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Lasing threshold and mode competition in chaotic cavities
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The lasing threshold of a multimode chaotic cavity~linear sizeD @ wavelengthl) coupled to the outside
through a small hole~linear sized!l) is studied. For sufficiently weak absorption by the boundaries, the
statistical distribution of the threshold is wide, its mean value being much less than the pumping rate needed
to compensate the average loss. The average number^Nnc&@1 of noncompeting excited modes is proportional
to the square root of the pumping rate. We use the classical model of spatial hole burning to account for mode
competition and find a reduction in the average number of excited modes to^N&531/3^Nnc&

2/3.
@S1050-2947~98!06802-4#

PACS number~s!: 42.55.Sa, 05.45.1b, 42.55.Ah, 78.45.1h
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I. INTRODUCTION

Incorporation of quantum optical effects is a necess
and interesting extension of active ongoing research on m
tiple scattering of electromagnetic waves in random me
@1#. It becomes particularly important when the medium
active, as is the case in experimentally realized ‘‘rand
lasers’’ @2–4#. Quantum effects have been largely ignored
many publications devoted to propagation in disordered
plifying waveguides@5–8#, in which only amplified stimu-
lated emission of external incoming flux but not of spon
neously emitted internal noise was taken into account~Ref.
@9# being a notable exception!. Amplified internal noise can
lead to excitation of low-threshold lasing modes of the wa
guide, making practical use of amplifying waveguides pro
lematic. The difficulty of the waveguide geometry is the o
set of localization. In this paper we consider a simpler cav
geometry, which does not show localization, but retains t
essential features of the problem:~1! large sample-to-sampl
fluctuations and~2! instability brought about by spontaneou
emission.

A complete description of the fluctuations is possible
the universal regime characterized by a chaotic pattern
classical trajectories. We assume that the cavity~volume V
.D3) is confined by conducting walls, filled with a lasin
medium ~central frequency of the gain profilev0), and
coupled to external detectors via one or several small ho
It was demonstrated recently that a nonintegrable shap
the resonator can significantly affect its lasing propert
@10#. Chaoticity of classical trajectories can be achieved
ther by a peculiar shape of the resonator@11–13#, or by a
small amount of disorder scattering. We will speak ab
‘‘chaotic cavities,’’ meaning either of the two mechanism
responsible for the onset of chaos.

We restrict ourselves to the case of well-resolved cav
modes, which means that~1! resistive lossg* in the cavity
walls is less than the mean modal spacingdv05p2c3/v0

2V
and ~2! characteristic size of the holesd is smaller than the
wavelengthl052pc/v0. Mean lossg0 through a small hole
was calculated by Bethe@14#,

g0.
cd6

l0
4V

, d!l0 , ~1!
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so thatg0 /dv0.(d/l0)6!1. Note that the loss~1! is not
proportional to the area of the hole. It is in fact much smal
than one might guess by extrapolating the dependenceg0
.cd2/V valid for d@l0. The effect of sample-to-sampl
fluctuations is pronounced only ifg* !g0. This regime is
experimentally accessible, as was demonstrated by a re
series of experiments on microwave cavities with superc
ducting niobium walls@12,13#.

Each act of spontaneous emission in a pumped cavity
source of radiation into some cavity mode. Classical con
tion of the lasing threshold in a given cavity mode is satisfi
if the gain due to stimulated emission equals the lo
Threshold for the cavity is the smallest value of the pump
rate at which threshold is attained for one of the modes. T
questions we ask are, what is the threshold rate of pump
How many lasing modes can coexist for a given pump
rate above the threshold? The problem of spectral conten
outgoing radiation has been widely studied for integra
cavities of definite shape. Considering arrays of chaotic ca
ties of slightly varying shape or with different configuration
of scatterers we address the problem statistically and c
pute the probability of lasing, the distribution of the thres
old, and the average number of excited modes.

Trivially, gain greater than mean lossg0 will be on the
average sufficient to ensure lasing, while gain smaller th
g* will never suffice. The mean loss from a tiny hole
small. We argue that the actual average threshold can sti
many orders of magnitude smaller. Each individual cav
exhibits a well-defined threshold but its statistical distrib
tion is wide. In Sec. II we compute this distribution for th
idealized caseg* 50. Effects of nonzero resistivity of the
walls are discussed in Sec. III. Section IV is devoted to
computation of the average number of excited modes ab
the threshold. We conclude in Sec. V.

II. DISTRIBUTION OF LASING THRESHOLD

We assume that the line of spontaneous emission is
mogeneously broadened and has Lorentzian shape with
tral frequencyv0 and width 2V. Let c i(rW) be the amplitude
of a mode of the closed cavity at frequencyv i , normalized
according to*drWc i

2(rW)5V. ~For simplicity we neglect polar-
2041 © 1998 The American Physical Society
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2042 57T. SH. MISIRPASHAEV AND C. W. J. BEENAKKER
ization dependent phenomena and work with real scalar fi
amplitudes.! In the presence of weak coupling to the outsi
world the modes acquire finite widthsg i . We assume two
sets of conditions:

g0!dv0,V!v0 , d!l0!D. ~2!

An especially important role is played by the inequalityg0
!dv0, which is implied byd!l0. It ensures that the mode
of the open cavity are well defined and do not differ sign
cantly from those of the closed one. In this section we c
sider the idealized case in which there is no loss in the w
of the cavity (g* 50).

In a chaotic cavity the modesc i(rW) can be modeled a
random superpositions of plane waves@15#. ~Validity of this
model has been checked experimentally in microwave c
ties @12,16#.! This implies a Gaussian distribution forc i(rW)
at any pointrW. The corresponding distribution forc i

2(rW) is
called the Porter-Thomas distribution@17#. Loss from a small
hole located atrW is proportional to@¹W nWc i(rW)#2 @with ¹W nWc i(rW)
the derivative in the direction normal to the surface of t
hole# and has the same Porter-Thomas distribution, wh
was directly probed in the experiments of Ref.@12#. More
generally, the distribution of normalized modal widthsy
5g i /g0 in a cavity withn holes is given by thex2 distribu-
tion with n degrees of freedom~normalized to 1),

Pn~y!5
~n/2!n/2

G~n/2!
y211n/2exp~2ny/2!. ~3!

We assumed that loss from different holes is independ
which is true provided their separation is larger thanl0. For
small integern, the distribution~3! is wide. The single-hole
casen51 looks especially promising from the point of vie
of low-threshold lasing becauseP1(y)5exp(2y/2)/A2py
grows with decreasingy.

To grasp the picture we first confine ourselves to a sub
of cavity modes located nearv0. We neglect fluctuations o
their frequencies and assume that the modes are equidis
vm5v01dv0m, m50,61,62, . . . . Wedenote byRp0

a
reference pumping rate necessary to provide gain equa
the mean lossg0 at frequencyv0, and introduce the reduce
pumping rate«5Rp /Rp0

, assumed!1. Loss of different
modes is uncorrelated and distributed according to Eq.~3!
while gain diminishes with increasing differenceuv2v0u
according to the Lorentzian

g0~v!5g0«@11~v2v0!2/V2#21. ~4!

It follows that the probabilitypn(«) of there being no lasing
mode at the pumping rate« is given by

pn~«!5)
m

S 12E
0

g0~vm!/g0
dy Pn~y! D . ~5!

For «!1, the upper limit of the integral is also!1, and we
can replacePn(y) by its leading behavior at smally,
Pn(y)}y211n/2, which yields
ld

-
-
ls

i-

h

t,

et

nt,

to

pn~«!')
m

S 12
Cn«n/2

@11m2~dv0 /V!2#n/2D
'expS 2Cn«n/2(

m
@11m2~dv0 /V!2#2n/2D , ~6!

Cn5~n/2!211n/2@G~n/2!#21. ~7!

Because the summand decays asm2n we find that for
n.1 the leading behavior of the probability of no lasing
determined by the modes withumu&V/dv0,

pn~«!'exp@2C̃n~V/dv0!«n/2#. ~8!

Here C̃n5ApCnG@(n21)/2#/G(n/2) for n.1 ~below we
will separately defineC̃1). Modes far fromv0 have negli-
gible chance to get excited and need not be taken into
count. On the contrary, forn51 all cavity modes, including
those very far fromv0, contribute to the probability.

To treat the contribution of distant modes forn51 cor-
rectly, we must account for several factors which we co
ignore forn.1. ~1! The spectral density cannot be replac
by its valuer051/dv0 at v5v0. Insteadr(v)5r0v2/v0

2.

~2! The mean loss is frequency dependent,ḡ (v)5g0v4/v0
4,

cf. Eq.~1!. ~3! The Lorentzian~4! for the amplification rate is
an approximation valid only in the vicinity ofv0. A correct
expression for the gaing(v) must be even inv to comply
with the symmetryx(v)5x* (2v) of the dielectric suscep
tibility x. It includes contributions of both poles6v01 iV
and reads

g~v!5
4v2g0«V2

~v22v0
2!212~v21v0

2!V21V4
. ~9!

Taking these three factors into account and replacing
discrete sum by an integral, the probability of no lasing
given by

pn~«!5expS E
0

vmax
dvr~v!lnE

g~v!/ ḡ ~v!

`

dy Pn~y! D .

~10!

For n.1 this leads to Eq.~8!, the ultraviolet cutoffvmax
being irrelevant. Forn51 we get

p1~«!5expS E
0

vmax
dvr~v!lnF12erfA g~v!

2ḡ ~v!
G D ,

~11!

where erf(z)5(2/Ap)*0
zdx exp(2x2) is the error function.

The main logarithmic contribution of type*dv/v to the
integral in Eq.~11! comes from large values ofv. The ul-
traviolet cutoff vmax.2pc/d appears because loss of hig
frequency modes withl,d no longer exhibits the strong
fluctuations of Eq.~3!. Beyond the cutoff classical ray optic
applies, leading to a narrowly peaked distribution of the lo
around the valuecd2/V@g0. Because we are considering th
case«!1 in which the gain is much smaller than the avera
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57 2043LASING THRESHOLD AND MODE COMPETITION IN . . .
lossg0, the high frequency modes cannot be excited. It f
lows that the only relevant cavity modes are those with f
quencies smaller than vmax. Their number M
'vmax

3 /3v0
2dv0.(D/d)3 is @1. From Eq.~11! the prob-

ability of no lasingp1(«) can be cast in the form of Eq.~8!

with the coefficientC̃15(8/p)1/2ln(vmax/V) weakly depen-
dent on the frequency cutoffvmax. Figure 1 shows that the
probability of lasing 12p1(«) can be reasonably large eve
for extremely small values of the reduced pumping rate«.

The quantity 12pn(«) is the fraction of lasing cavities in
an array at a given pumping rate«. It is directly related to the
probability distributionTn(«) of the lasing threshold. Obvi
ously *0

«d«8Tn(«8)512pn(«), hence Tn(«)52dpn(«)/
d«. We find from Eq.~8! that

Tn~«!5 1
2 nC̃n~V/dv0!«211n/2exp@2C̃n~V/dv0!«n/2#.

~12!

~Deviations which arise at«*1 are unimportant.! The dis-
tribution is wide and in the single-hole casen51 diverges as
«→10 ~see right inset of Fig. 1!. The average reduce
threshold reads^«n&5G(112/n)(C̃nV/dv0)22/n. It is
smallest forn51 and is indeed much smaller than 1.

III. EFFECTS OF NONZERO WALL RESISTIVITY

A nonzero lossg* from the resistivity of the cavity walls
modifies the functions~10!–~12! by suppressing lasing fo
«,g* /g0. The distribution of the lasing threshold remai
wide, as long asg* /g0!1, as we now show. Instead of Eq
~10! we have

FIG. 1. Probability of lasing 12p1(«) versus reduced pumpin
rate « with p1(«) given by Eq. ~11! (v0 /V510, V/dv0510).
Thick lines are for different ratiosD/d corresponding to differen
numbersM.(D/d)3 of relevant cavity modes~dot-dashed lineM
5102, dashed lineM5103, solid lineM5104). Left inset shows an
example of chaotic cavity. Chaotic behavior of classical trajecto
in this particular ‘‘die’’ shaped cavity was shown in Ref.@11#.
Radiation is confined inside by means of ideally conducting w
and can leave the cavity only through a tiny hole. Right in
shows the probability distribution of the lasing thresho
Tn(x)5(n/2)x211n/2exp(2xn/2), with x related to « by x

5«(C̃nV/dv0)2/n, for different number of holesn51,2,3.
-
-

pn~«!5expS E
v2

v1

dvr~v!lnE
~g~v!2g

*
!/ ḡ ~v!

`

dy Pn~y! D ,

~13!

where v2,v1 are the two positive frequencies such th
g(v6)5g* . A nonzero value ofg* reduces the relevan
frequency range to a narrow window aroundv0. Therefore
the modifications~1!–~3! of the preceding section becom
unnecessary even for the casen51. Using the simple
Lorentzian ~4! for g(v), instead of the more complicate
expression~9!, we find v65v06V(«g0 /g* 21)1/2. Ne-
glecting thev dependence ofr(v), ḡ (v) and using the
small-argument behavior of the probability functionPn(y),
we reduce Eq.~13! to

pn~«!5exp@2Cn~V/dv0!~g* /g0!n/2f n~«g0 /g* 21!#,
~14!

whereCn is the numerical coefficient introduced in Eq.~7!
and

f n~z!5AzE
21

1

dyS 12y2

y211/z
D n/2

~15!

can be expressed in terms of a hypergeometric function
Fig. 2 we have plotted the distribution of the lasing thres
old, Tn(«)52dpn(«)/d«, for n51 and different values of
g* /g0. We will analyze two limiting regimes.

In the regime«g0 /g* @1 and forn.1 we recover the
expression~12! with the same constantC̃n . The value of
C̃15C1ln(«g0 /g* ) is different because of the different cuto
mechanism. Instead of having a weak logarithmic dep
dence onvmax it exhibits a weak logarithmic dependence o
the pumping rate«. This limiting case is statistically domi
nant if g* /g0!(dv0 /V)2/n, because then the corrections
Eq. ~12! at «&g* /g0 have negligible statistical weight.

In the opposite regime,«g0 /g* 21!1, the threshold dis-
tribution differs significantly from Eq.~12!,

s

s
t

FIG. 2. Probability distribution of the lasing threshold in a ca
ity with small absorption in the boundary and a single holen
51), computed as2dp1(«)/d« from Eq. ~14!. We choseV/dv0

510 and took three values ofg* /g0 such thatg* /g0 is much
smaller than, equal to, or much greater than (dv0 /V)2/n51022.
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Tn~«!5 1
2 ~11n!An~V/dv0!~g0 /g* !1/2

3~«2g* /g0!~n21!/2exp@2An~V/dv0!~g0 /g* !1/2

3~«2g* /g0!~11n!/2# ~16!

@with a numerical coefficientAn5ApCnG(11n/2)/G(3/2
1n/2)#. This regime is statistically dominant ifg* /g0
@(dv0 /V)2/n. The mean value of threshold is now close
g* /g0, but there are large fluctuations towards larger«.

IV. AVERAGE NUMBER OF EXCITED MODES

In this section we focus on the number of lasing mod
beyond the lasing threshold forn51 assumingg* 50. We
assume that the parameters are such that many mode
above the threshold. This requires, in particular,«g0 /g*
@1. In this case a nonzero value ofg* only leads to a
redefinition ofC̃1 because of the different cutoff mechanism
If the modes did not compete we could compute the aver
number of excited modeŝNnc& as

^Nnc&5E
0

vmax
dvr~v!erfA g~v!

2ḡ ~v!
. ~17!

For «,1 it is given by ^Nnc&5C̃1(V/dv0)«1/2. However,
the modes do compete for a homogeneously broadened
because one of the modes can deplete the inversion, pre
ing another mode from being excited@18#. Multimode opera-
tion is still possible if different excited modes deplete t
inversion in different spatial regions of the cavity@19,20#.
We assume this mechanism of multimode generation, ca
spatial hole burning@21#.

Let ni , N(rW) denote the number of photons in the modi
and the density of population inversion between the las
levels. Semiclassical rate equations read

dni

dt
52g ini1Wi~ni11!E drWc i

2~rW !N~rW !, ~18!

dN~rW !

dt
5«Rp0

/V2wN~rW !2N~rW !(
i

Winic i
2~rW !. ~19!

Here w is the nonradiative decay rate andWi is the rate of
stimulated emission into modei . The constantWi is related
to the gain ~9! in the corresponding mode,Wi
5wg(v i)/«Rp0

.
We restrict ourselves to a steady state solution. Let th

be N excited modes,i 1 ,i 2 , . . . ,i N . Because the number o
photons in an excited mode is very large, we can appro
mateni k

11'ni k
in the right-hand side of Eq.~18!. Elimi-

nating the equilibrium population inversion densityN(rW), we
get the following set of equations for the equilibrium mo
populationsni k

:

S 2g i k
1«Rp0

Wi kE drW

V

c i k
2 ~rW !

w1(
j

Wjnjc j
2~rW !D ni k

50.

~20!
s

are

.
e

ine
nt-

d

g
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Nonexcited modes typically contain only few photons a
can be omitted from the sum. We assume that we are no
beyond threshold, so thatw@( jWjnjc j

2(rW), and we may ex-
pand the denominator in Eq.~20!. We arrive at the following
system of linear equations (k51, . . . ,N):

1

«Rp0

(
l 51

N

Ai ki l
g~v i l

!ni l
512

g i k

g~v i k
!
, ~21!

subject to a constraintni k
.0.

So far we have followed the reasoning of Refs.@19,20#.
Now we need to take into account randomness of coefficie
in Eq. ~21!. CoefficientsAi ki l

are given by

Ai ki l
5

1

VE drWc i k
2 ~rW !c i l

2~rW !. ~22!

They are self-averaging quantities with negligibly small flu
tuations around their mean^Ai ki l

&5112d i ki l
, which follows

from the independent Gaussian distributions forc i(rW) @22#.
Because the correlations betweenAi ki l

’s and g i s
’s are also

negligibly small, we may substituteAi ki l
5112d i ki l

in Eq.
~21!. Without loss of generality we can assume th
g i 1

/g(v i 1
)<g i 2

/g(v i 2
)<•••<g i N

/g(v i N
). Inverting the

matrix Ai ki l
we find

g~v i k
!ni k

«Rp0

5
1

N12
2

g i k

2g~v i k
!

1
1

2~N12!(l 51

N g i l

g~v i l
!
.

~23!

The number of excited modesN is restricted by the require
ment that allni k

’s should be positive. A necessary and su
ficient condition is

~21N!
g i N

g~v i N
!

2(
l 51

N g i l

g~v i l
!
,2. ~24!

Equation~24! can be used to determine the probability d
tribution of the number of excited modes, using the Port
Thomas distribution~3! for the statistics of decay ratesg i . In
the region of parameters where^N&@1 this mean value can
be found analytically from the continuous approximation
the condition~24!,

S 21E
0

amax
das~a! Damax2E

0

amax
da as~a!52, ~25!

with ^N&5*0
amaxda s(a). The densitys(a) of the variables

a i5g i /g(v i) is given by

s~a!5E
0

vmax
dv r~v!P1@ag~v!/ ḡ ~v!#g~v!/ ḡ ~v!

5 1
2 C̃1~V/dv0!a21/2. ~26!

It follows from Eq. ~25! that ^N&5C̃1(V/dv0)z, wherez
satisfies a cubic equation
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z21 1
3 C̃1~V/dv0!z35«. ~27!

To leading order in 1/^N& the term z2 can be neglected
which yields a simple answer

^N&531/3~C̃1V/dv0!2/3«1/3531/3^Nnc&
2/3. ~28!

The general form of this result for anyn can be derived in a
similar way, leading to^Nnc&5C̃n(V/dv0)«n/2, ^N&5(n
12)n/(n12)^Nnc&

2/(n12). These results are independent ofg*
as long asg !g0.

FIG. 3. Average number of excited modes^N& versus dimen-
sionless pumping rate« ~same parameters as in Fig. 1!. The solid
lines are the analytical result~27!, the data points are a Monte Car
average. The main plot corresponds ton51, M5102 ~circles!, M
5103 ~squares!, M5104 ~diamonds!. Dashed lines represent th
average number̂Nnc& of noncompeting modes. The inset shows t
casen52 for M@1. Note a drastic reduction in the number
excited modes.
*

E

s

w

n

.

,

To test numerically the analytical results for^N&, we did
a Monte Carlo average over the Porter-Thomas distribut
For each of 2000 realizations, we ordered the modes in
creasing order of the ratio loss over gain and found maxim
N satisfying Eq.~24!. Results for^N(«)& are in excellent
agreement with the continuous approximation down
^N&;1 ~Fig. 3!.

V. CONCLUSION

To summarize, we have considered lasing of a cha
cavity coupled to the outside world vian small holes. We
assumed that the broadening of the cavity modes~due to
leakage through the holes and absorption by the cavity wa!
is less than their spacing and used a simple criterion ‘‘mo
gain> modal loss’’ as the condition for a given mode to b
excited. Natural unit of the pumping rateRp0

is defined such

that ‘‘maximal gain5 mean loss.’’ Because of strong fluc
tuations of modal widths, the probability of lasing can
significantly large for much weaker pumping rates thanRp0

.
The distribution of the lasing threshold turns out to be wid
with the mean much less thanRp0

. We have described the
multimode operation as a result of spatial hole burning a
found that the average number of excited modes is prop
tional to the powern/(n12) of the pumping rate.
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@12# H. Alt, H.-D. Gräf, H. L. Harney, R. Hofferbert, H. Lengeler
A. Richter, P. Schardt, and H. A. Weidenmu¨ller, Phys. Rev.
Lett. 74, 62 ~1995!.
.

.

er,

ak-

@13# H. Alt, C. Dembowski, H.-D. Gra¨f, R. Hofferbert, H. Rehfeld,
A. Richter, R. Schuhmann, and T. Weiland, Phys. Rev. L
79, 1026~1997!.

@14# H. A. Bethe, Phys. Rev.66, 163 ~1944!.
@15# M. V. Berry, J. Phys. A10, 2083~1977!.
@16# A. Kudrolli, V. Kidambi, and S. Sridhar, Phys. Rev. Lett.75,

822 ~1995!; V. N. Prigodin, N. Taniguchi, A. Kudrolli, V.
Kidambi, and S. Sridhar,ibid. 75, 2392~1995!.

@17# T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pande
and S. S. M. Wong, Rev. Mod. Phys.53, 385 ~1981!.

@18# A. Siegman,Lasers~University Science Books, Mill Valley,
CA, 1986!.

@19# H. Haken and H. Sauermann, Z. Phys.173, 261 ~1963!.
@20# C. L. Tang, H. Statz, and G. A. deMars, J. Appl. Phys.34,

2289 ~1963!.
@21# For a detailed treatment of spatial hole burning see H. Hak

Light ~North-Holland, Amsterdam, 1985!, Vol. 2, Chap. 4.
@22# Spatial correlations inc i(rW) exist on the scale of the wave

lengthl. These are irrelevant for the calculation ofAi j when
D@l.


