples 

Patient DNA was isolated from blood lymphocytes as described 
(Maniatis et al.l989). Patient RNA was isolated from blood 
lymphocytes as described (Den Dunnen et ai.I 996) using RNAzoiB 
(Campro Scientific). All tissue specific RNAs were obtained from 
Clontech. 

Hybridisation 

Southern blots containing EcoRl, Mspl, BamHl, EcoRV, Hindill 
digested DNA of RS patients were made using standard techniques 
IManiatis et al.l989). A 25-ng aliquot of DNA was labelled with 5 ~I 
[a-"P]-dCTP using the Prime-it I! random primer labelling kit 
(Stratagene). Hybridisation was performed with 10' cpm hybridisation 
mix (0.125 M NaHP04, 0.25 M NaCI, I mM EDTA, 7% SDS, 10% 
PEG-6.000) at 65'C. Filters were washed once for 5 min at room 
temperature in 2 x SSC, 0.2% SDS and twice for 30 min at 65'C in 
2 x SSC, 0.2% SDS. Autoradiography was done by overnight 
exposure of Kodak X-Omat AR film. 

SSCP analysis 

SSCP analysis on patient DNA was performed as described by Orita 
(Orita et al.l989) and adapted for use of non-radioactive samples 
(Renieri et al.l994) using the primers and conditions given in Table 
I. 

RT, PCR and protein truncation test (PTT) 

Reverse transcription (using 1-3 ~g RNA) and two rounds ofPCR and 

PTT analysis were essentially done according to Den Dunnen et al. 

(1996). Cycling conditions for the first PCR round: 3 min at 93'C, 
followed by 30 cycles of I min at 93'C, I min at 58'C, 4 min at 
72'C, and finally one cycle of 7 min at 72'C. Cycling conditions for 
the second PCR round were 3 min at 93 °C, then 32 times 1 min at 
93'C, I min at 59'C, 3 min at 72'C and finally once for 4 min at 
72'C. Approximately 250-500 ng PCR-product was used in a coupled 
in vitro transcription/translation reaction. PPEF primers used for RT
PCR (PPEF-JF, -JR, -2F, -2R) are indicated in Table I. Primer 
PPEF-2F has a tail containing a T7 promoter sequence and a 
eukaryotic translation initiation signal, facilitating subsequent analysis 
using in vitro transcription and translation (Sarkar and Sommer 1989). 
The primers for the RT-PCR experiments were designed on the 
sequence available at the time, this sequence did not include the 5' end 
of the sequence that was revealed later (Montini et al.l997). 

Sequence analysis 

PCR products were sequenced using an AmpliCycle sequence kit 
(Perkin Elmer) according to the manufacturers instructions. 

Results and Discussion 

In most X-linked diseases, DNA deletions of various sizes form 
a significant fraction of the mutations found. We carried out a 
scan for the presence of deletions and rearrangements in 
genomic DNA by hybridisation of the PPEF cDNAs (Montini 
et al.l997) to Southern blots containing DNA of 60 unrelated 
RS patients. DNA was digested with Mspi, BamHI, EcoRV (23 
samples), HindJJI (37 samples) and EcoRI (all samples). Neither 
deletions nor aberrant fragments could be detected with the 
cDNAs, thereby excluding the presence of large deletions in the 
PPEF gene in these RS patients (data not shown). 

For a more detailed mutation analysis of the PPEF-gene, 
we performed SSCP analysis on genomic 

Table 1 Sequences of the primers and conditions used in RT -PCR and SSCP analysis. Primer PPEF-2F has a tail containing a T7 
Qromoter seguence and a eukaryotic translation initiation signal (*- GCTAATACGACTCACTATAGGAACAGACCACCATG) 

Primer Ta Product MgCI, Sequence of forward primer Sequence of reverse primer 
set size (bp) (mM) 

53 239 1.5 CAGAAGTTGAATTCATGAAC GTAGTTTCCTATGCTACTC 
55 238 2.5 GAAGCACCTACTTCTCCTAAC CCTCGAGGTCGACGGTATC 
55 182 1.5 TTGTCACAGTAGCTGTTTGG GCTCTTGATGAAGACAATTG 
54 318 2.5 AGTGCCTTACATGGGCTAG GGGCATCTGTTATGTACAAG 
55 259 1.5 ACGATGTAGGACCAAGAGG GCTTGCTCCACCTTTACAG 
56 159 1.5 GGGCATTGCATCTTGTTCTC TATCTGCCCTAAGACTGCCC 
55 289 1.5 ACACGGCCTGACTTTAAAAG CAGCATTTTCCAGAGTGCG 
55 185- 1.5 TGCATGACTCATGGAAGTAG AATCTGGTCTTTCTTGGCTC 
51 252 2.5 TTCCCTTCTAAATCCCTGAG CAATAAACTGAACCTGTCAG 

10 55 255 1.5 GAATAAGCAGAGGGTTGGAC CCCTGTTGTACGTGCGATC 
11 55 281 1.5 CTCACTTGTAAGTTACAGCG TGTGCTTAGGGGAAGGATC 
12 52 240 2.5 TTTGAGAACTAATGTTACGTG GTGATACCGTGATACCAG 
13 52 215 2.5 AAATGAAACACAACAGGATG ATGTAACTTGGTGTGTTAAG 
14 57 275 1.5 TCCCAAGAGGTTGCATTC CACCCTGGCTAGGTTTTAG 
15 46 102 2.5 AATATGTTCTAACACTTAG TCAAAGTGTACTCATTTTG 
16 54 312 1.5 ACCCTTGCCTTAGGTGGGTC TAGCTGTTTCAGGGAGCCTG 
PPEF-1 58 2122 6.7 TGAAGGCCAGA CAACACTATG ACTAGGTCCAACCCAGTTTCT 
PPEF-2 59 1960 6.7 *GAATATGCTGATGAACAAGGC CTTTTCTCTGCTACTGACTATGAA 

134 



DNA of 37 patients. Sixteen primersets were designed to 
amplify 16 of the 17 exons of the PPEF gene, excluding exon 
I containing 5'UTR sequences only. No deletions or aberrant 
fragments could be detected and no polymorphic fragments 
were found that could be used as RFLPs (Table I). 

To detect mutations either altering the promotor or splice 
sites of the gene or causing frame shift mutations leading to a 
premature stop in the open reading frame, we analysed the gene 
on RNA level using RT-PCR and PTT (Roest et al.l993). 
Analysis of RT-PCR products made on RNA isolated from 
lymphocytes of nine unrelated RS patients revealed products 
ranging in size from 800 to 1900 bp. In vitro transcription and 
translation of the PCR products showed that the size of the 
translation products corresponded to open reading frames in 
accordance with the length of all PCR products. Consequently, 
no mutations affecting transcription of the PPEF gene nor 
mutations causing premature translation termination could be 
identified. 

Based on the extensive mutation analysis in both DNA 
(hybridisation and SSCP) and RNA (RT-PCR and PTT), we 
conclude that PPEF is not likely to be the gene implicated in 
RS. Experiments using RNA in situ hybridisation of PPEF on 
mouse embryo tissue sections revealed expression of the gene 
in the brain and basal ganglia but not in the developing eye 
(Montini et al.l997). The latter suggests a different function for 
the mammalian homologue of the Drosophila rdgC gene. Given 
the accumulating evidence from SSCP and in situ hybridisation 
experiments, we decided not to complete the PTT analysis, 
which did not include the 363 bp at the 5' end of the translated 
region of the gene. 

While our data provisionally exclude the PPEF gene as 
the gene involved in RS, its map position (Fig. I) renders it a 
candidate gene for other diseases localised in this region, such 
as Nance-Horan syndrome (Bergen et al.l994), MRX19 
(Donnelly et al.l994) and DFN6 (Del Castillo et al.l996). The 
expression and mutation analysis data presented here, should 
provide the tools to test the involvement of PPEF in these 
diseases, or others which in the future might be mapped to this 
region. 
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Testing retinoschisis candidate genes 

Exclusion of the Txp3 gene as the gene causing X-I inked juvenile 
retinoschisis 
E. van de Vosse, B. Franco, A.A.B. Bergen, G.J.B. van Ornmen, A. Ballabio and J.T. den 
Dunnen. 

Introduction 
Using pSPL3 ex on trapping on subclones of YAC y939H7, two exons were isolated that 
were used as probes on a human cDNA library. A cDNA was isolated, that consisted of 7 
exons and which had a 2364 bp open reading frame (Figurel). Hybridisation on Northern 
blots showed strong hybridisation to a product of 9.5 kb in brain and weaker hybridisation to 
a product of the same length in placenta, lung, kidney and pancreas (Franco and et al. 1997). 
The full length gene, designated Txp3, has not been isolated yet. Txp3 maps close to DXS999, 
making it a good candidate for X-linkedjuvenile retinoschisis. We tested Txp3 as a candidate 
gene in 9 retinoschisis patients using RT-PCR, a Protein Truncation Test (PTT) and SSCP. 

Materials and methods 
RNA 
Patient RNA was isolated from blood lymphocytes basically as described in (Den Dunnen et 
al. 1996) using RNAzolB (Campro Scientific). All tissue specific RNAs were obtained from 
Clontech. 

Table 1 Txp3 primers used in RT-PCR. 

Primer name 

Txp3-JF 

Txp3-JR 

Txp3-2F 

Txp3-2R 

Txp3-3F 

Txp3-3R 

Txp3-4F 

Txp3-4R 

Primer sequence (5' -> 3') 

AGAAGTGGGGGACTCGGC 

TTGCCGGCTTGGTTTCTATT 

CGGATCCTAATACGACTCACTATAGGAACAGACCACCATG 
GGAAAGTTCCCACCAACCAGTGA 

CGGATCCTTGAAATGTAGGGTGATTCAAA 

GAAGGTGCTAGGACCACTTCC 

AGTCATCTCTGGAGGGAGCT 

CGGATCCTAATACGACTCACTATAGGAACAGACCACCATG 
GTTAACCATCCTCAGTCCTTGGAAA 

CGGATCCAAGAAAAAGATTCGTGAGGTGC 
Primers Txp3-2F and Txp3-4F have a tail containing a BamHI restriction site, a T7 promoter sequence 
and a eukaryotic translation initiation signal, facilitating subsequent analysis using in vitro transcription 
and translation (CGGATCCTAATACGACTCACTATAGGAACAGACCACCATG). Primers Txp3-
2R and Txp3-4R have a tail containing a BamHI restriction site. 
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~x~~Jgagcggcgacggcgtcctcaggagctgtggggtcccctgctf~:J!-~:tgggggactcggqgggggagtcatttaatacttcatgattagaacaaatatgt:Jf~x.,:"-;~=-2g£Ft"t-c-c-c-a-c-ca-a-c--,c) 

121 I agtg~gaa t t tct tee t tcagacggt t t tgga tc t tac tgcacagc t t tctgagaagt tct t t tggtgcca tgt t t tgtggc t tgca tcaaaagaggagt t tgtc t tcatgaaga t tee t 

241 aacattggtaatgtgATGAATAAATTTGAGATCCTTGGGGTTGTAGGTGAAGGAGCCTATGGAGTTGTACTTAAATGCAGACACAAGGAAACACATGAAATTGTGGCGATCAAGAAATTC 
M--N--K--F--E--I--L--G--V--V--G--E--G--A--Y--G--V--V--L--K--C--R--H--K--E--T--H--E--I--V--A--I--K--K--F--

361 AAGGACAGTGAAGAAAATGAAGAAGTCAAAGAAACGACTTTACGAGAGCTTAAAATGCTTCGGACTCTCAAGCAGGAAAACATTGTGGAGTTGAAGGAAGCATTTCGTCGGAGGGGAAAG 
K--D--S--E--E--N--E--E--V--K--E--T--T--L- -R--E- -L--K--M--L--R- -T--L--K- -Q- -E--N--I--V--E--L--K--E--A--F- -R--R- -R- -G--K-

'Yexon 2 
481 TTGTACTTGGTGTTTGAGTATGTTGAAAAAjAATATGCTCGAATTGCTGGAAGAAATGCCAAATGGAGTTCCACCTGAGAAAGTAAAAAGCTACATCTATCAGCTAATCAAGGCTATTCAC 

L--Y--L--V--F--E--Y--V--E--K--N--M--L--E--L--L--E--E--M--P--N--G--V--P--P--E--K--V--K--S--Y--I--Y--Q--L--I--K--A--I--H--

~3 ;=4 
601 ~:~:=~~=~:~=~~=~==~==~~=~:~d-=~=~;:~;~=~==~=~==~:=~~=~=~~=~==~=~~~~:=~~:;::g_:~:=:~==~:=~=~=:~:~;~g::~= 

'f'exon 5 
721 AATGCTAATTACACAGAGTACGTTGCCACCAGATGGTATCGGTCCCCAGAACTCTTACTTGG!cGCTCCCTATGGAAAGTCCGTGGACATGTGGTCGGTGGGCTGTATTCTTGGGGAGCTT 

N--A--N--Y--T--E--Y--V--A--T--R--W--Y--R--S--P--E--L--L--L--G--A--P--Y--G--K--S--V--0--M--W--S--V--G--C--I--L--G--E--L-
Trn~-~F 

841 AGCGATGGACAGCCTTTATTTCCTGGAGAAAGTGAAATTGACCAACTTTTTACTATTcA!(;iAGGTGCT"AGGACCAcTTCC~TCTGAGCAGATGAAGCTTTTCTACAGTAATCCTCGCTTC 
S--D--G--Q--P--L--F--P--G--E--S--E--I--0--Q--L--F--T--I--Q K V L G P L- P 5--E--Q--M--K--L--F--Y--S--N--P--R--F--

'f'exon 6 f=Txg,p!.lc'f-4et£.F========= 
961 CATGGGCTCCGG!I'TTCCAGC..qGTTAACCATCCTCAGTCCTTGGAAllJGAAGATACCTTGGAATTTTGAATAGTGTTCTACTTGACCTAATGAAGAATTTACTGAAGTTGGACCCAGCTGAC 

H--G--L--R--F--P--A V N--H P Q -S -L E -R--R--Y--L--G--I--L--N--S--V--L--L--D--L--M--K--N--L--L--K--L--D--P--A--D-
Trn3-2R 

I ()81 AGATACTTGACAGAACAGTc;iTTTGAATCACCCTACATTTCA$CCCAGAGACTTCTGGATCGTTCTCCTTCAAGGTCAGCAAAAAGAAAACCTTACCATGTGGAAAGCAGCACATTGTCT 
R--Y~p,--E--fx/)j_'JR L N H P T F Q T--Q--R--L--L--D--R--S--P--5--R--S--A--K--R--K--P--Y--H--V--E--S--S--T--L--S--

12()1 IAATACCAAGCCGGCA1\IAAGTACTGCTTTGCAGTCTCACCACAGATCTAACAGCAAGGACATCCAGAACCTGAGTGTAGGCCTGCCCCGGGCTGACGAAGGTCTCCCTGCCAATGAA 
N--R N Q -A--G K S--T--A--L--Q--S--H--H--R--S--N--S--K--D--I--Q--N--L--S--V--G--L--P--R--A--D--E--G--L--P--A--N--E--

1321 AGCTTCCTAAATGGAAACCTTGCTGGAGCTAGTCTTAGTCCACTGCACACCAAAACCTACCAAGCAAGCAGCCAGCCTGGGTCTACCAGCAAAGATCTCACCAACAACAACATACCACAC 
5--F--L--N--G--N--L--A--G--A--S--L--S--P--L--H--T--K--T--Y--Q--A--S--S--Q--P--G--5--T--S--K--D--L--T--N--N--N--I--P--H--

1441 CTTCTTAGCCCAAAAGAAGCCAAGTCAAAAACAGAGTTTGATTTTAATATTGACCCAAAGCCTTCAGAAGGCCCAGGGACAAAGTACCTCAAGTCAAACAGCAGATCTCAGCAGAACCGC 
L--L--S--P--K--E--A--K--S--K--T--E--F--D--F--N--I--D--P--K--P--S--E--G--P--G--T--K--Y--L--K--S--N--5--R--S--Q--Q--N--R--

1561 CACTCATTCATGGAAAGCTCTCAAAGCAAAGCTGGGACACTGCAGCCCAATGAAAAGCAGAGTCGGCATAGCTATATTGACACAATTCCCCAGTCCTCTAGGAGTCCCTCCTACAGGACC 
H--S--F--M--E--5--5--Q--S--K--A--G--T--L--Q--P--N--E--K--Q--5--R--H--5--Y--I--D--T--I--P--Q--5--S--R--S--P--5--Y--R--T--

1681 AAGGCCAAAAGCCATGGGGCACTGAGTGACTCCAAGTCTGTGAGCAACCTTTCTGAAGCCAGGGCCCAAATTGCGGAGCCCAGTACCAGTAGGTACTTCCCATCTAGCTGCTTAGACTTG 
K- -A- -K--S--H- -G--A--L--S- -D--S- -K- -S- -V--S- -N -,L--S--E- -A- -R- -A--Q--I--A--E--P--S--T--5--R--Y --F--P--S--S--C--L--D--L--

18()) AATTCTCCCACCAGCCCAACCCCCACCAGACACAGTGACACGAGAACTGGCTCAGCCCTTCTGGAAGAAATAACCGAAATGAGGGAACGCTGGACTCACGTCGAACCACAACCAGACATT 
N--S--P--T--5--P--T--P--T--R--H--S--D--T--R--T--G--S--A--L--L--E--E--I--T--E--M--hf_4:-R--W--T--H--V--E--P--Q--P--D--I--

1921 CTAAGACGATGGAGGAATTGAAGCTGCCGGAGCACATGGACAGTAGCCATTCCCATTCACTGTCTGkiACCTCACGAATCTTTTTC~TGGACTGGGCTACACCAGCCCCTTTTCTTCCC 
L- -R--R--W--R--N-- *--

2()41 AGCAACGTCCTCATAGGCATTCTATGTATGTGACCCGTGACAAAGTGAGAGCCAAGGGCTTGGATGGAAGCTTGAGCATAGGGCAAGGGATGGCAGCTAGAGCCAACAGCCTGCAACTCT 

Trn3-3R 
2161 TGTCACCCCAGCCTGGAGAAdAQCTCCCTCCA.GA~GTGGCAAGATCTTCGGTCAAAGAGACCTCCAGAGAAGGCACCTCTTCCTTCCATACACGCCAGAAGTCTGAGGGTGGAG 

2281 TGTATCATGACCCACACTCTGATGATGGCACAGCCCCCAAAGAAAATAGACACCTATACAATGATCCTGTGCCAAGGAGAGTTGGTAGCTTTTACACACTGCCATCTCCACGTCCAGACA 

24()) ATTCTTTCCATGAAAATAATGTGTCAACTAGAGTTTCTTCTCTACCATCAGAGAGCAGTTCTGGAACCAACCACTCAAAAAGACAACCAGCATTCGATCCATGGAAAAGTCCTGAAAATA 

2521 TTAGTCATTCAGAGCAACTCAAGGAAAAAGAGAAGCAAGGATTTTTCAGGTCAATGAAAAAGAAAAAGAAGAAATCTCAAACAACCTGGA 

g 
~ 

~ ..., 
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Testing retinoschisis candidate genes 

Primers 
Fragment A is obtained by a nested PCR, with primers Txp3-1F and Txp3-1R in a first PCR 
and Txp3-2F and Txp3-2R in a second PCR. Fragment B is obtained by a nested PCR, with 
primers Txp3-3F and Txp3-3R in a first PCR and Txp3-4F and Txp3-4R in a second PCR. 
Primer sequences are indicated in Table 1. 

B 

c 

49 kD 

33.3 kD 

28.6 kD 

!0 !0 " g, b< ~ ~ .;\, 
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33.3 kD 

28.6 kD 

19.4 kD 

Figure 2 A. RT -PCR products of fragment A generated on RNA from 12 different tissues and RNA 
isolated from lymphocytes of 8 unrelated RS patients and one normal individual (control 8R). The 
product from XRS 24.071 (not visible on this photograph) was generated in a higher quantity in a 
duplo experiment. B. SDS/P AGE analysis of the translation products of fragment A. C. SDSIP AGE 
analysis of the translation products of fragment B. 
The marker used is a prestained SDS-PAGE standard (Biorad). 
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Mutation detection 
All procedures, RT, PCR, in vitro transcription/translation and SDS-PAGE analysis were 
performed as described in (Van de Vosse et al. 1997). SSCP analysis was performed as 
described by Orita (Orita et al. 1989) using the RT-PCR products digested with Rsal 
(fragment A and B) or Haeiii (fragment B). 

Results and Discussion 
Four primersets (set 1 and 3 for initial PCR, set 2 and 4 for a nested PCR) were designed on 
Txp3 in order to generate two overlapping products of 1019 bp (fragment A) and 1025 bp 
(fragment B) respectively. Using these primers, transcripts could be generated on RNA of 
retina, spleen, heart, brain, skeletal muscle, testis, thymus, lymphocyte, lung, pancreas and 
kidney. All products had the expected length. No transcripts could be detected in liver. 

To scan the Txp3 gene for mutations, we generated RT-PCR products on RNA 
isolated from lymphocytes from 9 unrelated RS patients and one normal individual. The 
expected fragments were generated with both primer sets in all individuals (Figure 2a). 
Subsequent transcription and translation of the RT-PCR products, followed by analysis of the 
obtained proteins on an SDS/PAGE gel did not produce aberrant fragments. Consequently, no 
mutations affecting transcription (splice site or promoter mutations) of the Txp3 gene nor 
mutations causing premature translation termination could be identified (Fig. 2B - 2C) 

To identify possible non-translation terminating mutations (single base pair changes 
or triplet deletions) the RT-PCR products were digested with Rsal (fragment A and B) or 
Haeiii (fragment B) and analysed with SSCP (data not shown). Again, no aberrant fragments 
could be detected. 

The sequence we have used to design the primers for PTT analysis of Txp3 contained 
a difference from the sequence indicated in Figure 1. Base 1849 G was later found to be TT. 
The change results in a frameshift which opens the reading frame over the original stopcodon 
(position 1940) to beyond the sequence currently known (2610 bp). Since our 3' nested primer 
anneals at position 2007 we did not analyse the entire C-terminal region of Txp3. Hence we 
have missed mutations if they were present between base pairs 2007 and 2610. 

In parallel experiments (by B. Franco, T. Alitalo and D. Trump, personal 
communications) in which Txp3 exons were amplified from genomic DNA of patients and 
analysed using SSCP. No mutations could be detected. 

Based on the RT-PCR, PTT and SSCP analysis it was concluded that Txp3 is not 
likely to be the gene causing RS. 
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Summary 

SUMMARY 

The mammalian X chromosomes have several interesting features, including that they are one 

of the sex determining chromosomes, contain regions of homology with the Y chromosome (for 

instance in the pseudoautosomal regions), and display X inactivation. The human X chromosome 

is also known to contain many disease genes. The region we have focused on (Xp22.1-p22.2) 

contains amongst others the genes for X-linked juvenile retinoschisis (RS) and keratosis 

follicularis spinulosa decalvans (KFSD). RS is a slowly progressive retinal degeneration that 

causes a decrease in acuity and visual field and can result in total blindness. KFSD is a rare 

disorder that causes a range of symptoms of which hyperkeratosis of specific skin areas and 

absence of facial hair are its most striking clinical features. 

In order to construct a physical map of the Xp22.1-p22.2 region, we screened Y AC libraries 

with markers and clones from this region and assembled the obtained Y ACs into a contig 

(overlapping set) based on Alu PCR fingerprinting and marker content. This Y AC contig spans 

a region of 4.5 to 5Mb from the marker DXS451 to DXS414 (Chapter 2.1). Using this YAC 

contig we ordered several new markers that we subsequently used to refine the candidate regions 

for RS and KFSD by analysis of recombinants. Based on the length of the Y ACs in the Y AC 

contig we estimated that the candidate region for KFSD -between the markers DXS7161 and 

DXS1226- was 1 Mb and the candidate region for RS -between the markers DXS418 and 

DXS999- was 600 kb. However, when more markers became available between DXS418 and 

DXS999 it appeared that the key Y AC in the region (y939H7, 1.3 Mb in length) had a large 

deletion between these markers. To obtain the full-length YAC, we analysed many individual 

colonies from the original culture and found a ,stable<clone that contains all known markers 

between DXS418 and DXS999 and has a length of2.5 Mb. With this stable clone we performed 

YAC fragmentation. The yeast colony was transformed with a plasmid (pBP108/ADE2) that 

contained a yeast telomere, the ADE2 gene and an Alu repeat sequence. Homologous 

recombination between theAlu's in the YAC and theAlu in the plasmid generated fragmented 

Y ACs that could be selected for through the ADE2 gene, now present in the Y ACs. The 

experiments resulted in a panel of fragmented YACs ranging in size from 170 kb to 2.4 Mb. This 

panel facilitated the construction of a large-scale restriction map and allowed binning of clones 

in the region (Chapter 2.2). The RS candidate region could then be estimated to be 1 Mb in size, 

almost twice the size of the original estimation. 
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We chose ex on trapping as method to isolate candidate genes for the diseases localised to 

this region and to construct a transcriptional map. We begarLwith the (plasmid-based) pSPL3 

exon trap vector and the first transcripts we isolated were part of PHKA2, a known gene in the 

region. To improve the speed and efficiency of exon trapping, we constructed a new, cosmid

based, exon trap vector (sCOGH) to analyse larger stretches of DNA (up to 40 kb), thereby 

leaving more of the genomic context in tact, and allowing the isolation of multiple exons in one 

product. We first tested the system by exon trapping cosmids that contained up to seven exons 

of a known gene, DMD. Analysis of the ex on trap products proved that the exons were correct! y 

spliced (Chapter 3). 

We subcloned key Y ACs from the Xp22.1-p22.2 region in the sCOGH exon trap vector and 

used the resulting cosmids in exon trap experiments. We generated many exon trap products, one 

of which was characterised extensively and proved to contain part of the SCMLl gene (Chapter 

4.1), a gene that was simultaneously isolated by D. Trump (Cambridge, U.K) using pSPL3 exon 

trapping. We also contributed to the analysis of PPEF, another gene in the RS candidate region 

that was found using pSPL3 exon trapping (Chapter 4.2). This gene has a homologue in 

Drosophila (rdgC) that plays a role in the prevention of light induced retinal degeneration and 

therefore seemed a strong candidate for RS. However, PPEF is not expressed in the mammalian 

eye, suggesting a different function for the human homologue. 

We tested two candidate genes, PPEF and Txp3, in RS patients to search for mutations 

causing the disease, but no mutations were found using several techniques (Chapter 5). This 

makes it unlikely that either Qf these two genes is involved in RS. The newly identified SCMLl 

gene has not been extensively tested for mutations in RS patients. Based on P AC clones provided 

by the Retinoschisis Consortium the entire RS Cillldidate region has been sequenced, allowing 

in silica identification of putative genes from the region. The identification of the RS gene 

therefore seems not far off. Although several genes have been isolated in the KFSD candidate 

region recently, none of these genes have been tested in KFSD patients so far. 
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SAMENV ATTING VOOR LEKEN 

DNA (desoxyribonucle'inezuur) is een molecuul dat bestaat uit vier verschillende bouwstenen 

(de nucleotiden ofbasen); guanine (G), adenine (A), cytosine (C) en thymine (T), die in lange 

ketens aan elkaar gekoppeld zijn. Hoewel in zoogdieren in 98% van het DNA deze Gs, As, Cs 

en Ts in schijnbaar willekeurige volgorde aan elkaar gekoppeld zijn, bevat het DNA ook zo'n 

50.000 tot 100.000 stukken (de genen), waar de volgorde van de nucleotiden heel precies de 

informatie bevat die vertaald kan worden in eiwitten. Door een exacte regulering van het 

moment, de plaats in het lichaam, en de hoeveelheid van vertaling van elk gen in een specifiek 

eiwit, worden alle processen in elk organisme van eicel tot volwassen stadium geregeld. Het 

DNA is aanwezig in (vrijwel) alle cellen in het lichaam. Bij de voortplanting geeft elk van de 

ouders de helft van zijn of haar DNA door aan het nageslacht, het DNA is zo de drager van het 

erfelijk materiaal (het genoom). 

Het erfelijk materiaal van de mens is verdeeld over 23 paren chromosomen, hiervan zijn er 

22 identieke paren, van groot naar klein genummerd chromosoom 1 tot en met 22, en een paar 

geslachts chromosomen. Deze geslachts chromosomen bestaan uit 2 X chromosomen (bij de 

vrouw) of uit een X en een Y chromosoom (bij de man). Het X chromosoom heeft een grootte 

vergelijkbaar met chromosoom 7 of 8 (160 miljoen basen) en bevat ongeveer 2500 tot 5000 

genen. Het Y chromosoom is het kleinste chromosoom (50 miljoen basen) en bevat 

waarschijnlijk weinig genen. Wanneer bij de man een fout aanwezig is in een gen op het X 

chromosoom resulteert dit in een X-gebonden aandoening. Afhankelijk van welk gen het is kan 

dit bijvoorbeeld een spierziekte zijn -zoals bij Duchenne spier dystrofie waar een spiereiwit niet 

goed wordt aangemaakt-, een combinatie van ,afwijkingen in de ontwikkeling, -zoals bij het 

syndroom van Hunter waar een eiwit benodigd voor de stofwisseling defect is-, of een 

onschuldige aandoening -zoals de veel voorkomende kleurenblindheid-. X-gebonden 

aandoeningen komen minder vaak bij vrouwen voor doordat ze bijna altijd op hun tweede X 

chromosoom een gezonde kopie van het aangedane gen meedragen. Vrouwen kunnen het 

afwijkende gen echter wel doorgeven aan hun dochters en zonen. 

Het onderzoek beschreven in dit proefschrift was erop gericht een deel van het X 

chromosoom (namelijk Xp22.1-p22.2) in kaart te brengen om vervolgens de genen te kunnen 

vinden die in dit gebied bij verschillende erfelijke aandoeningen betrokken zijn. In figuur 5 is 

aangegeven van welke aandoeningen bekend is dat ze in dit gebied liggen. Het onderzoek werd 
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na verloop van tijd gericht op het vinden van twee specifieke genen; het gen dat in patienten met 

X-gebonden juveniele retinoschisis (RS) aangedaan is en het gen dat in patienten met keratosis 

follicularis spinulosa decalvans (KFSD) aangedaan is. RS komt voor bij 1 op de 10 a 20.000 

mensen en is een langzaam voortschrijdende oogziekte waarbij de gezichtsscherpte afneemt en 

het gezichtsveld nauwer wordt. De ziekte wordt meestal op jonge leeftijd ontdekt, vaak doordat 

het schoolbord slecht leesbaar blijkt, en kan op latere leeftijd uiteindelijk leiden tot blindheid. 

De oorzaak van de afname in gezichtsscherpte is het ontstaan van vouwen en scheuren in de gele 

vlek (de macula, waar normaal het scherpste beeld verkregen wordt), de oorzaak van de 

vernauwing van het gezichtsveld is het splijten van het netvlies (retina) waarbij in de ergste 

gevallen het netvlies geheellos kan laten. Er is momenteel geen behandeling beschikbaar om RS 

te genezen of de symptomen te bestrijden. KFSD is een zeer zeldzame afwijking waarbij 

verdikking van de huid van de nek, oren, handpalmen en voetzolen, verlies van wenkbrauwen, 

wimpers en baardgroei, kaalheid in draaiende strepen, ontsteking van de oogleden, degeneratie 

van het hoornvlies, en overgevoeligheid voor licht voorkomen. De symptomen van KFSD nemen 

na verloop van tijd af. 

Het in kaart brengen van het Xp22.1-p22.2 gebied is gedaan met kunstmatige chromosomen 

m gist (yeast artificial chromosomes = Y ACs) die elk een stukje van het menselijk X 

chromosoom bevatten. Ben selectie van overlappende Y ACs ( een contig) werd gemaakt door van 

bekende stukjes DNA (zogenaamde markers) de aanwezigheid en volgorde in de YACs te 

bepalen. Met deze markers werd tevens in DNA van RS en KFSD patienten en hun farnilieleden 

door rniddel van overervingsonderzoek bepaald waar deze genen ongeveer liggen. Zo konden we 

bepalen dat het RS gen gelegen is tussen de markers DXS418 en DXS999 en het KFSD gen 

tussen de markers DXS7161 en DXS1226 (zie hqofdstuk 2.1). Ben van deze YACs (y939H7), 

die het gebied tussen DXS418 en DXS999 geheel bevat, hebben we gebruikt in experimenten 

die de YAC stukken kleiner maakt (YAC fragmentatie) zodat deze eenvoudiger te analyseren 

werd. Met behulp van de gefragmenteerde Y ACs hebben we een zeer gedetailleerde kaart van 

het gebied kunnen maken en de grootte van het gebied kunnen bepalen op ongeveer 1 rniljoen 

basen (zie hoofdstuk 2.2). 

Om (stukken van) genen te kunnen isoleren uit deze kandidaat gebieden hebben we de 'exon 

trap' techniek gekozen. Na het aflezen van een gen, waarbij een kopie (het mRNA) van het gen 

ontstaat die in plaats van thymine uracil (U) bevat, worden niet coderende stukken (intronen) 

tussen de coderende stukken (exonen) uitgesplitst. Exon trappen is erop gebaseerd dit uitsplitsen 
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te forceren in een experimentele opzet zodat de exonen gevonden kunnen worden. Naast een 

bestaand exon trap systeem (pSPL3) hebben we een nieuw exon trap systeem (sCOGH) gebruikt. 

De door ons ontwikkelde exon trap vector, sCOGH, hebben we eerst uitgetest op een bekend gen; 

DMD, het gen dat aangedaan is bij Duchenne spier dystrofie (zie hoofdstuk 3). Slechts een van 

de genen die met behulp van het sCOGH systeem gevonden werd, SCMLI, is tot nu toe verder 

geanalyseerd (zie hoofdstuk 4.1). Van de genen gevonden met het pSPL3 systeem was het eerste 

een reeds bekend gen; PHKA2. We hebben wegens het succes van het sCOGH systeem 

vervolgens -behalve aan de gezamenlijke analyse van PPEF (zie hoofdstuk 4.2)- weinig moeite 

gestoken in de analyse van de pSPL3 producten. 

Twee genen uit het RS kandidaat gebied (PPEF en Txp3) zijn met verschillende technieken 

getest in RS patienten, in geen van beide werden echter afwijkingen gevonden (zie hoofdstuk 5). 

Het is daardoor onwaarschijnlijk dat een van deze twee genen een rol speelt in het onstaan van 

RS, of ze een rol spelen bij een van de andere ziekten die in dit gebied liggen is nog niet getest. 

Er zijn nog geen genen getest in KFSD patienten, hoewel er al wel genen in het kandidaat gebied 

beschikbaar zijn. Het isoleren en testen van meer nieuwe genen in de RS en KFSD kandidaat 

gebieden zal uiteindelijk leiden tot de identificatie van de genen die in RS en KFSD patienten 

aangedaan zijn. Het vinden van deze genen zal inzicht geven in de functie ervan en zo mogelijk 

leiden tot een vorm van therapie. 
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ADDENDUM 

In the discussion it was predicted that the gene involved in X-linked juvenile retinoschisis would 

be identified soon. The cloning of the RS gene by Sauer et al.* was indeed published in the 

October issue of Nature Genetics, just before this thesis was printed. 

The gene, designated XLRSI (for X-linked retinoschisis-1) was found using a combination 

of approaches, including exon trapping, cDNA selection and analysis of the sequences from the 

P ACs spanning the RS region, generated by the Sanger Centre in collaboration with the 

Retinoschisis Consortium. The XLRSJ gene consists of 6 exons, contains 2 possible poly

adenylation sites (at positions 847 and 4020 respectively) and detects transcripts on Northern 

blots of 1.1 and 3.1 kb, suggesting alternative poly -adenylation. The transcript is highly abundant 

in retina and not expressed in other tissues. XLRSJ has an 687 bp ORF and encodes a 244 amino 

acid precursor protein with a 23 amino acid residue leader sequence. The predicted mature 

protein has a length of 201 amino acids, with a mass of 23 kD. 

The mature protein shows a region of high homology to discoidin. This domain is 

evolutionary conserved and shared by several other proteins implicated in phospholipid binding 

and cell-cell interactions on membrane surfaces. XLRSI could be necessary for establishing cell

specific synaptic contacts. A defective protein may thus interfere with the formation of 

interneuronal connections during embryonal development thereby causing RS. Further analysis 

is required to elucidate the exact function of XLRSJ and its role in the developing retina. 

The expression profile, being retina specific, led to the testing for mutations in RS patients. 

One nonsense, one frameshift, one splice acceptor and six missense mutations were identified 

in nine unrelated RS families. These mutations prove that the gene, when mutated, indeed causes 

RS. 

Based on the mutation spectrum observed so far, its potential function and the lack of 

symptoms in carriers, it is likely that loss of function (rather than a dominant negative effect) is 

the cause of the pathology. This gives room for speculation on possible methods for therapy of 

RS patients. As RS is a slowly progressive disease, gene therapy at a very early age may prevent 

total blindness later in life. 

* C.G. Sauer, A. Gehrig, R. Warneke-Wittstock, A. Marquardt, C.C. Ewing, A. Gibson, B. Lorenz, B. 

Jurklies, and B.H.F. Weber. (1997) Positional cloning of the gene associated with X-linked juvenile 

retinoschisis. Nature Genet. 17: 164-170. 
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Abbreviations 

LIST OF ABBREVIATIONS 

bp base pair 

CEPH Centre d'Etude du Polymorphisme Humain 

CLS Coffin-Lowry syndrome 

cM centiMorgan 

DGGE denaturing gradient gel electrophoresis 

DNA 

FISH 

HSH 

HTF 

kb 

kDa 

KFSD 

Mb 

NHS 

deoxyribonucleic acid 

fluorescence in situ hybridisation 

hypomagnesemia with hypocalcernia 

Hpail tiny fragments 

kilo base 

kilo Dalton 

keratosis follicularis spinulosa decalvans 

Mega base 

Nance Horan syndrome 

OMIM on line Mendelian inheritance in man 

P AB pseudoautosomal boundary 

PAR pseudoautosomal region 

PCR polymerase chain reaction 

PFGE pulsed-field gel electrophoresis 

PPEF protein phosphatase with EF calcium-binding domain 

PTT protein truncation test 

RFLP restriction fragment length polymorphism 

RNA ribonucleic acid 

RP15 X-linked cone rod degeneration (retinitis pigmentosa 15) 

RS X -linked juvenile retinoschisis 

RT reverse transcription 

SCML1 sex comb on rnidleg-like 1 

SEDL spondyloepiphyseal dysplasia of the late type 

SSCA single-strand conformation analysis 

XIC X inactivation center 

Y AC yeast artificial chromosome 
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