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Chapter 1 

Introduction

Inflammatory Bowel disease 

Inflammatory bowel disease (IBD) is a recurrent chronic idiopathic inflammatory

disease of the gastrointestinal tract, and consists of ulcerative colitis (UC) and Crohn's disease 

(CD). In comparison with UC, CD is characterized by: 1) the formation of fistulae, the result 

of burrowing ulcers, and stricture formation in the gastrointestinal tract; 2) more frequent

systemic manifestations and extraintestinal complications, which include fever, weight loss, 

malaise and rheumatologic diseases; and 3) the presence of granulomas in the pathological 

presentation [1-3].

The precise aetiology of IBD still remains unknown. Ample evidence implicate

genetic susceptibility, immune abnormalities and the lumenal microflora as contributors to the 

aetio-pathophysiology of IBD. The damage and healing processes of intestinal tissue occur as 

consequences of an aberrant immune reaction. The injury of the mucosal barrier by various 

agents, such as genetic variation in determinant molecules, drugs, dietary agents and lumenal

bacteria or bacterial products, results in bacterial antigen uptake across specialized epithelial

M cells to initiate the immune response in the lamina propria or in mesenteric lymph nodes. 

Antigen-presenting cells (APCs), i.e., drendritic cells, macrophages, and intestinal epithelial 

cells, process the antigens and pass them through to the CD4
+
 T lymphocytes. Then in CD 

activation of the Th1 phenotype cytokine pathway occurs. Interleukin (IL)-2 and interferon

(IFN)-, produced by Th1 type CD4
+
 T lymphoctes, mediate the subsequent cellular immune

responses. IL-2, -12, -18, interferon (IFN)-, tumor necrosis factor (TNF)- produced by T 

lymphocytes and macrophages stimulate macrophages in a self-sustaining cycle to produce 

more proinflammatory cytokines, like TNF-, IFN-, IL-1 and -6. These cytokines, joined by 

other inflammatory mediators, like reactive oxygen/nitrogen intermediates, proteolytic

enzymes, finally lead to the tissue injury in CD. In UC, however, Th2 phenotype cytokines, 

such as IL-4 and transforming growth factor-, predominate and regulate the pathogenesis 

which is considered to be of a humoral immune response phenotype [4]. In the mucosal 

inflammation of the intestine, the intestinal epithelial cell not only processes the antigens but

also actively participates, together with other non-immune cells such as mesenchymae and 

endothelial cells, in the immune reaction by the release a variety of inflammatory mediators,

including reactive oxygen/nitrogen intermediates, enzymes,cytokines, and growth factors [4-

8].
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Chimeric processes of inflammation: tissue destruction and healing 

Inflammation is a reaction of the host to a variety of stimuli such as infection and 

tissue injury. The early stage of the inflammatory response is also referred to as the initiation 

of the wound healing. This latter event evolves simultaneously with the destruction of tissue. 

The destruction and healing form a continuum in inflammation, and there is no 

distinguishable time border between these counteracting processes. In the acute inflammation 

neutrophils and monocytes/macrophages are recruited to the local sites by a battery of signals, 

including chemokines, growth factors, cytokines, fibrin degrading products, which are 

released by tissue leucocytes, mast cells, blood platelets and microorganisms. Neutrophils are 

the predominant inflammatory cells in the primary acute response. The interaction of 

leucocytes and endothelial cells plays a critical role in the recruitment of these leucocytes. 

The reactive oxygen/nitrogen intermediates and proteolytic enzymes, including matrix

metalloproteinases (MMPs), produced/released from activated leucocytes execute the primary 

defense against various pathogens. However, their improper activity might also cause 

destruction of host tissue. Proinflammatory cytokines, such as TNF- , IL-1  and IL-6, are 

multifunctional regulatory peptides in inflammation, which, on the one hand, are responsible 

for the tissue injury and, on the other hand, are mitogens and chemoattractants for fibroblasts, 

endothelial cells and epithelial cells to initiate tissue reconstruction and wound healing [9]. 

Chronic inflammation is considered to be the abnormal result of wound healing in which the 

process is arrested in an early stage.  

 During the acute response of inflammation recruitment of large numbers of monocytes 

from the blood, differentiation of monocytes to macrophages and migration of macrophages 

to local sites occur where they play a central role in the tissue healing. Macrophages not only 

remove debris by phagocytosis but also produce a variety of immunomediators which have a 

tremendous influence on every step of the tissue repair process. Inhibition of macrophage 

infiltration into tissues, therefore, essentially impairs and delays healing [10-13]. 

After the acute phase of inflammation, granulation tissue is formed under the 

stimulation of various factors. Granulation tissue is comprised of new microvessels, 

proliferating fibroblasts, endothelial cells, as well as macrophages and granulocytes. Neo-

angiogenesis, the formation of new vessels, and the formation of the granulation tissue are 

affected by many factors, such as basic fibroblast growth factor (bFGF, FGF-2), vascular 

endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), angiopoietins, IL-1 

and TNF- . This formation of granulation tissue is followed by the reconstruction of 

extracellular matrix (ECM) in tissue repair process. The remodeling of this ECM is a pivotal 

process in tissue repair and has an important impact on the quality of the tissue healing. The 

activity of MMPs obviously affects the process of ECM remodeling [14]. In wound healing of 

the gastrointestinal tract re-epithelialization occurs under the cooperative influence of 

different factors. The aggressive immune reaction is downregulated by inhibitory elements, 

including IL-10. Epidermal growth factor (EGF), transforming growth factor (TGF)- , FGFs 

promote the restitution of enteric epithelial cells and stimulate their proliferation and 

differentiation [13;15;16] (Figure 1). The epithelial cells themselves secrete defensive 

proteins, such as trefoil factor and defensins, to prevent the injury [17;18]. Thus, acute 

inflammation, proliferation and remodeling of tissue, which are three eminent phases of 

wound healing, are characterized by a considerable overlap in regulatory mechanisms.   
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Figure 1. Activationpathways leading to cellular TNF- , MMP and bFGF production. Each activation pathway may
vary depending on the cell type and the type of extracellular stimulus. The relationship of these three factors 
(within circle) is the main focus of this thesis.

bFGF, FGF receptor-1 and syndecan-1 and IBD 

Fibroblast growth factors (FGFs) form a regulatory peptide family that is composed of

22 members with pleiotropic functions [19-21]. FGFs affect the embryonic development and 

fundamental cellular activities in the adult body, such as cell survival, apoptosis, cell-matrix

and cell-cell interaction, cell motility, and differentiation, even carcinogenesis [22-25]. bFGF 

is one of the most well-characterized members in this family. bFGF has diverse effects,

including proliferation and differentiation, on endothelial cells, smooth muscle cells, 

fibroblasts, epithelial cells and neural cells. bFGF is not only a potential stimulatory peptide, 

playing a role in angiogenesis, but also a mitogen affecting various (patho)physiological 

processes, e.g., tissue regeneration, would healing, tissue repair, hematopoiesis, tumor growth 

and metastasis [26;27]. 

The gene of bFGF is located on chromosome 4 and the activity of the gene is cell-

type specific and conditionally regulated. bFGF is expressed in many cells and tissues, which 

include fibroblasts, endothelial cells, and macrophages. Different molecular forms of bFGF 

have been identified, e.g., the low molecular weight bFGF form (18 kDa), which is 

predominantly localized in the cytoplasm, and the high molecular weight form of bFGF (22, 

22.5, 24 and 34 kDa), present in the nucleus [26;28]. Overexpression of the growth factor and 

its receptors has been implicated in transformation and malignant progression, and the nuclear 

localization of bFGF is thought to be essential for its mitogenic activity [27;29]. The precise 

mechanism of bFGF release from cells remains unclear because bFGF lacks a consensus 

signal sequence for the secretion. Released bFGF is usually found to be bound to heparan 

sulphate proteoglycans (HSPGs) of the ECM and basement membrane (BM), which act as 

storage depots for the regulation of bFGF binding to the receptors. Separation of bFGF from 

its receptors is considered to be an important regulatory mechanism for the bioactivity of
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bFGF [27;30]. In the normal gastrointestinal tissue bFGF was immunohistochemically found 

in epithelial cells, endothelial cells, fibroblasts and smooth muscle cells, although diverse 

localization sites of bFGF have been described in several studies [31;32]. 

 FGFs bind and activate their receptors to exert their biological functions. There are 

three kinds of receptors which are responsible for the signal transduction of FGFs: FGF 

receptors (FGFRs), HSPGs and a cysteine-rich FGFR (CFR) [20]. FGFR-1 is the main 

receptor for bFGF-initiated signal transduction, which can be facilitated by syndecan-1, a 

member of the HSPGs. FGFR-1 is member of the FGF receptor family which consists of four 

members with receptor tyrosine kinase functions [33]. FGFRs consist of an extracellular 

region, an intracellular region and a transmembrane domain. The extracellular region contains 

three consensus immunoglobulin-like loops, with between loop one and two a heparin-

binding region, and a cell adhesion molecule (CAM) homology domain. The extracellular 

region can be cleaved by MMP-2, and the released part of the receptor may retain its FGF-

binding capacity [34]. The juxtamembrane region, two tyrosine kinase domains, and the C 

terminal tail make up the intracellular region of the FGFR. The kinase domains and the 

phosphorylation sites in the intracellular region are required for FGF signal transduction [35]. 

A characteristic feature of the FGFR family is that numerous FGFR isoforms are generated 

from alternatively spliced mRNA transcripts, in both the extracellular and intracellular 

regions. The diversity of cell responses to FGFs partly results from the existence of multiple 

receptor isoforms. The function of the secreted and enzyme-truncated isoforms of FGFR-1 is 

that of antagonists to modulate the activities of bFGF [34;36].

  Syndecan-1 is a member of the family of four transmembrane HSPGs. The structure 

of syndecans consists of a core protein and long unbranched carbohydrate polymers 

(glycosaminoglycans). At the extracellular region of the core protein the glycosaminoglycans 

are attached. Syndecan-1 is almost exclusively expressed by epithelial cells, in addition to 

pro-B lymphocytes in the bone marrow and plasma cells [37]. However, the distribution 

pattern of syndecan-1 in adult tissue differs from that in embryogenesis, wound healing, cell 

culture and carcinogenesis. It was reported that bFGF, TGF-  and PDGF induced the 

expression of syndecan-1 in certain of cell lines, like fibroblasts and vascular smooth muscle 

cells, and that TNF-  and IL-1 had a suppressive effect on the syndecan expression in 

intestinal epithelial cell lines and endothelial cells [37-40]. 

  Heparan-sulphate chains of syndecans are essential for its binding of extracellular 

ligands. The cytoplasmic domain of syndecan is a short c-terminal tail. Recently it was 

demonstrated that syndecan-1 and -4 act as initial receptors to mediate intracellular signaling 

[41;42]. Syndecan-1, for instance, can bind a variety of extracellular molecules, including 

growth factors, collagen I, III, V, cell-cell adhesion receptor, blood coagulation factors, and 

enzymes. Therefore, syndecan-1 has a functional influence on the signaling of growth factors, 

on the adhesion and migration of cells, on morphology maintenance of epithelium and on the 

suppression of tumor growth [43;44]. As a co-receptor for bFGF syndecan-1 can bind bFGF 

and FGFR-1 to form a ternary complex facilitating bFGF signal transduction [45;46]. The 

binding of syndecan and heparin-binding growth factor family members, e.g. FGFs, VEGF 

and HGF, results in the increased binding affinity of growth factors with their receptor. Like 

other transmembrane proteins, syndecan-1 can also be proteolytically released from the 

plasma membrane by enzymes, including MMP-14. The released syndecan-1 fragments retain 

the ability to bind bFGF and other ligands, and like for secreted or truncated FGFR-1 the 

effect of this kind of binding on the bioactivity of bFGF is suppressive [47]. 

A few studies were done to investigate the role of bFGF, FGFR-1 and sydecan-1 in 

IBD. The contribution of the ternary complex activity in the aetiopathogenesis of IBD is still 

unclear. bFGF was found to be massively deposited in the ECM of inflammatory areas, 

closely related to increased vascular permeability and active angiogenesis [48]. In pediatric 

CD patients elevated bFGF levels in serum were reported to reflect the activity of the disease. 

The sources of this serum bFGF were proposed to be inflammatory cells and injured tissues 
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[49]. In adult IBD patients there were consistent results on the increased bFGF levels in serum 

but not so whether this was related to the activity of the disease [50;51]. In UC, the intestinal 

mucosal secretion of bFGF was found to be strongly correlated to the severity of 

inflammation [52]. No major changes were found regarding FGFR-1 in intestinal tissue of 

IBD patients [53].

 Studies to the expression of syndecan-1 in intestinal tissue of IBD patients showed 

that this was decreased, particularly in reparative epithelium [54]. Therefore, heparin was 

proposed as a therapeutic option for IBD because, as a member of the HSPG family, it could 

substitute for the loss of syndecan-1 as a co-receptor for bFGF [55]. 

MMPs and IBD 

MMPs, also known as "matrixins", are comprised of a subfamily of the metzincin 

superfamily [56]. Other metalloproteinase members in the metzincin superfamily are astacins, 

reprolysins (ADAMs) and serralysins [57]. The MMP family constitutes over 20 members 

which are Zn
2+

-containing, Ca
2+

-dependent neutral proteinases participating in ECM 

remodeling. According to their structure and substrate specificity MMPs are divided into 

several major subgroups: collagenases, stromelysins, gelatinases, and membrane type (MT) 

MMPs, the latter anchored to the cell's plasma membrane [58-60] (Table 1). Four tissue 

inhibitors of matrix metalloproteinases (TIMPs) are known to affect the activity of MMPs. In 

general, MMPs require the activation for their proteolytic activity as they are secreted in an 

inactive proenzyme form, with the exception of the MT-MMPs, which were demonstrated to 

be activated by intracellular cleavage. The zymogen activation and enzyme inhibition are two 

mechanisms by which the activity of MMPs is precisely controlled. Not all mechanisms of 

MMP activation have been clearly defined. Plasmin, urokinase plasminogen acticator (uPA), 

furin-like proteinase, TIMPs, and MMPs themselves have been shown to participate in the 

activation of MMPs. The activity of MMPs may be inhibited by endogenous and synthetic 

inhibitors, and by -macroglobulins [56;61-63]. 

The constitutive expression of most MMPs is minimal, with the exception of a few. 

For example, Europhile-derived MMP-8 and MMP-9 are stored in secretory granules of 

neutrophils and eosinophils [64], and MMP-2, a fibroblast-derived gelatinase A, is the most 

commonly expressed MMP and can be isolated in large amounts from normal quiescent tissue 

[65;66]. In general, MMPs are synthesized on the demand by the tissues and most of the 

MMP genes are inducible. Growth factors, cytokines, hormones and oncogenes usually up-

regulate the transcription of MMP genes. Growth factors, such as bFGF, PDGF and EGF can 

induce the proto-oncogene proteins c-Fos and c-Jun to form transcription factor activator 

protein-1 (AP-1), which can bind to the TRE (TPA-responsive element) or AP-1 binding-site, 

and are important factors in the message pathway leading to the activation of MMP gene 

transcription [62;66;67]. Pro-inflammatory cytokines like IL-1 and TNF-  are able to induce 

the gene transcription of MMP-1, -3 and -9 by the activation of the transcrptional factors NF-

B and AP-1 [68-72]. TGF- , retinoic acid and glucocorticoids have been demonstrated to 

suppress the induction of MMP gene transcription [66;73-75]. Moreover, the stability of some 

MMP transcripts like MMP-1 mRNA is related to the AU-rich sequences in the 3' 

untranslated region, like that of cytokine genes and proto-oncogenes [76]. The gene regulation 

of MMPs is not uniform and there is cell-type-specific gene regulation for different MMPs. 

Unlike most MMPs, post-transcritional regulation of MMP-2 expression is more important 

than transcriptional regulation because the promotor region of MMP-2 lacks an AP-1 binding 

site, which exists in other MMP genes [77]. 
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Table 1. The main matrix metalloproteinases (MMPs) (Modified from references [14;56;62;78;94-96])

Substrates
Sub-groups  

MMP family member 
(Descriptive name) Matrix proteins Non-matrix proteins 

Collagenases 

MMP-1 (Collagenase-1, 
Interstitial collagenase) 

MMP-8 (Collagenase-2, 
Neutrophil collagenase) 

MMP-13 (Collagenase-3) 

MMP-18 (Collagenase-4) 

Fibrilar collagen I, II, 
III,VI, VII, X, gelatins, 
aggrecan, entactin 

L-selectin, perlecan, 

IGFBP-2,3, 1-A, 1- PI, 
pro-MMP-1,-2,-8,-9, and -
13

Stromelysins 

MMP-3 (Stromelysin-1) 

MMP-10 (Stromelysin-2) 

MMP-11(Stromelysin-3) 

Aggrecan, gelatins, 
fibronectin, laminin, 
collagen III, IV, IX, X, VII, 
large tenascin C, 
vitronectin 

Decorin, perlecan, pro-IL-

1 , pro-HB-EGF, 
plasminogen, E-cadherin, 

IGFBP-1, and -3, 1-A,

1- PI, pro-MMP-1,-3,-7,-
8,-9,-10, and –13 

Gelatinases

MMP-2 (Gelatinase A, 72 kDa 
Gelatinase)

MMP-9 (Gelatinase B,92 kDa 
Gelatinase)

Gelatins, collagen I, IV, 
V, VII, X, XI, and XIV, 
fibronectin, laminin, 
aggrecan, elastin, large 

tenascin C, -amyloid 
protein precursor 

Decorin, Pro-TGF- 2,

pro-IL-1 , MCP-3, 
IGFBP-3, FGFR-1, pro-
MMP-1,-2, and -13, cell 

surface bound IL-2R ,

plasminogen, 1- PI 

MT-MMPs 

MMP-14 (MT1-MMP) 

MMP-15 (MT2-MMP) 

MMP-16 (MT3-MMP) 

MMP-17 (MT4-MMP) 

MMP-25 (MT5-MMP) 

MMP-26 (MT6-MMP) 

Collagen I, II, III, gelatins, 
fibronectin, laminin-1, -5, 
nidogen, tenascin, 
chondroitin sulfate, 
vitronectin, proteoglycan, 
aggrecan, perlecan, 
dermatan sulfate 
fibrin/fibrinogen

Pro-MMP-2,-13, cell 
surface bound CD44, cell 
surface bound tTG, 
myelin-inhibitory protein, 

1- PI, 2M

Others

MMP-7 (Matrilysin) 

MMP-26 (Matrilysin-2) 

MMP-12 (Macrophage elastase, 
Metalloelastase) 

Aggrecan, fibronectin, 
laminin, collagen IIV, 
elastin, small tenascin C, 
vitronectin 

Elastin, fibronectin, 
laminin, proteoglycan 

Decorin, E-cadherin, pro-

-defensin, cell surface 

bound Fas-L, 4-
intergrin, plasminogen, 
pro-MMP-2, and -7 

Plasminogen 

MT-MMP: Membrane-type-MMP; tTG: tissue transglutaminase; 2M: 2-macroglobulin; 1- PI: 1-roteinase inhibitor, 1-A: 1-
antichymotrypsin.  

Each MMP is able to degrade one or more protein components of the ECM. 

Collectively, MMPs can degrade all structural proteins of the ECM. However, the view that 

the function of MMPs is limited to the degradation of components of the ECM is obviously 

being changed. The substrates of MMPs have expanded from the various structural ECM 

components to other extracellular proteins, i.e, other proteinases, proteinase inhibitors, 

coagulation factors, chemotactic molecules, growth factors, cell surface receptors, and 

adhesion molecules [78]. The consequence of degradation by MMPs is associated with an 

array of normal and pathological conditions. They have been shown, for instance, to be 
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involved in the processes of the migration of cells, cell-cell communication, apoptosis, 

angiogenesis, wound healing, embryonic development and organ morphogenesis, ovulation,

cervical dilatation, postpartum uterine involution, endometrial cycling, nerve growth, hair 

follicle cycling, bone absorption, etc [56;58;60]. Furthermore, MMPs play a major role in 

tumor invasion and metastasis, cardiovascular disease, neurological disease, breakdown of 

blood brain barrier, liver fibrosis and infection or non-infection inflammatory processes, such 

as rheumatoid arthritis, nephritis, periodontal disease, skin, gastric and corneal ulceration, 

pulmonary emphysema and fibrotic lung disease [61;64;79;80].

Several studies in IBD provided strong evidence that MMPs are not only involved in 

the intestinal tissue destruction by the degradation of ECM components but that they also 

actively participate in the wound healing of that tissue. Particularly in the acute phase of 

tissue injury MMP-1, -3 and -9 are considered to be the proteolytic enzymes contributing to 

the IBD pathogenesis. At both the mRNA and protein level overexpression of MMP-1 and -3 

were found in intestinal tissues of IBD patients [81-83]. The genes of MMP-1, -3 -9 -10 and -

12 were found to be upregulated in T-cell mediated intestinal tissue injury as assessed by gene 

array and/or in situ hybridisation analysis [84]. Immunohistochemical evaluation showed that 

MMP-3 was mainly present in the matrix of regions with smooth muscle cell proliferation and 

mucosal damage. In addition, the distribution of MMP-3 was believed to be associated with 

the formation of strictures in CD [85;86]. The proposed mechanism related to the activity of 

MMPs in pathophysiological process is thought to be the imbalance of MMPs and TIMPs 

within the local tissue [81;82;85]. Stallmach et al. [87] reported increased MMP-1 and -2 

mRNA and protein in the intestinal tissue of UC patients. In one study, MMP-9 was found to 

be increased in the neutrophils in inflamed regions, however, in the same study no MMP-2 

expression was found in normal or CD affected intestinal tissue by immunofluorescence [86]. 

Elevated levels of MMP-9, in both quantity and activity were found in the inflamed intestinal 

IBD tissue [85;88]. In this context, MMP-9 is concluded to be a major factor in promoting 

neutrophil migration across the BM. MMP-9 also affects the production or activation of c-x-c 

and other neutrophil chemokines, which attract neutrophils migration across the BM of 

capillaries to inflammatory sites [89]. Recently, Kirkegaard et al. [90] suggested that the 

upregulated expression of MMP-3 and -9 may be relevant to the formation of fistulae in CD 

patients and that blocking the activity of MMPs could be a therapeutic option in the treatment 

of IBD [88;91]. In addition, MMP-2 and -14 mRNAs were shown to be notably increased in 

ulcerated colonic IBD mucosa, rather than in mild inflammatory regions [83]. Furthermore, 

MMP-14 is known to be an important factor promoting neoangiogenesis in wound healing 

[92]. Also in animal models of IBD, MMP-2 and MMP-8 (neutrophil collagenase) in large 

intestinal epithelial cells were found to participate actively in the immunopathogenic process 

by cleaving type I and IV collagen and the laminin-5 2- chain of the ECM and MB [93]. 

TNF-  and IBD 

 TNF-  (cachectin) is a member of TNF/TNF receptor(R)-related superfamily proteins, 

which consist of more than twenty members [97]. The activity of these proteins affects the 

host defense, inflammation, apoptosis, organogenesis and autoimmunity. 

Monocytes/macrophages are believed to the principal source of TNF-  production, although 

many other cells are capable of releasing TNF- . These cells include T- and B-lymphocytes, 

mast cells, neutrophils, NK cells, astrocytes, Paneth cells, intestinal mesenchymal cells, and 

tumor cells [98;99]. In response to bacterial products, the intestinal epithelial cells are also 

able to produce TNF-  [100;101]. 

The gene for human TNF-  is located on chromosome 6, between the HLA class I and 

II loci [102]. Like for other proinflammatory cytokines, within the untranslated region of the 

TNF-  mRNA a conserved sequence UUAUUUAU exists which confers an RNAse target 
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and reduces the rate of TNF-  translation. As a result, the TNF-  mRNA is highly unstable: in 

monocytes/macrophages the half life of TNF-  mRNA is about 15 minutes and in T-

lymphocytes it is approximately 40 minutes [103-105]. The stimuli for synthesis of TNF-

include bacterial products, superantigens, x-ray irradiation, inflammatory mediators, and 

TNF-  itself. W ith a feedback inhibition mechanism, TNF-  simultaneously induces negative 

regulatory elements to strictly control its own production. The other suppressive factors for 

TNF-  production include IL-10, PGE2, cAMP, activator of protein kinase C, glucocorticoids 

and cyclosporin A [106;107].

 After translation the precursor TNF- , a 26 kDa protein containing an unusual long 

signal peptide, anchors at the plasma membrane, also called membrane TNF-  (mTNF- ). 

The intracellular portion of mTNF-  consists of a N-terminal 30 aminoacids long residue, 

followed by a 26 aminoacids long transmembrane domain residue. The extracellualr portion 

of mTNF-  contains a 177 aminoacids residue, which is cleaved by an enzyme from the 

metalloproteinase-disintegrin family, i.e., TNF-  converting enzyme (TACE, ADAM-17), to 

release a 157 aminoacids residue as a soluble TNF-  17 kDa protein, which aggregates into a 

51 kDa soluble homotrimeric active form of TNF- . mTNF-  is also able to directly exert its 

biological function via engaging with the TNFR [108-110].

 The signal transduction of TNF-  is generated by two TNF-  receptors, TNFR1 (55 

kDa, p55, CD120a) and TNFR2 (75 kDa, p75, CD120b). TNFR1 is located on many cell 

types, whereas TNFR2 is predominantly expressed on leucocytes and endothelial cells. 

TNFR2 is also a receptor for lymphotoxin (TNF- ). The binding of TNF-  to both TNFRs 

leads to activation of the apoptosis pathway or to the induction of NF- B activity, protecting 

from TNF-  inducing apoptosis, activating transcription of genes associated with 

inflammation [111]. TNFR1 can either directly transduce the signal of TNF-  to activate NF-

B in lymphocytes or receive TNF-  delivered by TNFR2. The mechanism that decides 

whether the signal of TNF-  results in either apoptosis or activation of inflammatory genes 

depends on the distribution of the TNFRs in a specific cell type and various recruitments of 

signaling proteins in the specific cell to the TNFR which binds TNF-  [112-114]. Besides the 

two receptors mTNF-  can also be engaged with ligands to reversely tranduce the signals into 

cells it anchors in [115-117].

Many acute pathophysiological changes are the result of the body's systemic exposure 

to high levels of TNF- . They include the release of other proinflammatory cytokines, the 

activation of neutrophils and macrophages, the release of catabolic hormones, acute 

respiratory distress syndrome, gastrointestinal necrosis, and cardiovascular collapse. Chronic 

low levels of TNF-  leads to fever, insulin resistance, lipid depletion, protein catabolism, and 

wasting. TNF-  is a significant contributor to septic shock, cachexia of cancer, and some 

chronic inflammatory diseases, such as CD and rheumatoid arthritis [99;118;119]. 

 There is increasing evidence suggesting that TNF-  plays a pivotal role in CD 

pathogenesis. Increased TNF-  expression in the intestinal mucosa rather than in serum of CD 

patients is thought to be of importance to the process of inflammation in CD [6;120-123]. 

TNF-  augments the Th1 cell function in the intestinal mucosal immunoreactivity against 

intestinal bacterial or cross-reactive mucosal antigens [3]. The effects of TNF-  include the 

activation of neutrophils and macrophages, the induction of proinflammatory cytokines (e.g. 

IL-1, -6,-8), chemokines and nitric oxide synthesis in inflammatory cells, up-regulation of a 

variety of adhesion molecules, e.g, E-selectin, intercellular adhesion molecule (ICAM)-1, 

vascular cell adhesion molecules (VCAM)-1 and mucosal addressin cell adhesion molecule 

(MAdCAM)-1. These factors promote the recruitment of lymphocytes, neutrophils and 

monocytes to the inflammatory site, and the up-regulation of the production of chemokines, 

such as monocyte chemoattractant protein (MCP)-1 [124]. TNF-  also augments the IFN-

production by mucosal T cell, activates CD44 in T cells and stimulates lymphocyte 

proliferation and migration. Furthermore, TNF-  is relevant to the secretion of chemokines 

and chloride from intestinal epithelial cells and the disruption of the epithelial barrier because 
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of its affects on the epithelial permeability [125-128]. TNF-  also participates in the 

granuloma formation, which is a histopathological hallmark of CD [129;130]. The influence 

of TNF-  on angiogenesis is believed to be exerted through the promotion of angiogenic 

factors, such as bFGF, VEGF and IL-8 [131]. Finally it has been proposed that the tissue 

damage caused by MMPs is related to TNF- , particularly since TNF-  is able to activate 

MMPs [127;132]. In both animal models and clinical trials, amelioration of intestinal 

inflammation occurs following the neutralization of TNF-  with specific antibodies 

[133;134].

Bacterial components/Lipopolysaccharide (LPS) 

LPS (endotoxin) is an outer membrane component of gram-negative bacteria. The LPS 

molecule consists of a hydrophilic polysaccharide part and lipid A. The polysaccharide part is 

composed of an oligosaccharide-core region and repeat units of identical polysaccharides (O-

specific chain). The oligosaccharide-core region is a conserved part of LPS, which is the 

epitope to be recognized by monoclonal antibodies. The O-specific chain varies in length, and 

a number of bacteria produce LPS even without this part. The O-specific chain can be used to 

identify the bacterial origin of LPS. Lipid A, a covalently bound hydrophobic lipid 

component, is the essential portion for the bioactivity of LPS [135].  

The biological effects of LPS on the host are the result of the activity of LPS-

responsive cells which include monocytes/macrophages, neutrophils, lymphocytes, and 

vascular cells (endothelial and smooth muscle cells). In general, the response to low amounts 

of LPS is beneficial for the host via the enhancement of the resistance to infection and 

malignancy [136]. Large amounts of LPS, however, cause severe responses of the host, 

including fever, sepsis, disseminated intravascular coagulation, and multiorgan failure. These 

inflammatory responses are mediated by immune modulation molecules, e.g., TNF- , IL-1, -

6, -8, -12, nitric oxide, thromboxanes and leukotrienes, produced by LPS responsive cells. 

Each responsive cell type reacts to LPS in an individual way. For instance, the main reaction 

of monocytes/macrophages is to produce a battery of inflammatory mediators, in particular 

TNF- . Monocytes/macrophages are the most sensitive cell type to the stimulation of LPS. At 

about 1 ng/ml LPS is already able to activate a strong response in monocytes/macrophages 

[137]. The phagocytosis by neutrophils is enhanced by LPS. Furthermore, LPS is one of main 

priming agents for neutrophils and monocytes, which in response promote the secretion of 

inflammatory lipid mediators and oxygen radicals and the synthesis of proteins [138]. 

However, the bioactivity of LPS is also neutralized by PMNL through degradation by 

enzymes [139].  

The recognition of the LPS signal is carried out by an array of macromolecules, such 

as LPS-binding protein (LBP), soluble and membrane CD14, TLRs, and members of the -

integrin family [140]. The number of molecules responsible for the recognition and 

transduction of the LPS signal is still increasing. CD14
+
 cells, monocytic cells and 

neutrophils, are very sensitive to stimulation with LPS and anti-CD14 antibodies block the 

release of cytokines from LPS-stimulated myeloid cells. CD14
-
 cells, e.g., endothelial cells, 

fibroblasts and smooth muscle cells can be activated by the LPS-soluble CD14 complex [141-

143]. CD14, as LPS receptor, plays an important but not essential role in the signal 

transduction because CD14 lacks a transmembrane domain. In addition, TLR-4 is recently 

reported to be a LPS receptor as well [144], and various other membrane molecules form the 

LPS-action cluster are also involved [145]. The intracellular transduction of the LPS signal 

results in the activation of transcription factors, like NF- B, AP-1, and Ets which 

subsequently give rise to inflammatory cytokine gene transcription [140;146]. 

   There are several lines of evidence suggesting that the bacterial flora also plays a 

role in the pathogenesis of IBD. Products of bacteria, such as LPS, N-formyl-methionyl-
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leucyl-phenylalanine (fMLP) and peptidoglycan-polysaccharide (PG-PS), not only interact 

with immune and non-immune cells in the intestinal tissue, triggering a mucosal 

immunoreaction and inflammation, but also affect the activities and functions of the immune 

cells in the circulation [5;147;148]. Lamina propria mononuclear cells (LPMCs), activated by 

LPS and other bacterial products, can diminish the transport and barrier functions of epithelial 

cells [149]. It has been reported that systemic endotoxaemia was correlated with the activity 

and extent of inflammatory bowel disease [150]. Recent reports identified more bacterial 

components, such as staphylococcal enterotoxin A (SEA) and muramyl dipeptide, a 

peptidoglycan which frequently contaminates preparations of LPS, to be associated with IBD 

[151;152].

The immunobiological treatment of IBD 

Anti-inflammatory and antimicrobial medication and immuno-modulation are the 

most relevant approaches in the treatment of IBD. Due to a better the understanding of the 

pathogenesis of IBD, biological treatment strategies become increasingly promising. 

Biological therapy is defined as the administration of various native or recombinant molecules 

which targets at specific sites of the pathophysiological complex. Several biological therapies 

emerged against different immunological stages with potential clinical application for IBD 

patients. The lymphocyte is one of the major targets for biological therapy because the 

presentation of antigens and bacterial products by drendritic cells to CD4
+
 T lymphocyte is 

believed to be the initial step of the immune reaction in IBD. Anti-CD4
+
 antibodies were 

developed to block this activation of the CD4
+
 T lymphocytes [153;154]. Anti-IL-2 and anti-

IL-18 receptor antibodies were designed to interfere with the effect of these cytokines on the 

function of Th1 cells [155;156]. Recombinant IL-10 (rHuIL-10) has been used, also in trials, 

to suppress the production of IL-2 and IFN-  by Th1 cells [157;158]. Primary clinical trials 

with ISIS 2302, an antisense molecule to ICAM-1, failed to demonstrate that this component 

could increase the remission rate of CD in a low dose, two phase 3 trials at a high dose in 

patients with active CD are presently underway [159]. Growth factors play also an important 

role in mucosal immuno-modulation, and in proliferation and differentiation of epithelium, 

with epidermal growth factor already applied in clinical trials [160]. Inhibitors for TNF-  are 

at the stage of routine clinical application or efficacy assessment in clinical trials. These 

agents include anti-TNF-  antibodies (infliximab and CDP571), recombinant TNFR 

(Etanercept and Onercept), and agents affecting TNF-  gene expression (CNI-1493) and 

synthesis (Thalidomide) [119;161]. TACE inhibitors were proposed to be useful to block the 

production of soluble bio-active TNF- , however, it is still at an early stage. In addition, a 

series of benzodiazepine MMP/TACE inhibitors has been synthesized to impair LPS-

stimulated TNF production by human monocytes [162;163]. NF- B, an important 

transcription factor, is responsible for the transcription of a variety of inflammatory 

mediators, and has been speculated to be a target for IBD therapy [164;165].

Up to date, clinical trials have demonstrated that inhibition of the selective adhesion 

molecules 4-integrin and 4 7-integrin and inhibition of TNF-  are effective in the treatment 

of various forms of UC and CD [159]. Infliximab (Remicade
®

, formerly named cA2) is the 

most successful biological agent in the treatment of CD patients and is approved for clinical 

application of patients with CD and rheumatoid arthritis (RA) [166-169]. Infliximab is a 

genetically constructed chimeric anti-TNF-  antibody with a 75% portion of human protein, 

the human Ig G1  light chain, linked with a 25% murine protein portion, the variable or 

recognition region of the mouse antihuman TNF-  monoclonal antibody (A2) [170]. The 

clinical trials of infliximab in CD showed that 50 to 80% of patients responded very well to a 

single infusion of 5-20mg/kg infliximab with a 4 week follow up [171;172]. Nowadays, 

infliximab is an important treatment option for patients with moderate to severely active 
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and/or fistulizing CD [173]. Infliximab is also one of the most intensively studied biological 

agents. However, mechanisms underlying the effects of infliximab are not fully understood. It 

is suggested that infliximab not only neutralizes the bioactivity of TNF- , by binding soluble 

and membrane TNF- , but is also a immune modulator which directly affects immune cells, 

e.g. by inducing apoptosis of TNF- -producing cells [174;175]. There are controversies as to 

whether infliximab lyses the TNF- -producing cells via complement-and antibody-dependent 

path ways [176;177]. After treatment with infliximab a reduction of activated macrophages 

and T lymphocytes in the intestinal mucosa of CD patients was found [175;178]. In peripheral 

blood, the percentage of neutrophils was decreased and the relative numbers of lymphocytes 

and monocytes was increased after infusion with infliximab. Although it is still not 

completely clear whether infliximab affects the capability of peripheral blood mononuclear 

cells to produce TNF-  [179;180], downregulation of epithelial cell apoptosis and barrier 

repair in active Crohn's disease by infliximab has been observed [181]. 

Studies described in this thesis 

The expression of the bFGF, FGFR-1 and syndecan-1 ternary molecular complex, at 

the mRNA and protein level, in the intestinal tissues from IBD patients was evaluated in 

relation to the presence of inflammation. The role of this complex in the inflammatory and 

healing processes in IBD is discussed in Chapter 2. Changes of the bFGF levels in serum and 

intestinal tissue of fistulizing and active CD patients during treatment with infliximab, from 2 

clinical trials, were assessed to further evaluate the role of bFGF in intestinal healing 

(Chapters 3 and 4). In additional experiments, the regulation of bFGF expression at the 

protein and mRNA level in LPS-stimulated leucocytes from CD patients, with and without the 

presence of infliximab, was explored (Chapter 4). These experiments would provide insight 

into bFGF function and efficacy mechanisms of infliximab therapy in CD.  

In Chapter 5, investigations of the regulation of TNF-  protein and mRNA 

expression in leucocytes from CD patients are described to explore the immunological impact 

of infliximab therapy for these patients. Furthermore, the value of the determination of TNF-

by immunosorbent assays under infliximab treatment was assessed. 

The expression and activity of the gelatinase-type of matrix metalloproteinases MMP-

2 and MMP-9 in intestinal tissues of IBD patients, to explore the role of these MMPs in the 

pathophysiological processes of mucosal inflammation, was the focus of the studies described 

in Chapter 6. The effect of immunoneutralization of TNF-  by infliximab, either in vivo or in

vitro, on the expression and production of MMP-2 and MMP-9 by leucocytes, in serum and in 

tissues of patients with CD is described in Chapter 7. The functional interactions and 

pathophysiological consequences for CD are discussed. 
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