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ABSTRACT
We analyse the Kaiser–Squires–Broadhurst (KSB) method to estimate gravitational shear from
surface-brightness moments of small and noisy galaxy images. We identify three potentially
problematic assumptions. These are as follows. (1) While gravitational shear must be estimated
from averaged galaxy images, KSB derives a shear estimate from each individual image and
then takes the average. Since the two operations do not commute, KSB gives biased results.
(2) KSB implicitly assumes that galaxy ellipticities are small, while weak gravitational lensing
only assures that the change in ellipticity due to the shear is small. (3) KSB does not invert the
convolution with the point spread function (PSF), but gives an approximate PSF correction
which – even for a circular PSF – holds only in the limit of circular sources. The effects of
assumptions (2) and (3) partially counteract in a way dependent on the width of the weight
function and of the PSF. We quantitatively demonstrate the biases due to all assumptions,
extend the KSB approach consistently to third order in the shear and ellipticity and show that
this extension lowers the biases substantially. The issue of proper PSF deconvolution will be
addressed in Melchior et al.
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1 IN T RO D U C T I O N

Cosmic-shear measurements are a potentially powerful probe of
structure growth at intermediate to late epochs of the cosmic his-
tory. Sufficiently precise measurements should be able to constrain
both the amount, distribution and fluctuation amplitude of dark mat-
ter and the time evolution of dark energy (see Bartelmann 2010, for
a recent review). Significant cosmic-shear signals have been de-
tected in many studies (see Bacon, Refregier & Ellis 2000; Kaiser
2000; Benjamin et al. 2007, for recent examples), and evidence
for accelerated expansion (Schrabback et al. 2009) has also been
found. Cosmic-shear measurements are the primary motivation for
several dedicated surveys that are proposed or upcoming (e.g. EU-
CLID,1 Joint Dark Energy Mission,2 Dark Energy Survey,3 Large
Synoptic Survey Telescope4). They will greatly increase the sur-
vey area and the number of observed galaxies and hence lower the
statistical uncertainty of the shear estimates. However, the analy-
sis of synthetic data in the Gravitational Lensing Accuracy Testing
2008 (GREAT08) challenge (Bridle et al. 2010) shows that the ac-
curacy of shear estimation methods is currently not sufficient to
fully exploit the most ambitious next-generation surveys (Amara &
Réfrégier 2008).

�E-mail: mviola@ita.uni-heidelberg.de (MV), pmelchior@ita.uni-
heidelberg.de (PM), mbartelmann@ita.uni-heidelberg.de (MB)
1 http://sci.esa.int/euclid
2 http://jdem.gsfc.nasa.gov
3 http://www.darkenergysurvey.org
4 http://www.lsst.org

Particularly concerning are systematic biases in shear estimates,
which do not vanish when averaged over a large ensemble of lensed
galaxies. These biases often stem from assumptions made in the
derivation or implementation of shear estimation methods, which
do not hold in reality. For instance, the models used to describe
the galactic shape may systematically differ from the true shape
(Lewis 2009; Melchior et al. 2010a; Voigt & Bridle 2010). Model-
independent approaches may therefore be favoured as they are not
limited by the peculiarities of an underlying model. The widely em-
ployed Kaiser–Squires–Broadhurst (KSB) method (Kaiser, Squires
& Broadhurst 1995) is model-independent because it expresses the
lensing-induced shape change by combinations of moments of the
galactic light distribution. However, it relies on several assumptions
regarding (1) the strength of the apparent distortion, (2) the width
of the window function, (3) the mapping between convolved and
unconvolved ellipticity and (4) the ellipticity of the point spread
function (PSF).

It has been noted that the accuracy of the KSB method has a
problematic dependence on items (2) and (4) (Hoekstra et al. 1998;
Kuijken 1999; Erben et al. 2001). In this work, we investigate the
reasons for problems encountered with shear estimates from KSB
by a rederivation of its fundamental relations. We take particular
care in inspecting the assumptions made and show if and how
improvements to the original KSB relations can be incorporated
such that the shear estimates remain free of bias in a wider range of
galactic and PSF parameters.

In Section 2, we briefly review the basic relations of gravitational
lensing and show how to construct a shear estimate from observed
image ellipticities. In Section 3, we introduce and test three variants

C© 2010 The Authors. Journal compilation C© 2010 RAS



KSB: biases and corrections 2157

of KSB based on a linearized relation between shear and ellip-
ticity, and a novel one which employs a third-order relation. We
investigate the validity of the PSF-correction approach in Section 4
and comment on the possibility of an improved correction for PSF
ellipticities. We conclude in Section 5.

2 W EAK-LENSING BA SICS

This section summarizes the basic weak-lensing concepts that will
be used later. For a complete overview, we refer to Bartelmann &
Schneider (2001). An isolated lens with surface mass density �(θ )
has the lensing potential

�(θ) = 4G

c2

DlDs

Dls

∫
d2θ ′�(θ ′) ln |θ − θ ′|, (1)

where G and c are the usual constants and Dl,s,ls are the angular-
diameter distances between the observer and the lens, the observer
and the source, and the lens and the source, respectively.

To sufficient accuracy, light rays are deflected by the angle

α(θ ) = ∇�(θ ) , (2)

which relates the angular positions of the source β to the image θ

on the sky by the lens equation

β = θ − α(θ ) . (3)

If the lens mapping changes little across the solid angle of a source,
the lens mapping can be locally linearized to describe the image
distortion of the Jacobian matrix:

A ≡ ∂β

∂θ
=

(
δij − ∂2�(θ )

∂θi∂θj

)
=

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
,

(4)

with the convergence

κ(θ) = 1

2
(�11 + �22) (5)

and the two components

γ1 = 1

2
(�11 − �22) , γ2 = �12 (6)

of the complex shear γ = γ 1 + iγ 2. Image distortions measure the
reduced shear

g = γ

1 − κ
(7)

instead of the shear γ itself. To linear order, θ and β are related by

βi = Aij θ
j . (8)

2.1 Shear estimation

The shape of an extended source can be described by angular mo-
ments of its surface-brightness distribution I (θ ):

Qij...k =
∫

I (θ)θiθj ...θkd2θ . (9)

Q is the total flux, Qi defines the centroid of the image and higher
order moments provide information on the image’s morphology.
Combinations of second moments are used to quantify the image’s
ellipticity, which we introduce as

χ = (Q11 − Q22) + 2iQ12

Q11 + Q22
. (10)

The complex ellipticity χ is related to the reduced shear g by

χ s = χ − 2g + g2χ∗

1 + |g|2 − 2�(gχ∗)
(11)

(Schneider & Seitz 1995), where χ s is the unlensed (intrinsic) ellip-
ticity. This relation holds as long as the lens mapping can be locally
linearized. Information on the intrinsic ellipticity of a single object
is not accessible. Reasonable shear estimates thus require averaging
over many galaxies in a region where g can be considered constant,
assuming that the average of χ s vanishes:

0 = 〈χ s〉 =
〈

χ − 2g + g2χ∗

1 + |g|2 − 2�(gχ∗)

〉
. (12)

If the coordinate frame is rotated such that only one shear component
does not vanish, equation (12) is solved by

g 
 〈χ〉
2(1 − σ 2

χ )
+ 〈χ〉3

8

1 − 5σ 2
χ(

1 − σ 2
χ

)4 + O(〈χ〉5), (13)

where σχ is the standard deviation of the intrinsic ellipticity distri-
bution. In the derivation of the above equation, we neglected higher
order moments of the intrinsic ellipticity distribution. Note that the
average ellipticity appears in this equation and that the relation be-
tween the average ellipticity and the shear is generally non-linear.
We recall here that other ellipticity estimators can be defined in
addition to the one presented in equation (10). Another common
estimator is

ε = (Q11 − Q22) + 2iQ12

Q11 + Q22 + 2
(
Q11Q22 − Q2

12

)1/2 , (14)

which has a perfect response to shear, i.e. the shear responsivity is
1 (Seitz & Schneider 1997). However this estimator is considered
more noisy and therefore not commonly used in weak-lensing mea-
surements, and in particular it is not used by KSB. For this reason,
we will employ χ as an ellipticity estimator rather than ε throughout
this work.

3 SHEAR MEASUREMENTS

In practice, shear estimates are obtained from small and noisy back-
ground galaxies. The observed shape of any object is the result of
a convolution of its intrinsic surface brightness I 0(θ ) with the PSF
P (θ ). The convolution tends to make the object more circular or to
imprint a spurious ellipticity on it if the PSF is not isotropic. More-
over, any measurement of moments has to incorporate a weight
function in order to suppress the pixel noise dominating at large spa-
tial scales. Convolution and weighting change the surface brightness
to

I obs(θ ) = W (θ)
∫

I 0(θ ′)P (θ − θ ′)d2θ ′. (15)

Since we are interested in the object’s unconvolved and unweighted
shape, we need to correct these two effects. In this section, we first
assume P (θ − θ ′) → δ(θ − θ ′), i.e. we neglect the PSF convolution
and postpone the PSF correction to the following section.

3.1 Standard KSB

We review in this section the standard KSB formalism, neglecting
PSF convolution. In this situation, the only complication is given
by the presence of the weighting function for the computation of
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moments, which modifies the relation between shear and ellipticity
given by equation (11). Weighting changes equation (10) to

χα = 1

Tr(Q)

∫
d2θI obs(θ )ηαW

( |θ |2
σ 2

)
, (16)

with

ηα =
{

θ2
1 − θ 2

2 if α = 1

2θ1θ2 if α = 2
. (17)

Note that TrQ in equation (16) is also evaluated using weighted
moments. Using equation (8) and the conservation of the surface
brightness, I obs(θ ) = I s(Aθ ), we can infer the surface brightness in
the source plane. From its second moments,

Qs
ij =

∫
d2βI s(β)βiβjW

( |β|2
σ̂ 2

)

= (det A)AikAil

∫
d2θI obs(θ )θkθl

×W

(
(|θ |2 − 2ηαg

α + |θ |2|g|2)

σ 2(1 + |g|2)

)
, (18)

we form the ellipticity

χ s
α = C

∫
d2θI obs(θ)ξαW

( |θ |2 − 2ηβgβ + |θ |2|g|2
σ 2(1 + |g|2)

)
, (19)

where

C = (det A)(1 − κ)2

Tr(Qs)
(20)

ξα = ηα − 2gα|θ |2 + (−1)αηα

(
g2

1 − g2
2

) + 2g1g2η
†
α . (21)

The relation between the two filter scales in equation (18) is given by
σ̂ 2 = (1−κ)2(1+|g|2)σ 2, and the multiplicative term (det A)(1−κ)2

in equation (20) will cancel out once Tr(Qs) is written in terms
of Tr(Q). Note that Einstein’s sum convention is not implied in
(−1)αηα and that

η†
α =

{
η2 if α = 1

η1 if α = 2
. (22)

We adopt this notation for a general tensor:

�
†
αβ...ζ =

{
�2β...ζ if α = 1

�1β...ζ if α = 2
. (23)

Combining equations (16) and (19) gives a more complicated
relation between ellipticities in the source and in the lens planes than
equation (11) due to the presence of the weight function. Keeping
only first-order terms in g, this relation is

χα − χ s
α = gβP sh

αβ (24)

(Kaiser et al. 1995; Hoekstra et al. 1998) with

P sh
αβ = −2

χαLβ

Tr(Q)
− 2χαχβ + 2

Bαβ

Tr(Q)
+ 2δαβ (25)

and

Lβ = 1

σ 2

∫
d2θI obs(θ )W ′|θ |2ηβ ,

Bαβ = 1

σ 2

∫
d2θI obs(θ )W ′ηαηβ . (26)

The notation we use here follows Bartelmann & Schneider (2001).

3.2 Shear estimates

Equation (24) directly relates the measured weighted ellipticity χ to
the shear g if the intrinsic ellipticity of the source χ s is known. Since
χ and χ s cannot be disentangled for individual galaxies, averages
over ensembles of images are necessary to estimate g:

〈χα〉 − 〈
χ s

α

〉 = 〈
gβP sh

αβ

〉 → 〈gα〉 = gα = 〈P sh〉−1
αβ 〈χβ〉 . (27)

The original KSB method actually performs the average of Psh,
but this requires all source characteristics such as apparent size and
morphology to be locally constant. When considering convolution
with the telescope’s PSF (see Section 4), this argument also applies
to the shape of the PSF. Since generally the PSF shapes are not
sufficiently stable across different areas of the image or even dif-
ferent observations, it is common – particularly for cosmic-shear
applications – to interchange the averages:

〈g̃α〉 = 〈(P sh)−1
αβ χβ〉 (28)

(Erben et al. 2001), assuming that 〈(Psh)−1χ s〉 = 0. This condition
is not guaranteed since Psh itself depends on χ .

The symbol g̃α in equation (28) denotes the shear estimate ob-
tained by solving equation (24) with χ s = 0. We introduce it since
g̃ is not the true shear (which is inaccessible for a single galaxy) but
the shear one would measure if the source was circular. The true
shear g is then sought by averaging g̃. Equation (11) shows that for
χ s = 0 and W(x) = 1, 〈g̃〉 is related to χ by

〈g̃〉 =
〈

1 −
√

1 − χ 2

χ

〉



〈
χ

2
+ χ 3

8
+ χ 5

16
+ · · ·

〉
. (29)

In general, 〈g̃〉 differs from the true shear g computed in equa-
tion (13). Assuming that g � 1, meaning 〈χ〉 � 1, and the dis-
tribution of the intrinsic ellipticities to be Gaussian with standard
deviation σχ , the difference can be written as

g − 〈g̃〉 
 〈χ〉
2

(
σ 2

χ

1 − σ 2
χ

)
− 3σ 2

χ 〈χ〉
8

(30)

from which

〈g̃〉 
 g

(
1 − 1

4
σ 2

χ

)
. (31)

For a realistic σχ 
 0.3, the bias introduced by averaging shear
estimates instead of ellipticities is ≈2 per cent.

Moreover, averaging shear estimates does not allow one to as-
sume that g̃ is small, as done in the original derivation of Psh, since
it is always of the same magnitude as χ . In coordinates rotated such
that g̃ has only one non-vanishing component, and in absence of a
weight function, the relation between χ and g̃ provided by KSB5 in
equation (24) is

g̃KSB 
 χ1

2
+ χ 3

1

2
+ χ 5

1

2
+ · · · . (32)

Obviously, this is correct only to lowest order. Comparing equations
(29) and (32), the error made by KSB in the shear estimation is a
function of the measured ellipticity and scales as (3χ 3/8 + 7χ 5/16).
Typically, |χ | ∈ [0.5...0.8], implying that the bias KSB introduces
in the shear estimate (without the weight function) is in the range
[6...33] per cent. The reason for this bias comes from the fact that

5 Here and throughout this paper, the notation KSB refers to the solution of
any equation following from equation (28). In applications to real data, Psh

has been treated however in many different ways by different authors. We
refer to Heymans et al. (2006) for a complete overview.
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second-order or higher order terms in g have been neglected in the
derivation of equation (24), while terms such as χ 2 g have been
kept. Once g is identified with g̃, these mixed terms are effectively
of the same order as the g3 terms. In a consistent first-order relation
between χ and g̃, only the first-order term in χg can be considered.
Then, P sh

αβ looks like

P
sh,(0)
αβ = 2Bαβ

TrQ
+ 2δαβ . (33)

We shall refer to this approximation as KSB1. In this case, neglect-
ing the weighting function, the solution for g̃ is

g̃KSB1 = χ

2
. (34)

The error on the shear estimate made by KSB1 scales like (−χ 3/8 −
χ 5/16), leading to an underestimate which is considerably smaller
than the overestimate given by KSB. However, as discussed before,
χ is practically never small, meaning that first-order approximations
may be poor.

In a frequently used variant of KSB, P sh
αβ is approximated by half

its trace (KSBtr hereafter):

P sh
αβ 
 1

2
Tr

(
P sh

αβ

)
δαβ . (35)

This is usually justified saying that the trace is less noisy than
the inverse of the full tensor, as we shall show in Section 3.3. This
statement is certainly correct for large ellipticities. However, it turns
out to work much better than the full tensor even in the absence of
noise, PSF and weighting. The reason is that it leads to the relation

g̃KSBtr 
 χ

2
+ χ 3

4
+ χ 5

8
+ · · · (36)

between g̃ and χ , which biases the shear estimate by χ 3/8 + χ 5/16.
We can summarize the preceding discussion as follows:

(i) KSB incorrectly approximates equation (11);
(ii) KSB1 is mathematically consistent;
(iii) KSBtr approximates equation (11) better even though it

lacks mathematical justification;
(iv) no KSB variant discussed so far is correct to third order in

χ .

3.3 Third-order relation between g and χ

We now derive a consistent third-order relation between χ and g̃,
including the effects of the weight function. We follow closely the
approach in section 4.6.2 of Bartelmann & Schneider (2001) and
use Einstein’s sum convention. We start from equation (19) and
Taylor-expand the weight function around g = 0 to third order in g:

W

(
(|θ |2 − 2ηαg

α + |θ |2|g|2)

σ 2(1 + |g|2)

)


 W

( |θ |2
σ 2

)
− 2W ′

( |θ |2
σ 2

)
ηβgβ (1 − |g|2)

σ 2

+ 2W ′′
( |θ |2

σ 2

) (
ηβgβ

)2

σ 4
− 4

3
W ′′′

( |θ |2
σ 2

)
(ηβgβ )3

σ 6
+ O(g4),

(37)

where

ηβgβ

(1 + g2)

 ηβgβ (1 − g2) + O(g4) (38)

was used. Note that the derivatives of the weight function are taken
with respect to θ 2. Truncating the series at a given order implies
that the final result will depend on the shape of the weight function.

We proceed with the calculation of χ s
αTr(Qs) to third order in χg:

χ s
αTr(Qs)

(det A)(1 − κ)2
=

∫
d2θξαI (θ)W

( |θ |2 − 2ηβgβ + |θ |2g2

σ 2

)

= χαTr(Q) − 2gβBαβ + 2gβgγ Dαβγ − 2gαTr(Q) + 4gαg
βLβ

− 4Kβγ gαg
βgγ + (−1)α

(
g2

2 − g2
1

)
χαTr(Q)

− 2(−1)αBαβ

(
g2

2 − g2
1

)
gβ + 2g1g2χ

†
α Tr(Q)

− 4B
†
αβgβg1g2 − 4

3
Uαβγ δg

βgγ gδ + O(g4), (39)

where the definitions

Dαβγ = 1

σ 4

∫
d2θI obs(θ)W ′′ηαηβηγ ,

Uαβγ δ = 1

σ 6

∫
d2θI obs(θ)W ′′′ηαηβηγ ηδ

(40)

appear. Lα and Bαβ are given in equation (26). In the same way, we
evaluate

Tr(Qs)

(det A)(1 − κ)2

 Tr(Q)(1 + |g|2) − 2gαLα + 2gαgβKαβ

−2gαχαTr(Q) + 4gαgβBαβ − 4Dαβγ gαgβgγ − 4

3
Jαβγ gαgβgγ

= Tr(Q)(1 + f (g)), (41)

where we implicitly defined f (g) and

Kαβ = 1

σ 4

∫
d2θI obs(θ )W ′′|θ |2ηαηβ ,

Jαβγ = 1

σ 6

∫
d2θI obs(θ )W ′′′|θ |2ηαηβηγ . (42)

From these quantities, we compute

χα − χ s
α = χαTr(Q)(1 + f (g)) − χ s

αTr(Qs)

Tr(Q)(1 + f (g))
. (43)

This equation holds exactly in absence of a weight function. If a
weight function is included, f (g) is at most of the order of 0.02,
and we shall consider equation (43) exact to third order. After some
algebra, we find

χα − χ s
α = gβ

[
Pαβ + gγ

(
Rαβγ + gδSαβγ δ

)] + �α + O(g4)

1 + f (g)
, (44)

where

Rαβγ = 2
χαKγβ

Tr(Q)
+ 4

χαBγβ

Tr(Q)
− 2

Dαβγ

Tr(Q)
− 4

δαγ Lβ

Tr(Q)
,

Sαβγλ = 2Kβγ δαλ

TrQ
+ 4

3

Uαβγλ

TrQ
(45)

and

�α =
(

χα − 2Bαβgβ

TrQ

)
|g|2 − (−1)α

(
g2

2 − g2
1

) (
χα − 2Bαβgβ

TrQ

)

−2g1g2

(
χ†

α − 2B
†
αβgβ

TrQ

)
.

(46)

Introducing second- and third-order terms leads to a non-linear
relation between χ and g which needs to be solved numerically.
Moreover, sixth-order moments of the observed surface-brightness
distribution appear in Rαβγ and eighth-order moments in Uαβγ δ

because of the Taylor expansion of the weight function to third
order. We discuss in the following section how to deal with the
non-linear relation between shear and ellipticity and possible noise
issues due to the appearance of higher moments.
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3.4 Tests

We now show the results of simple tests carried out to check how
well the four variants of KSB estimate the shear. We consider a
circular source (χ s = 0) with a Sérsic brightness profile:

I (r) = I0 exp

[
−bns

((
r

Re

)1/ns

− 1

)]
(47)

where Re is the radius containing half of the flux and ns the Sérsic
index and bns is a constant which depends on ns. This type of
profile is identical to a Gaussian for ns = 0.5 and is steeper in the
centre for ns > 0.5. In the following test, we assume ns = 1.5,
which represents the average value for rather bright galaxies in the
Cosmic Evolution Survey (COSMOS) field (Sargent et al. 2007).
We shear this profile by a variable amount g̃1, keeping g̃2 = 0.1
fixed, using equation (8). For all following tests, the effective galaxy
radius was Re = 2 pixels, the Sérsic model was 10-fold oversampled
within each pixel and the image sidelength was set such as to not
truncate the galaxy at the image boundary. Then, we measure the
ellipticity as defined in equation (10). Since the model galaxy is
intrinsically circular, the source ellipticity is entirely generated by
the applied shear which is varied in a wide range such as to mimic
the intrinsic ellipticity dispersion. The weight function has been
chosen as Gaussian with σ = 2Re. We repeated this test assuming a
flat weight function [W(x) = 1] in order to estimate how much the
different approximations in deriving Psh affect the measurement.
The results are shown in Fig. 1.

In absence of a weight function (left-hand panel of Fig. 1), the per-
formance of the four variants closely follows the analytic behaviour
worked out in Sections 3.1 and 3.2: KSB severely overestimates the
shear for large g̃1, while KSBtr and KSB1 better approximate the
shear. KSB3 returns the correct shear under this condition.

The weight function renders the image more circular and thus
reduces the measured χ . This means that the high-order terms in χ

contribute less to the shear estimate. Therefore, the deviation from
the correct result is significantly lower for all the methods (right-
hand panel of Fig. 1). This is not true for KSB1, which allows only
a first-order correction for the weight function.
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Figure 2. Shear estimate g̃1 as a function of the applied shear for noisy
but unconvolved Sérsic-type galaxy images as provided by KSB (red solid
line), KSBtr (green long-dashed line) and KSB3 (blue short-dashed line).
The total flux of the source was fixed to unity, the noise rms to 10−3, which
corresponds to signal-to-noise ratio (S/N) ≈ 100, with the S/N definition
from Erben et al. (2001). The average is taken over 100 objects and the
moments have been computed using a Gaussian weighting function with a
width equal to the size of the object. Error bars denote standard deviation of
the mean.

We also investigate the behaviour of the four KSB variants for
realistic, slightly optimistic, pixel noise. The average result for 100
galaxies is shown in Fig. 2. The moments have been computed using
a Gaussian weighting function with a width equal to the size of the
object.

KSBtr is the only method for which no matrix inversion is re-
quired. It is thus not surprising that it exhibits the lowest standard
deviation for all values of g̃. KSB and KSB3 have a comparable
amount of noise even though KSB3 involves the computation of
sixth and eighth moments of the light distribution. The reason is
that these higher order moments are computed using the second
and third derivatives of the weight function. There is no price to
be paid (in terms of measurement noise) in using KSB3 instead
of the simple KSB description. We also investigate how much the
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Figure 1. Shear estimate g̃1 as a function of the applied shear for noise-free and unconvolved Sérsic-type galaxy images as provided by KSB (red solid line),
KSBtr (green long-dashed line), KSB3 (blue short-dashed line) and KSB1 (magenta dotted line). In the left-hand panel no weighting function has been used
to measure moments of the light distribution, while in the right-hand panel a Gaussian weighting function has been employed with a width equal to the size of
the object. The effective galaxy radius was Re = 2 pixels, the Sérsic model was 10-fold oversampled within each pixel and the image sidelength was 40 pixels.
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Figure 3. Shear estimation cross-talk for g̃2 as a function of the applied shear g̃1 for noise-free and unconvolved Sérsic-type galaxy images as provided by
KSB (red solid line), KSBtr (green long-dashed line), KSB3 (blue short-dashed line) and KSB1 (magenta dotted line). In the left-hand panel no weighting
function has been used to measure moments of the light distribution, while in the right-hand panel a Gaussian weighting function has been employed with a
width equal to the size of the object.

measurement of one component of the shear is affected by the value
of the other component. For this case, we also studied the case of
unweighted and weighted moment measurements. The result is
shown in Fig. 3. The obvious cross-talk between the two com-
ponents is not surprising for KSB, KSBtr or KSB1 since all terms
which mix g̃1 and g̃2 were neglected in the calculation. Introduc-
ing third-order corrections, the estimate of one shear component
becomes almost independent of the other component.

Finally, we study how much the bias in the shear measurement
depends on the width σ of the weight function W. We vary the width
within [2Re, ∞). The result is shown in Fig. 4. KSB and KSB1
exhibit a strong dependence on σ , while KSBtr is more robust and
KSB3 is almost independent of σ . Due to the poor correction of the
weight-induced change of χ , KSB1 performs poorest in this test.
For KSB, the reduction of χ due to the weighting limits its strong
non-linear response such that the bias decreases for narrow weight

Figure 4. Dependence of the shear estimate g̃1 on the size of the weighting
function width as a function of the applied shear for noise-free and uncon-
volved Sérsic-type galaxy images as provided by KSB (red), KSBtr (green),
KSB3 (blue) and KSB1 (magenta). We consider a Gaussian weighting func-
tion with width σ = [2Re, ..., ∞]. The lower limits correspond to σ = 2Re

and the upper limits are identical to the unweighted case shown in Fig. 1.

functions. As KSB3 employs the best description of the weighting,
it performs excellently in this test.

In all tests carried out so far, we have assumed that the intrinsic
ellipticity of the object vanishes, χ s = 0. This is of course idealized
since galaxies have an intrinsic ellipticity dispersion. In order to
test the performance of the four methods for an isotropic source-
ellipticity distribution, we apply the so-called ring test (Nakajima &
Bernstein 2007). We construct an ensemble of test galaxies falling
on a circle in the ellipticity plane, shear them, measure their shapes
and take the mean. We choose an intrinsic ellipticity |χ s| = 0.3
and apply the shear g = (0.1, 0.05). The result is shown in Fig. 5.
A perfect method would recover the correct shear after averaging

Figure 5. Shear estimates of a sample of Sérsic-type galaxies with χ s =
0.3 after shear g = (0.1, 0.05) is applied. Red dots are the results from
KSB, magenta dots from KSB1, blue dots from KSBtr and green dots from
KSB3. The dots in the centre show the position of the ensemble averages
of the estimates. A zoom of the central region is shown in the small panel,
where the intersection of the dotted lines indicates the outcome of a perfect
measurement.
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over all test galaxies. Not surprisingly, we find that KSB is unable
to recover the correct shear from the averaged individual shear
estimates since they depend non-linearly on χ . This leads to an
average overestimate of ≈35 per cent if the shear is aligned with
the intrinsic ellipticity. As the other variants have lower non-linear
error in the χ–g relation, the mean values are biased by ≈20 per
cent (KSB1), ≈5 per cent (KSBtr) and ≈1 per cent (KSB3).

4 PS F C O N VO L U T I O N

Any measured galaxy’s ellipticity is the result of three distinct phys-
ical processes: intrinsic ellipticity, lensing and PSF convolution. As
discussed above, lensing maps the galaxy’s light distribution from
the source to the lens plane, distorting its shape. The relation be-
tween galaxy ellipticity and shear can be found by solving equa-
tion (11) if there is no weight function or equation (44) if weighted
moments are used to define the ellipticity. In general, the equation
one needs to solve to relate ellipticity to a shear estimator g̃ has the
implicit form

χ = f (g̃, χ ) . (48)

On the other hand, PSF deconvolution maps the observed ellipticity
from the image plane (on which the object is lensed and convolved
with the PSF) to the lens plane (on which the object is lensed only):

χ = h(χ obs) . (49)

Thus, the relation between observed ellipticity and the shear esti-
mator in presence of PSF convolution is the solution of

χ obs = h−1[f (g̃, h(χ obs))] . (50)

If the PSF is perfectly circular, the only effect of h is a circulariza-
tion of the object, otherwise the PSF induces additional anisotropic
distortions. Therefore, it is crucial to properly correct these two
effects in order to reliably estimate the shear. We consider in the
following the case of a spherical PSF and briefly discuss the case
of an anisotropic PSF in Section 4.1.

Instead of carrying out a proper PSF deconvolution first and then
estimating the shear using the unconvolved ellipticity, as summa-
rized by equation (50), KSB links the observed ellipticity to the
shear by the following approach:

χ obs
α = χ sh

α − χg
α , (51)

where χ sh
α is given by equation (44), and χ g is

χg
α = P sm

αγ (P sm,∗)−1
γβ χ sh,∗

β . (52)

Psm is the so-called smear polarizability tensor and has the form

P sm
αβ = 1

Tr(Q)

[(
M + 2Tr(Q′)

σ 2

)
δαβ + Gαβ − χα(2Fβ + L′

β )

]
,

(53)

where

M =
∫

d2θI (θ )W

( |θ |2
σ 2

)
,

Fα = 1

σ 2

∫
d2θI (θ)W ′

( |θ |2
σ 2

)
ηα,

Gαβ = 1

σ 4

∫
d2θI (θ)W ′′

( |θ |2
σ 2

)
ηαηβ.

(54)

L′
α has to be interpreted as Lα calculated with the second derivative

of the weight function, while Tr(Q′) and Tr(Q) are calculated with
the first derivative of the weight function. We refer to section 4.6.2
of Bartelmann & Schneider (2001) for a complete derivation of
equation (51).

Since χ sh encodes the action of lensing (cf. previous section on
the appropriate forms of this mapping), we can rewrite equation (51)
as

χ obs = f (g̃, χ obs) − χg(g̃, χ obs). (55)

It is important to note that the lensing-induced mapping is now
evaluated with the observed, i.e. convolved, ellipticity instead of
the unconvolved ellipticity. This approach therefore requires the
correction term χ g, which corresponds to a correct treatment of the
PSF convolution (equation 50) if and only if

χg(g̃, χ obs) = f (g̃, χ obs) − h−1[f (g̃, h(χ obs)]. (56)

We now study a very simple but instructive case. We assume a
perfectly circular source, no weight function, an isotropic PSF and
shear oriented in a single direction. Then, P sm

αβ becomes diagonal:

P sm
αβ = M

TrQ
δαβ . (57)

In a forthcoming paper (Melchior et al. 2010b), we shall demonstrate
how to do a proper PSF deconvolution, using the moments of the
PSF and the convolved object, and show that the mapping h between
the convolved ellipticity χ obs and the unconvolved ellipticity χ̃ in
the lens plane is given by

h(χ obs) = χ̃ = χ obs

1 − A(χ obs)
, (58)

where

A = M

TrQ

TrQ∗

M∗ (59)

is a function of the observed ellipticity (as shown in Fig. 6) and of
the size of the PSF (as shown in Fig. 7), and is bound to [0, 1]. If
the shear has a single component and there is no weight function
involved in the measurement, f (g̃, χ obs) is

f (g̃, χ obs) = 2g̃ − 2(χ obs)2g̃

1 + g̃2 − 2g̃χ obs
. (60)

According to equation (52), in the KSB formalism, χ g has the form

χg(g̃, χ obs) = A(χ obs)f (g̃, 0). (61)

In particular, in standard KSB, χg(g̃, χ obs) = 2g̃A(χ obs).
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C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 2156–2166



KSB: biases and corrections 2163

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12

A

PSF size [Re]

β=2
β=5
β=9

Figure 7. Dependence of A as defined in equation (59) on the size of the
PSF for a fixed value of the observed ellipticity.

Substituting this expression for χ g in the lhs of equation (56), we
can conclude that KSB gives a proper description of PSF decon-
volution only if the function f (g̃, χ obs) can be decomposed into a
product of two functions, one depending on g̃ only and one on χ obs

only. This is by no means guaranteed. A detailed analysis reveals
that there are two limiting cases in which equation (56) holds. They
are as follows.

(i) The PSF width vanishes:
A(χ obs) = χ g(χ obs) = 0⇒χ obs = χ .

(ii) The observed ellipticity vanishes.

While the first case is trivial (but irrelevant), the second case can
only be realized – for any finite PSF width – by a conspiracy of
intrinsic and lensing-induced ellipticity.

To study in detail the error committed by KSB in the attempts to
correct for the PSF convolution, we solve equation (51) explicitly,
employing the four variants χ sh of mapping χ on to g̃ presented in
the previous section:

g̃KSB 
 χ̃0

2
+ χ̃ 2

0

2
A′(0)

+ χ̃ 3
0

2
[(1 − A(0))(1 + A′′(0)/2) + A′(0)2]

+O (
χ̃ 4

0

)
g̃KSB1 = χ̃

2

g̃KSBtr 
 χ̃0

2
+ χ̃ 2

0

2
A′(0)

+ χ̃ 3
0

4
[(1 − A(0))(1 + A′′(0)) + 2A′(0)2]

+O (
χ̃ 4

0

)
g̃KSB3 
 χ̃0

2
+ χ̃ 2

0

2
A′(0)

+ χ̃ 3
0

8
[1 + 4A′(0)2 + 2A′′(0) − 2A(0)(2 + A′′(0))]

+O (
χ̃ 4

0

)
, (62)

where

χ̃0 ≡ χ obs

1 − A(0)
(63)

and A′(0) and A′ ′(0) are the first and the second derivatives of A(χ obs)
computed for χ obs = 0. If the PSF correction works perfectly, the re-
lation between χ̃ and g̃ has the same form as the exact unconvolved
solution of equation (13):

g̃ 
 χ̃

2
+ χ̃ 3

8
+ O(χ̃ 5). (64)

We first note that equation (62) is written in terms of χ̃0, while
equation (64) is written in terms of χ̃ , meaning that in general the
solutions are different already at first order. However, the error at
first order (χ obs � 1) is mostly of the order of 10−4 and therefore
negligible. In the limit of a very wide PSF A(χ ) 
 A(0) and therefore
A′(0) 
 A′ ′(0) 
 0, we find the deviations from the exact solution
b = g̃ − g̃KSB...:

bKSB = 3 − 4A

8
χ̃ 3 + O(χ̃ 5)

bKSB1 = − χ̃ 3

8
+ O(χ̃ 5)

bKSBtr = 1 − 2A

8
χ̃ 3 + O(χ̃ 5)

bKSB3 = −A

2
χ̃ 3 + O(χ̃ 5). (65)

It is worth noting that the PSF correction introduces a bias with
the preferred direction: shear estimates decrease as the PSF width
increases.

4.1 PSF anisotropy

An anisotropic PSF introduces spurious ellipticity in the image
plane which must be corrected. The appropriate correction in KSB
relies on the hypothesis that the PSF can be considered almost
isotropic. This enables its decomposition into an isotropic part Piso

and an anisotropic part q:

P (θ ) =
∫

d2φq(φ)P iso(θ − φ). (66)

Even this decomposition can be problematic for certain PSFs (Kui-
jken 1999). For example, a PSF given by the sum of two Gaussians
with constant ellipticity does not fulfil the above equation. Assum-
ing that equation (66) is valid, one can find a relation, valid to first
order in q, between the observed and the isotropic ellipticity:

χ iso
α = χ obs

α − (
P sm

αβ

)
qβ (67)

The term qα , carrying information on anisotropies in the PSF, can
be determined from the shape of stars using the fact that their
isotropically smeared images have zero ellipticity (χ∗,iso = 0):

qα = (P ∗,sm)−1
αβ χ∗,obs

β . (68)

Once q has been determined, we can use equation (67) to compute
the isotropic from the observed ellipticity. For a detailed calculation,
we again refer to Bartelmann & Schneider (2001). In the derivation,
all the terms containing moments of q higher than the second have
been neglected as well as quadratic and higher order terms in qij. If
one wants to extend this calculation to higher orders in q, deriva-
tives of the observed surface brightness Iobs would appear in the
calculation because the assumed equality to Iiso (hypothetical sur-
face brightness for vanishing q) does no longer hold. The fact that
derivatives of the observed profile need to be considered renders
it practically impossible to incorporate higher order corrections for
q, since Iobs is a noisy quantity. This means that within the KSB
framework, it is not possible to correct properly for highly elliptical
PSFs.
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Figure 8. Shear estimate g̃1 as a function of the applied shear for noise-free Sérsic-type galaxy images as provided by KSB (red solid line), KSBtr (green
long-dashed line), KSB3 (blue short-dashed line) and KSB1 (magenta dotted line). In the left-hand panel we choose a PSF with FWHM = 0.5Re and β = 2 to
mimic a space-based observation, while in the right-hand panel we choose FWHM = 5Re and β = 5 to mimic a ground-based observation. No weight function
has been used to compute moments.

If the determination of q is wrong, so is the estimate of χ iso (the
ellipticity of Iiso), and the error will propagate to the final shear
measurement in an almost unpredictable way (Kuijken 1999; Erben
et al. 2001). This could happen if the anisotropy of the PSF is too
large for a linear treatment or if the PSF cannot be decomposed into
an isotropic and an anisotropic part.

4.2 Tests

We perform the same tests as in the previous section, but with an
additional convolution with a Moffat-shaped PSF:

P (r) = (1 + αr2)−β, (69)

where

α = 21/β−1

(FWHM/2)2
(70)

controls the size of the PSF and β regulates its steepness. In order
to ensure vanishing flux at large radii, the PSF is truncated at 5 full
width at half-maximum (FWHM), and the appropriate value at that
position is subtracted from P(r).

We begin studying the case of a flat weight function, W(x) =
1, for which we derive the behaviour of the four KSB variants in
equation (62). The key quantity for describing a spherical PSF is
given by A as defined in equation (59), which is a function mainly
of the PSF width and mildly of its steepness for a given galaxy (see
Fig. 7). We investigate the performance of the four methods as a
function of the shear for a fixed PSF width. We choose FWHM =
0.5 Re and β = 2 to mimic a space-based observation, and FWHM =
5 Re and β = 5 to mimic a ground-based observation. The results are
shown in Fig. 8. In the first case, KSB3 gives the best result, while
KSBtr is the best approximation in the second case, as expected
from equation (65).

We next investigate the response of the four methods to the size of
the PSF for a given g̃ (Fig. 9). We choose g̃1 = 0.4 and g̃2 = 0.1. As
expected from equation (65), KSB, KSBtr and KSB1 have the same
limit for large PSF (A → 1), while the bias for KSB3 is the largest
in the limit of a very wide PSF. As noted before, the PSF correction
in all KSB variants introduces a negative bias which partly com-
pensates (or even overcompensates) the overestimate by KSB and
KSBtr from the lens mapping. Since KSB3 is essentially unbiased

for unconvolved ellipticities, any PSF correction necessarily lowers
the shear estimate.

Finally, we introduce the weight function into the moment mea-
surement and study the response of the four methods in this situ-
ation. The result is shown in Fig. 10 for a space-based (left-hand
panel) and a ground-based observation (right-hand panel). For nar-
row PSFs, the methods react on weighting as in the previous sec-
tion, where the PSF was neglected (see Fig. 4), while the response
is milder for a wider PSF. For a narrow PSF, KSBtr and KSB3 are
essentially unbiased and KSBtr remains fairly unbiased when the
PSF width increases. From the comparison between Figs 8 and 10,
we can infer the effect of weighting on the shear estimates. The
biases of most methods are lowered because the ellipticity of the
convolved source is lower; hence, a circular weight function does
not significantly affect the ellipticity measurement. However, in par-
ticular KSB1 shows concerning dependence on both the presence of
a weighting function and the width of the PSF: even though KSB1
seems fairly unbiased in the right-hand panel of Fig. 10, other val-
ues of the width of the weight function would lead to less optimal
results.
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Figure 9. Shear estimate g̃1 as a function of the PSF size for a Sérsic-type
galaxy image as provided by KSB (red solid line), KSBtr (green long-dashed
line), KSB3 (blue short-dashed line) and KSB1 (magenta dotted line) for a
fixed value of the pre-convolved ellipticity corresponding to g̃ = (0.4, 0.1).
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Figure 10. As in Fig. 8 but employing a weighting function in the computation of moments. The width of the weighting function was set to the apparent size
of the objects, σ = √

Tr(Q).

We are aware that our tests are of somewhat approximate nature
in the sense that the characteristics of the simulated images only
coarsely resemble those of realistic survey data. The real-life per-
formance of all KSB variants will depend on peculiar properties of
the surveys to be analysed, such as the shape of the PSF, the depth
of the observation, etc. However, two findings from our result can
be considered robust: KSB3 shows the least amount of bias and the
weakest dependence on the width of the weighting function, as long
as the PSF remains narrow with respect to the galaxy size. KSBtr
has a more pronounced dependence on the weighting function but
reacts only weakly on changes of the PSF width.

5 C O N C L U S I O N S

We have assessed the assumptions underlying the KSB method
for measuring gravitational shear from the images of ensembles
of lensed galaxies. KSB has the great advantage of being model-
independent since it expresses the lensing-induced shape change
by a combination of moments of the surface-brightness distribu-
tion. However, several assumptions underlying the derivation of the
method and its practical implementations turn out to be violated
more or less severely in realistic situations. We can summarize our
results as follows.

(i) KSB defines a shear estimate for each individual galaxy, de-
fined as the shear that would describe the observed ellipticity if the
object was perfectly circular prior to lensing. In other words, it is as-
sumed that the intrinsic ellipticity of the individual object vanishes.
The true shear is then computed averaging these shear estimates
within a region where g is assumed to be constant. This is in general
not equivalent to averaging the ellipticities of each individual ob-
ject and then computing the true shear: averaging observed galaxy
ellipticities and measuring the shear do not commute because it is
not the individual intrinsic ellipticities that can be assumed to van-
ish, but only their average. We show that the difference between
the two approaches is a function of the variance of the intrinsic
ellipticity distribution. The error introduced this way depends on
the variants of KSB used, the size of the PSF and the width of the
weight function. It is normally in the per cent range.

(ii) The definition of the KSB shear estimate relies on the as-
sumption that the shear is small. However, this is only true after
averaging. For a single object, the reduced-shear estimate g is of

the same order as the ellipticity χ . This leads to a relation between
g and χ which is correct only to first order. This situation can be
improved considering only linear terms in χg in the derivation of
Psh (KSB1) or considering consistently terms up to third order in
χg (KSB3). We also show that the approximation of Psh by half
of its trace (KSBtr), although not mathematically justified, yields a
better g–χ relation compared to KSB.

(iii) KSB, KSB1 and KSBtr in absence of PSF convolution tend
to overestimate the shear, while KSB3 gives an almost perfect result.

(iv) KSB and KSB1 depend strongly on the width of the weight
function used in the moment measurements, while KSBtr is more
robust and KSB3 is almost independent of it.

(v) KSB does not perform any PSF deconvolution, but gives only
an approximate correction for the effects of the PSF. We show that
this correction would be equivalent to a proper deconvolution from
a circular PSF only in the case of a circular source, otherwise the
improper PSF correction lowers the shear estimate.

(vi) The overestimate due to the wrong relation between g and
χ and the underestimate due to the inappropriate PSF correction
tend to compensate each other. For a narrow PSF (space-based
observation), KSB3 is the variant with the least bias, while KSBtr
is the best method for wider PSFs (ground-based observation).

(vii) The choice of the width σ of the weight function could be
utilized to reduce the measurement bias. In principle, σ can be tuned
according to the size of the PSF and to the galaxy ellipticities such
that the shear estimate ends up to be almost unbiased. However,
practically this is only feasible for the galaxy ensemble as a whole,
whereas choosing σ such that shear estimates are unbiased for each
individual galaxy is of similar difficulty to estimating the shear.

(viii) KSB can correct only small anisotropies in the PSF (q �
1). It is not possible to extend the formalism to allow more precise
corrections since that would imply the calculation of derivatives
of the observed surface brightness, which is not feasible since Iobs

is a noisy quantity. An improper correction of the PSF anisotropy
introduces a bias which propagates to the final measurement of the
shear in an almost unpredictable way.
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APPENDIX A

In this appendix, we list expressions for the tensors defined in the
paper in terms of moments of the light distribution:

P11 = −2χ1L1

Tr(Q)
− 2χ 2

1 + 2
B11

Tr(Q)
+ 2 (A1)

P12 = −2
χ1L2

Tr(Q)
− 2χ1χ2 + 4

B11

Tr(Q)
(A2)

P22 = −2
χ2L2

Tr(Q)
− 2χ 2

2 + 8
Q′

1122

Tr(Q)
+ 2 (A3)

R111 = 2
K11χ1

Tr(Q)
+ 4

B11χ1

Tr(Q)
− 2

D111

Tr(Q)
− 4

L1

Tr(Q)
(A4)

R112 = 2
K12χ1

Tr(Q)
+ 4

B12χ1

Tr(Q)
− 2

D112

Tr(Q)
(A5)

R121 = 2
K12χ1

Tr(Q)
+ 4

B12χ1

Tr(Q)
− 2

D112

Tr(Q)
− 4

L2

Tr(Q)
(A6)

R211 = 2
K11χ2

Tr(Q)
+ 4

B11χ2

Tr(Q)
− 2

D112

Tr(Q)
(A7)

R122 = 2
K22χ1

Tr(Q)
+ 16

Q′
1122χ1

Tr(Q)
− 2

D122

Tr(Q)
(A8)

R221 = 2
K12χ2

Tr(Q)
+ 4

B12χ2

Tr(Q)
− 2

D122

Tr(Q)
(A9)

R212 = 2
K12χ2

Tr(Q)
+ 4

B12χ2

Tr(Q)
− 2

D122

Tr(Q)
− 4

L1

Tr(Q)
(A10)

R222 = 2
K22χ2

tr(Q)
+ 16

Q′
1122χ2

tr(Q)
− 16

Q′′
111222

Tr(Q)
− 4

L2

Tr(Q)
(A11)

L1 = Q′
1111 − Q′

2222 (A12)

L2 = 2(Q′
1112 + Q′

2221) (A13)

B11 = Q′
1111 − 2Q′

1122 + Q′
2222 (A14)

B12 = B21 = 2(Q′
1112 − Q′

1222) (A15)

B22 = 4Q′
1122 (A16)

K11 = (Q′′
111111 − Q′′

111122 − Q′′
112222 + Q′′

222222) (A17)

K12 = K21 = 2(Q′′
111112 − Q′′

122222) (A18)

K22 = 4(Q′′
111122 + Q′′

112222) (A19)

D111 = Q′′
111111 − 3Q′′

111122 + 3Q′′
111122 − Q′′

222222 (A20)

D112 = D121 = D211

= 2(Q′′
111112 − 2Q′′

111222 + Q′′
222221)

(A21)

D122 = D212 = D221 = 4(Q′′
111122 − Q′′

112222) (A22)

D222 = 8Q′′
111222 (A23)

U1111 = Q′′′
11111111 − 4Q′′′

11111122 + 6Q′′′
11112222

− 4Q′′′
11222222 + Q′′′

22222222

(A24)

U2111 = 2(Q′′′
11111112 − 3Q′′′

11111222

+ 3Q′′′
11122222 − Q′′′

12222222)
(A25)

U1211 = U1121 = U1112 = U2111 (A26)

U2211 = 4(Q′′′
11111122 − 2Q′′′

11112222 + Q′′′
11222222) (A27)

U2112 = U2121 = U1122 = U1221 = U1212 = U2211 (A28)

U2221 = 8(Q′′′
11111222 − Q′′′

11122222) (A29)

U2122 = U2212 = U1222 = U2221 (A30)

U2222 = 16Q′′′
11112222. (A31)

Note that the moments Q′
ij ...k have to be computed using the first

derivative of the weight function with respect to θ 2. Similarly, Q′′
ij ...k

must be computed using the second derivatives of the weight func-
tion.
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