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Chapter 1

Introduction

The central concept of this thesis is interaction – mutually influencing behavior of two or more entities.
It is present in every aspect of our daily life. Human beings communicate, work together, move around,
create and exchange things, operate machines. With each action they take, they enable and constrain
the behavior of numerous people and things around them, often without realizing. We interact, therefore
we are.

... and we are not alone. A similar lively community of interacting entities lives inside computers,
in the virtual world of software. These entities have many different names, depending on the context
in which we speak about them, or the way in which we like to think about them: active objects, actors,
agents, processes, services. They communicate in many direct and indirect ways, with data units, sig-
nals, messages, via mail boxes, channels, shared data spaces, pipes. They enter, they leave, they send
and receive, they store and retrieve. This community, virtual but ubiquitous, is alive and still growing,
and will surely continue to grow considerably in the next decades.

In the design, analysis and implementation of software systems, interaction plays a role of increasing
importance. There are at least two reasons for this. Firstly, the software construction process continu-
ously changes towards more openness, distribution and heterogeneity. Nowadays, systems are no longer
built as closed monolithic entities, but rather as open distributed systems. They are not created by a
single team of developers, but rather composed out of a large pool of software services, built by multi-
ple independent software developers, running concurrently on different physical machines somewhere
on the globe, changing their functionality over time while they are in use. Clearly, in order to let these
heterogeneous distributed evolving software services work together as a system, the study of their inter-
action is of crucial importance. As a second important trend, hardware becomes an increasingly smaller
cost factor in the implementation of information and communication technology. So-called multicore
processors are the norm nowadays. Software developers can and should exploit this trend by designing
their software with full concurrency as a major design principle. This would inherently lead to more
concurrent entities, and an urging need for methods and techniques to design, analyze and implement
their interaction.

1



2 CHAPTER 1. INTRODUCTION

This thesis is about interaction in software systems. We have investigated the applicability of a
general modeling language for interaction to the specific field of software development. The modeling
language, called PARADIGM, has been developed earlier at the Leiden Institute of Advanced Computer
Science (LIACS) and has been shaped via its application to several systems and modeling domains
throughout the last decades [44, 95, 71, 32, 33, 41, 34, 45, 42, 43, 46, 92, 40]. Its interesting features
are the particular world view it adopts, the fact that it is an executable language (models written in the
language can be executed, e.g. by a computer), and its ability to model systems whose behavior evolves
at runtime (i.e. while they are executed). With PARADIGM, we have performed three complementary
activities in our research: the development of tools for the language, the definition of conceptual exten-
sions to the language based on insights gained by the tool development, and a series of case studies in
order to validate the extensions and the tools, and to assess the applicability of the resulting language
for software modeling and software design.

Throughout our research, we have found interesting results in two directions. Firstly, the develop-
ment of tools for PARADIGM, in particular the creation of a distributed interpreter for PARADIGM models,
has cast a new light on the modeling language. Secondly, the case studies carried out in this thesis
show the usefulness of PARADIGM and its world view in the context of software modeling and design.
Hence, in this thesis, the knife cuts both ways: through designing and implementing software tools for
PARADIGM, we improve upon the concepts of the modeling language, and through applying the concepts
of the modeling language, we improve upon software design and implementation. In other words, this
thesis is the outcome of an interactive process between the development of a modeling language and
the development of tools for it.

1.1 Outline

An overview of the thesis is shown in Figure 1.1. The interaction between conceptualization (language
development) and tool development is reflected in the structuring of the Foundations part into two
tracks: Chapters 2 and 4 cover the PARADIGM language and its extensions, respectively, while Chapters 3
and 5 report on the development of a distributed interpreter framework for PARADIGM and its embedding
in a set of tools. The Case Studies part contains three chapters, each reporting on a particular concrete
modeling effort. In Chapter 6 to Chapter 8, validation gradually moves from a focus on the language
extensions (chapter 4) to a focus on the tool features (chapter 5). Below, we briefly outline the contents
and contributions of each chapter.

Part I: Foundations

We start with a technical introduction to PARADIGM in Chapter 2. We introduce the modeling principles
and the concepts of the language, and address its executability in terms of an informal description of
the operational semantics of the language. Additionally, a discussion about the general strengths and
weaknesses of PARADIGM is provided.

In Chapter 3, we move to the tool development track and introduce PARADISE, a framework for
creating distributed interpreters for PARADIGM models. Key objectives of the framework are maximal
concurrency and a simple means to experiment with the PARADIGM language. The framework consists
of several interpreters for the individual concepts of PARADIGM, which can be composed to form a
distributed interpreter for a specific PARADIGM model.
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Figure 1.1: Overview of the Thesis Chapters

Based on insights gained in Chapter 3, we reflect on the PARADIGM language and introduce a series
of extensions for it in Chapter 4. The major extension discussed in this chapter is the introduction of
the interaction protocol concept, which can be used to explicitly structure the interaction in a PARADIGM

model. With the introduction of the interaction protocol concept, we also contribute to the operational
semantics of the language by precisely defining when interactions may take place concurrently. Another
extension consists of a generalization of the consistency rule concept in PARADIGM, the concept which
forms the basis for the specification of interactions in the language.

Finally, we combine the results of Chapters 3 and 4 in the development of the PARADE tools, the
subject of Chapter 5. These tools can be used to specify, execute and visualize models specified in the
extended PARADIGM language. The core of the tool set is formed by a distributed runtime environment for
the execution of PARADIGM models based on PARADISE, which directly supports the evolution of PARADIGM

models on-the-fly. Additionally, the distributed runtime environment offers two extension models to PA-
RADIGM for visualization of the runtime state of component models during execution, and for extending
a PARADIGM model with software functionality. Especially the latter extension plays an important role in
the case studies of Chapters 7 and 8.
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Part II: Case Studies

The case study presented in Chapter 6 focuses on interaction modeling in a non-trivial context, for
purposes of software analysis. We create a PARADIGM model of a multi-component car navigation system,
in which the components offer several modes of operation. The challenge in this case study is formed
by the fact that the coordination of these modes of operation interferes with the regular communication
between the components – two aspects of interaction which interact with each other. The case study is
meant primarily to validate the extensions introduced in Chapter 4.

In Chapter 7, we model a generic branch-and-bound algorithm in a sequential, componentized,
and parallel shape. In this case study, we do not only validate the concepts of Chapter 4, but also the
PARADE tools introduced in Chapter 5: we combine the PARADIGM models with the implementation of
a branch-and-bound solver, which enables a more elaborate analysis of the relationship between the
generic PARADIGM model and the characteristics of a specific branch-and-bound problem. In doing so,
we also show how the principles underlying PARADIGM, i.e. its world view, is useful for software design.

Finally, in Chapter 8, we use the extended PARADIGM language and the PARADE tools for modeling
evolution on-the-fly: the application of changes to a PARADIGM model while it is being executed. This case
study validates the extensions of Chapter 4 in the context of modeling software evolution. Furthermore,
we apply the PARADE tools to execute models which evolve on-the-fly. A final contribution presented
in this case study is the introduction of a new technique called scaffolding, a general technique to
temporarily observe and restrict a specific part of the behavior of a running model while changes are
applied to it.

1.2 Publications

The contents of this thesis are based on earlier publications, as follows.

In [92], we reported on experience with an implementation of the PARADIGM language in the TOOL-
BUS architecture [58, 61, 10]. Although not as elaborate as in this thesis (Chapter 4), a primary concern
in [92] was to establish a way to symmetrize the relationship between manager components and em-
ployee components, which has been realized in this thesis through generalization of the consistency
rule concept. The formal notions we developed in [43] have been used as the starting-point for setting
up the informal explanation of the operational semantics of PARADIGM in this thesis (Chapter 2).

Many insights of the ArchiMate project [66, 59, 60, 24, 25, 93, 23] have been reused at vari-
ous places in this thesis. The development of a new language for enterprise architecture, which we
published in [60], in particular the work on roles and collaborations in this language, has played an
important role in the decision to extend PARADIGM with the interaction protocol concept (Chapter 4).
The separation between semantic and symbolic models for enterprise architecture, about which we
published in [24] and [25], played a role in the design of the PARADISE framework (Chapter 3) and
the PARADE distributed runtime environment (Chapter 5): the distinction between types and instances
in the language, the separation of modeling artifacts from semantic interpretations of these artifacts
by means of concept interpreters, and the distinction between the symbolic transition labels and their
semantics (interpretation) in terms of operation invocations on action classes.
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The runtime visualization tools for PARADIGM presented in Chapter 5 have been based on insights
from work which we published in [93]. In this publication, we showed how to effectively use XML [77]
and RML (the Rule Markup Language, [55]) for modeling, visualizing and analyzing enterprise archi-
tectures. Although we did not use XML transformations in PARADE, the rigid distinction between XML
specifications of PARADIGM models and their visualizations in terms of extension models is based on the
principles presented in [93]. Finally, insights from our work on impact-of-change analysis, which is part
of a book chapter in [66] and which has also been published in [23], have been implicitly reused in
the algorithms adopted in PARADE for the creation, update and deletion of PARADIGM modeling artifacts
during evolution on-the-fly.

The case study in Chapter 7 is based on earlier work published in [91], in which we reported on
the development of generic framework for coordinating parallel branch-and-bound algorithms with the
exogenous coordination language MANIFOLD and the IWIM coordination model [3, 4, 11]. We used the
principle of separating control flow and data flow, as present in MANIFOLD, in [90] to extend CMT, a
modeling technique for component based software design.

1.3 Available Tools

The PARADE tools have been developed as part of the research presented in this thesis. The tool set
consists of a distributed runtime environment for the execution of PARADIGM models, a runtime viewer
and a (non-graphical) editor for all types of PARADE models. All tools are available for download at [78].
Installation instructions, concise documentation, examples and the PARADE models from the case studies
are included.
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Chapter 2

PARADIGM

We introduce PARADIGM, a modeling language specifically meant for modeling the inter-
action between components in a system. Illustrated by the example of a client/server
model, we introduce the modeling principles and the concepts of the language. Further-
more, we explain how models written in PARADIGM can be executed, thereby providing
an informal description of the operational semantics of the language. Finally, we discuss
the general strengths and weaknesses of PARADIGM.

2.1 Introduction

PARADIGM is an interaction modeling language: it is especially useful for the modeling of interaction and
coordination problems in human and computer settings. The name PARADIGM is an acronym: PARal-
lelism, its Analysis, Design and Implementation by a General Method. PARADIGM started as a language
to model parallel phenomena by the use of Markov decision processes extended with several constructs
for the modeling of parallelism and communication [44, 95]. Since then, the context of application
changed from parallel phenomena to object-oriented modeling (mainly as part of SOCCA [33, 41]),
and coordination problems in general (e.g., [42]). However, the basic ideas of PARADIGM persisted with-
out considerable modification. In 2002, operational semantics for a restricted class of PARADIGM models
were published in [45], followed in 2005 by an article in which the operational semantics were gener-
alized for a broader class of models [43]. Recently, interesting results have been established pertaining
to the evolution of PARADIGM models during their execution [46, 40].

PARADIGM has been applied to many different systems in many different domains, ranging from
operating systems [95] to business processes [43]. In all cases, its purpose is to get insight into the
interaction between components in a system. To this end, both the behavior of individual components
as well as the interaction between components are modeled. Models specified in the PARADIGM language
are executable – they provide an operational model of a system which can be executed by a computer.

9



10 CHAPTER 2. PARADIGM

PARADIGM is based on two modeling principles: the multiple views principle and the manager/em-
ployee principle. According to the multiple views principle, a distinction is made between the detailed
behavior of a component, and views on this detailed behavior relevant to each of the roles it plays in
interaction with other components. These views are called global behaviors. The actual interaction in
the system is modeled by applying the manager/employee principle: the detailed behavior of a manager
component manages one or more global behaviors of a set of employee components. PARADIGM allows
components to be a manager and an employee at the same time. The multiple views principle enables
the possibility to study the interaction between the components separately from their detailed behavior.
The manager/employee principle ensures that interaction is modeled according to a standard pattern
(one manager, multiple employees) and enables interaction modeling at multiple management levels.

We have structured this chapter as follows. In Section 2.2, we explain the core concepts and struc-
turing principles of PARADIGM. After that, we focus on the operational interpretation of PARADIGM models
in Section 2.3. Throughout sections 2.2 and 2.3, we illustrate our explanation with a small PARADIGM

model of a system consisting of three clients being served by a server. In Section 2.4, we shortly discuss
the general strengths and weaknesses of the PARADIGM language. Finally, in Section 2.5, we conclude.

2.2 Language Concepts

The PARADIGM language consists of three basic concepts: process, partition and consistency rule. The
process concept is used to model behavior. For each component in the system, we model one detailed
process, and zero or more global processes which represent different views on the detailed process in
interaction with other components. Global processes are based upon a partitioning of the detailed pro-
cess into phases, modeled using the partition concept, which embodies the multiple views principle.
The relation between components is modeled using the consistency rule concept. A consistency rule syn-
chronizes one step of a single detailed process with one step of zero or more different global processes.
According to the manager/employee principle, the component containing the detailed process is called
the manager, while the components containing the global processes are called employees. In the next
subsections, we zoom in onto each of the three concepts by providing a detailed informal description
and an example to illustrate how a concept is used.

Processes

A process in PARADIGM is modeled as a state transition diagram, a simplified version of a UML state
machine diagram [12, 37, 73, 74]. It consists of states, transitions between states, and transition labels
(also called actions). A state represents a certain situation the process is in. One or more starting states
and zero or more final states can be defined. A state can be both a starting and a final state, and final
states may have outgoing transitions. An example of a PARADIGM process can be found in Figure 2.1.
This process models the detailed behavior of a (human) client, being served by a (human) server. Within
the model, one starting state is defined, indicated by a black dot and an incoming transition. No final
state is specified. Intuitively, we interpret this model as follows. Starting in state NoNeeds, the client is
supposed to enter a building or room via transition enter. He/she then arrives at a desk and reaches
state AtDesk. The client is then expected to explain his or her needs, after which state NeedClear is
entered. After the client asks for the service, he/she is supposed to be under service in state Service. At
a certain moment, the client performs action thank and enters state Satisfied, indicating that the service
is to be stopped. Finally, the client leaves the building, whereafter the same behavior is repeated.
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AtDesk NeedClear

Satisfied

NoNeeds

Service

enter explain

thank
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Figure 2.1: A PARADIGM process Client

Processes are used in PARADIGM to model the detailed behavior of a component as well as the role-
specific views on this detailed behavior, called global behaviors. Before we show an example of a process
modeling global behavior, we first introduce the partition concept, on which the modeling of global
behavior is based.

Partitions

Partitions are a means to define views on the detailed process of a component. They are not the views
themselves, but merely embody the relation between a detailed process and a view on it. It is possible
to define many partitions on top of a single detailed process, which reflects the idea that a process
can be viewed from different viewpoints, each being relevant for a specific role in the interaction with
other components. A partition of a process consists of subprocesses of that process, each with one or
more traps. Subprocesses can be seen as overlapping phases which the process goes through during
execution, while traps are milestones achieved in a certain phase which are relevant for the purpose
of interaction and which possibly enable the entrance of a following phase. A subprocess is a subset
of the states and transitions of a process. Subprocesses are defined without starting or final states. A
subprocess acts as a dynamic constraint on the behavior of the process: only the states and transitions
within the current subprocess are allowed (the process is said to be in this subprocess). A trap is a
subset of the states of a subprocess, such that there is no transition in the subprocess from one of the
states within the trap to a state outside of the trap. For this reason, it is called a trap – once entered, it
cannot be left as long as its subprocess is the current subprocess. A trap is called trivial if it contains the
entire set of states of a subprocess. A trap is an enabler for a change from one subprocess to another
subprocess. Once the underlying process, being constrained by a certain subprocess, enters the trap,
this trap acts as a connecting trap to other subprocesses, provided that these subprocesses each contain
all states included in the trap. A change from one subprocess S to a subprocess S′ via a connecting trap
θ is called a subprocess change.

An example of a partition is shown in Figure 2.2. This partition, called ClientAsObjectOfService (or
AsOOS for short), consists of three subprocesses of process Client: WithoutService, Orienting and Under-
Service. In each subprocess, one trap has been defined, indicated by a polygon and a name in italics. The
traps of the subprocesses are connecting traps: Trap asking is a connecting trap from WithoutService to
Orienting, but also a connecting trap from WithoutService to UnderService. Trap serverClear is a connect-
ing trap from Orienting to both WithoutService and UnderService, while trap ready is a connecting trap
from UnderService to WithoutService. Intuitively, partition ClientAsObjectOfService splits process Client
into three phases: WithoutService, where the client does not have the attention of the server, Orienting,
where the client is clarifying his/her service needs, and UnderService, where the client is being served.
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serverClear
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Figure 2.2: A PARADIGM partition ClientAsObjectOfService (AsOOS for short)

Global Processes

As described above, a partition of a process acts as a set of dynamic constraints on that process. The
current subprocess of a partition restricts the process to a subset of states and transitions. A change from
one subprocess to another is only possible whenever a connecting trap between these subprocesses has
been entered. Based on a partition, one can construct a process in which each state is mapped one-
to-one on each subprocess of the partition, the state name corresponding to the name of the mapped
subprocess. Additionally, transitions between the states of this process can be defined whenever there is
a connecting trap between the corresponding subprocesses. The transition labels then correspond to the
names of the connecting traps. In PARADIGM such a process is called a global process at the level of that
partition. A global process is a process, just like a detailed process: it has one or more starting states
and zero or more final states. It represents a view on a detailed process, thereby modeling the (global)
behavior relevant to a specific role that the component is able to play. PARADIGM does not require that
global processes contain transitions for each connecting trap in the partition.

As an example, a global process at the level of partition ClientAsObjectOfService of process Client is
shown in Figure 2.3. We call this process Client[AsOOS], denoting the detailed process Client viewed
“as an object of service”, or playing the role “object of service”, at the level of partition AsOOS. A state
exists for each subprocess in the partition. Note, there is no corresponding transition for the connecting
trap asking from WithoutService to UnderService, nor for the connecting trap serverClear from Orienting
to WithoutService.
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Orienting UnderServiceWithoutService
asking serverClear

ready

Figure 2.3: PARADIGM process Client[AsOOS]

A global process establishes a dynamic constraint on the detailed process that belongs to it by the
fact that its current state corresponds to a current subprocess of a partition. Many different partitions
and corresponding global processes can be defined on top of a single detailed process. The detailed
process is constrained by the current subprocesses of all its partitions together, that is, its behavior is
limited to the intersection of those current subprocesses. At the same time, a transition in a global
process can only be taken if the trap corresponding to the transition label has been entered within
the current subprocess. Hence, one could perceive the relation between the detailed process and the
global processes of a component as a mutual dynamic constraint which maintains the components’
inner consistency, i.e. the consistency between its detailed behavior and the global behaviors relevant
to its roles in the interaction.

With detailed processes, partitions of these processes and global processes at the level of these par-
titions, we are able to model the behavior of the individual components of a system in PARADIGM. Each
component consists of one detailed process together with zero or more partitions and corresponding
global processes, being the views on the detailed process relevant for interaction. So far, we have not
introduced a concept with which we are able to model the interaction between different components. This
is where the consistency rules of PARADIGM come into play.

Consistency Rules

A consistency rule relates the transition of a single detailed process, called a manager process, to zero
or more transitions of global processes at the level of partitions of employee processes. In general, a
consistency rule is written as:

P : s
a→ s′ ∗ Pk(πk,�) : Sk,�

θk,�−→ S′k,�, ..., Pv(πv,w) : Sv,w
θv,w−→ S′v,w

where P is a detailed process and Pk(πk,�), ..., Pv(πv,w) are global processes. Pk(πk,�) denotes a global
process at the level of a particular partition πk,� of a particular process Pk. We call the part on the left
side of ∗ the manager part of the consistency rule and the part on the right side its employee part.

Consistency rules synchronize transitions of detailed manager processes with those of global pro-
cesses. If, upon execution of the model, a transition of a detailed process is taken, a consistency rule with
this transition as its manager part must be applied. The result of such application is that all transitions
mentioned in the consistency rule are taken simultaneously. This naturally requires that all these transi-
tions can be taken, i.e. that the constraints with regard to partitions inside the components are satisfied.
We explain the conditions for the application of consistency rules more explicitly in Section 2.3.
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In PARADIGM, transitions of both detailed and global processes can only be taken as the consequence
of applying a consistency rule. Therefore, PARADIGM requires that, for each transition in each detailed
process in the model, at least one consistency rule is defined which has this transition as its manager
part. This ensures that in principle each transition of each detailed process can be taken. Note, however,
that this requirement is not imposed on transitions of global processes: if a transition of a global process
does not occur in the employee part of any consistency rule, it can simply never be taken.

PARADIGM allows detailed processes to be both manager and employee, even within a single consis-
tency rule: in terms of the general consistency rule mentioned above, this means that manager process
P is equal to one of the employee processes Pk, ..., Pv . In case zero global processes are mentioned in a
consistency rule, i.e. the employee part is empty, it is written as:

P : s
a→ s′

This means that the detailed transition s
a→ s′ is not bound to any transitions of global processes. A

detailed process for which only consistency rules with empty employee parts are defined, is called a
pure employee process.

Consider the following example. A server is serving three clients, as introduced earlier. Process
Server is shown in Figure 2.4. The entire PARADIGM model consists of three processes Client(i), each with
a partition AsOOS and global process Client(i)[AsOOS], and one process Server without any partitions.
The processes are related to each other by means of the example consistency rules of Table 2.5.

Intuitively, the first three rules R1,2,3 relate transitions address(i) of manager process Server to tran-
sition asking of global processes Client(i)[AsOOS]. That is, it is possible to take transition address(i) of
process Server if this process currently is in state Checking, process Client(i)[AsOOS] currently is in state
WithoutService and process Client(i) is in one of the states of trap asking. If process Server takes tran-
sition address(i), it enters state ListeningTo(i), and transition asking of global process Client(i)[AsOOS]
therefore must be taken as well. Now process Client(i) is being restricted to subprocess Orienting.

ListeningTo(1) ListeningTo(2)

Checking

ListeningTo(3)

address(1)

leave(1)

address(2)

leave(2) leave(3)

address(3)

Serving(1) Serving(3)Serving(2)

startServing(1) startServing(2) startServing(3)

Figure 2.4: PARADIGM process Server
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(R1,2,3) Server : Checking
address(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ ListeningTo(i)

∗ Client(i)[AsOOS] : WithoutService
asking−−−−−−−−−−−−−−−−−−−−−−−−−→ Orienting

(R4,5,6) Server : ListeningTo(i)
startServing(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Serving(i)

∗ Client(i)[AsOOS] : Orienting
serverClear−−−−−−−−−−−−−−−−−−−−−−−−−→ UnderService

(R7,8,9) Server : Serving(i)
leave(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Checking

∗ Client(i)[AsOOS] : UnderService
ready−−−−−−−−−−−−−−−−−−−−−−−−−→ WithoutService

(R10,11,12) Client(i): NoNeeds
enter−−−−−−−−−−−−−−−−−−−−−−−−−→ AtDesk

(R13,14,15) Client(i): AtDesk
explain−−−−−−−−−−−−−−−−−−−−−−−−−→ NeedClear

(R16,17,18) Client(i): NeedClear
ask−−−−−−−−−−−−−−−−−−−−−−−−−→ Service

(R19,20,21) Client(i): Service
thank−−−−−−−−−−−−−−−−−−−−−−−−−→ Satisfied

(R22,23,24) Client(i): Satisfied
leave−−−−−−−−−−−−−−−−−−−−−−−−−→ NoNeeds

Table 2.5: Consistency rules relating the Server and Client processes

In rules R4,5,6 and R7,8,9, the same principle is followed for transitions startServing(i) and leave(i)
of process Server, related to subprocess changes for processes Client(i) from Orienting to UnderService
and from UnderService to WithoutService, respectively. The remaining consistency rules R10 to R24 are
defined for the transitions of the pure employee processes Client(i).

PARADIGM Models

A PARADIGM model consists of a set of detailed processes, partitions of those processes, global processes
at the level of each partition, and a set of consistency rules, at least one for each transition in each
detailed process. The structure of an entire PARADIGM model can be visualized by means of a component
diagram, of which we show an example for the client/server model in Figure 2.6.

For the component diagram of Figure 2.6, we adopt the notation of UML 2.0 component diagrams
and composite structure diagrams [73, 74]. Processes are shown as active objects, indicating the fact
that they have an individual thread-of-control. The processes run concurrently, as far as they are not
constrained by their relationships with other processes. Each detailed process, together with its global
processes, is put in a separate component. A detailed and a global process are related to each other by a
�partition� connector between ports, which is given the name of the partition that relates them. The
consistency rules are shown as a collaboration with roles for each process mentioned in the rules. These
roles are played by components via ports. The connectors from these ports to the collaboration have
been decorated with �manager� and �employee� stereotypes for clarity. A delegation connector
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is used between a port of a component and a port of an (internal) process of this component. The
consistency rules for each of the transitions of the detailed Client pure employee processes are not
considered part of the collaboration: these consistency rules only have a manager part and hence do
not define any interaction.

Server

Client2 Client3Client1

Server

Client

Client[AsOOS]

Client

Client[AsOOS]

Client

Client[AsOOS]

Consistency 

Rules
<<employee>>

Client(3)[AsOOS]<<employee>>

Client(2)[AsOOS]

<<employee>>

Client(1)[AsOOS]

<<manager>>

Server

<<partition>>

AsOOS

<<partition>>

AsOOS

<<partition>>

AsOOS

Figure 2.6: A component diagram of the PARADIGM client/server example

2.3 Model Execution

A PARADIGM model defines the behavior of a system in terms of the combined behavior of its interacting
components. In this section, we specify precisely which behavior is defined by a PARADIGM model, i.e.
how we interpret such a model operationally. We split this topic into the following parts. We start with
showing how PARADIGM processes can be executed by sequentially taking transitions. After that, we
address the execution of detailed and global processes of an isolated component in a PARADIGM model,
where the global processes and detailed processes are related via partitions. Thirdly, we zoom in onto
the role of consistency rules in the execution of processes, by showing the detailed process of a manager
component together with the consistency rules which relate it to the global processes of employee
components. Finally, we address the execution of a PARADIGM model in its entirety.
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Processes

Execution of a process starts with selecting one of its starting states as the current state. After that, the
following procedure is applied. If the current state is a final state, it is possible (but not obligatory) to
stop the execution of the process. If execution is continued, however, one of the transitions of the process
is selected non-deterministically; this must be a transition which has the current state as its source state.
The selected transition is taken, which means that the current state of the process becomes the target
state of the transition. This small procedure is applied iteratively.

Take for example the server process from Figure 2.4. Since there is only one starting state Check-
ing, it will be selected as the first current state. Now, there are three transitions that can be selected:
address(1), address(2) and address(3). Suppose for example that transition address(1) is selected, then
taking this transition results in the current state being ListeningTo(1). Since no final state has been
defined, execution of this process never stops.

Partitions

In a PARADIGM component, a detailed process is related to zero or more global processes by means of
partitions. This relation influences the execution of the processes. Consider as an example the visual-
ization of Figure 2.7. Here, four consecutive states of global process Client(i)[AsOOS] are shown. In
each state the corresponding subprocess for Client(i) is depicted. Each state in process Client(i)[AsOOS]
corresponds to a subprocess in partition ClientAsObjectOfService, by which process Client(i) is restricted.
The “lightning”-like arrows indicate the global transitions, starting at connecting traps (the “enablers”
of the transition), and ending in the next state of the global process. The figure clearly shows the de-
gree of freedom with regard to taking transitions of the processes. For example, consider trap ready for
subprocess UnderService. Regardless whether the current state of detailed process Client(i) is Satisfied,
NoNeeds or AtDesk, it is possible to take the transition in global process Client(i)[AsOOS] from state
UnderService to state WithoutService.

In this example, we consider only a single partition on top of a detailed process. For multiple par-
titions, the mutual influence between the detailed process and each of the global processes is similar.
Because the detailed process is constrained by each of the current subprocesses at the same time, its
behavior is restricted to the intersection of all current subprocesses. Therefore, given a detailed process
P with partitions π j and corresponding global processes P(π j) ( j ∈ J), in general, the following holds
(for now, we do not take into account consistency rules):

• A transition s
a→ s′ of detailed process P can only be taken if, for all j ∈ J , subprocess Sj corre-

sponding to the current state of P(π j) contains transition s
a→ s′.

• A transition Sj
θ→ S′j of global process P(π j) at the level of partition π j can only be taken if the

current state of detailed process P lies in trap θ of subprocess Sj , i.e. the current state of P(π j).
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Figure 2.7: A Client(i) and Client(i)[AsOOS] process in combination
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For a meaningful execution of a detailed process and its global processes, the PARADIGM model should
incorporate some initial consistency: the chosen starting state of the detailed process should lie in each
of the subprocesses corresponding to the chosen starting states of the global processes.

We illustrate the mutual constraints of detailed and global processes of a component in Table 2.8,
where the states for processes Client(i) and Client(i)[AsOOS] from Figure 2.7 have been shown. State
names have been abbreviated. From top to bottom, the states of process Client(i) are shown, while
from left to right, the states of corresponding global process Client(i)[AsOOS] are depicted. Assume that
process Client(i) starts in state NoNeeds (NN) and process Client(i)[AsOOS] starts in state WithoutService
(WS). Seen this way, each partition in a PARADIGM model defines a restriction on two processes in that
model, one process being the detailed process of a component, the other being a global process of the
same component.

WS OR US WS OR US WS . . .
N N •

↓
AD • → •

↓ ↓
N C • → • → •

↓
SE •

↓
SA • → •

↓ ↓
N N • → •

↓ ↓
AD • → • → •

↓ ↓
N C • → • → •

↓
SE •

↓
SA • → •

↓ ↓
N N • → •

↓ ↓
AD • → • →

↓
N C • →

...

Table 2.8: Mutual constraints of Client(i) (↓) and Client(i)[AsOOS] (→) in combination
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Consistency Rules

Consistency rules bind a single transition of a detailed process (the manager part) to zero or more transi-
tions of global processes (the employee part). This is illustrated in Figure 2.9 for the client/server exam-
ple. Part of a behavior of the Server process is shown in relation to the three processes Client(i)[AsOOS].
We also visualize the subprocesses corresponding to the states of processes Client(i)[AsOOS], like shown
before in Figure 2.7. At the right side of the figure, the rules from Table 2.5 are mentioned that play
a role in the Server’s transitions. All processes start in their starting state. In total, seven processes are
running: Server, Client(i) and Client(i)[AsOOS] (1≤ i ≤ 3).

In the previous section, we already noted that transitions in PARADIGM can only be taken as the
consequence of the application of consistency rules. In the starting situation of our example, only con-
sistency rules R10, R11 or R12 (which all have an empty employee part) can be applied, that is, only
the three processes Client(i) can take a transition. The execution of the other processes is constrained
either by the current subprocess of a partition, or by the fact that none of their consistency rules can
be applied. Suppose that, in this situation, a transition is taken in process Client(1) from its first state
NoNeeds to state AtDesk by applying consistency rule R10. As we have seen in the previous example of
Figure 2.7, since Client(1) now enters trap asking of subprocess WithoutService, it is possible for global
process Client(1)[AsOOS] to take transition asking from state WithoutService to state Orienting. Thereby,
consistency rule R1 comes into play:

(R1) Server : Checking
address(1)−−−−−−−−−−→ ListeningTo(1)

∗ Client(1)[AsOOS]: WithoutService
asking−−−−−−−−−−→ Orienting

This consistency rule states the following: If Server is in state Checking and transition address(1) can be
taken, and if Client(1)[AsOOS] is in state WithoutService and transition asking can be taken, then if the
consistency rule is applied, both transition address(1) in process Server and transition asking in process
Client(1)[AsOOS] are taken simultaneously. In this example, rule R1 can now be applied, since both
transition address(1) of process Server and transition asking of process Client(1)[AsOOS] can be taken.
The consequence of applying rule R1 is a simultaneous transition in both process Server and process
Client(1)[AsOOS], as shown in the Figure. The example continues in a similar way.

The application of consistency rules is further illustrated in Table 2.10 for the combinations of the
first four states of Figure 2.9 for process Server and process Client(1)[AsOOS]. As is shown by this figure,
the consistency rules enforce synchronization of the taking of transitions by these two processes. The
reader may also notice the resulting twofold mutual restrictive influence between employee process
Client(1) and manager process Server via global process Client(1)[AsOOS]. In one direction, the taking
of transition address(1) in manager process Server depends, because of consistency rule R1, on the
possibility of taking transition asking of global process Client(1)[AsOOS], as this depends on the state
of employee process Client(1) which must be inside trap asking of subprocess WithoutService. In the
other direction, employee process Client(1) is restricted by subprocess WithoutService determined by
the state of global process Client(1)[AsOOS], which in turn can only be left by applying rule R1, which
depends on the taking of transition address(1) within process Server, the manager of this rule.
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Figure 2.9: Three Client(i)[AsOOS] processes in relation with the Server process

In our client/server example, precisely one consistency rule has been defined for each transition
of each detailed process. Note, however, that PARADIGM allows the definition of more than one consis-
tency rule with the same manager part. In that case, one of these consistency rules is selected non-
deterministically for application.



22 CHAPTER 2. PARADIGM

WS OR US WS . . .
Checking •

↘
Listening To(1) •

↘
Serving(1) •

↘
Checking •

...

Table 2.10: Mutual constraints of Server (↓) and Client(1)[AsOOS] (→) in combination

PARADIGM Models

The execution of an entire PARADIGM model is equal to the concurrent execution of all its processes,
taking into account the mutual restrictive influence they have on each other via the partitions and the
consistency rules. In this respect, the execution of global processes differs from the execution of detailed
processes.

Global Transitions

A transition Sj
θ→ S′j of a global process P(π j) at the level of partition π j can be taken if:

• the current state of process P(π j) is Sj;

• the current state of P lies in trap θ of subprocess Sj, i.e. the current state of P(π j).

In that case, transition Sj
θ→ S′j is said to be enabled, otherwise it is said to be disabled. Because the

transition belongs to a global process, it is only taken as the result of the application of a consistency rule,
which happens as the consequence of a detailed manager process taking a transition.

Detailed Transitions

A transition s
a→ s′ of a detailed process P can be taken if:

• the current state of process P is s;

• for all j ∈ J , subprocess Sj corresponding to the current state of P(π j) contains transition s
a→ s′;

• there exists at least one consistency rule R with a manager part corresponding to s
a→ s′ which is

enabled: that is, the set of global transitions in the employee part of R can all be taken.

If the above conditions hold, transition s
a→ s′ is said to be enabled, otherwise it is said to be disabled.

If transition s
a→ s′ is indeed taken by process P, then one of the corresponding enabled consistency

rules is non-deterministically selected and applied: all global transitions in the employee part of the
selected consistency rule are taken simultaneously. Thus, a consistency rule defines the effect of taking
the transition of a detailed process in terms of the taking of zero or more transitions of global processes.
Thereby, detailed processes in a PARADIGM model are able to interact with each other only indirectly, via
global processes.
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2.4 Discussion

We presented PARADIGM as an interaction modeling language: its two basic principles, multiple views and
manager/employee, aim at providing structure to the interaction of multi-component systems. Multi-
ple partitions and global behaviors per component allow the modeler to concentrate on specific parts
of the interaction separately. The global behaviors themselves abstract away from internal details of
the component. They can be compared to e.g. interface automata [21, 22] and UML 2 protocol state
machines [74, 73]. These notions specify, for individual components, the order in which they accept
messages and in which they themselves send messages to other components. Clearly, PARADIGM does
not incorporate the notion of a message as used in the UML. PARADIGM also does not specify input or
output actions on transitions like in [21]. An interesting approach is presented in [70], in which mul-
tiple protocol machines (comparable to global processes) are combined in order to specify a repertoire
of accepted events. Abstract behavioral descriptions on top of more detailed component behavior also
simplify to a certain extent the process of analyzing and model-checking the interaction within a sys-
tem, primarily because of state space reduction at the level of interaction. In PARADIGM, for example,
the interaction between components can be completely understood by only considering the detailed
behavior of a set of managers together with the relevant global behaviors of their employees.

The particular way in which views on top of the detailed behavior of components are modeled in PA-
RADIGM, differs considerably from the way in which abstractions are created in e.g. statecharts [51, 52],
on which UML state machines are based. PARADIGM does not contain the notion of a region; at the
detailed level, a component has one single thread of control. Merely, global processes in PARADIGM

can be regarded as behavioral models describing the possible orderings of phases through which the
component moves during its detailed execution. Typically, these phases overlap: a single detailed state
can be contained in multiple subprocesses of the same partition. In our client/server model presented
earlier, we already showed an application of these overlapping phases on top of process Client. The
detailed behavior and global behaviors of a component are thereby, behaviorally speaking, “loosely
coupled”. An interesting application of this idea can be found in [46] and [40], where it has been
applied for the modeling of evolution on-the-fly. The evolution of a component can in fact be regarded
as the transition to a new, previously non-existing phase in its execution. Appropriate application of the
PARADIGM concepts and careful coordination allow for the precise modeling of controlled evolution of
a system’s behavior. Apart from allowing parts of a PARADIGM model to be updated, created or deleted,
the concepts of the language are sufficient for the creation of PARADIGM models which evolve during
their execution.

The manager/employee principle of PARADIGM deserves some attention in this discussion as well.
Clearly, managers in PARADIGM are “in charge” of establishing the interaction between components:
their behavior can be regarded as a sequentialization of the application of a set of consistency rules.
They can be compared with some of the behavioral patterns found in literature on design patterns [38],
like the Mediator pattern, which encapsulates how a set of objects interact. Such a mediator pattern is
actually apparent in PARADIGM in the combination of a set of consistency rules on one hand, and the
sequentialization imposed on them by one or more managers on the other hand. In fact, managers in
PARADIGM models often combine their role as a “consistency rule sequentializer” with their role as a
representative of an entity in the system. E.g., in our client/server example, the Server process manages
the interaction between itself and the clients, but it also represents the (real-world) server itself, i.e. the
entity which serves the clients. This choice is in itself quite arbitrary: one could also have modeled the
three clients as managers of a single server employee, or even a separate manager process managing
the interaction between one server employee and three client employees.
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Finally, we draw a note on the application of consistency rules in PARADIGM. As we explained above,
a consistency rule is applied once a transition of a detailed process corresponding to the manager part
of that rule is taken and the rule is selected for application. Since all processes run concurrently, it
is therefore possible for two consistency rules managed by different manager processes to be applied
simultaneously. This causes no problems as long as these consistency rules are concerned with differ-
ent global processes in their employee parts. However, if the employee parts overlap, conflicts in their
parallel application could arise: only one of them must be chosen for application. In a distributed im-
plementation of PARADIGM, such conflicts should be taken into account and either prohibited or solved.

2.5 Conclusions

In this chapter, we introduced PARADIGM. A model in this language consists of a set of interacting compo-
nents running concurrently. The detailed behavior of each component is modeled as a detailed process.
On top of each of those detailed processes several views can be created, according to the multiple views
principle of PARADIGM. This is done by means of partitions, which have corresponding global processes. A
global process models the relevant behavior of the component in its role in the interaction with a set of
other components. The interaction within the system is modeled by means of consistency rules, accord-
ing to the manager/employee principle: a transition of a detailed manager process is bound to transitions
of a set of global processes defined on top of employee processes. All processes of a PARADIGM model
(both global and detailed) are assumed to be executed concurrently, thereby keeping into account the
restrictions on their behavior embodied in the partitions and consistency rules.

PARADIGM models typically have a structure like in the component diagram of Figure 2.11. The
detailed process and zero or more global processes are drawn as active objects, while partitions are
represented as connectors between a detailed and a global process. The set of consistency rules is
drawn as a collaboration, to which the relevant processes are connected by means of connectors. Note
in particular that the consistency rules for pure employee processes are not part of this collaboration.
These consistency rules have an empty employee part and do not define any interaction. Therefore,
they can be applied concurrently without conflicts.

As we pointed out in the discussion, we regard PARADIGM particularly useful for the modeling of in-
teraction between components. Both the multiple views principle and the manager employee principle
contribute to the structuring of interactions. The unique way in which views on detailed processes are
modeled in PARADIGM, enables the elegant modeling of evolution on-the-fly, interpreting the future be-
havior of a process as a new, previously unknown phase in its overall behavior. The manager/employee
principle in PARADIGM sometimes forces the modeler into making an arbitrary choice which components
to assign manager and/or employee roles. In a distributed implementation of PARADIGM, one must be
aware of potential conflicts between applications of overlapping consistency rules.
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Chapter 3

PARADISE

A Distributed PARADIGM Interpreter Framework

We present PARADISE, a framework for creating distributed interpreters for PARADIGM

models. The design of PARADISE allows for maximal distribution of the PARADIGM pro-
cesses being executed. In order to facilitate experiments with the implementation of the
PARADIGM language concepts, PARADISE has been implemented as a framework with sev-
eral composable interpreters for the individual concepts of the PARADIGM language. We
use the client/server model introduced in the previous chapter to illustrate the imple-
mentation of the elements of the PARADISE framework.

3.1 Introduction

PARADISE is a software framework for the creation of a distributed interpreter for a given PARADIGM

model. Such a distributed interpreter can be used to execute a PARADIGM model in a fully distributed
manner, with each process running on a separate processor. The framework has been designed with
two objectives in mind. Firstly, PARADISE supports maximal concurrency in the execution of a PARADIGM

model. Thereto, each detailed and global process is perceived to be executed on an individual virtual
node. Secondly, we aim at a minimum of synchronization between the process executions. Communica-
tion between the nodes, needed for adherence to the behavioral constraints in the model, is done via
asynchronous channels. The PARADISE framework consists of small interpreters for specific concepts of
the PARADIGM language, like processes, partitions and consistency rules. Elements of the framework can
be easily replaced or extended, which eases experiments with the language. The framework elements
can be composed in order to form a concrete distributed interpreter for a specific PARADIGM model.

In this chapter, we focus on the implementation of PARADIGM in PARADISE and on the interpretation
of the concepts of the PARADIGM language by the elements of the PARADISE framework. Technological
issues, like the programming language used and the execution environment, are deferred to Chapter 5,
in which we present the PARADE distributed runtime environment and related tools. Pseudo code for the
individual elements of the PARADISE framework can be found in Appendix A.

27
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In Section 3.2, we give an overview of PARADISE and present the contents of the framework. In Sec-
tions 3.3, 3.4 and 3.5 we zoom into the implementation of processes, partitions and consistency rules,
respectively. We illustrate these three sections with the creation of a PARADISE distributed interpreter
for the client/server model introduced in Chapter 2. We discuss the framework and related work in
Section 3.6 and draw conclusions in section 3.7.

3.2 Overview

A distributed interpreter built with PARADISE (a PARADISE interpreter for short) is distributed over a
set of virtual nodes, which are connected to each other by a network of bidirectional point-to-point
channels. The nodes are virtual: they could each correspond to a single physical computing device, or
several nodes could be combined on one physical computing device. In this manner, we abstract away
from the physical distribution of the interpreter and regard it as fully distributed. We visualize PARADISE

interpreters similar to deployment diagrams in the UML, as shown in Figure 3.1. On each of the virtual
nodes, one of the following entities in a PARADIGM model is executed: a detailed process, a global process,
or the set of consistency rules. Communication between the nodes is possible via asynchronous channels.
The channels are used to communicate constraints imposed by partitions or consistency rules.

In line with the intuition underlying PARADIGM that all processes in a model are executed concur-
rently, we use a virtual node for each process in a PARADIGM model. For convenience, we call these
nodes process nodes. Hence, the processes executed by the PARADISE interpreter are virtually maximally
distributed. On each process node, a process handler is “deployed”, capable of executing a process by
sequentially taking transitions. As we pointed out in Chapter 2, we must be aware of the fact that, in
principle, the parallel application of consistency rules could introduce conflicts. In order to avoid these,
we use a separate virtual node for the implementation of the entire set of consistency rules. On this
ruleset node, a ruleset handler performs the application of consistency rules, one at a time. However,
the consistency rules of pure employee processes are not implemented in PARADISE, since they do not
define any interaction. As a consequence, pure employee processes can run concurrently with all other
processes.

virtual node virtual nodechannel

Figure 3.1: Visualization of virtual nodes and channels

Execution of the processes is constrained by partitions and consistency rules, for which commu-
nication between the nodes is needed. We have chosen to use asynchronous bidirectional channels,
which are assumed to have unbounded capacity. As we will show in Sections 3.4 and 3.5, the usage of
asynchronous channels instead of synchronous primitives is directly appropriate for most of the com-
munication in PARADISE. We use three communication primitives for the channels: send, which sends a
message via a channel and never blocks, receive, which receives a message from a channel and blocks
if no message is available, and isEmpty, which tests whether a channel contains an incoming message
and returns either true (no incoming message) or false (a message can be received).
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The channels in PARADISE are used for three types of communication. Partition restrictions are main-
tained by communication between the two nodes that execute the detailed and global process of the
partition, via a partition channel. Restrictions on manager processes and global processes of employees
are maintained by communication between the corresponding process nodes and the ruleset node. This
communication takes place via manager channels and employee channels, one for each process node
involved. Process nodes which execute a pure employee process do not communicate with the ruleset
node, since their consistency rules define no interaction.

An example of the general structure of a PARADISE interpreter is depicted in Figure 3.2. It represents
the distributed interpreter for the PARADIGM component diagram of the previous chapter, Figure 2.11.
As can be seen, each component in the PARADIGM component diagram is implemented in the PARADISE

interpreter as a non-empty set of nodes, one for the detailed process and one for each global process.
The nodes of a single component are connected by partition (�P�) channels. The set of consistency
rules is implemented in PARADISE on a separate ruleset node, to which all manager processes and global
processes of employees are connected by employee (�E�) and manager (�M�) channels. On the
three nodes at the bottom of the figure, pure employee processes are executed. Therefore, they are not
connected to the ruleset node.
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Figure 3.2: General Structure of a PARADISE Distributed Interpreter
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Figure 3.2 clearly illustrates that the structure of a PARADISE distributed interpreter depends com-
pletely on the PARADIGM model that the distributed interpreter executes. The processes, partitions and
consistency rules in the model determine which nodes exist in the distributed interpreter and how they
are connected to each other. Consequently, a distributed interpreter which can execute any arbitrary
PARADIGM model must be able to adapt its distributed structure to the model at hand. In view of this,
we have implemented PARADISE as a generic framework, independent of a specific PARADIGM model. The
elements of the framework can be used as building blocks for the creation of a distributed interpreter
for a specific PARADIGM model. They can be parameterized with parts of the PARADIGM model and con-
nected to each other in order to form a distributed interpreter for the execution of that specific model.
In Figure 3.2, we already showed two elements of the PARADISE framework: the process handler and
ruleset handler. If, for example, a process handler element is parameterized with the model of a PARA-
DIGM process and deployed on a virtual node, the result is a concrete implementation of that PARADIGM

process.
The focus of this chapter is on how the PARADISE framework has been organized and how its ele-

ments implement the PARADIGM language. We start with an overview of the framework, as shown in
Figure 3.3. This figure is drawn as a UML class diagram, with thick dashed lines indicating which ele-
ments are able to communicate with each other via channels in the distributed interpreter. The elements
on top of the figure are meant for deployment on process nodes, while at the bottom the elements are
shown which must be deployed on the ruleset node. The process handler and ruleset handler are the
active elements in the framework: they steer the execution of a process and the application of a set of
consistency rules, respectively. The remaining elements implement more detailed tasks in the execution
of a PARADIGM model. For the implementation of partitions, the framework provides two role handler
elements which communicate via a partition channel. The selectors implement the application of con-
sistency rules on the node of a process. Three specialized selectors are provided, of which one must be
chosen depending on the process at hand being a global process, a pure employee process or a manager
process. The rule handler element handles the application of a single consistency rule, while the proxy
elements implement, on the ruleset node, the communication between this node and the process nodes
of managers and global processes of employees.

In the next three sections, we zoom in onto specific elements of the PARADISE framework. We use the
client/server model of Chapter 2 to illustrate how a complete PARADISE distributed interpreter can be
created for a PARADIGM model. In Section 3.3 we show how detailed and global processes are executed
in the implementation, in Section 3.4 we show how partitions are implemented, and in Section 3.5
we elaborate on the implementation of consistency rules. Throughout the sections, we use an informal
style of presentation for the elements of the PARADISE framework – more formal pseudo code for the
elements is provided in Appendix A.

3.3 Processes

The execution of a process requires the taking of transitions, starting at a valid initial state of the
process, until a final state has been entered and execution discontinues. For this purpose, PARADISE

provides a process handler element. A process handler is deployed on each of the process nodes of the
distributed interpreter. The process handler is parameterized with a specification of the process to be
executed, including its states, transitions, initial states and final states. Process handlers are used for the
execution of both detailed and global processes. A process handler executes a process by continuously
taking the following series of steps:
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1. set the current state to one of the initial states;

2. if the current state is a final state, decide whether or not to stop execution;

3. determine the set of transitions which can be taken from the current state;

4. non-deterministically select one of the transitions from this set;

5. set the current state to the target state of the selected transition;

6. continue with step 2.

As we will see in the next two sections, steps 3 and 4 do not only depend on the current state and the
transitions of the process, but also on the restrictions introduced by partitions and consistency rules. In
step 3, the role handlers for partitions will be involved, and in step 4 the selectors for consistency rules.

The starting and stopping of processes in the implementation requires additional attention. In PA-
RADIGM, one or more initial states can be defined for a single process. For a meaningful execution of the
model, it is required that upon starting the execution, the first current states of detailed processes are
contained in all of their first current subprocesses, i.e. the first current states of their global processes.
In the implementation of PARADISE, this requirement holds as well. At startup, a process handler in a
PARADISE distributed interpreter requires a parameter specifying which of the initial states of its process
is selected as the first current state. Another issue concerns the final states of a process. In PARADIGM,
these final states are states in which the execution of the process could stop. In PARADISE, the choice
whether or not to stop in a final state is made by the process handler. By default, execution of a process
always halts once a final state has been reached. An implementation in which a random selection is
made between stopping or continuing the execution can be realized easily.

As an example, consider the deployment diagram of Figure 3.4. It shows an incomplete version of
the distributed interpreter for the client/server example, containing only the virtual nodes and channels
together with the process handlers, one for each process in the model. In the following sections, we will
gradually extend this deployment diagram to a complete distributed interpreter, by deploying elements
of the framework which implement the partitions and consistency rules of the client/server model.

3.4 Partitions

In a PARADISE distributed interpreter, the detailed process and global processes of a PARADIGM com-
ponent are executed on separate virtual nodes. The implementation of partitions therefore obviously
requires communication between these nodes. In this section, we recall the precise dynamic constraints
imposed by partitions in PARADIGM, whereafter we show how these constraints are maintained through
communication in the PARADISE implementation.

Analysis

In PARADIGM, a partition represents the dynamic constraints on a detailed and a global process, as
follows. A state change in a detailed process can cause trap entrances in the current subprocess of
a partition of that process. These trap entrances in turn enable transitions of the global process cor-
responding to that partition. The other way around, a state change in a global process stands for a
subprocess change in the partition corresponding to the global process. This subprocess change in turn
possibly causes a change in the set of enabled transitions at the detailed process. Some transitions may
become enabled, in that they belong to the new current subprocess but not to the previous one, but
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Figure 3.4: Process handlers in a PARADISE interpreter for the client/server model

transitions may become disabled as well. Whether or not transitions are enabled, depends on the cur-
rent subprocesses of all partitions of the detailed process together. In the following table, we summarize
the dynamic constraints of a partition on its detailed process and its corresponding global process, in
terms of the effect of a state change in one process on the set of enabled transitions in the other.

detailed process partition global process
state reached −→ traps entered −→ transitions enabled

transitions enabled/disabled ←− subprocess changed ←− state reached
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Clearly, the constraints imposed by one process on the other consist of dynamic changes to the set of
enabled transitions, which are caused by local state changes. Remark that a state change in a detailed
process can never cause transitions in a global process to become disabled, by definition of the trap
concept. Hence, the amount of traps that a detailed process enters within a single subprocess of a
partition is always monotonically increasing. This is different from the effect in the opposite direction:
subprocess changes can certainly cause detailed transitions to become disabled.

Implementation

As to have a separation between the execution of processes and the adherence to partition constraints,
we have implemented partitions as two additional elements in the framework: a detailed role handler
and a global role handler (see Figures 3.3 and 3.5). A detailed role handler is deployed on the process
node containing the detailed process, and a global role handler on the process node containing the
global process. The role handlers communicate with each other via a partition channel.
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Figure 3.5: Overview of a partition between two process handlers in PARADISE
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Role handlers can be dynamically registered at the process handlers. Once a role handler is regis-
tered at the process handler, the latter one conforms to the constraints imposed by the partition, as
follows. A process handler notifies a role handler whenever a state change occurs in the execution of its
process. In addition, it asks a role handler to restrict the set of transitions each time before one transi-
tion from this set is selected in order to be taken. The role handler restricts the set by simply removing
transitions which are not allowed according to the current constraints of the partition. We minimize the
amount of communication between two role handlers by letting them exchange the names of traps and
subprocesses only. As a consequence, global role handlers need no partition specific information, since
they only compare and exchange trap names and subprocess names. Detailed role handlers, in contrast,
are parameterized with all subprocess definitions of a partition, which they use to check for enabled
transitions in a subprocess and to check in which traps a detailed state lies. A detailed role handler only
notifies a global role handler if a trap has been entered.

An overview of an implemented partition is shown in Figure 3.5. Starting at the right bottom of
the figure, the dynamic constraints of a partition are maintained as follows. Whenever a state change
occurs in the detailed process, the process handler of that process notifies the detailed role handler.
The latter one is parameterized with the subprocess definitions of the PARADIGM model. Hence, it knows
about which states and transitions are contained in which subprocesses and which states belong to
their traps. Upon being notified, the detailed role handler checks in which traps the current state of
the detailed process lies, and sends a list of names of entered traps to the global role handler via the
partition channel. This communication takes place asynchronously: the list is received as soon as the
process handler of the global process asks its global role handler to restrict the set of transitions. If that
happens, the global role handler checks for each transition in the set whether the name of the trap
corresponding to the transition label is in the list. If not, the transition is removed.

In the opposite direction, similar communication takes place. The global role handler is notified
as soon as a state change in the global process occurs. Since the name of the current state of the
global process equals the name of the current subprocess of the partition, the global role handler does
nothing more than sending this name to the detailed role handler via the partition channel. Again,
communication takes place asynchronously, and the detailed role handler receives the name of the
newly prescribed subprocess as soon as it is asked by the process handler of the detailed process to
restrict the set of transitions. The detailed role handler, prior to restriction, sets the current subprocess
to the newly prescribed subprocess and checks whether the current state of the detailed process lies
in some traps of this subprocess. If this is the case, it sends a list of entered traps to the global role
handler. After that, it restricts the set of transitions by removing all transitions which do not belong to
the current subprocess.

In a PARADIGM model, more than one partition may be defined on top of a detailed process. In
that case, many detailed role handlers are registered at the detailed process handler. Notification and
restriction then works as follows. In case of a state change, the detailed process handler notifies all
detailed role handlers in some order. The set of transitions is restricted by providing the initial set to the
first role handler and passing the result to the following role handler, etc., until all role handlers have
removed the transitions that do not belong to the current subprocess of their partition. The resulting set
contains only those transitions which are contained in every current subprocess. Note furthermore that,
after the registration of a new detailed role handler at a detailed process handler, the latter one could
ask this role handler to restrict the set of transitions before it has received the first current subprocess
name from the corresponding global role handler. In that case, the detailed role handler returns an
empty set of transitions. In other words, transitions of a detailed process are taken only after it is
possible to adhere to the restrictions of all partitions.
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Example

We show the implementation of partitions for the client/server example in Figure 3.6. Between the
process handlers for the Client(i) and Client(i)[AsOOS] processes, role handlers have been deployed,
which are parameterized with the subprocess definitions of the AsOOS partition. They communicate
via the partition channels between the virtual nodes. As an example of the resulting constraints on the
behavior of the processes, consider the sequence diagram shown in Figure 3.7. The process handler at
the left side executes a detailed Client process, the one at the right side a global Client[AsOOS] process.
In between, a detailed and a global role handler represent the AsOOS partition. The role handlers
communicate asynchronously via the partition channel between the process nodes. The two process
handlers continuously notify the role handlers about state changes (indicated with notify()) and ask
them to restrict the set of transitions before selecting and taking one of them (restrict()).

We take a closer look at the communication scenario in Figure 3.7. At startup, the process handlers
enter their initial state and notify their role handlers about this. After that, they determine the set of
transitions that can be taken from the current state, and ask the role handlers to restrict this set. Ini-
tially, the detailed role handler returns the empty set, because it does not know the current subprocess
yet. Upon applying the restriction a second time, however, it receives the current subprocess from the
global role handler and returns a non-empty set of transitions. The process handler takes the transition
and notifies the detailed role handler that the process is now in state AtDesk. Upon concluding that
thereby trap asking has been entered, the detailed role handler sends a list of trap names to the global
role handler. The list is accompanied with the name of the current subprocess, which is used by the
global role handler to determine whether the traps in a trap list refer to traps of the current subprocess
(since communication is asynchronous, it could happen that a list is received with traps referring to a
previously prescribed subprocess). Meanwhile, the global role handler returns empty sets of transitions
until it receives a list of traps containing trap asking. Hence, transition asking of the global process is
enabled and taken. Thereby, the current state of the global process changes to Orienting and, upon no-
tification, subprocess Orienting for the detailed process is prescribed. Once it is received by the detailed
role handler, the detailed process is already in state NeedClear, hence in trap serverClear of subprocess
Orienting. Therefore, a set of current traps is sent back directly. The example continues with a similar
pattern of taking transitions and exchanging trap and subprocess names.

3.5 Consistency Rules

The primary issue in the implementation of consistency rules in PARADISE is to organize the communi-
cation between the virtual nodes involved. In this section, we recall the dynamic constraints imposed
by consistency rules in PARADIGM, whereafter we show how these constraints are maintained through
communication in the PARADISE implementation.

Analysis

A consistency rule in PARADIGM represents a dynamic constraint on one manager process and zero
or more global processes of employees. We can express such a constraint operationally in terms of
transitions being enabled and transitions being taken, as follows.
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A transition of a global process is enabled as the consequence of the related detailed process having
entered a trap of the relating partition. This enabling of transitions of global processes can cause consis-
tency rules to become enabled (recall from Chapter 2 that we defined a consistency rule to be enabled
if all transitions in its employee part are enabled). Consequently, if a consistency rule becomes enabled,
the manager transition mentioned in its manager part could become enabled, depending on the current
subprocesses of partitions which are possibly defined on top of the manager process. In the opposite
direction, if in the execution of a manager process a transition is taken, a consistency rule is applied,
which causes all transitions in the employee part of that consistency rule to be taken. Hence, the dy-
namic constraints of a consistency rule in terms of the effect on the enabling and taking of transitions
in its related global processes and manager process can be summarized as follows.

global processes consistency rule manager process
transitions enabled −→ consistency rule enabled −→ transition enabled

transitions taken ←− consistency rule applied ←− transition taken

Clearly, some notification of transitions being enabled must take place between global processes and
manager processes, via consistency rules. In the opposite direction, a manager process triggers the
application of a consistency rule and consequently the taking of global transitions. If a consistency rule
has an empty employee part, no global processes are involved in the communication. By definition,
such a consistency rule is always enabled and its application has no consequence. Note that if two
enabled consistency rules have different manager parts, two manager processes running concurrently
could decide to apply both consistency rules. If the employee part of both consistency rules contain
different enabled transitions of a single global process, the latter one is obliged to take two different
transitions. Such a situation corresponds to the potential conflicts in the application of consistency rules
in a truly concurrent setting, which we indicated in Chapter 2.

Implementation

In view of the above, we distinguish between consistency rules of pure employee processes and those
of all other processes. For pure employee processes, the consistency rules have empty employee parts,
hence they do not define actual behavioral constraints and do not need to be implemented. The con-
sistency rules of all other processes are implemented on a single separate ruleset node. Thereby, we
reflect the precise structure of PARADIGM models in PARADISE, while at the same time, we have a way to
prevent conflicts in the application of consistency rules. We extend the PARADISE framework such that
all issues related to consistency rules are addressed in separate elements. Consistency rules themselves
are implemented with rule handler elements, while the communication of the enabling and taking of
transitions is done by selector elements on the process nodes and proxy elements on the ruleset node.

An overview of the communication involved in the implementation of a consistency rule is given in
Figure 3.8. On top, the node of a manager process is depicted. The nodes at the bottom of the figure
execute global processes of employees. The communication upwards is about the enabledness of global
transitions and the enabledness of consistency rules, while the communication downwards is about the
application of consistency rules and the taking of global transitions. We follow the four parts in the
communication as indicated with numbers in the figure.
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Firstly, in order to determine whether a consistency rule can be applied, information about enabled
transitions in the employee part of the rule is needed. This information comes from nodes executing
global processes. Secondly, the actual application of a consistency rule is done on a node executing a
manager process. Such a node then needs to be informed about which consistency rules may be applied.
Thirdly, now from top to bottom, as soon as a transition of a manager process is taken, a consistency
rule needs to be applied as well, about which the ruleset node must be informed in order to apply the
employee part of the rule. Finally, the application of a consistency rule requires communication of the
transitions in its employee part to each of the global processes.

As can be seen, the interface between the process handlers and the consistency rule “machinery” is
formed by the selectors. These elements select one transition from a given set of enabled transitions,
thereby taking into account the enabledness of consistency rules. The selected transition is then taken
by the process handler. One selector element is deployed on each process node. The way in which
a selector is implemented, depends on the type of process that the process handler runs. For pure
employee processes, we use simple selectors, which simply select a transition non-deterministically (the
fact that we use a selector for pure employee processes at all is merely for reasons of uniformity). The
selectors of global processes must forward their enabled transitions to the ruleset node and receive
a single selected transition back from it. We have implemented delegating selectors for that purpose.
Finally, the selector of manager processes must perform the selection of a transition together with the
selection of a consistency rule. This is done by managing selectors.

The generic structure of a ruleset node implementing a set of consistency rules is depicted in Fig-
ure 3.9. For each global process in the system, the ruleset node contains an employee proxy, and like-
wise, for each manager process, a manager proxy is deployed. For each consistency rule in the model,
the ruleset node contains a rule handler. These rule handlers are always connected to a single manager
proxy (because the manager part of a consistency rule precisely contains one manager transition), and
to zero or more employee proxies (likewise, reflecting the fact that the employee part of a consistency
rule contains zero or more global transitions). The thread of control of the ruleset node is implemented
in the ruleset handler, which ensures fairness in the application of its consistency rules. It cycles through
all employee proxies and manager proxies in a round-robin fashion. In each cycle, each proxy checks for
an incoming message from its channel. If there is a message, the proxy takes the appropriate actions:
employee proxies drive the communication upwards, manager proxies downwards, as we will explain in
the following paragraphs.

Upwards communication is shown in Figure 3.10. This sequence shows the behavior of an employee
proxy at the moment it notices the arrival of a message from the delegating selector at the opposite side
of its employee channel. The received message contains a set of enabled transitions of a global process.
The employee proxy now notifies the rule handlers of all consistency rules which have transitions from
this global process in their employee part. In the sequence diagram, we have shown a single rule
handler which is notified. Upon receiving this notification, each rule handler directly checks whether its
consistency rule is enabled or not. If the state of its consistency rule (enabled or disabled) is swapped,
the rule handler informs its manager proxy about this, after which the latter one sends an update
of the set of enabled consistency rules for its manager process to the managing selector. All channel
communication in upwards direction takes place asynchronously.
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Downwards, communication is slightly more complicated, since this establishes the actual applica-
tion of a consistency rule. We must therefore guarantee that the information on which we decide to
apply a consistency rule is up-to-date. A usual approach to this is to use a synchronization mechanism.
For example, we could apply a two-phase commit protocol to ensure that all involved processes agree
upon the application of a consistency rule. In the case of PARADIGM, however, there is no necessity to use
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such a protocol over all processes involved. As we explained in Section 3.4, transitions of global pro-
cesses can never become disabled after they have been enabled. By definition of the trap concept, the
amount of enabled transitions from a certain source state in a global process is always monotonically
increasing. Only when a transition is taken, it may become disabled. Hence, synchronization between
the ruleset node and the global process nodes is only needed after the application of a consistency rule.
We exploit this fact in our implementation, as follows.

Consider the actions performed by a manager proxy upon receiving a message, as shown in Fig-
ure 3.11. If a manager proxy receives a message from a managing selector, this effectively means that
the latter one has selected a transition and a corresponding consistency rule, and now asks for the appli-
cation of this consistency rule. Since upwards communication takes place asynchronously, the manager
proxy and managing selector must now synchronize upon the set of enabled consistency rules in order
to make sure that the consistency rule can indeed be applied. To this end, the manager proxy sends a
sync message to the managing selector, which allows it to check whether all updates of enabled and
disabled consistency rules have been received via the manager channel: it processes all incoming mes-
sages until sync is received, checks whether the previously selected consistency rule can still be applied,
and either sends a commit or a rollback message to the manager proxy, indicating that the consistency
rule must be applied or that the previous request was invalid, respectively. In case of a rollback, the
manager proxy finishes directly (not shown in the scenario of the sequence diagram). Otherwise, it in-
forms the rule handler of the selected consistency rule that its rule must be applied. The rule handler, in
turn, directly informs all appropriate employee proxies that the transitions in the employee part of the
consistency rule must be taken, whereafter these proxies send a message to their delegating selectors
via their employee channels. Now, we need to synchronize upon the set of enabled transitions, since
transitions could have been disabled. To this end, the delegating selectors simply send a sync message.
We can be sure that, eventually, the global processes will take the prescribed transitions and change
state. We therefore assume that all previously enabled transitions must be regarded as disabled, unless
the source state and the target state in the global process are the same – in that case, the set of enabled
transitions will be eventually resent by the delegating selector. The set of enabled transitions of each
global process involved in the application of the consistency rule is now empty. The employee proxies
notify the rule handlers and, via them, the manager proxies, in order for them to update the status of
the consistency rules (enabled or disabled). Finally, control flow returns to the ruleset handler in order
to continue with the next proxy.

Example

We conclude with a discussion of the complete PARADISE interpreter for the PARADIGM client/server
example, as shown in Figure 3.12. The PARADIGM model contains 24 consistency rules in total, of which
only R1 to R9 have been deployed on the ruleset node. The remaining 15 consistency rules are for pure
employee processes, hence they are contained within the three simple selectors on the process nodes for
processes Client(1), Client(2) and Client(3). The Client[AsOOS] processes are global processes. For that
reason, they each have a delegating selector which communicates with a corresponding employee proxy
on the ruleset node. The Server process is a manager process and therefore has a managing selector,
communicating with a manager proxy at the side of the ruleset node. The rule handlers on the ruleset
node are all connected to the same manager proxy, but to different employee proxies, according to the
contents of the employee part of their consistency rule. The entire interpreter is executed by running
all process handlers and the ruleset handler concurrently. The process handlers execute their processes,
meanwhile being constrained in their execution by partitions and consistency rules.
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Figure 3.11: Actions of a manager proxy receiving a message from a managing selector

An example of the execution of two processes constrained by consistency rules is provided by Fig-
ure 3.13. This sequence diagram contains the first part of an execution of process Client(1)[AsOOS] and
process Server. Both processes communicate with the ruleset node via their selectors. We have depicted
four elements of the ruleset node: the ruleset handler, the involved proxies, and the rule handler for
consistency rule R1, which plays a role in this fragment of the execution. When the distributed inter-
preter is started, the ruleset handler cycles through the set of proxies, while the process handlers of
process Client(1)[AsOOS] and Server start the execution of their processes by entering the starting state
(not shown). After that, both process handlers inform their selectors about the set of enabled transitions
of their processes, from which the selectors are expected to select one transition.
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At the side of the Server process, three transitions address(i) (ai for short) are enabled, but no
selection can be made, since the managing selector does not know of any enabled consistency rule
corresponding to the enabled manager transitions. At the side of the Client(1)[AsOOS] process, the
delegating selector delegates selection by passing the set of enabled transitions to the ruleset node via
its employee channel.

Now, as soon as the ruleset node asks the employee proxy of Client(1) to check for incoming mes-
sages, a set of enabled transitions is received containing transition asking: apparently, detailed process
Client(1) has entered trap asking. Hence, the rule handler of consistency rule R1 is notified, which in
turn notifies the manager proxy that its consistency rule is enabled as far as the employee part is con-
cerned. The set of enabled consistency rules, now containing rule R1, is sent to the managing selector of
the Server process. This enables the Server process to take a transition and select a consistency rule to be
applied. The managing selector of the Server process, at receiving the set of enabled consistency rules
containing rule R1, finds a matching enabled manager transition address(1), selects rule R1 and sends
this rule to the manager proxy. Eventually, the manager proxy receives R1 and answers with a sync,
in order for the managing selector to check whether rule R1 can be indeed applied. This is the case,
therefore the managing selector answers with commit. Hence, the employee part of the consistency rule
is to be applied by the rule handler. It asks each of its employee proxies (in this case just one) to take
its transition in the employee part. The proxy sends transition asking to the delegating selector, which
answers with sync. After this, the employee proxy informs all rule handlers that the set of enabled
transitions for the Client(1)[AsOOS] process is empty. Because thereby rule R1 becomes disabled, the
rule handler of rule R1 informs the manager proxy: the empty set of enabled consistency rules is sent
to the managing selector.

3.6 Discussion

With PARADISE, we have created the first distributed interpreter for the PARADIGM modeling language.
The interpreter supports maximal distribution of the processes in a PARADIGM model, hence maximal
concurrency in the execution of that model. Processes, partitions and consistency rules have been im-
plemented as separate interpreter elements, in order to allow for the creation, updating and deletion
of these elements while the interpreter executes a PARADIGM model. The primary purpose of PARADISE is
to act as an experimental framework for the PARADIGM language, both regarding its concepts and their
operational semantics. The particular choice we made to design PARADISE as a framework eases the
creation of extensions and adaptations.

The choice to create an implementation of PARADIGM in terms of an interpreter, in contrast with a
compiler, was primarily made in order to enable detailed inspection of a running PARADIGM model. We
exploit this possibility in the PARADE runtime viewer, which we present in Chapter 5. Another reason is to
achieve maximal flexibility, especially during the execution of a PARADIGM model. In [92], we reported
on an implementation of PARADIGM for the TOOLBUS architecture [58, 61, 10]. This work showed us
that runtime adaptivity is an important property of component-based systems, not only with respect to
individual components (replacement or updating), but also with respect to their interaction (changes
in their composition and coordination). The runtime flexibility of PARADE is exploited in the PARADE

distributed runtime environment (see Chapter 5), which supports the application of changes to a PARA-
DIGM model while it is being executed in a distributed manner.
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The PARADISE framework, as it is presented in this chapter, has one major drawback: the usage
of a single ruleset node for the consistency rules introduces a severe reduction of concurrency in the
execution. This is caused by the fact that the ruleset node allows for only one consistency rule to be
applied at a time. Thereby, all global processes and all manager processes run alternately, even if they
are distributed. A possible solution is to allow for multiple ruleset nodes, which each implement a proper
subset of the consistency rules in the model. Consistency rules of one ruleset node could then be applied
concurrently with consistency rules on other ruleset nodes. In Chapter 4, we will introduce an extension
to the PARADIGM language based on this idea.

A less obvious but useful extension is to generalize the usage of partitions. In PARADIGM, partitions
are solely used to define views, in terms of global processes, on top of detailed processes. In PARADISE,
detailed and global processes are treated equally. As a consequence, the framework readily allows for
an extension to define partitions on top of global processes, i.e. views on views. Such an extension has
been used in the case study about modeling evolution on-the-fly, which we will present in Chapter 8.
In that chapter, we use a partition on top of a global process in order to coordinate its evolution.
However, this extension comes at a certain cost. As we have seen in Section 3.4, subprocess changes of
a partition on top of a process may cause transitions of this process to become disabled, by which the
amount of enabled transitions from a global source state is no longer monotonically increasing. This has
consequences for the application of consistency rules, which then must be performed via a two-phase
commit over the manager process and all global processes involved. In Section A.6 of Appendix A,
pseudo code for the PARADISE framework elements can be found in which these consequences are taken
into account.

3.7 Conclusions

In this chapter we introduced PARADISE, a distributed interpreter framework for PARADIGM models. A
PARADISE distributed interpreter consists of virtual nodes connected to each other by asynchronous
bidirectional channels of unbounded capacity, on which elements of the framework are deployed which
are parameterized with parts of the PARADIGM model. Each node executes a single process. One of
the nodes, the ruleset node, manages the consistency rules. The implementation of PARADISE has been
designed such that it allows for maximal distribution of the processes in a PARADIGM model. The amount
of communication in the PARADISE distributed interpreter can be kept to a minimum by exploiting the
trap concept. This way, almost all communication needed for adherence to partition constraints and
consistency rules can be carried out in an asynchronous manner. A drawback of the framework is
the usage of a single ruleset node for the implementation of consistency rules. Nevertheless, since
the framework allows for easy experimentation with the implementation of the PARADIGM concepts,
appropriate solutions to this problem can be integrated easily.



Chapter 4

Interaction Protocols in PARADIGM

We present the interaction protocol concept, an extension to the PARADIGM language. In-
teraction protocols are entities which serve as an anchorage for consistency rules and
ensure that the consistency rules anchored to them are applied in a conflict-free manner.
We show that this extension to PARADIGM is valuable for modeling, analysis and imple-
mentation purposes. Additionally, we generalize the consistency rule concept in PARADIGM

by allowing their manager parts to be empty. This way, synchronization relations over a
set of global processes can be defined without the need to model an explicit manager
process.

4.1 Introduction

In this chapter, we extend PARADIGM with the interaction protocol concept. Interaction protocols are
entities which serve as an anchorage for consistency rules. From a modeling and analysis perspective,
they can be used to structure the consistency rules in a PARADIGM model into groups that represent
separate aspects of interaction. In addition, interaction protocols regulate the application of consistency
rules: they ensure that only one consistency rule in their group is applied at a time. The idea for the
addition of the interaction protocol concept to PARADIGM stems from our implementation of the PARADISE

distributed interpreter. The ruleset node can be easily split up into multiple ruleset nodes for separate
sets of consistency rules in a single PARADISE interpreter. As we will show in this chapter, this idea can be
effectively leveraged from the level of implementation to the level of modeling. In addition, we define a
more precise notion of conflict between consistency rules. Based on this, we provide guidelines for the
division of consistency rules amongst a set of interaction protocols, in order to ensure that conflicting
consistency rules are kept together. Furthermore, as already mentioned, we introduce in this chapter a
generalized shape of the consistency rule concept, by allowing the manager part of a consistency rule
to be empty. This is possible because the interaction protocols are regarded as behavioral entities: they
can directly select consistency rules for application themselves and do not need to defer this selection
to an explicit manager process. This simplifies the modeling of peer-to-peer interaction, for which the
components in a system are regarded as equals and as a consequence the manager/employee principle
of PARADIGM cannot be satisfactorily applied.

49
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We have set up this chapter as follows. In Section 4.2, we provide an overview of the extensions
to the PARADIGM language introduced in this chapter. In Section 4.3, we provide definitions for three
different types of interaction protocols, as well as for related notions like the notion of conflict between
consistency rules. After that, in Sections 4.4, 4.5 and 4.6, we show examples of the three types of inter-
action protocols, which are all based on an extended version of the client/server example introduced in
earlier chapters. We discuss related work in Section 4.7 and conclude in Section 4.8.

4.2 Overview

An interaction protocol is an anchorage for a set of consistency rules in a PARADIGM model. Each con-
sistency rule is anchored to a single interaction protocol. Interaction protocols also play a role in the
execution of a PARADIGM model: the consistency rules anchored to them are applied one at a time.
However, interaction protocols perform this sequential application concurrently with other interaction
protocols. This way, interaction protocols make the concurrency in the PARADIGM model explicit.

The generic structure of PARADIGM models with interaction protocols is shown in Figure 4.1. In
this figure, the consistency rules are anchored to four separate interaction protocols. A line between
a process and an interaction protocol indicates that at least one consistency rule is anchored to the
interaction protocol which has a transition of this process in either its manager or its employee part.
We distinguish between two basic types of interaction protocols: covering and non-covering. As the
name suggests, covering interaction protocols cover the entire interaction between their roles, which
are played by detailed manager processes and global processes of employees. As a consequence, the set
of consistency rules anchored to a single covering interaction protocol is sufficient for understanding
the interaction between its roles. In Figure 4.1, the covering interaction protocol covers the interaction
between one manager process and two global processes. Non-covering interaction protocols, in contrast,
cover the interaction between their roles only partially. They allow for the separation of multiple aspects
or phases in the interaction, but the consistency rules of multiple non-covering interaction protocols
must be taken together in order to fully understand the interaction between their roles. The two non-
covering interaction protocols in Figure 4.1 both contain consistency rules with manager transitions of
a single detailed manager process. For this reason, they are called non-covering, even though they cover
the interaction with their respective global processes. In addition to the two basic types, we introduce
the self-managing interaction protocol, which has the property that all consistency rules anchored to it
have an empty manager part. Such consistency rules are applied by the interaction protocol itself, rather
than by a manager process. Self-managing interaction protocols are not connected to manager processes
at all. They can be either covering or non-covering. In the next section, we zoom in on covering, non-
covering and self-managing interaction protocols, motivate them and provide definitions for them.

4.3 Definitions

The definitions of the various interaction protocols in this section are introduced in a number of steps
and interspersed with the necessary notions for consistency rules. We start with the definition of covering
interaction protocols. Next, we introduce a precise notion for conflict between consistency rules, which
we use to define the ways in which we allow consistency rules to be divided among a set of interaction
protocols. Based on this, we provide definitions of sound interaction protocols, non-covering interaction
protocols and minimal interaction protocols. After that, we introduce the notion of consistency rules
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Figure 4.1: General Structure of a PARADIGM Model with Interaction Protocols

with empty manager parts, which leads to the definition of self-managing interaction protocols. Finally,
we introduce our operational definition for PARADIGM models with interaction protocols.

Covering Interaction Protocols

The most straightforward type of interaction protocol is covering. Such a protocol covers the entire
interaction between the manager processes and the global processes of employees that play a role in
it. Hence, in order to understand and analyze the interaction between these processes, it is sufficient
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to analyze the consistency rules of this single interaction protocol. Consider for example the covering
interaction protocols shown in Figure 4.2. Example A illustrates the situation in which m manager pro-
cesses and n global processes of employees are involved in a single interaction protocol. In fact, if m and
n correspond to the entire amount of manager and global processes in a PARADIGM model, this situation
corresponds to a model with a single interaction protocol, like we depicted in the component diagrams
of Chapter 2. In example B, several global processes are combined with a single manager process. It
represents the situation in which the set of consistency rules is split up along the manager processes
in a model. Consider for example a model which contains m manager processes, each managing the
interaction for a distinct set of global processes. In that case, the sets of consistency rules applied by
each manager process can be anchored to an individual interaction protocol, which entirely covers the
interaction between a manager process and its global processes. Finally, example C illustrates the sit-
uation in which the consistency rules of two manager processes are combined, but these consistency
rules define the interaction with a single global process. An example of such a situation can be found
in [42], in which one global process of a client is managed by both a broker manager process and a
server manager process. In such cases, a combination of the appropriate consistency rules from both
manager processes is needed in order to understand and analyze the interaction with the client. This
combination can be anchored to a single interaction protocol.

Definition 4.1 An interaction protocol I is covering if the following properties hold:

• I has at least one consistency rule anchored to it.

• If I is the anchorage for a consistency rule with a transition of a manager process P as its manager
part, then I is the anchorage for all consistency rules which have a transition of manager process P
as its manager part.

• If I is the anchorage for a consistency rule with a transition of a global process P(π) in its employee
part, then I is the anchorage for all consistency rules which have a transition of global process P(π)
in their employee part.

These two properties constitute the “coverage” of the interaction protocols with regard to the processes
related to them. Thus, if the consistency rules of a PARADIGM model are split into covering interaction
protocols, the interaction with each manager process or global process can be understood through a
single protocol.

Conflicting Consistency Rules

Before we continue with non-covering interaction protocols, we first establish a more precise notion of
conflict for consistency rules. In the remainder of this chapter, we will use this notion for determining
whether two consistency rules must be anchored to a single interaction protocol. As a consequence, the
notion is instrumental in determining a maximal division of consistency rules over interaction protocols.

Definition 4.2 Two consistency rules R and R′ in a PARADIGM model M are conflicting on global pro-
cess P(π) if:

• The employee part of both R and R′ contains a global transition of P(π);

• There exists an execution sequence of M in which, at some point in this sequence, R and R′ are applied
simultaneously.



4.3. DEFINITIONS 53

Global 

Process

Detailed

Process

Interaction

Protocol

Manager 

Process

Global 

Process

Detailed

Process

Manager 

Process

Interaction 

Protocol

Manager 

Process

Global 

Process

Detailed

Process

Manager 

Process

Global 

Process

Detailed

Process

Interaction 

Protocol

Manager 

Process

Global 

Process

Detailed

Process

...

...

...

Figure 4.2: Covering Interaction Protocols

The second condition implies that these consistency rules can be enabled at the same time, which implies
that the transitions in both rules from the same global process at least have the same source state. In
general, in order to determine whether the second condition holds, a global analysis of the execution
sequences of the PARADIGM model is required, which is not always easy to be carried out in practice. We
therefore adopt a more practical definition for potentially conflicting consistency rules, as follows.



54 CHAPTER 4. INTERACTION PROTOCOLS IN PARADIGM

Definition 4.3 Two consistency rules R and R′ in a PARADIGM model are potentially conflicting on state
S of global process P(π) if the employee part of both R and R′ contains a transition from P(π) with the
same source state S.

As the name says, if two consistency rules are potentially conflicting, this merely indicates that they
may be conflicting, i.e. a global analysis of the model may reveal that there is a reachable state in which
both rules can be applied simultaneously. A practical benefit of the definition of potential conflict is that
its condition can be checked by only considering information within the consistency rules themselves.
Thereby, modelers are able to easily prevent conflicts by anchoring potentially conflicting consistency
rules to a single interaction protocol.

Non-covering Interaction Protocols

Modeling cases exist in which a single manager process manages several separate interaction aspects.
Examples of such cases can be found in [42, 43, 92] and in Chapter 2 of this thesis: a manager process
Server manages multiple unrelated employee processes Client(i) (1≤ i ≤ 3). These cases would benefit
from a division of the consistency rules for a single manager process into multiple separate subsets. For
global processes, the same situation may occur. Take for example situation C in Figure 4.2. It could
well be the case that the individual manager processes coordinate separate parts of the global process.
However, the use of covering interaction protocols does not allow the split-up of their consistency rules
into two separate interaction protocols. In view of these two situations, we introduce non-covering
interaction protocols: the interaction of a single manager or global process can be split-up into separate
parts, managed via separate interaction protocols. Three examples of non-covering interaction protocols
are depicted in Figure 4.3. In example D, the consistency rules of a single manager process are contained
within two separate interaction protocols, while example E shows a single global process which is
managed via two separate protocols. Finally, situation F depicts two separate interaction protocols
for a single manager process and a single global process. Non-covering interaction protocols enable
us to distinguish between different aspects in the interaction with a single process. Naturally, non-
covering interaction protocols can be defined as interaction protocols which do not have the properties
of covering interaction protocols.

Definition 4.4 An interaction protocol is non-covering if it is not covering.

However, since each interaction protocol in a model applies its consistency rules concurrently with other
interaction protocols, we must be careful not to put two conflicting consistency rules in different non-
covering interaction protocols. Therefore, we define the notion of a sound interaction protocol. Based
on this notion, we can define minimal interaction protocols, called this way because we do not allow to
reduce the set of consistency rules anchored to it.

Definition 4.5 An interaction protocol I is sound if the following properties hold:

• I has at least one consistency rule anchored to it.

• If a consistency rule R is anchored to I with a transition S θ−→ S′ of a global process P(π) in its
employee part, then I is the anchorage for all consistency rules which are potentially conflicting
with R on state S of global process P(π).
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Figure 4.3: Non-covering Interaction Protocols

The first property ensures non-emptiness of the interaction protocol, the second property ensures that
if two consistency rules are conflicting, they are anchored to a single interaction protocol. It can be
easily argued that covering interaction protocols are always sound, since a covering interaction protocol
contains all consistency rules for each of the processes that play a role in it. For minimal interaction
protocols, we include the soundness property in their definition, as follows.
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Definition 4.6 An interaction protocol I is minimal if the following properties hold:

• I is sound.

• For each non-empty proper subset of consistency rules anchored to I , it holds that if this subset is
removed from I, then I is not sound.

The second property ensures the minimality of the interaction protocol: if the set of consistency rules
anchored to it cannot be partitioned into two non-empty subsets from which two sound interaction
protocols can be created, then the interaction protocol is minimal. Our definition of soundness and
minimality imply that, from the point of view of a global process, the choice which transition from
a certain state must be taken always depends on a single interaction protocol. Take for example the
global process in Figure 4.4. The rectangles drawn on top of the process divide its transitions into five
sets. If an interaction protocol contains a consistency rule in which one of the global transitions in
one of these sets is mentioned in its employee part, then this protocol should contain all consistency
rules for all transitions in that set. Hence, the global process in Figure 4.4 is managed by at most five
different interaction protocols, dividing the set of consistency rules for transitions {a, b, c, d, e, f , g} into
five subsets of consistency rules for transitions {b}, {c, a}, {d, e}, { f } and {g}.
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B
b

a
E

e

F
f

G
g

Figure 4.4: Maximal distribution of the coordination of global process transitions

Consistency Rules with Empty Manager Parts

The idea to allow empty manager parts in consistency rules is motivated by the following observation.
The manager/employee principle in PARADIGM opposes two pre-defined roles on components in a model:
the manager and the employee role. The choice how to associate these pre-defined roles with the entities
in a PARADIGM model is not always obvious, sometimes even inconvenient. Examples of cases relevant
in this respect are the producer/consumer problem [45] and many situations in which the components
can be more or less regarded as peers.

Consider as an example the client/server model presented in the previous two chapters. We modeled
the server as a manager process and the clients as employee processes. Instead, we could have decided
to model the clients as manager processes, each managing one partition of a single server employee
process. In either case, the division between managers and employees in the model serves only as a
vehicle to model the interaction, it is not an obvious part of the coordination problem. In fact, there
is a third option, in which the clients and the server are all regarded as “employees”, while an addi-
tional manager process coordinates the mutual influence between the clients and the server. Thereby,
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we “extract” the manager/employee hierarchy from the clients and server and regard them as equals,
as peers, coordinated by an external manager process. However, this additional manager process is in
fact redundant, since we originally managed to perform the entire coordination without it. It is only
there because of the requirement in the PARADIGM language that for each consistency rule, a manager
part containing precisely one manager transition exists. It potentially introduces superfluous constraints
on the order in which consistency rules may be applied – the sequential behaviors of the employee pro-
cesses pose enough constraints themselves. The only reason for having an additional manager process
in this case, is that some trigger is needed for the application of consistency rules – a trigger which could
be perfectly provided by the interaction protocol to which the consistency rules are anchored.

In view of the above, we allow consistency rules to have empty manager parts. Such consistency
rules act as synchronization constraints upon a set of global processes and can be applied by interaction
protocols themselves, one at a time. We generalize the syntax of consistency rules in PARADIGM, allowing
them to have three different shapes.

1. A single manager transition and one or more employee transitions:

P : s
a→ s′ ∗ Pk(πk,l) : Sk,l

θk,l−→ S′k,l , ..., Pv(πv,w) : Sv,w
θv,w−→ S′v,w

2. A single detailed transition only:

P : s
a→ s′

3. One or more employee transitions but no manager transition:

∗ Pk(πk,l) : Sk,l
θk,l−→ S′k,l , ..., Pv(πv,w) : Sv,w

θv,w−→ S′v,w

Regarding the third shape, such a consistency rule can be applied whenever all global transitions spec-
ified in it are enabled. The interaction protocol to which the rule is anchored takes care of the actual
application of the consistency rules, one at a time. If multiple consistency rules are enabled at the same
time, selection occurs in a non-deterministic order.

Self-managing Interaction Protocols

Having motivated and defined consistency rules with empty manager parts, we show two examples
of self-managing interaction protocols in Figure 4.5. We call them self-managing interaction protocols
because only consistency rules with empty manager parts are anchored to them. Therefore, they are
not connected to any manager process. They facilitate the modeling of interaction between processes
for which a manager/employee hierarchy is not obvious or not desired, and for which no additional
sequentialization of the application of consistency rules is needed. Self-managing interaction protocols
can be either covering (example G) or non-covering (example H).

Definition 4.7 An interaction protocol I is self-managing if all consistency rules anchored to I have an
empty manager part.
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Figure 4.5: Self-managing Interaction Protocols

The Execution of Interaction Protocols

Finally, we define our general notion of interaction protocols in PARADIGM, both structurally and opera-
tionally. An interaction protocol in PARADIGM is a behavioral entity to which one or more consistency rules
are anchored. Each interaction protocol defined in a PARADIGM model must be sound. Each consistency
rule of each manager process must be anchored to one of the interaction protocols. Each consistency
rule with an empty manager part must be anchored to one of the interaction protocols. The execution
of an interaction protocol consists of the taking of steps in a sequential manner. Each step is bound to a
consistency rule anchored to the interaction protocol, which must be enabled in order to take the step.
We consider two types of steps: externally managed and internally managed.

• An externally managed step of an interaction protocol can only be taken in synchronization with
the taking of a transition in a manager process, and only if that manager process has chosen to
apply the enabled consistency rule bound to this step. If the step is taken in synchronization with
the taking of the transition in the manager process, then its consistency rule is applied.

• An internally managed step of an interaction protocol can be taken whenever the consistency
rule with an empty manager part anchored to that interaction protocol and bound to this step is
enabled. If the step is taken, then its consistency rule is applied.

The behavior of an interaction protocol can be visualized as a process, as shown in Figure 4.6. Such a
process consists of one state and transitions from that state to itself. The process contains one transition
for each consistency rule anchored to the interaction protocol.

S R1 R2 R3

Figure 4.6: Process-like Specification of an Interaction Protocol
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The execution of a PARADIGM model extended with interaction protocols is equal to the concurrent
execution of all its processes and interaction protocols, with the following constraints: A transition of a
global process can only be taken as the result of the application of a consistency rule. A transition of a
manager process can only be taken in synchronization with an externally managed step of an interaction
protocol. By this, the manager process is said to have chosen to apply the enabled consistency rule bound
to this step. A transition of a pure employee process can always be taken directly.

In the next three sections, we illustrate the usage of covering, non-covering and self-managing
interaction protocols by showing three different extensions to the client/server example.

4.4 Covering Interaction Protocols

Our starting point for an example with covering interaction protocols is the client/server model of
Chapter 2, which consists of one server and three clients being served. The extension consists of allowing
the clients to check whether they are satisfied with the service provided to them, and if not, to reject
the result and re-request the service. In order to prevent the server from having to redo the service
indefinitely, an extra process Timer is used to keep track of the time and, if needed, to enforce clients
to accept the result and leave. Hence, two different aspects can be recognized in the interaction: the
aspect of providing the service, and the aspect of enforcing the timing constraints. We separate these
two aspects by modeling two interaction protocols: a server protocol and a timer protocol.

The architecture of the client/server/timer example is depicted in Figure 4.7. The two interaction
protocols server protocol and timer protocol are both covering protocols: each manager and each global
process is connected to a single interaction protocol. The Client processes are now coordinated via two
partitions and corresponding global processes: Client[AsOOS], which represents the view of a client as
an object of service, and Client[AsTE], which views the client as a timed entity. The model contains two
manager processes Server and Timer for the coordination of serving and timing, respectively.

We take a closer look at the individual parts of the example, starting with process Client. We extend
this process with the ability to reject the result of the service, as shown in Figure 4.8. After the service
has been provided, the client checks whether he or she is satisfied with the result. If so, the process
continues normally, but if the result is rejected, the server is urged to provide the service once more,
hopefully better.

Because we applied changes to global process Client, we redefine partition AsOOS as shown in
Figure 4.9. This partition, like in the original example, is meant for coordinating the service provision.
Global process Client[AsOOS] remains the same and consists of three states WithoutService, Orienting
and UnderService. The timing issues are coordinated via a separate partition AsTimedEntity or AsTE
for short. This partition and the corresponding global process Client[AsTE] are shown in Figures 4.10
and 4.11. The partition consists of three subprocesses. In subprocess Waiting, the client is not being
served and no time constraints have to be applied. In subprocess Running, the service is being provided
and the client is allowed to re-request the service, while in subprocess ForcedToStop, the client is no
longer allowed to reject the result. As defined in global process Client[AsTE], the client is of course
allowed to accept the result in time, hence the same trap finished in both subprocesses Running and
ForcedToStop of partition AsTE.
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Figure 4.7: Overview of the client/server/timer example
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Figure 4.8: Extended process Client

The two global processes Client[AsOOS] and Client[AsTE] are managed by separate manager pro-
cesses. For the management of global process Client[AsOOS], we reuse the existing process Server with-
out change, while for the management of partition AsTE, we introduce a new manager process Timer,
as shown in Figure 4.12. This process coordinates the timing constraint for each of the three clients,
one at a time. Once a timeout occurs, it changes the subprocess from Running to ForcedToStop. This is
always possible, since the connecting trap trivial contains all states of both subprocesses.
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Figure 4.9: Revised partition AsOOS for extended process Client

Running ForcedToStopInactive
starting trivial

finished

finished

Figure 4.10: Process Client[AsTE]

In line with Figure 4.7, the consistency rules for the client/server/timer example are split up into
two subsets, one for each interaction protocol, shown in Tables 4.13 and 4.14. We do not show the
consistency rules for pure employee processes Client(i). The reader is already familiar with rules Svr-
R1 to Svr-R9 from the server interaction protocol: they are exactly the same as rules R1 to R9 in the
example in Chapter 2. Note that this reuse is possible because of the multiple views principle of PARA-
DIGM: we extended process Client without the need to change global process Client[AsOOS]. The timer
interaction protocol, on the other hand, is completely new: it relates manager process Timer to global
processes Client(i)[AsTE] (i = 1,2,3).
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(Svr-R1,2,3) Server : Checking
address(i)−−−−−−−−−−→ ListeningTo(i)

∗ Client(i)[AsOOS] : WithoutService
asking−−−−−−−−−−→ Orienting

(Svr-R4,5,6) Server : ListeningTo(i)
startServing(i)−−−−−−−−−−→ Serving(i)

∗ Client(i)[AsOOS] : Orienting
serverClear−−−−−−−−−−→ UnderService

(Svr-R7,8,9) Server : Serving(i)
leave(i)−−−−−−−−−−→ Checking

∗ Client(i)[AsOOS] : UnderService
ready−−−−−−−−−−→ WithoutService

Table 4.13: Server Interaction Protocol

(Tmr-R1,2,3) Timer : Checking
address(i)−−−−−−−−−−→ Timing(i)

∗ Client(i)[AsTE] : Waiting
starting−−−−−−−−−−→ Running

(Tmr-R4,5,6) Timer : Timing(i)
timeOut(i)−−−−−−−−−−→ Forcing(i)

∗ Client(i)[AsTE] : Running
trivial−−−−−−−−−−→ ForcedToStop

(Tmr-R7,8,9) Timer : Timing(i)
readyWith(i)−−−−−−−−−−→ Checking

∗ Client(i)[AsTE] : Running
finished−−−−−−−−−−→ Waiting

(Tmr-R10,11,12) Timer : Forcing(i)
readyWith(i)−−−−−−−−−−→ Checking

∗ Client(i)[AsTE] : ForcedToStop
finished−−−−−−−−−−→ Waiting

Table 4.14: Timer Interaction Protocol

Note that the serving and timing interactions remain unrelated: there is no explicit synchroniza-
tion relation between the two interaction protocols. Only the detailed Client processes with their two
partitions AsOOS and AsTE constitute the indirect relation between them. The interaction protocols
themselves clearly reflect the separation of concerns in the model.
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4.5 Non-covering Interaction Protocols

The previous example showed a separation of the set of consistency rules into covering interaction
protocols. However, individual manager processes or even global processes could be involved in multiple
different aspects of interaction. In such cases, non-covering interaction protocols can be used to separate
the consistency rules for each of the aspects from each other. The model in Figure 4.15 is an example of
the use of non-covering interaction protocols. Our starting point is the example of Section 4.4. In this
example, we combine the Server and Timer process into a single TimedServer process which performs
serving and timing. We also combine the two partitions AsOOS and AsTE into a single partition AsTOOS,
which stands for TimedObjectOfService. We separate the consistency rules for two parts of the service
provision into two non-covering interaction protocols Orientation Protocol and Servicing Protocol.
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Client
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Figure 4.15: Overview of the client/timed-server example

Partition AsTOOS is shown in Figure 4.16. The partition consists of four subprocesses: WithoutService
and Orienting, which are equal to the subprocesses of the AsOOS partition shown earlier, BeingServed,
in which the client is being served and timed and ForcedToStop, representing the situation in which the
client must accept the result of the service. Hence, the six subprocesses of the two partitions AsOOS and
AsTE have now been reduced to a single partition with four subprocesses. We removed subprocess Wait-
ing of partition AsTE, because the behavior within this subprocess is covered by the new subprocesses
WithoutService and Orienting. Subprocesses Running of partition AsTE and UnderService of partition
AsOOS are both combined within the new subprocess BeingServed.
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Figure 4.16: Partition AsTOOS for process Client

Global process Client[AsTOOS], specifying the behavior of a Client process viewed as a timed object
of service, is shown in Figure 4.17. If we compare this global process with the global process OOS, the
actual difference only consists of the extra state ForcedToStop and transitions to and from it – the extra
time-out situation which the process must obey. The combined manager process TimedServer is shown
in Figure 4.18. A comparison with manager process Server reveals a difference consisting of the extra
state Forcing plus its incoming and outgoing transitions only.
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Figure 4.18: Combined process TimedServer

By using non-covering interaction protocols, we separate the anchorage of the consistency rules
for the example into two protocols Orientation Protocol and Servicing Protocol, which are shown in
Tables 4.19 and 4.20. The interaction protocols differ considerably from the interaction protocols in
the previous example: the entire sequence of interactions is split into two separate non-overlapping
parts. The Orientation protocol coordinates the part in which a client is orienting and the start-up of the
service provision, while the Servicing protocol coordinates the actual service delivery and its finishing,
enforcing the client to accept the result if a time-out occurs. These kind of splits are also useful in cases
of e.g. delegation, where the parts are coordinated by different entities (manager processes) in a system.
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(Svr-R1,2,3) TimedServer : Checking
address(i)−−−−−−−−−−→ ListeningTo(i)

∗ Client(i)[AsTOOS] : WithoutService
asking−−−−−−−−−−→ Orienting

(Svr-R4,5,6) TimedServer : ListeningTo(i)
startServing(i)−−−−−−−−−−→ Serving(i)

∗ Client(i)[AsTOOS] : Orienting
serverClear−−−−−−−−−−→ BeingServed

Table 4.19: Orientation Protocol

(Tmr-R1,2,3) TimedServer : Serving(i)
timeOut(i)−−−−−−−−−−→ Forcing(i)

∗ Client(i)[AsTOOS] : BeingServed
trivial−−−−−−−−−−→ ForcedToStop

(Tmr-R4,5,6) TimedServer : Serving(i)
stop(i)−−−−−−−−−−→ Checking

∗ Client(i)[AsTOOS] : BeingServed
finished−−−−−−−−−−→ WithoutService

(Tmr-R7,8,9) TimedServer : Forcing(i)
stop(i)−−−−−−−−−−→ Checking

∗ Client(i)[AsTOOS] : ForcedToStop
finished−−−−−−−−−−→ WithoutService

Table 4.20: Servicing Protocol

The interaction between the TimedServer manager process and the Client(i)[AsTOOS] global pro-
cesses can only be fully understood by looking at the two interaction protocols together. If we combine
them, this yields a covering interaction protocol. Both non-covering interaction protocols are sound: for
each state in each global process, there is exactly one interaction protocol which contains all the con-
sistency rules in which outgoing transitions of this state are mentioned. In this example, it is also clear
that the potentially conflicting consistency rules are actually not conflicting: their specific relation to
the single manager process inherently prevents them from being applied in parallel.

4.6 Self-managing Interaction Protocols

As a final illustration of our flavours of interaction protocols, we show the use of self-managing inter-
action protocols. These type of interaction protocols manage the application of consistency rules au-
tonomously, without the use of an explicit manager process. Typically, self-managing protocols can be
used in settings in which components cannot clearly be identified as managers or employees, but rather
as peers. In those cases, additional sequentialization of the application of consistency rules through the
use of a manager process is often not required.
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The self-managing interaction protocol typically has only consistency rules anchored to it which do
not have a manager part. It applies a consistency rule once all transitions in the employee part of that
rule can be taken. If more than one consistency rule is enabled at the same time, a non-deterministic
choice is made between the enabled consistency rules.

Our starting point for our illustration of the use of self-managing interaction protocols is the client-
/timed-server example from Section 4.5. Instead of separating the consistency rules along the process
of service delivery, we now separate them based on the individual clients in the model. The new ver-
sion is depicted in Figure 4.21. In this version, process TimedServer has three partitions AsEmpFor(i)
and corresponding global processes TimedServer[AsEmpFor(i) (1 ≤ i ≤ 3). Each combination of two
processes TimedServer[AsEmpFor(i)] and Client(i) [AsTOOS] is managed by a covering self-managing
interaction protocol Client(i)/TimedServer. Hence, the example contains no manager processes at all:
the application of the consistency rules is managed by the interaction protocols only, based on enabled
transitions of global processes of their employees.
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Figure 4.21: The client/timed-server example with self-managing interaction protocols
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Intuitively, the TimedServer process and the Client processes are now modeled as peers. Their inter-
action is modeled in terms of synchronizations based on views on their behavior only. Moreover, the
example shows how the consistency rules for the interaction with individual clients can be separated
from each other and anchored to individual interaction protocols. Next to the addition of partition
AsEmpFor(i) and global process TimedServer[AsEmpFor(i)], which we explain in the next paragraphs,
the example involves a small extension to global process Client(i)[AsTOOS], which we show thereafter.

The new partition AsEmpFor(i) of process TimedServer is shown in Figure 4.22. The partition divides
the process into three subprocesses: Idle, in which the process stops serving and/or does not serve
Client(i), Attentive, in which the process could possibly start listening to Client(i), and Serving, in which
the process is actually serving Client(i). In the figure, 1 ≤ i ≤ 3. Indices > 3 must be interpreted
modulo 3.
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Figure 4.22: Partition AsEmpFor(i) for process TimedServer
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Each of the partitions AsEmpFor(i) views process TimedServer from the perspective of the interaction
with a single Client(i). Process TimedServer actually selects which of the asking clients to serve – this
is the reason why the remaining transitions of process TimedServer are part of subprocesses Idle and
Attentive. The interaction following this selection is managed by one of the three interaction protocols,
depending on the trap that process TimedServer enters. In subprocess Serving, two nested traps busy
and exhausted are used. Intuitively, process TimedServer keeps track of the time while performing the
service. As soon as it becomes exhausted, i.e. a time-out occurs, it takes transition timeOut and enters
nested trap exhausted. The interaction protocol then acts accordingly by applying the consistency rule
which forces the client to accept the result and finish.

In Figures 4.23 and 4.24, the global processes TimedServer[AsEmpFor(i)] and Client(i) [AsTOOS]
are shown. These are the actual processes which interact by means of the consistency rules anchored
to the interaction protocols. In particular, we draw the attention to the loops in the processes. From the
perspective of the interaction protocols, these loops enable the inspection of a trap entrance without per-
forming a subprocess change. Their presence can be clarified by taking a look at the revised TimedServer
interaction protocols, which are shown in Table 4.25. Each of the three protocols Client(i)/TimedServer
contains six consistency rules R1(i) to R6(i).

Attentive ServingIdle
ready listening

busy

listening

exhausted

exhausted

Figure 4.23: Global Process TimedServer[AsEmpFor(i)]

Orienting BeingServedWithoutService
asking serverClear

finished

ForcedToStop

trivialfinished

asking

Figure 4.24: Revised process Client[AsTOOS]

We explain the interaction between the TimedServer and the Client processes solely in terms of
views on them, i.e., in terms of the global processes of Figures 4.23 and 4.24. If a client i is asking
for a service, global transition asking initiating from global state WithoutService is enabled. The timed
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server, if in state Idle of global process AsEmpFor(i) and with global transition ready enabled, will then
be changed to global state Attentive by application of rule R1(i). Note that the client stays in global state
WithoutService. Also, it is possible for the timed server to be in more global states Attentive at the same
time, depending on how many clients are asking for a service. Hence, the timed server eventually selects
one client by entering trap listening of one of its partitions, i.e., enabling global transition listening of
one of its global processes. Rule R2(i) now takes care of changing the correct client to global state
Orienting. Both client i and the timed server change global state if rule R3(i) is applied: the timed
server is now serving the client and timing the service. If the client indicates it is satisfied with the
service, both the client and the timed server change state through the application of rule R4(i). Finally,
rules R5(i) and R6(i) take care of the possible timeout, indicated by the timed server by enabling its
global transition exhausted.

The resulting total interaction in this model with self-managing interaction protocols, is one in
which the individual components “express their intentions” by enabling global transitions, i.e. entering
traps, while the sum of these intentions results in the application of a particular consistency rule by
a particular interaction protocol. The sequence in which consistency rules are applied, only depends
on the employee processes and the consistency rules themselves. As can be seen, all employees are
treated as equals, which makes self-managing interaction protocols particularly useful for peer-to-peer
interaction modeling.

(R1(i)) ∗ TimedServer[AsEmpFor(i)] : Idle
ready−−−−−−−−−−−−−−−−−−−−→ Attentive,

Client(i)[AsTOOS] : WithoutService
asking−−−−−−−−−−−−−−−−−−−−→ WithoutService

(R2(i)) ∗ TimedServer[AsEmpFor(i)] : Attentive
listening−−−−−−−−−−−−−−−−−−−−→ Attentive,

Client(i)[AsTOOS] : WithoutService
asking−−−−−−−−−−−−−−−−−−−−→ Orienting

(R3(i)) ∗ TimedServer[AsEmpFor(i)] : Attentive
listening−−−−−−−−−−−−−−−−−−−−→ Serving,

Client(i)[AsTOOS] : Orienting
serverClear−−−−−−−−−−−−−−−−−−−−→ BeingServed

(R4(i)) ∗ TimedServer[AsEmpFor(i)] : Serving
busy−−−−−−−−−−−−−−−−−−−−→ Idle,

Client(i)[AsTOOS] : BeingServed
finished−−−−−−−−−−−−−−−−−−−−→ WithoutService

(R5(i)) ∗ TimedServer[AsEmpFor(i)] : Serving
exhausted−−−−−−−−−−−−−−−−−−−−→ Serving,

Client(i)[AsTOOS] : BeingServed
trivial−−−−−−−−−−−−−−−−−−−−→ ForcedToStop

(R6(i)) ∗ TimedServer[AsEmpFor(i)] : Serving
exhausted−−−−−−−−−−−−−−−−−−−−→ Idle,

Client(i)[AsTOOS] : ForcedToStop
finished−−−−−−−−−−−−−−−−−−−−→ WithoutService

Table 4.25: Client(i)/TimedServer Interaction Protocol (1 ≤ i ≤ 3)
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4.7 Related Work

With the generalization of consistency rules as proposed in this chapter, it becomes possible to model
interaction without explicit coordination by a manager process. In such a case, the interaction solely
occurs between employee processes. An earlier proposal to achieve the same result has been published
by us in [92], in which we presented a way to achieve symmetric PARADIGM models in order to ease the
implementation of PARADIGM in the ToolBus architecture [58, 61, 10].

From a structural perspective, an interaction protocol in PARADIGM is comparable to a collaboration
in the UML [73, 74]: in PARADIGM, a set of managers and employee processes play certain roles in the
interaction protocol, like in the UML instances play roles in a collaboration. A collaboration in the UML
is a purely structural concept [72, 62, 29], and should not be confused with a collaboration diagram
(for this reason, this diagram type has been renamed in the UML 2.0 to communication diagram). We
have adopted UML collaborations in the ArchiMate language for enterprise architecture [66, 60, 59].

The collaboration concept is part of the UML since version 1 [72], but it did not gain wide popularity
(see e.g., [28]). In [37], UML collaborations are discussed only shortly, and their value is doubted.
In [62], an example is given of how parameterized collaborations can be used for the definition of
the structure of patterns, as is prescribed in the UML 1.3 specification [72]. In [76], an early formal
approach to collaborations as realizations of use cases is presented.

Since version 2.0 of the UML, the possible ways to use collaborations and the coherence with behav-
ioral concepts has improved (see, e.g. [86, 87]). A distinction is made between collaborations at the type
level and collaboration uses at the instance level. Ports are introduced to distinguish between multiple
roles of a collaborating component. Sequence diagrams may be used to specify collaboration protocols
between class interfaces or to specify the interactions that may occur over a connector between ports.
As a structural concept, UML collaborations / collaboration uses and PARADIGM interaction protocols
are comparable: they both specify a set of roles to be played by components involved in a collaborative
activity. Different from UML collaborations, interaction protocols have consistency rules anchored to
them, which define synchronization relations over the roles. Furthermore, interaction protocols play a
role in the behavior of the model: they sequentialize the application of the consistency rules anchored to
them. The set of possible sequences of interactions can be derived if an interaction protocol in PARADIGM

is combined with the global processes and manager processes playing a role in it. Such sequences are
comparable to the collaboration protocols in terms of sequence diagrams mentioned earlier. In [17], the
value of UML 2.0 collaborations being composable is pointed out: larger collaborations can be composed
out of smaller ones. We did not yet investigate composability for interaction protocols. UML 2.0 collab-
orations have been used widely for the modeling of distributed (web) services [18, 65, 64, 35]. The
interaction protocol concept added to PARADIGM can be used for the same purpose – with the addition
of the self-managing interaction protocol, choreographies of web service peers can be modeled as well.

We remark that the motivation for the extension of PARADIGM with the interaction protocol con-
cept stems from our effort on realizing an implementation of the PARADIGM language in Chapter 3. In
line with our ideas, some authors propose to use UML collaborations at the implementation level as
well. According to [15, 69, 16], the complexity of software is an emerging property of the collabora-
tions between simple objects. The authors therefore propose to reify UML collaborations as interaction
components in terms of mediums or connectors, which serve as abstractions of the interaction between
objects. In their approach, mediums also play a concrete role at the implementation level. This leverages
the collaboration concept in the UML from a pure modeling concept to a concept relevant for imple-
mentation. In [2], the authors propose to explicitly design the interactions within distributed systems.
They define the notion of interaction system, a specific implementation artifact for the management of
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interactions between distributed components. The role of mediums, connectors and interaction systems
is comparable to the role of interaction protocols in our implementation of the PARADISE distributed
interpreter framework. Of course, in our implementation, the role of interaction protocols is a limited
one: they act as arbiters in the application of consistency rules during execution of a PARADIGM model.

Notions for the modeling of interactions at a conceptual level have been developed in the field of
business process modeling, for example in terms of so-called (process) choreographies [26, 27, 100].
Such choreographies capture the interaction between different business entities, plus the (temporal)
dependencies between these interactions. The major difference with interaction protocols in PARADIGM

is that in the latter, the temporal dependencies between consistency rules are not explicitly modeled as
part of an interaction protocol. Instead, these dependencies emerge from the composite behavior of an
interaction protocol and the manager and global processes involved in its consistency rules.

Proposals have been done to extend the specification and description language SDL [54] with col-
laboration modules [84, 83, 82]. These modules allow for the specification of cross-cutting behavior in
terms of the interactions between agents, which, according to the authors, complements the specifica-
tion of behavior per individual agent. In the extended version of PARADIGM, we perceive a similar com-
plementarity between interaction protocols and consistency rules on the one hand (an inter-component
perspective), and detailed processes and partitions on the other hand (an intra-component perspective).
In PARADIGM, an additional role is played by global processes, which act as the “behavioral border” be-
tween the two perspectives.

In the Multi-Agent Systems (MAS) community, the notion of agent interaction protocol [75, 79, 14,
63] has been developed. According to the specification in [36], agent interaction protocols are patterns
of message exchanges, which are typically visualized like UML sequence diagrams. A primary issue in
these agent interaction protocols, again, is the precise temporal ordering of message exchanges. This
aspect plays no role for the interaction protocols in PARADIGM, which only ensure that consistency rules
are applied one at a time.

4.8 Conclusions

In this chapter, we extended PARADIGM with Interaction Protocols, which serve as anchorage for consis-
tency rules, thereby enabling their structuring into subsets relevant to particular modeling purposes.
Moreover, interaction protocols ensure that the consistency rules anchored to them are applied one
at a time. We introduced three different types of interaction protocols. Firstly, the covering interaction
protocol, which covers the entire coordination of a set of manager and global processes. This type is
particularly useful for the division of consistency rules into subsets belonging to individual manager
processes in the model. Secondly, the non-covering interaction protocol, which coordinates a subset of
the behavior of manager and global processes. Non-covering interaction protocols are useful for the
separation of consistency rules which cover different aspects, but involve a single manager or global
process. Our notion of soundness for interaction protocols defines how the consistency rules must be
anchored to them in order to avoid conflicts. Finally, the self-managing interaction protocol, which coor-
dinates the interaction between global processes of employees only. Protocols of this type only contain
consistency rules with empty manager parts. They enable the modeler to avoid the manager/employee
principle of PARADIGM in situations where this principle is intuitively difficult to apply. Instead, all com-
ponents involved in the interaction are regarded as employees and managed by an interaction protocol.
Interaction protocols strengthen the overall purpose of the PARADIGM modeling language and serve as a
direct guidance for its implementation in a distributed manner.
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Chapter 5

PARADE

Tools for PARADIGM

PARADE is a set of tools for the modeling, execution and visualization of PARADIGM models.
The tools support the PARADIGM language and its extension with interaction protocols. PA-
RADE consists of an editor for PARADIGM models, a distributed runtime environment for the
execution of PARADIGM models based on the PARADISE distributed interpreter framework,
and a runtime viewer for the visualization of models while they are being executed. The
distributed runtime environment supports the evolution of PARADIGM models on-the-fly
and the extension of PARADIGM models with software functionality: method invocations
can be attached to process transitions. We describe the PARADE tool set and show that it
provides a good starting point for the future development of an integrated tool suite for
PARADIGM.

5.1 Introduction

The PARADIGM language has been applied in many areas to gain insight in the behavior and interaction
of various types of systems. Yet, no tools are available until now to support activities like the modeling
and analysis of PARADIGM models. For this reason, we have developed PARADE: a set of tools for the
modeling, execution and visualization of PARADIGM models. Currently, PARADE consists of a distributed
runtime environment, an editor and a runtime viewer. It has been developed in Java [39] using the
Eclipse Modeling Framework (EMF) [31] and MOCHA [7, 50, 48, 49], an implementation of mobile
communication channels. The PARADE tools incorporate our PARADISE distributed interpreter framework
presented in Chapter 3, and fully support the interaction protocol concept introduced as an extension
to PARADIGM in Chapter 4. Note that, for this reason, the name “PARADIGM” is used throughout this
chapter to indicate the PARADIGM language including the extensions of Chapter 4. The PARADE tools and
installation documentation are available for download (see [78]).

In this chapter, we present all PARADE tools and show that they are eligible for the future devel-
opment of an integrated tool suite for PARADIGM. The current set of tools focuses on the execution of
PARADIGM models. The most important tool in this respect is the PARADE distributed runtime environment.
This environment automates the creation of an executable distributed PARADISE interpreter for a con-
crete PARADIGM model. Furthermore, it extends the PARADISE interpreter with two interesting features.

75
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Firstly, it supports the evolution of PARADIGM models on-the-fly, i.e. while they are executed. Secondly,
it features the possibility to extend PARADIGM processes with software functionality: upon the taking of
a transition in the execution of a process, a method of an arbitrary Java object can be invoked and the
return value can be used to steer the flow-of-control in the process execution. This way, PARADE can be
used as a starting point for the development of distributed software. The editor and runtime viewer have
been built primarily for the purpose of demonstrating the runtime environment. The editor can be used
to specify PARADIGM processes, partitions and interaction protocols, and to combine these specifications
into a PARADIGM model. The runtime viewer can be used to visualize PARADIGM models while they are
executed within the distributed runtime environment.

We have set up this chapter as follows. In Section 5.2, we provide an overview of the PARADE tools
and motivate their architecture and the technology used for their implementation. In Section 5.3, we
show how PARADIGM models are organized in PARADE and what kinds of additional models PARADE

supports. In Section 5.4, we zoom in on the automated creation of a PARADISE distributed interpreter
for an arbitrary PARADIGM model, and show how our technique directly supports evolution on-the-fly. In
Section 5.5, we discuss how PARADIGM models can be extended with software functionality. We present
related work in Section 5.6 and provide conclusions in Section 5.7.

5.2 Overview of PARADE and Used Technology

An overview of PARADE is depicted in Figure 5.1. The primary artifacts used and manipulated in PARA-
DE are models. We distinguish three categories of models: core models, extension models and container
models. Core models specify PARADIGM processes, partitions and interaction protocols as pure syntactical
constructs. Extension models extend core models with additional information (the visualization of PA-
RADIGM entities, or their extension with software functionality). Finally, container models compose core
models, possibly with their extension models, into larger structures (components and systems). We
provide more details in Section 5.3.

PARADE currently consists of three tools: an editor, a distributed runtime environment and a runtime
viewer. The editor can be used to edit all types of models, in a non-graphical manner. The distributed
runtime environment (DRE), which incorporates the PARADISE framework introduced in Chapter 3,
can be used to execute the models through a dynamically created and distributed PARADISE interpreter.
Finally, the runtime viewer can be used to graphically visualize models while they are executed by a PA-
RADISE distributed interpreter. The PARADE tools and the PARADISE framework have been implemented in
Java [39], using the Eclipse Open Development Platform [30]. Initially, the choice for Java and Eclipse
was made because of the promising Java-based code generation features of two frameworks within
Eclipse, the Eclipse Modeling Framework (EMF) [31] and the Graphical Modeling Framework (GMF). Let
us shortly introduce these frameworks.

The EMF is a modeling framework for structured data models. Based on a data model, Java code can
be generated for the creation and manipulation of data conforming to that model. In addition, the EMF
supports data persistency based on XML [77]. Finally, the EMF supports the generation of a tree-based
XML editor plug-in for the Eclipse IDE. Such an editor guarantees that the contents of the created XML
files syntactically adhere to a specific EMF data model. We used the EMF for the specification of meta-
models for each of the model types in PARADE, using the ECore data modeling language (part of EMF).
The code generation facilities of the EMF turned out to be particularly useful and efficient for research
experiments with the PARADIGM modeling language. In addition, we were able to easily generate the
Java code necessary for the PARADE editor.
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Figure 5.1: Overview of the PARADE tools and models

The GMF extends the EMF and focuses on code generation for the purpose of creating graphical
editors. Eventually, in our research we decided not to take the step towards a graphical editing environ-
ment for PARADIGM, by which the GMF was set out of scope. The models underlying the GMF, however,
are created within the ECore language. As a consequence, the existing PARADE tool-set can be easily
used as a basis for the development of an integrated graphical modeling and execution environment for
PARADIGM.

Distributed Runtime Environment

The primary role of the PARADE DRE is to ease the creation of a PARADISE distributed interpreter for a
PARADIGM model. As we explained in Chapter 3, PARADISE provides a framework for building distributed
interpreters for PARADIGM models. The creation of a distributed interpreter for a specific PARADIGM model
requires that elements of the framework are composed in the appropriate way. Exactly this composition
activity has been automated in the PARADE DRE. Based on the contents of a PARADE container model,
the DRE automatically instantiates the appropriate elements of the framework, parameterizes them with
PARADE core models, and connects them together in order to form a working distributed interpreter. As
we will explain in Section 5.4, the DRE directly supports the creation, updating and deletion of PA-
RADISE framework elements in a running distributed interpreter. Thereby, PARADE provides support for
evolution on-the-fly.
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At runtime, the PARADE DRE is structured as shown in Figure 5.2. The distributed runtime environ-
ment consists of hosts, which each run as a single Java console application on a single Java Virtual
Machine (JVM), independent of the Eclipse IDE. The hosts automatically connect to each other in or-
der to form a distributed runtime environment. On top of this DRE, PARADE components are executed,
which encapsulate and manage parts of a PARADISE distributed interpreter (handlers, selectors and prox-
ies). Each PARADE component is executed on one of the hosts in the distributed runtime environment.
Obviously, each host can host multiple PARADE components.

PARADE Component
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Handlers

PARADE Component 

Management Functions

PARADE

Extensions

PARADE Distributed Runtime Environment

PARADE Component
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PARADE Component 

Management Functions
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Figure 5.2: Overview of the PARADE Distributed Runtime Environment

In Chapter 3, we showed that the PARADISE framework has been implemented on the basis of virtual
nodes, on which process handlers or a ruleset handler are “deployed” for the execution of PARADIGM

processes or consistency rules, respectively. Communication between the nodes takes place via asyn-
chronous channels with unbounded capacity. In the implementation of PARADISE in PARADE, the virtual
nodes are indeed virtual: each handler runs as a separate Java thread, as if it were running on its own
virtual node. In turn, each bidirectional channel between two virtual nodes in PARADISE is implemented
in PARADE as a set of two unidirectional asynchronous FIFO channels, which enable the communication
between two threads. These channels have been implemented with the use of MOCHA [7, 50, 48, 49].

MOCHA is an implementation of point-to-point mobile communication channels. MOCHA supports
various types of channels, amongst which asynchronous channels with (virtually) unbounded capacity.
Each channel in MOCHA actually consists of two channel ends, which can be of type source or type sink.
Channel ends are residing at a MOCHA location, usually one per virtual machine. They are mobile: they
can move from one MOCHA location to another. The Java implementation of MOCHA is based on Java
Remote Method Invocation (RMI) [47].
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In the current implementation of PARADE, all communication between threads is done via MOCHA
channels. Each host in the distributed runtime environment hosts one MOCHA location. If two threads
in different components need to communicate with each other, the components register a channel
source end at the Java RMI Registry, which enables the two to connect and send data to each other.
A channel source end which is registered at the RMI Registry is called a port. We did not exploit the
mobility features of MOCHA in the current implementation of PARADE, but we expect that future work
will address mobility of channels as well.

PARADE components also provide support for extensions to the PARADISE distributed interpreter. Ex-
tensions are automatically created within the components on the basis of extension models. Currently,
two extensions are supported: the visualization of PARADIGM entities, and their extension with software
functionality. The former extension will be shortly introduced in the next paragraphs, while the latter
extension is the subject of Section 5.5.

Runtime Viewer

If a PARADISE distributed interpreter for a PARADIGM model is executed in the PARADE DRE, the inter-
preter simply interprets the PARADIGM model by letting the handlers take steps in accordance with the
constraints of partitions and consistency rules. In order to provide visual feedback about the PARADIGM

model being executed, we have developed a separate application, the PARADE runtime viewer, which can
be dynamically attached to PARADE components running in a DRE. Based on PARADE extension models
for visualization, the runtime viewer is able to visualize processes, partitions and interaction protocols
in a running PARADIGM model. Each process, partition and interaction protocol is displayed in a sepa-
rate window. Every window creates and maintains a dedicated connection with the process, partition or
interaction protocol in the PARADE component which it visualizes. This way, the viewer can show parts
of different components in separate windows on a single screen, even if the components themselves are
distributed.

The PARADE runtime viewer supports three different types of windows. In a process window (Fig-
ure 5.3), a PARADIGM process in the system is visualized. Within this window, it is also possible to stop a
running process, restart it, perform step-by-step execution or alter the speed of the process handler for
the process, by setting a certain time-to-sleep between the taking of process steps.

Figure 5.3: Process window in the PARADE runtime viewer
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In a partition window (Figure 5.4), the current subprocess of a partition is shown, together with
the traps defined for this subprocess. Finally, an interaction protocol window (Figure 5.5) shows an
interaction protocol in the system as a list of consistency rules, indicating with “traffic lights” for each
consistency rule which transitions are currently enabled: “red” means disabled, ”green” means enabled.

Figure 5.4: Partition window in the PARADE runtime viewer

The extension models which specify how processes and traps are to be visualized, are not known
by the runtime viewer in advance. Merely, they are part of the running PARADE components. Once a
window in the runtime viewer is opened, it asks the associated PARADE component to communicate the
necessary visualization models. This way of working has been chosen in order to fully support evolution
on-the-fly: if a running component evolves, its visualization can also be evolved.

This concludes the overview of PARADE. In the next three sections, we will zoom in onto three inter-
esting parts of the implementation. In Section 5.3, we will address the different models in more detail.
In Section 5.4, we will show how the PARADE distributed runtime environment is able to automatically
create and evolve PARADISE distributed interpreters for a PARADIGM model. Finally, in Section 5.5 we
briefly explain how software functionality can be used within the execution of a PARADIGM model.

5.3 Model Specification in PARADE

The basis for the PARADE tools is formed by the PARADE models, which specify PARADIGM models and
extensions to them in a particular XML syntax understood by the PARADE tools. An overview of all PA-
RADE model types is given in Figure 5.6. The arrows between the model types indicate dependencies.
In the next sections, we zoom in on the individual models and explain their relationships, by showing
how the client/server model of Chapters 2 and 3 can be specified in PARADE.

Core Models

The PARADE core models are used to specify the entities of a PARADIGM model. PARADE allows for the
separate modeling of three different PARADIGM entities: processes, partitions and interaction protocols.
We have chosen not to model separate individual consistency rules, but rather interaction protocols to
which consistency rules are anchored. Core models do not contain information about how the PARADIGM

entities are visualized; they only represent the PARADIGM entities as syntactical constructs.
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Figure 5.5: Interaction Protocol window in the PARADE runtime viewer

In order to allow for an efficient reuse of models, we regard the core models created in PARADE

as types. An example may clarify this approach. Suppose we would like to create a PARADE model for
the client/server example presented in Chapter 2. This model consists of one server and three client
components. The client components are all equal, hence in PARADE we need to specify their internal
processes and partitions only once. The total example requires the specification of five core models,
as depicted in Figure 5.7. The process types Client and ObjectOfService specify the detailed and global
process of each of the clients, respectively. Process type Server specifies the detailed process of the server.
Partition type ClientAsOOS represents the partition of detailed process type Client with global process
type ObjectOfService. Finally, an interaction protocol type ServerAndThreeClients is specified with four
roles: one Server role with process type Server, and three roles Client1, Client2 and Client3 with process
type ObjectOfService.
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Figure 5.6: Overview of the PARADE models

We distinguish two different process roles for partition types: a detailed and a global role. The sub-
processes of the partition need to match with the process type playing the detailed process role, while
their names and trap names should match to the process type playing the global process role. By con-
vention, we choose the names of process types in such a way that they can be used as either detailed or
global process types. The names of partition types are chosen such that it is clear which detailed process
type and global process type they relate to each other. For example, partition type ClientAsOOS can be
used to view a Client process as an ObjectOfService process. Likewise, we could have defined a partition
type OOSAsClient which allows us to view an ObjectOfService process as a Client process.

Within interaction protocol types, we define one or more process roles, each with a unique identifier
within the interaction protocol, and a corresponding process type which we expect to play the role. A
transition mentioned in a consistency rule anchored to an interaction protocol should match a transition
mentioned in the process type playing the corresponding role. We also indicate for each role whether
the role is a manager role or an employee role. Because the structure of interaction protocols can vary
considerably, depending on the context in which it is used, we do not adopt a naming convention for
the names of interaction protocols.

Extension Models

Extension models provide a way to extend the core models with additional information or function-
ality. With regard to the execution of PARADIGM models, these models are optional. Currently, PARADE

supports two kinds of extension models: visualization models and implementation models. These models
are independent from each other and can be used separately. It is possible to create many different
visualization models and implementation models for a single core model.
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Figure 5.7: PARADE core models and their dependencies for the client/server example

Visualization models provide the information necessary to visualize processes or partitions inside
the PARADE runtime viewer. For process types, they specify how their states, transitions and labels are
visualized. For partition types, they specify how traps of their subprocesses are visualized. Interaction
protocols form an exception and do not need a visualization model – they are always visualized in the
same manner, as a list of grouped transitions for their process roles. Implementation models allow a
modeler to bind the transitions in a PARADIGM process model to method invocations on Java objects. We
provide more detailed information about these models in Section 5.5.

Container Models

Two types of container models are known in PARADE: component models and system models. Component
models define component types, based on core models and extension models. System models compose
PARADE components into a system by creating instances of component types. They can be used for the
specification of entire PARADIGM models.

The component concept is used in PARADE as a unit of deployment: each component runs on a sin-
gle host in the DRE. PARADE components roughly correspond to the notion of component in PARADIGM:
entities containing one detailed process and zero or more views on this detailed process in terms of par-
titions and corresponding global processes. However, we use components in PARADE also as containers
for interaction protocols. The primary reason for this is that interaction protocols have behavior of their
own, hence they must be deployed explicitly on a host. Furthermore, we gain uniformity in the way
PARADIGM models are implemented in PARADE: all processes, partitions and interaction protocols are
contained in components, which in turn are composed into a system. As we will show in Section 5.4,
this has direct benefits for evolution on-the-fly: at runtime, the PARADE components create, update and
delete all evolvable PARADIGM artifacts in a uniform manner. An example of the two types of container
models in PARADE is given in Figure 5.8, which shows the component models and system model for the
client/server example. For convenience, we do not show the usage of extension models in the figure.
Using the example, we shortly explain the internals of both container models.
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Figure 5.8: PARADE container models and dependencies for the client/server example

Component models specify core model instances and ports. The instantiated core models can be pro-
cess models, partition models or interaction protocol models. Since process models only specify process
types, they can be instantiated into a pure employee process, a manager process or a global process. This
is done by using a specific type of selector. For example, the process instance MyServer created in the
Server component type will be used as a manager process and therefore gets a managing selector M. For
partition models and interaction protocol models, we indicate which process instances play their roles.
Obviously, these instances need to be of the appropriate type. Take for example the specification of the
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Client component, which contains a partition instance MyPartition of type ClientAsOOS. The detailed
and global role are played by the two process instances MyClient of type Client and MyOOS of type Ob-
jectOfService, respectively. For interaction protocol models, each role is played by a single selector of a
single process. Finally, each component specifies ports for communication with other components. Each
port can be bound internally to one of the following entities: the selector of a process, the global or the
detailed role of a partition, or the role of an interaction protocol. An example is shown in Figure 5.8
of the ServerAndThreeClients component, which contains an instance of the ServerAndThreeClients in-
teraction protocol. All roles of the interaction protocol instance are bound to separate ports. In the
implementation, the ports correspond to MOCHA channel source ends.

System models specify component model instances and port bindings. The example in Figure 5.8
shows a Client/Server system model, which instantiates a component of type Server, three components of
type Client, and a component of type ServerAndThreeClients. The ports of the components are connected
to each other by means of port bindings. In the next section, we show how the resulting system is created
and executed on top of the PARADE DRE.

5.4 Model Execution and Evolution in PARADE

In this section we show that there is essentially no difference between the creation and start-up of a
PARADISE distributed interpreter in PARADE, and its evolution with updates, creates and deletes. We start
with giving an overview of the changes to the PARADISE framework which were needed to incorporate
the extensions of Chapter 4. After that, we illustrate how component models and system models are
used to create runtime components in the PARADE DRE. Finally, we show which techniques are provided
by the DRE and the runtime components for evolution on-the-fly.

Extensions to PARADISE

Throughout the development of the PARADE tools, we extended the PARADISE distributed interpreter
framework discussed in Chapter 3 in order to incorporate the conceptual extensions presented in Chap-
ter 4. The changes are relatively straightforward and mainly consist of some generalizations of the im-
plementation presented in Chapter 3. The pseudo code in Appendix A already includes these changes.

• Covering Interaction Protocols. No changes to the framework were needed to support the con-
cept of covering interaction protocols: basically, instead of using one ruleset handler for all con-
sistency rules, we now use a ruleset handler for each interaction protocol.

• Non-covering Interaction Protocols. Managing selectors support the usage of separate channels
to manager proxies of multiple non-covering interaction protocols. Delegating selectors support
multiple channels to different employee proxies. In order to adhere to the soundness criterion
formulated in Chapter 4, we require that delegating selectors use a single channel for delegating
the selection between transitions with the same source state.

• Self-managing Interaction Protocols. The syntax of consistency rules has been generalized in
order to allow for consistency rules with empty manager parts. To support self-managing interac-
tion protocols, we use a special version of a manager proxy called a self-manager, which is actually
not a proxy to a manager process, but a simple selector for consistency rules with empty manager
parts.
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From PARADE Models to PARADE Runtime Components

Each PARADE host is a Java application, which can be started up in two different modes: passive or
initiating. If it is started up in passive mode, the result is an empty host which listens to system requests
on a dedicated MOCHA system channel. If started up in initiating mode, the host is parameterized with
a system model, which specifies:

• a list of passive hosts to connect to, in order to form a distributed runtime environment consisting
of the combination of the initiating and passive hosts;

• a list of PARADE components to create, with for each component a specification on which of the
hosts the component must be created;

• a list of port bindings specifying which component ports (source channel ends) must be exchanged
between two components.

Typically, the distributed runtime environment is used as shown in the example of Figure 5.9. Depicted
are four physical machines, each with a JVM installed. On one of the machines, a set of related core,
extension and component models and a system model is available. On this machine, a PARADE host is
started up in initiating mode with the available system model, while on all other machines PARADE hosts
are started up in passive mode.

First, based on the system model specification, the four hosts are connected to each other, on the
initiative of the initiating host, in order to form a distributed runtime environment. After that, the
initiating host continues with processing the list of components to be created, as specified in the system
model. This is simply done by issuing a request to create to the system channel of one of the hosts,
with a specification of the component to be created. The creation itself involves two steps. Firstly, a
runtime PARADE component class is instantiated. The resulting component acts precisely as a passive
host: initially, it is an empty shell, which listens to a dedicated MOCHA system channel for incoming
requests. After that, a request to create is sent to the system channel of the new component, with a
specification of the appropriate core and extension models. After having received this request, the new
(empty) component creates the necessary PARADISE handlers, selectors and proxies for the core models,
following a specific procedure as shown in Figure 5.10.

An example of the creation of PARADISE elements is depicted in Figure 5.11. The example shows the
Client component model of the client/server example and a resulting runtime component Client(1) with
its internal PARADISE elements. As can be seen, the single component contains two process handlers, one
for detailed process MyClient of type Client and one for global process MyOOS of type ObjectOfService.
Each of the handlers is implemented as a separate thread object, while the remaining elements are
passive objects whose methods are called by the thread object. Note also the usage of internal MOCHA
channels between the detailed and global role handlers of partition MyPartition. The existence of port
ClientPort simply means that the source end of the channel to delegating selector D is registered in the
Java RMI registry with the name ClientPort.

After all components have been created in the DRE, the initiating component processes the port
bindings as specified in the system model. Each binding between two ports A en B involves a simple
procedure: send the name of port A to port B, and the name of port B to port A. The internal PARADISE

elements which export the two port names, now have a reference to each other in order for them to
send a receive messages. If applicable, they can move the source ends of the channels to their own
location. The runtime components are started by sending to their system channel sources a request to
start. As a final example, we show in Figure 5.12 the entire client/server model running on a PARADE

DRE consisting of four JVMs.
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Figure 5.9: PARADE Execution: Initial situation

Evolution of PARADE Components

Runtime PARADE components can be created and deleted by using the system channel from a PARADE

DRE. The internals of PARADE components can be altered by using the system channel of the components
in question. This basically involves creations, updates and deletions of PARADISE handlers, selectors and
proxies. The creation of processes, partitions and interaction protocols is done as explained earlier.
The order in which elements are created is important: if a partition or an interaction protocol must be
bound to a process or a process selector inside the same component, the latter one must already exist
prior to the former one. Updates are simply done by sending new versions of core and/or extension
models to the running component via its system channel and indicating which existing entities need
to be updated. Finally, deletions of existing processes, partitions and interaction protocols can be done
straightforwardly, again taking into account a certain order in the deletion.

In general, the creation, updating and deletion of processes, partitions and interaction protocols
often requires additional coordination in order to make sure that the updates do not conflict with the
running system. PARADE does not implement any checks on this point: it is the full responsibility of
the modeler/developer to make sure that the running system evolves smoothly. We show techniques to
do so in the case study of Chapter 8. Nevertheless, our approach completely removes the distinction
between the initial creation of a system and its evolution.
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1. For each process:

(a) create a process handler, parameterized with the process model;

(b) create the appropriate selector and bind it to the process handler;

2. For each partition:

(a) if a detailed role binding has been specified, create a detailed role handler, parameterized with the
subprocesses of the partition, and bind it to the process handler of the appropriate (detailed) process;

(b) if a global role binding has been specified, create a global role handler and bind it to the process
handler of the appropriate (global) process;

(c) if a detailed and a global role binding have been specified:

i. send the channel source id of the global role handler to the channel source of the appropriate
detailed role handler

ii. send the channel source id of the detailed role handler to the channel source of the global role
handler

3. For each interaction protocol:

(a) create a ruleset handler;

(b) create a rule handler for each consistency rule, parameterized with the consistency rule;

(c) create a manager proxy for each manager role in the interaction protocol, bind it to the protocol
handler and the appropriate rule handlers;

(d) create an employee proxy for each employee role in the interaction protocol, bind it to the protocol
handler and the appropriate rule handlers;

(e) for each specified role binding:

i. send the channel source id of the proxy to the channel source of the bound selector;

ii. send the channel source id of the bound selector to the channel source of the proxy;

4. For each port:

(a) bind the channel source id of the specified PARADISE element within the component to the port name;

(b) export the port name.

Figure 5.10: Generic procedure for the creation of PARADISE distributed interpreter elements

5.5 Software Functionality Extensions

In our PARADE implementation, a PARADIGM process is executed by a PARADISE process handler running
inside a PARADE component deployed on one host of a PARADE distributed runtime environment. The
process handler simply takes transitions in a sequential manner. We provide a convenient extension to
this execution, namely to attach software functionality to the taking of transitions by process handlers.
In this section, we shortly explain this extension.
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Figure 5.11: Creating a Runtime PARADE Component from a Component Model

An overview of our approach is shown in figure 5.13. On top, a fragment of a PARADIGM process is
shown. Beneath, a set of Java classes is depicted, divided into action classes and implementation classes.
These classes provide the actual software functionality. Action classes are used as a kind of object adapter
or façade [38]. They are the bridge between the transition labels in the PARADIGM processes, which
indicate a certain abstract activity, and the realization of this activity at the level of the implementation
classes. This way, the actual structure of the implementation classes can be chosen differently from the
conceptual structure as perceived at the level of the PARADIGM model.

In the PARADE implementation model, action classes can be mapped onto transition labels of PARA-
DIGM processes. The implementation model thus provides an interpretation of the transition labels of
a PARADIGM process in terms of computational activities. During execution, each time a transition of a
process is selected by a process handler, the implementation model is checked whether an action class
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Figure 5.12: PARADE Execution: The Client/Server Example running on 4 JVMs (see also Figure 5.9)
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Figure 5.13: Associating transitions of a PARADIGM process to the implementation

is associated with the label of the transition. If there is an associated action class, the process handler
instantiates the action class and invokes its run() operation. After the operation returns, the process
handler takes the transition and enters the target state of the transition. The execution of a process in
the distributed interpreter thereby could result in a sequence of software actions being executed. This
way, a PARADIGM model acts as a high-level specification of the control flow in a distributed software
system: it imposes a specific order upon the activities performed by the software.

It is possible for the software implementation to influence the (non-deterministic) transition selec-
tion mechanism in the distributed interpreter. This is especially useful for situations in which the high-
level coordination relies upon choices determined by low-level computational results or external input.
How a choice is made in the implementation, is of no importance at the conceptual level of PARADIGM: it
can still be considered as a non-deterministic choice: multiple transitions with the same transition label,
the same source state, and different target states. In the implementation model, however, we specify
that these transitions are all mapped onto a single action class, and that the run() operation of this class
has a return value indicating which of the transitions must be taken.

Take for example the fragment of a detailed PARADIGM process WeatherObserver of Figure 5.14. In
this fragment, we assume that process WeatherObserver at some moment in time enters state No Idea.
Being there, it checks whether it rains or not, and changes state accordingly. Suppose that we want
this choice to be made within the implementation, for example based upon the input from a humidity
sensor. We then indicate in the implementation model that both transitions check weather are mapped
onto a single CheckWeather-Action class, which returns either Raining or Not raining. In the PARADISE

distributed interpreter, both transitions are now treated as shown in Figure 5.15: they firstly lead to
a special state, similar to the choice pseudo state in the UML. In this choice state, the return value of
the associated action class is evaluated to determine the target state. Note that this mechanism could
wrongly interfere with constraints on the transitions in the PARADIGM model. It is the responsibility of
the developer to avoid this.
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The extension of PARADIGM models with software functionality can be used to create real software
systems. In order for this approach to be effective, the level of abstraction for the PARADIGM model
must be chosen carefully, preferably such that it provides insight into the conceptual organization of
the distributed system as-a-whole, without containing too many technical details of the individual com-
ponents. Seen this way, a detailed process in PARADIGM can be considered best as a high-level, abstract
control-flow model of a software system. We show an example in Chapter 7, which contains a case study
on the implementation of a branch-and-bound algorithm. In Chapter 8, we apply the software function-
ality extension to perform creations, updates and deletions for the purpose of evolution of a PARADIGM

model on-the-fly.

5.6 Related Work

The runtime visualization tools for PARADIGM presented in Chapter 5 have been based on insights from
work which we published in [93]. In this publication, we showed how to effectively use XML [77]
and RML (the Rule Markup Language, [55]) for modeling, visualizing and analyzing enterprise archi-
tectures. Although we did not use XML transformations in PARADE, the rigid distinction between XML
specifications of PARADIGM models and their visualizations in terms of extension models is based on the
principles presented in [93]. Insights from our work on impact-of-change analysis, which is part of a
book chapter in [66] and which has been also published in [23], have been implicitly reused in the
algorithms adopted in PARADE for the creation, update and deletion of PARADIGM modeling artifacts
during evolution on-the-fly.
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The PARADE distributed runtime environment can be regarded as a distributed virtual machine for
PARADIGM models. The instruction set of the virtual machine is fairly limited: the taking of transitions
of detailed and global processes, in accordance with the dynamic constraints imposed by partitions
and interaction protocols. The approach is comparable to work done on virtual machines for UML.
In [80], the relevance of this approach is pointed out: changes to a model have immediate effects
on its execution. In [85], a UML virtual machine is presented for embedded systems, showing that
it is possible to achieve a fairly small footprint for its implementation, while in [99, 9], work on the
Matilda distributed virtual machine is presented. These approaches, however, try to completely hide the
programming layer, which leads to very detailed UML models which contain all relevant programming
details. We provide a contrasting approach in PARADE with the use of software extension models: the
PARADIGM model itself remains inherently abstract, but it is extended with a concrete implementation.
We illustrate our approach in the case study of Chapter 7.

5.7 Conclusions

In this chapter, we presented PARADE: a set of tools for the modeling, execution and visualization of
PARADIGM models. We have implemented PARADE models and editor in Java using the Eclipse Modeling
Framework. The PARADE distributed runtime environment is used to ease the creation and evolution of
a PARADISE distributed interpreter for a PARADIGM model, using two types of container models to specify
the model’s component and overall system structure. All communication in the distributed runtime en-
vironment takes place via asynchronous MOCHA channels. A runtime viewer allows for the visualization
of parts of a PARADIGM model while it is being executed. The PARADIGM models have been clearly sepa-
rated from their visualizations. Furthermore, an extension to PARADIGM models has been implemented
which allows the attachment of software functionality to the taking of process transitions. This exten-
sion supports a means to influence the selection of transitions in the PARADIGM model from within the
software implementation, through the application of choice states.

In our implementation approach, no distinction exists between initial construction and eventual
evolution of a PARADISE distributed interpreter for a PARADIGM model: all entities are instantiated and
connected to each other at runtime, based on the contents of container models. Since PARADE has been
implemented with the use of the Eclipse Modeling Framework, it provides a flexible starting point for
the realization of a graphical modeling environment for PARADIGM by means of the Eclipse Graphical
Modeling Framework (GMF).

Currently, PARADE lacks tools for the verification and model checking of PARADIGM models. Such tools
would be a valuable addition to the current tool set and relevant future work. The software functionality
extension of PARADE provides an interesting starting point for future research on model-driven software
development, in which a PARADIGM model could act as a high-level model of a distributed software
system. Finally, more work should also be done on performance optimization of PARADE, focusing on
differentiation in the applied communication mechanisms and exploitation of the mobility of MOCHA
channel ends.
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Chapter 6

A Car Navigation System

We use PARADIGM extended with interaction protocols to create a model of a multi-
component car navigation system. The components of the system offer several modes
of operation. These modes need to be properly coordinated in order for the system to
ensure continuity of correct service. The PARADE tools are used to create and execute
the model, and to gain insight into its behavior. The case study illustrates the suitability
of PARADIGM for the modeling of non-trivial interaction between software components.
It demonstrates the usefulness of the interaction protocol concept, which we apply to
clearly separate component communication from the coordination of the modes of oper-
ation. It also shows applications of the two modeling principles of PARADIGM: we define
multiple views on a single component for managing its various modes of operation, and
we utilize manager/employee hierarchies for the coordination of system-level modes of
operation at the level of components.

6.1 Introduction

This chapter is the first of a series of three chapters in which the PARADIGM extensions and the PARA-
DE tools are validated by means of case studies. Each case study focuses on a different aspect of the
language and/or the tools. The case study presented in this chapter illustrates the applicability of the
PARADIGM concepts for modeling the behavior of a software system at multiple levels of abstraction.
Partitions are used to disentangle coordination issues for individual components. The combination of
interaction protocols, manager processes and partitions is used to realize hierarchy in the coordination
of multiple components and to hide the coordination complexities of subsystems for the environment.

The case study of this chapter has been carried out by us in the context of the European ITEA [53]
research project Trust4all [97]. This project aimed at the definition of a trustworthiness framework for
embedded middleware, which explicitly addresses robust and reliable operation, upgrading, extension,
and component trading [67]. The Trust4All project was preceded by two former ITEA-labeled projects,
Space4U [89] and Robocop [81], in which the framework architecture and extensions for resource
management were developed. Within the Trust4all project, the results of the former projects were
extended with methods and techniques to allow for the establishment of confidence in dependable and
secure operation of a (dynamically changing) system built out of components provided by multiple
different parties.

97
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One of the major issues addressed in the Trust4all project was the issue of reliability of software
systems, defined concisely in [8] as “continuity of correct service”. This issue is particularly interesting
in the context of embedded software which can be upgraded and extended on the device on which
it runs. Hardware resources (e.g., CPU or memory) for embedded devices are considered relatively
limited and fixed, and the upgrading of existing components or the installation of new components
could negatively affect CPU and memory usage and harm the reliability of the system as-a-whole. Next
to this, embedded devices like mobile phones and PDAs, for which the framework developed in Trust4all
is intended, can often be used in different environments, e.g., at home, at work, or while traveling.
Variations in the availability of network bandwidth, power supply, etc. could affect the reliability of an
embedded device.

In Trust4all, the above issue has been partly addressed by requiring from individual components
that they support different modes of operation: ways in which they execute their intended functionality.
For example, a video decoder could provide a mode of operation for decoding all layers of a video
frame and a mode for decoding only the lowest layer (with lower resolution or lower frame rate).
The second mode provides less quality, but also uses less resources. Ideally, the modes of operation
offered by a component must be selectable at runtime and depend on the actual context and user
demands. Thereby, runtime changes caused by component upgrades or occurring in the environment
of the device can trigger a trustworthiness manager within the device to switch the modes of operation
of running components, in order to realize continuity of correct service. The reliability problem can
hence be reformulated as the problem of selecting the appropriate modes of operation for all running
components in every possible context.

However, in case of multiple components, modes of operation cannot in all cases be selected in-
dependently from each other: components communicate and interact, hence a change to the mode of
operation for one component may conflict with the behavior of other components. The mechanism
adopted for the selection of modes of operation for multiple components must therefore be analyzed
and designed carefully, and the communication between the components must be taken into account. It
is the scope of this case study to show the suitability of PARADIGM for this analysis and design. In the case
study, we model part of a system which is typically considered in Trust4all: a generic multi-component
car navigation system. First, we model the components and their communication. On top of this, we
model the selection of modes of operation, both for the individual components and for the system
as-a-whole. Since PARADIGM focuses on behavior and interaction, it is especially suitable for modeling
the runtime selection of modes of operation, where each mode of operation is modeled as a phase in a
component’s behavior. At component level, a set of related modes of operation is modeled as a view by
means of a partition and a global process. At system level, modes of operation are modeled by means
of manager processes in combination with interaction protocols.

Note that our aim is to show the suitability of PARADIGM and the applicability of its language concepts
for modeling the coordination required for the selection of modes of operation for a set of communicating
components. Our aim is not to solve the “reliability problem” as stated above, i.e. the problem of selecting
appropriate modes of operation in various contexts. That issue would require a more extensive analysis
including non-functional properties.

The role of the PARADE tools throughout this case study has been twofold. Firstly, the tools have been
used to keep an overview of the 22 processes, 16 partitions and 3 interaction protocols in the PARADIGM

model – it is hard to manage a model of this size by hand. Secondly, the tools have been used to execute
the model in its entirety and parts of it in isolation, and to gain insight into the behavior of the model
and the interaction between its components. We present our findings with regard to the usage of the
PARADE tools in the discussion at the end of the chapter.
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The remainder of this chapter is set up as follows. In Section 6.2, we introduce the car navigation
system and its components. In Section 6.3, we show how the communication between the components
is modeled. In Section 6.4, we model the modes of operation of both the components and the system,
and the coordination required to switch between them. Finally, in Section 6.5, we discuss the modeling
approach and the insights obtained from the case study.

In this chapter, we focus on the most interesting parts of the PARADIGM model and therefore do not
include the PARADIGM processes, partitions and interaction protocols which are less important in this
respect – these can be found in Appendix B.

6.2 The Car Navigation System

An overview of the (conceptual) car navigation system considered in this case study is depicted in
Figure 6.1. The system consists of seven components, each implementing a dedicated task. Three of
the components are emphasized: Route Calculator, Graphics Renderer and Voice Synthesizer. These are
the components considered in this case study. We model their behavior, their communication and their
modes of operation, while we omit the remaining components and abstract from the interaction with
them. For the sake of comprehension, however, we shortly introduce all components.

Car Navigation System
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Calculator
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Synthesizer

Graphics

Renderer

Road
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Travel & 

Traffic Info 
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User Interface

Figure 6.1: Overview of the Car Navigation System
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The Road Database component provides access to a database containing a road map of the environ-
ment. It is a passive component that can be called to retrieve all road information about a specified
region, or all road connections from a specific location. The GPS Receiver and Travel and Traffic Info
Receiver components receive information about the location of the car and possible road blockades, like
traffic queues and jams. These components actively manage their radio connections and can be called
in order to query the actual location or information for a specific region. The User Interface component
allows the user to enter a travel destination, or to change this destination on-the-fly. It is an active
component, continuously monitoring user input and providing destination information to the Route
Calculator as soon as the user has made up his mind. The Route Calculator component is able to calcu-
late a route between the current location and the destination, potentially taking into account travel and
traffic information. During traversal of the route, this component continuously provides information
about the actions the driver should take and checks whether the driver adheres to these actions. It is
able to recalculate the route if necessary. The Graphics Renderer component renders information from
the Road Database and the Route Calculator into a graphical image on the display. The Voice Synthe-
sizer component, finally, converts information about the actions to be taken into a voice sound with
instructions for the driver.

The three components-in-scope provide several component-level modes of operation. These modes
do not necessarily affect the interaction between the components and can in that case be selected
independently from other modes. The following component-level modes of operation are supported:

• For the Route Calculator component, the usage of travel and traffic information for calculating an
appropriate route is optional. In addition, this component can calculate either the shortest route
or the quickest route.

• The Graphics Renderer component is able to render graphics in a two-dimensional or a three-
dimensional layout.

• For the Voice Synthesizer component, it is possible to choose between standard voice mode or
text-to-speech mode. In the former mode, only basic instructions are pronounced, like “turn left
after 1 mile”, while in the latter mode, street and route names are pronounced as well.

The car navigation system as-a-whole supports four system-level modes of operation, in which certain
components are enabled and others disabled. Mode “Fully Enabled” offers full functionality: all compo-
nents are enabled. In Mode "No Voice", the Voice Synthesizer is disabled, while in Mode "No Route", also
the Route Calculator is disabled (only the Graphics Renderer is active and shows the current location
on a map). Finally, in Mode "No Graphics", the Graphics Renderer is disabled and the driver is only
assisted by means of voice. Since these system-level modes of operation require that entire components
be enabled or disabled, the communication between the components is thereby affected and careful
coordination is required in order to ensure that switches from one mode of operation to another are
performed correctly.

We address the communication between the components and the modeling of component-level and
system-level modes of operation in Sections 6.3 and 6.4, respectively. In the remainder of this section,
we introduce the detailed PARADIGM processes for the Route Calculator, the Graphics Renderer and the
Voice Synthesizer. Each detailed process represents all possible behavior for a component: the internal
activity, the supported modes of operation, and the communication with other components. We model
modes of operation by means of non-determinism, to be resolved later on through the application of
partitions and global processes. We model the communication between the components by including
transitions with labels which indicate that certain information is to be received or sent. Note that we
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do not specify the external source or target component in these labels. Finally, we explicitly model
how components can be enabled and disabled at runtime, by adding transitions that skip parts of the
behavior and directly lead to e.g. idle states.

Route Calculator

A PARADIGM process for the Route Calculator is shown in Figure 6.2 (as a notation convention, we
combine the arrow heads of two or more transitions in a process if these transitions have the same
transition label). This process behaves as follows. It starts with the acquisition of information about the
destination to be reached, the current location of the car and current travel and traffic (T&T) infor-
mation (this information could come from the User Interface, GPS Receiver and Travel and Traffic Info
Receiver, respectively). Based on this information, the Route Calculator calculates either the shortest or
the quickest route (two modes of operation, modeled via two transitions), and sends this information
(to one or more unspecified components). After that, the situation at hand is checked and leads to one
of five possibilities. If the destination has been reached, a message about this fact is sent and the process
is repeated. If it turns out that the driver entered a different destination, the process starts again as well.
In case the driver does not follow the established route for a certain amount of time, the choice is made
to recalculate the route. If the driver should take some action, like turning to right or left, this informa-
tion is sent (again: to one or more unspecified components). Finally, if there are no issues, no action is
taken. In the last two cases, the process enters a subloop, in which it fetches the current location and
potentially new travel and traffic information. Based on this new information, the current situation is
checked again. This process repeats itself until the destination has been reached, the driver entered a
new destination or a route recalculation is required. Note that the latter choice could also be made in
case new travel and traffic information makes the established route impossible. At some states in the
process, the component is able to return directly to the initial state. We will use these transitions later
on in a separate AsRunnable partition in order to efficiently disable the Route Calculator at runtime.

Graphics Renderer

A detailed PARADIGM process for the Graphics Renderer is depicted in Figure 6.3. Its behavior is as
follows. First, it gets the current location (potentially from the GPS Receiver). Then, it checks whether
any route information or action information (from the Route Calculator) is available and if so, it reads
this information. The route and action information is used to create visualizations, which are assumed
to be reused until information about a new route or a new action becomes available. It is possible to
remove these visualizations explicitly via a transition to state Visualizations removed. With a certain
time interval, the component renders a region of the map of a predefined size, based on the current
location, in either a two-dimensional or or a three-dimensional view of the map (modes of operation).
Additional transitions to state Start of rendering are meant for disabling the component at runtime and
for disabling the usage of route and action information.

Voice Synthesizer

Voice is used to instruct the driver about which actions to take in order to reach the desired desti-
nation. It is the task of the Voice Synthesizer component to synthesize a voice instruction based on
information about the action to be taken. A special feature is the use of text-to-speech, which enables
the pronunciation of e.g. street names.
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Figure 6.2: Process RouteCalculator

A PARADIGM process for the Voice Synthesizer component is depicted in Figure 6.4. The process
behaves as follows. First, information about the action to be taken is being received. Then, this infor-
mation is converted from text into speech, after which the voice message is constructed and sent to a
digital-analog converter (DAC). Via transition [to idle] the process finally returns to the initial state.
This process is repeated for each action that should be synthesized. In state Action info received, the
process allows for skipping the text-to-speech conversion (modes of operation). Next to this, it is also
possible to go from either state Action info received or state TTS conversion performed directly to state
Idle, which will be used for disabling the Voice Synthesizer at runtime.
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6.3 Component Communication

Before we start modeling the modes of operation of the individual components and the system as-
a-whole, we model how the communication between the three components takes place. The system
contains three communication flows between the three components:

• The Route Calculator (transition send route info) provides route information to the Graphics Ren-
derer (transition receive new route info);

• The Route Calculator (transition send action info) provides action information to the Graphics
Renderer (transition receive new action info);

• The Route Calculator (again transition send action info) provides action information to the Voice
Synthesizer (transition receive action info).

Since the communication between the three components consists of the exchange of either route
information or action information, we decide to separate the coordination needed for the exchange
of these two types of information by creating two separate interaction protocols. Moreover, because
we do not wish to introduce any hierarchy between the three components, we decide to regard all of
them as employees and add extra manager processes to coordinate the communication. An overview
of the resulting PARADIGM model is shown in Figure 6.5. The Figure shows the Route Calculator (RC),
the Graphics Renderer (GR) and the Voice Synthesizer (VS) with new partitions and global processes,
which are coordinated by means of two new manager components Route Info Manager and Action Info
Manager and two new interaction protocols RouteInfoProtocol and ActionInfoProtocol.

Partitions and Global Processes

On top of each of the existing components, we create partitions and global processes which abstract
from internal activity and focus purely on the communication. We can easily distinguish between
sender and receiver roles in the communication, since the Route Calculator only sends information
and the other two components only receive information. Since we have chosen to model the exchange
of route information and the exchange of action information separately, we apply this separation also
to the partitions and global processes. The Route Calculator plays two sending roles in the commu-
nication, represented by partitions AsRouteSender and AsActionSender. The Graphics Renderer, which
only receives information, plays two receiving roles via partitions AsRouteReceiver and AsActionReceiver.
Finally, the Voice Synthesizer only receives action info and therefore plays one receiving role (partition
AsActionReceiver). This makes a total of five new partitions. The global processes for each of the five
partitions all have the same structure, as shown in Figure 6.6: they consist of two states Active and
either Sending or Receiving, depending on whether the partition abstracts to resp. sending or receiving.
Transitions are allowed from one state to the other and back.

As an example of how the partitions are defined on top of the detailed processes, we show partition
AsActionReceiver for process VoiceSynthesizer in Figure 6.7. In subprocess Active, all detailed behavior
is allowed except for the receiving of action information: transition receive action info to state Action
info received is omitted. Trap canReceive of this subprocess, which only contains state Idle, indicates that
the process is able to change to the phase in which it must receive action information. The second
subprocess, Receiving, allows the process to receive action information. Trap hasReceived indicates that
the process has finished receiving the action information and can be changed back to subprocess Active.
Note that, within subprocess Receiving, the process is able to continue part of its activities after having
received the action information.
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Figure 6.5: Managers and interaction protocols for the communication of route and action info

Manager Processes and Interaction Protocols

All five partitions for coordinating the communication between the three components have been orga-
nized in a similar manner, with one subprocess which disallows and another one which enforces the
sending or receiving of information (the parts of the PARADIGM model not mentioned in this chapter
can be found in Appendix B). Two distinct manager processes and interaction protocols take care of
the coordination of these partitions. The Route Info Manager coordinates the communication of route
information from the Route Calculator to the Graphics Renderer, while the Action Info Manager steers
the flow of action information from the Route Calculator to both the Graphics Renderer and the Voice
Synthesizer. We could specify the managers and interaction protocols in many different ways, e.g. such
that they synchronize the global transitions of the sender and receiver(s), or such that they simulate
asynchronous fifo channels or a shared data space between communicating peers. In our case, we have
chosen to model them as one-place fifo buffers, which allows the three components to behave relatively
independently, but ensures that a sending component blocks in case information sent earlier has not yet
been received by one or more receiving components.
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Figure 6.6: Global Processes Sender and Receiver

Manager processes RouteInfoManager and ActionInfoManager are depicted in Figure 6.8 and 6.9,
respectively. They are modeled as active entities that receive data from a sender and forward this data
to one or more receivers. The Route Info Manager simply sequentializes each send and receive, while the
Action Info Manager, which has two receivers (Receiver 1 stands for Graphics Renderer, while Receiver
2 stands for Voice Synthesizer), sequentializes a send and two receives. Note that the latter process
is a somewhat simplified version of a one-place fifo buffer, since we do not allow the receives to take
place in a different order. Both processes have additional transitions by which they can arbitrarily skip
forwarding to receivers. We will use these transitions in Section 6.4 to define a partition AsReceiverSwitch
on top of both processes, which can be used to configure to which of the receivers the information is
forwarded. Thereby, we are able to influence the communication flow for different system-level modes
of operation.

Finally, we show the set of consistency rules anchored to interaction protocol RouteInfoProtocol, as an
example of how the manager processes are related to the communicating components (the consistency
rules anchored to interaction protocol ActionInfoProtocol are specified in a similar manner, only with two
receivers instead of one). The consistency rules are shown in Table 6.10. They specify how transitions
of the global processes for the AsRouteSender and AsRouteReceiver partitions are synchronized with
manager transitions of process RouteInfoManager. Note in particular rule RI3, which ensures that the
Route Calculator is put back into subprocess Active even if the Route Info Manager skips forwarding the
data to the Graphics Renderer (in that case, the data in the buffer is assumed to be thrown away and
the buffer is considered empty again). However, after the Route Info Manager has taken transition send
data to receiver and has entered state Sending data, it cannot proceed to state Idle as long as employee
process Graphics Renderer has not entered trap hasReceived. We will take this restriction into account
in Section 6.4, where we define the coordination for a system-level mode of operation in which the
Graphics Renderer will be disabled.

We have now shown the detailed processes for the three car navigation components plus the pro-
cesses, partitions and interaction protocols we use for coordinating their communication. This combina-
tion constitutes our model of the car navigation system, but still without any coordination mechanism
for the modes of operation. This is the topic of the next section.



6.3. COMPONENT COMMUNICATION 107

Idle
Action info 

received

perform 

text-to-

speech

conversion

TTS conversion 

performedconstruct

message and 

send to DAC

Message sent

[ to idle ]

Idle
Action info 

received

TTS conversion 

performedconstruct

message and 

send to DAC

Message sent

receive action info

canReceive

hasReceivedReceiving

Active

perform 

text-to-

speech

conversion

Figure 6.7: Partition AsActionReceiver for Process VoiceSynthesizer

Sending dataIdle

get data from 

sender
Getting data

send data to 

receiver

[ to idle ]

Figure 6.8: Process RouteInfoManager



108 CHAPTER 6. A CAR NAVIGATION SYSTEM

Sending data to 

receiver 1
Idle

get data from 

sender
Getting data

Sending data to 

receiver 2

send data to 

receiver 1

send data to 

receiver 2

[ to idle ]

Figure 6.9: Process ActionInfoManager

(RI1) RouteInfoManager : Idle
get data from sender−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Getting data

∗ RC[AsRouteSender] : Active
canSend−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Sending

(RI2) RouteInfoManager : Getting data
send data to receiver−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Sending data

∗ RC[AsRouteSender] : Sending
has sent−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active,

GR[AsRouteReceiver] : Active
canReceive−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Receiving

(RI3) RouteInfoManager : Getting data
[ to Idle ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

∗ RC[AsRouteSender] : Sending
hasSent−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active

(RI4) RouteInfoManager : Sending data
[ to Idle ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

∗ GR[AsRouteReceiver] : Receiving
hasReceived−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active

Table 6.10: Consistency Rules anchored to Interaction Protocol RouteInfoProtocol

6.4 Modes of Operation

The general way in which we model modes of operation in PARADIGM is as follows. We view a mode
of operation as a configuration of an orthogonal set of switches. A switch provides a set of options for
a component, of which one may be selected at a time. For example, the Route Calculator basically
provides two switches (the TTSwitch and the CMSwitch), each with two options, as shown below.

TTSwitch
Travel & Traffic On Travel & Traffic Off

CMSwitch
Shortest Route Mode 1 Mode 2
Quickest Route Mode 3 Mode 4
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Switch TTSwitch provides two options, which respectively enable and disable the usage of travel and
traffic information for the calculation of the route. Independently of this, switch CMSwitch configures
the calculation mode for the component, with two options shortest route or quickest route. In total, the
two switches with each two options provide four different modes of operation.

As we indicated in Section 6.2, we distinguish between component-level modes of operation, which
are configurations of the behavior and functionality of individual components (as in the example in
the table above), and system-level modes of operation, which are configurations of the functionality of
the system as-a-whole. For component-level modes of operation, we model the switches as individual
partitions with corresponding global processes on top of the detailed process of a component. Each
global process provides a view on its detailed process which only shows the options and how one
can switch between them. Since PARADIGM allows for multiple partitions to be defined on top of a
single detailed process, each of the switches can be easily modeled as a separate partition. System-
level modes of operation are more complex to model. Since these modes of operation may enable and
disable the car navigation components, we model their coordination via an additional component. For
this purpose, we define a Car Navigation System Manager, CNS Manager for short, which coordinates
the car navigation components plus the additional components defined in Section 6.3 for managing the
communication. The four system-level modes of operation defined earlier in Section 6.2 are modeled
using a single partition and global process on top of this CNS Manager, as a system-level switch with
four options. A convenient way to model the enabling and disabling of the car navigation components
is by creating an additional partition and global process for each of these components, next to the
switches for component-level modes of operation. The additional partition, which we call AsRunnable,
can be used to run and pause a component.

In the next two subsections, we show modeling examples of the component-level resp. system-level
modes of operation on top of the PARADIGM model of Section 6.3.

Component-level Modes of Operation

As an example, consider the Voice Synthesizer component, for which the detailed process was shown
earlier in Figure 6.4. This component provides two modes of operation, one in which text-to-speech
conversion is applied to the action information, and one in which this conversion is omitted. These
two modes can be modeled as a single switch with two options. The partition for this switch is shown
Figure 6.11, the corresponding global process in Figure 6.12.

A switch between the two modes of operation can be performed at runtime, and we prefer to be able
to switch regardless of the precise state in which the detailed process will be. Therefore, both subpro-
cesses of partition AsTTSSwitch and their traps contain all states of the detailed process. In subprocess
TTS ON, the process is not allowed to skip the text-to-speech conversion: transition construct message
and send to DAC from state Action info received is excluded. In subprocess TTS OFF, it is not allowed to
perform the text-to-speech conversion, hence transition perform text-to-speech conversion is ommitted.
Note however, that all remaining transitions are included in the subprocess: should the process enter
or be in state TTS Conversion performed at the moment a switch to TTS OFF has just been made, it
is always able to leave this state. Note that, according to the semantics of PARADIGM, if the process is
in subprocess TTS ON and is changed to subprocess TTS OFF while transition perform text-to-speech
conversion is being taken, the transition will be taken and the process will enter state TTS conversion
performed. Only thereafter, the process can be said to actually be in subprocess TTS OFF.
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Figure 6.12: Global Process VS[AsTTSSwitch]

Since we also require the possibility for the Voice Synthesizer to be enabled and disabled at runtime
in order to facilitate the system-level modes of operation, we add another partition AsRunnable, as
shown in Figure 6.13. Corresponding global process Runnable is shown in 6.14. The partition has been
defined such that the process can be paused regardless of its current state. In subprocess Paused, it
will only be allowed to take transitions to state Idle. The trap definition for trap activatable allows for
changing back to subprocess Running only if the process has entered state Idle, which prohibits the
process from starting its execution in some arbitrary state after it has been paused.
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PausedRunning
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Figure 6.14: Global Process Runnable

Note the loops in global process Runnable, which allow for checking whether trap pausable or ac-
tivatable have been entered without performing a subprocess change. We have applied these kind of
loops earlier in the self-managing interaction protocol example of Chapter 4.
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In total, we have now defined three different partitions on top of component Voice Synthesizer: par-
tition AsTTSSwitch, partition AsRunnable, and partition AsActionReceiver defined earlier in Section 6.3
for coordinating the communication of action information. The resulting component is depicted in Fig-
ure 6.15.
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Figure 6.15: Component Voice Synthesizer

If we compare the three partitions to each other, the dependencies between them become clear.
First, note that subprocess changes for partition AsTTSSwitch are always possible, regardless of the
subprocesses in which the other two partitions reside. More importantly, there is a dependency between
partition AsRunnable and partition AsActionReceiver: partition AsRunnable can be in subprocess Paused
while partition AsActionReceiver is in subprocess Receiving. In that case, if the detailed process is in state
Idle, partition AsActionReceiver cannot be changed back to subprocess Active until partition AsRunnable
has been changed to Running and the process is able to enter trap hasReceived. This dependency relates
directly to the discussion in Section 6.3 about interaction protocol RouteInfoProtocol. Again, we will
take it into account when we define the coordination for the system-level modes of operation, in order
to ensure the liveness of the system and its components at runtime.

Partitions and global processes for the Route Calculator and Graphics Renderer component are
modeled in a similar manner as those for the Voice Synthesizer – they can be found in Chapter B.
For both components, we define a partition AsRunnable to run and pause them. For component Route
Calculator, we define two partitions AsTTSwitch and AsCMSwitch to switch the usage of travel and
traffic info and the calculation mode, respectively. For component Graphics Renderer, we add a partition
AsRMSwitch for the rendering mode (2D or 3D). All these partitions have global processes similar to
global process VS[AsTTSSwitch], with two states, one for each configurable option.

As we explained in Section 6.2, the Graphics Renderer includes the possibility to remove route
and/or action visualizations by taking a transition to state Visualizations removed. This removal has to
take place once the Route Calculator component is being paused, since otherwise the Graphics Renderer
keeps showing the last route calculated even though the Route Calculator is inactive. A partition AsR-
CUsageSwitch is added to the Graphics Renderer, whose corresponding Global Process has three states:
initial state RC ON, in which the Route Calculator is assumed to be running, state Cleanup in which
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the outdated visualizations are removed, and state RC OFF, in which the Route Calculator is assumed
to be disabled. Although, the partition itself is fairly simple (therefore, we do not show it), it plays an
important role in the coordination needed for switching to system-level mode of operation “No Route”,
as we will show in the next subsection.

An overview of the PARADIGM model including all partitions defined for the three car navigation
components is shown in Figure 6.16. For reasons of clarity, the partitions are shown as component
ports only (we used a similar visualization in [90] for CMT2, a modeling technique for component
based software design). Some ports are shown in gray: the partitions and global processes represented
by these ports will play no role in the coordination of the system-level modes of operation. Others are
shown in black: these ports are used for coordinating the communication between the components. The
white ports, which are not yet connected to any interaction protocol, play a role in the next subsection,
where we will introduce a new manager process CNSManager together with an interaction protocol
CNSProtocol to coordinate the system-level modes of operation. In addition, we will create partitions
on top of processes RouteInfoManager and ActionInfoManager, which will be used to avoid conflicts
between the communication in the system and the coordination of the system-level modes of operation.

Note that we leave unspecified in the model how and when the transitions of global processes
RouteCalculator[AsCMSwitch], RouteCalculator[AsTTSwitch], GraphicsRenderer[AsRMSwitch] and Voice-
Synthesizer[AsTTSwitch] are taken. In fact, this makes the PARADIGM model for the car navigation system
an open model, in contrast with the closed models we have seen so far.
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Figure 6.16: Car navigation system with communication and component-level modes of operation
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System-level Modes of Operation

Switching between the system-level modes of operation requires careful coordination, especially when
components, which continuously communicate with each other, are temporarily disabled (paused). We
recall our earlier remarks about the way in which we modeled the communication between the com-
ponents, and about the dependencies between this communication and the enabling and disabling of
components. In order to avoid that processes block undesirably, we do not only need to coordinate
the component-level modes of operation and the AsRunnable partitions of the components, but also
the communication flows between them. To this end, we define a partition AsReceiverSwitch on top of
the two manager processes for the communication, ActionInfoManager and RouteInfoManager. For the
Route Info Manager, the partition simply defines a choice (two states) between forwarding the route
information from the sender to the receiver or not. This partition and the corresponding global process
can be found in Appendix B. For the Action Info Manager, which has two receivers, the partition defines
to which of both receivers the information must be forwarded to: none, receiver 1 (Graphics Renderer),
receiver 2 (Voice Synthesizer), or both. We show partition AsReceiverSwitch for process ActionInfoMan-
ager and the corresponding global process in Figures 6.17 and 6.18. Note again the usage of loops in
the global process to check whether trap changeable has been entered.
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Figure 6.18: Global Process ActionInfoManager[AsReceiverSwitch]

We remark that, even if forwarding to both receivers is disabled (subprocess None), the process is
still able to accept information from the sender. This way, process RouteCalculator never blocks upon
sending, except when forwarding is enabled and manager process ActionInfoManager waits for a re-
ceiver to receive the information. Partition AsReceiverSwitch for process RouteInfoManager has the same
property.

The coordination needed for the four system-level modes of operation can now be defined on top
of the car navigation components and the components which coordinate the communication between
them. As a first step, we define an additional component CNSManager. The detailed process for this
component is shown in Figure 6.19. The process specifies which actions have to be taken by the sys-
tem in order to switch from one system-level mode of operation to another. Just as we did for the
component-level modes of operation, we define a partition AsModeSwitch on top of this detailed pro-
cess, which represents a switch for four different options (see Figure 6.20) . The global process for this
partition (Figure 6.21) has four states which precisely correspond to the four system-level modes of
operation. The states of this process are not fully connected to each other, hence, one cannot switch ar-
bitrarily between the system-level modes of operation. This is a modeling choice rather than a technical
limitation.

UnrestrictedNo data to GRGR disabled No data to VS VS disabled

RC disabled
GR in RC off 

mode
GR cleanup

Figure 6.19: Process CNSManager

Detailed process CNSManager shows which intermediate steps are taken in order to switch from one
mode of operation to another. Each time a component is disabled which acts as a receiver of either route
or action information, we make sure that we first disable the communication flow to that component
prior to disabling the component, in order to prevent the communication manager from blocking upon
forwarding the information.
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Figure 6.20: Partition AsModeSwitch for Process CNSManager
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Consider for example the switch from Fully Enabled to No Voice. We assume that global process
CNSManager[AsModeSwitch] is in state Fully Enabled and process CNSManager is in state Unrestricted,
hence in trap changeable of its single partition. In the global process, this enables the transitions
from state Fully Enabled to either No Voice or No Graphics. Suppose that global process CNSMan-
ager[AsModeSwitch] takes a transition to state No Voice. Thereby, process CNSManager is changed to
subprocess No Voice, which enables it to enter state No data to VS. This transition disables the com-
munication between the Route Calculator and the Voice Synthesizer (interaction protocol CNSProtocol,
presented later on, will show how). Only after that, the process takes the transition to state VS dis-
abled, which disables (pauses) the Voice Synthesizer. Once state VS disabled (trap changeable) has been
entered, the system has been correctly configured for mode of operation No Voice.

Interaction protocol CNSProtocol, finally, binds the system-level modes of operation to the compo-
nent-level modes of operation in terms of consistency rules managed by process CNSManager. The
consistency rules anchored to it are shown in Tables 6.22 and 6.23. In Table 6.22, the consistency rules
for enabling and disabling the Graphics Renderer or the Voice Synthesizer are shown. Table 6.23 shows
the consistency rules for correctly enabling and disabling the Route Calculator.

We continue the example of the system-level mode change from Fully Enabled to No Voice. The
detailed mode changes can be found in Rules V1 and V2. In consistency rule V1, first, the Action Info
Manager component is changed from mode Both into mode Rec1 via the AsReceiverSwitch partition. This
causes the Action Info Manager to stop sending action information to the Voice Synthesizer component.
Note that the Route Calculator component is not restricted in any way in its behavior and that the flow
of action information from the Route Calculator to the Graphics Renderer component is still enabled.
After consistency rule V1 has been applied, process CNSManager is in state No data to VS. In order to be
sure that the Action Info Manager is in mode Rec1 before we disable the Voice Synthesizer component,
we have added the restriction to the next consistency rule, V2, that process ActionInfoManager must
be in trap changeable of subprocess Rec1. This ensures that the Action Info Manager has no pending
information for the Voice Synthesizer component after the latter one is disabled. After Rule V2 has been
applied, the Action Info Manager has been reconfigured and the Voice Synthesizer has been disabled.
During the reconfiguration, the execution of the other components has not been interrupted in any
way. The CNSManager process is now in state VS Disabled and thereby enters trap changeable. It is now
possible to switch to another system-level mode, e.g. No Route or Fully Enabled.

The consistency rules for disabling the Graphics Renderer component are similar to those for dis-
abling the Voice Synthesizer. A switch from mode of operation “No Voice” to mode of operation “No
Route”, however, requires the disabling of the Route Calculator component, which is a sending instead
of a receiving component. The consistency rules involved in this reconfiguration are mentioned in Fig-
ure 6.23 (rules R1, R2 and R3). Rule R1 disables all communication between the three components.
Next to that, it disables the Route Calculator component. These two actions are not conflicting and can
be performed in one rule. In Rule R2, we make sure that all communication flows have been disabled
by checking whether trap changeable has been entered by both the Route Info Manager and the Action
Info Manager. In that case, the Graphics Renderer can start cleaning up the temporary reusable visual-
izations. Once this has been done, rule R3 makes sure that the Graphics Renderer starts showing a map
without a route from the Route Calculator.



118 CHAPTER 6. A CAR NAVIGATION SYSTEM

(G1) CNSManager : Unrestricted −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ NoDataToGR

∗ RM[AsReceiverSwitch] : Enabled
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Disabled,

AM[AsReceiverSwitch] : Both
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rec2

(G2) CNSManager : NoDataToGR −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ GRDisabled

∗ RM[AsReceiverSwitch] : Disabled
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Disabled,

AM[AsReceiverSwitch] : Rec2
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rec2,

GR[AsRunnable] : Running
pausable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Paused

(G3) CNSManager : GRDisabled −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Unrestricted

∗ RM[AsReceiverSwitch] : Disabled
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Enabled,

AM[AsReceiverSwitch] : Rec2
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Both,

GR[AsRunnable] : Paused
activatable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Running

(V1) CNSManager : Unrestricted −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ NoDataToVS

∗ AM[AsReceiverSwitch] : Both
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rec1

(V2) CNSManager : NoDataToVS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ VSDisabled

∗ AM[AsReceiverSwitch] : Rec1
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rec1,

VS[AsRunnable] : Running
pausable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Paused

(V3) CNSManager : VSDisabled −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Unrestricted

∗ AM[AsReceiverSwitch] : Rec1
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Both,

VS[AsRunnable] : Paused
activatable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Running

Table 6.22: Consistency rules anchored to interaction protocol CNSProtocol

Final PARADIGM Model

The final PARADIGM model for the car navigation system with communication, component-level and
system-level modes of operation is shown in Figure 6.24. Again, we remark that the model is open:
the gray ports represent partitions which can be coordinated via interaction protocols external to the
model. The figure shows clearly that component communication and coordination of the modes of oper-
ation have been modeled separately. This makes it possible to experiment with various communication
scenarios and analyze whether interaction protocol CNSProtocol is able to ensure continuity of correct
service in all system-level modes of operation.
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(R1) CNSManager : VSDisabled −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ RCDisabled

∗ RC[AsRunnable] : Running
pausable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Paused,

RM[AsReceiverSwitch] : Enabled
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Disabled,

AM[AsReceiverSwitch] : Rec1
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ None

(R2) CNSManager : RCDisabled −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ GRCleanup

∗ RM[AsReceiverSwitch] : Disabled
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Disabled,

AM[AsReceiverSwitch] : None
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ None,

GR[AsRCSwitch] : RCOn
canBeSwitchedToCleanup−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Cleanup

(R3) CNSManager : GRCleanup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ GRinRCOffMode

∗ GR[AsRCSwitch] : Cleanup
canBeSwitchedToOff−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ RCOff

(R4) CNSManager : GRinRCOffMode −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ VSDisabled

∗ RC[AsRunnable] : Paused
activatable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Running,

RM[AsReceiverSwitch] : Disabled
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Enabled,

AM[AsReceiverSwitch] : None
changeable−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rec1,

GR[AsRCSwitch] : RCOff
canBeSwitchedToOn−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ RCOn

Table 6.23: More consistency rules anchored to interaction protocol CNSProtocol

6.5 Discussion

In the case study presented in this chapter, we have modeled the behavior and interaction of a multi-
component car navigation system. We distinguished two different aspects of interaction: the direct
communication between components on the one hand, and the more implicit interaction caused by
switching system-level modes of operation on the other hand. By the application of partitions, we
were able to separately model the role played by an individual component in each of the two aspects
of interaction. The interaction itself, modeled in PARADIGM by means of consistency rules, could be
conveniently structured into multiple interaction protocols and managed by hierarchically organized
manager processes.

In our opinion, this demonstrates that partitions and interaction protocols complement each other
in structuring the interaction in PARADIGM models. Partitions provide structure from the perspective
of individual components and their operation, while interaction protocols provide structure from the
perspective of the composition and the co-operation within it. Thereby, we believe to have shown the
validity of our choice to extend the PARADIGM language with the interaction protocol concept (see
Chapter 4). This extension strengthens the applicability of the language for modeling interaction in
general, not only from the perspective of components but also from the perspective of the composition.

We also point out the modeling of interaction in this case study at multiple levels in the manager-
employee hierarchy. The Action Info Manager and Route Info Manager components, together with their
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Figure 6.24: Structure of the car navigation system with communication and all modes of operation
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(low-level) interaction protocols, abstract from the way in which communication between the three car
navigation components takes place. They can be said to “componentize” the communication flows be-
tween the components, thereby realizing a convenient interface to the (higher-level) interaction proto-
col CNSProtocol. This way, the latter one can be only concerned with the correct enabling and disabling
of components and their communication flows, while manager process CNSManager provides the nec-
essary sequentializations for this. Similar to the way in which the car navigation components offer their
modes of operation, we have put a partition on top of process CNSManager to provide a coherent set of
system-level modes of operation to the environment.

Throughout the case study, we have extensively used the PARADE tools to create, execute and validate
the PARADIGM model. The full model is relatively large, which makes it hard to manually keep all parts of
the model consistent with each other. In this respect, an especially useful feature of the tools is that they
enable us to create a PARADIGM model incrementally, and to execute individual components and partial
models in the PARADE distributed runtime environment. Since all processes are treated in an equal man-
ner in the PARADISE distributed interpreter framework, a global process which is not connected to an
interaction protocol can be executed as if it were a detailed process with a simple selector. Thereby, it
is possible to execute individual components in isolation and to validate their internal partition con-
straints. Furthermore, this enables the execution of open PARADIGM models, like the model presented in
this chapter: global processes CNSManager[AsModeSwitch], RouteCalculator[AsCMSwitch], RouteCalcu-
lator[AsTTSwitch], GraphicsRenderer[AsRMSwitch] and VoiceSynthesizer[AsTTSwitch] can be executed
with the tools by using simple selectors in the interpreter for them instead of delegating selectors.
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Chapter 7

Branch-and-Bound Algorithms

We use PARADIGM to model a generic branch-and-bound algorithm in three different
shapes: sequential, componentized, and parallel. The case study shows two interest-
ing applications of the PARADIGM concepts. Firstly, we apply self-managing interaction
protocols to perform the coordination of the componentized and parallel algorithm. We
show that the amount of parallel processes in the algorithm can be adapted by applying
changes to these self-managing interaction protocols only, i.e. no changes to any of the
processes or partitions in the model are required. Secondly, we model the communica-
tion between components of the algorithm strictly separate from the algorithm itself, by
means of partitions on top of detailed processes. Finally, we illustrate the use of the PARA-
DE tools to combine the different versions of the PARADIGM model for branch-and-bound
with the implementation of a branch-and-bound solver. This enables a more elaborate
analysis of the relationship between the generic PARADIGM model and the characteristics
of a specific branch-and-bound problem.

7.1 Introduction

Branch-and-bound algorithms [96, 98] are a popular variant of backtrack algorithms, often applied to
large scale NP-hard combinatorial optimization problems. They exploit knowledge about the feasibility
of partial solutions in order to speed up the search for optimal complete solutions. These algorithms are
named “branch-and-bound” because of the basic activities within the algorithm. Given a certain prob-
lem, the algorithm searches for a solution by dividing the problem into smaller subproblems (branch)
and trying to solve these subproblems. While searching for solutions, the algorithm calculates optimal-
ity measures (upper bound and lower bound) for each of the subproblems. These bounds can be used
to determine the search order through the search tree, to compare the quality of different solutions,
and to eliminate subproblems which are guaranteed not to lead to a better solution. For comparison, a
global least upper bound is maintained, which indicates the best upper bound found so far.

Branch-and-bound algorithms can be implemented in many ways [13, 19]. Several choices can
be made, like which search strategy to apply, how to eliminate subproblems or when to terminate the
algorithm. If a parallel branch-and-bound algorithm is considered, even more issues play a role [96, 68],
e.g. the kind of parallelization that will be used, or the way in which the various parallel processes
communicate. Despite these additional concerns, the essential activities of the algorithm are the same.

123
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We base the case study presented in this chapter on earlier work published in [91], in which we
implemented a generic branch-and-bound algorithm using the exogenous coordination language MANI-
FOLD and the IWIM coordination model [3, 4, 11]. In [91], we focused on finding the appropriate
characterization of generic components for parallel branch-and-bound, such that we were able to exploit
exogenous coordination to make these components unaware of their context. As a direct benefit of this,
the global organization of the implementation can be changed without the necessity to change the
implementation of the individual components in any way. In this PARADIGM case study, we reuse the
insights gained in [91] and use a similar organization of the componentized and parallel version of
the PARADIGM model. However, here we focus on the behavior of the individual components and the
interaction that results from parallelizing the sequential algorithm.

The overall idea of this case study is as follows. We model three versions of the same algorithm: a
sequential, a componentized and a parallel version. In the sequential version, we model a branch-and-
bound algorithm as a single PARADIGM process. The componentized version builds upon the sequential
one: we split the single PARADIGM process into three separate processes: an Initializer, which creates
the initial problem to be solved, a Pool Manager, which maintains a pool of subproblems to be visited,
and a Visitor, which analyzes subproblems. We coordinate the processes by means of partitions and
a self-managing interaction protocol (see Chapter 4), in such a way that the processes collaboratively
implement a sequential algorithm. In the parallel version, we extend the componentized version by
replicating the Visitor process, thereby realizing a parallel branch-and-bound algorithm. As in [91], the
number of parallel Visitor processes in the model can be changed without any change to the processes
or partitions (which are considered to be part of the components). The additional effort needed for
the parallel version consists of modeling the communication needed for the exchange of the global
least upper bound (LUB) between the replicated Visitor processes. For this, we use an additional process
LUBManager, and a separate self-managing interaction protocol for its coordination.

In this chapter, we devote a separate section to the usage of the PARADE tools. They play an important
role in the case study for two reasons. Firstly, they enable us to model and execute the PARADIGM model
and to visualize their execution. Secondly, we use the tools to attach the implementation of a specific
branch-and-bound solver to the PARADIGM model. Essentially, this means that the taking of transitions
in the PARADIGM model effectuates the execution of operations of implementation objects. If we execute
the model combined with the implementation in the PARADE runtime environment, this results in a
running branch-and-bound solver. The most important advantage of this extension to the PARADIGM

model is that it enables us to take into account problem specific aspects in the analysis and design of
the model, like the amount of subproblems created after each visit, the frequency with which solutions
are found, or the influence of the subproblem selection strategy on the efficiency of the algorithm.
The implementation of the communication required in the componentized and parallel versions of the
model can be attached to the additional global processes in these versions. This shows that additional
concerns introduced by componentizing and parallelizing the model can be addressed separately in
both the model and the implementation.

The organization of this chapter is as follows. In Section 7.2, we introduce branch-and-bound algo-
rithms in general by showing the example of a branch-and-bound solver for the assignment problem. In
Sections 7.3, 7.4 and 7.5, we create the PARADIGM model for a sequential, componentized and parallel
version of a generic branch-and-bound algorithm, respectively. For reasons of conciseness, some of the
PARADIGM processes and partitions are not included in these sections – they can be found in Appendix B.
The use of the PARADE tools in our case study, including the implementation of a concrete branch-and-
bound solver, is discussed in Section 7.6. A discussion about the results of the case study can be found
in Section 7.7.
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7.2 Branch-and-Bound Algorithms

In order to give the reader a brief general picture of how branch-and-bound algorithms work, we present
such an algorithm for a simplification of the well-known assignment problem. The problem deals with
assigning n tasks to n persons. With each combination of a task and a person, a weight is associated (see
Figure 7.1), which can have various meanings, like the time it takes to complete the task or a person’s
level of familiarity with the task. The problem is to assign each task to exactly one person, such that the
sum of weights of these assignments is minimal.
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Figure 7.1: a branch-and-bound assignment problem

A branch-and-bound algorithm for the assignment problem works as follows. A subproblem consists
of a list of i task assignments, where 0 ≤ i ≤ n. The initial problem is given as the problem where the
list of assignments is empty, i.e. i = 0. If i = n, the subproblem represents a complete solution to the
problem: all tasks have been assigned to a person. During a branch, new subproblems are generated
as follows: one person is chosen as the next candidate person, and a subproblem is created for each
assignment of a currently unassigned task to this person. A (simple) lower bound to a subproblem
consists of the sum of all weights of the tasks currently assigned, added to the sum of the minimal
weights of all remaining tasks. As an upper bound for a subproblem we can take the sum of all weights
of the assigned tasks added to the sum of the maximum weights of all remaining tasks.

Suppose that we are interested in an optimal solution to the assignment problem, and that we
apply a best-first strategy for selecting subproblems. The resulting search tree is depicted in Figure 7.2.
Initially, the global least upper bound is set to ∞. The lower bound for initial problem A is 3, its upper
bound is 21. In a first branch from this problem, Anne is chosen as the candidate person. The branch
results in three new subproblems, one subproblem for each possible task assignment for Anne. We
directly compute the upper and lower bounds for the nodes, and since we apply a best-first selection
strategy, we continue with the subproblem with the lowest lower bound, which is subproblem B. We
repeat the same procedure two times more and find a first solution D which has lower/upper bound
10. Now, we set the least upper bound to the upper bound of this solution and continue our search.
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Figure 7.2: a best-first search tree for the assignment problem

The next solution we find, (F), has bound 12. We reject this solution, because its bound is higher
than the least upper bound found thus far. The third solution we find, (I), has 7 as its bound, hence it
is better than the solution found thus far. We update the least upper bound and continue the search.
However, the lower bounds of the remaining subproblems are all higher than the least upper bound.
These subproblems will therefore never lead to a better solution: we can safely eliminate them and
terminate the algorithm.

In the illustrated branch-and-bound algorithm, we adopt a so-called eager evaluation strategy, that
is, the bounds for a subproblem are computed as early as possible. This minimizes the amount of
visited subproblems. Another strategy is to postpone the calculation of bounds, which results in a lazy
evaluation strategy. For some problems, this strategy is particularly efficient in combination with a
depth-first search order [19]. As the reader will notice, the PARADIGM model presented in this case study
actually models a branch-and-bound algorithm with a lazy evaluation strategy. We support selection
strategies which are based on the lower bound of nodes, like best-first [19], by giving newly created
nodes the lower bound of their parent node, and by initializing the lower bound of the initial node to 0.
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7.3 Sequential Branch-and-Bound

Having introduced the general idea of branch-and-bound algorithms, we proceed with creating a PA-
RADIGM model for sequential branch-and-bound. A component diagram of this model is shown in Fig-
ure 7.3. The model consists of a single component, which represents the software system that imple-
ments the branch-and-bound algorithm. It contains a (detailed) process Sequential, which specifies in
abstract terms what happens if this system is executed.

We assume the existence of some basic data structures within the component, for which we use a
common terminology throughout all versions of the algorithm. Central in this terminology stands the
concept of a node. A node represents a unit of work and contains a single (sub-)problem. The initial
node represents the initial problem which has to be solved. A node pool facilitates the storage of nodes
and the selection of nodes to be visited. The least upper bound (LUB for short) is a variable containing
the value of the least upper bound found thus far, initially ∞. The initial problem, the node pool and
the least upper bound are shown in Figure 7.3 as objects with rounded corners. In Section 7.6, we will
implement these data structures in an object-oriented manner as implementation classes. For now, we
refer to them in the transition labels of PARADIGM processes as abstract entities.

Sequential

Sequential

NodePoolInitialNode
LeastUpper

Bound

Figure 7.3: Component diagram of the sequential branch-and-bound algorithm

Process Sequential is depicted in Figure 7.4. It specifies the steps taken in the execution of the
sequential algorithm. The steps are generic with respect to the problem to be solved and the selection
strategy to be used. The algorithm adopts a lazy evaluation strategy, that is, the bounds are calculated
when a node is visited, not when it is created. Note the use of a choice state (see Chapter 5) for certain
transitions in the model. We use choice states to indicate that a certain non-deterministic choice between
transitions will be transformed into a deterministic choice as soon as we attach an implementation to
the transition leading to the choice state. Although the criteria used for making the choice are outside
the scope of the PARADIGM model, the result of the choice (in terms of target states) plays a role in
it. We present details of this approach in Section 7.6. If we consider the PARADIGM model without an
implementation, the choice can be regarded as purely non-deterministic, like any other choice in a
PARADIGM process.
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Figure 7.4: Process Sequential
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The execution of process Sequential starts with the creation of an initial node. This node contains the
problem to be solved. After the initial node has been created and added to the node pool, we continue
with the selection of one node from the node pool. If the node pool is empty, the process will enter
state No node is left and exit. Otherwise, it will enter state Node selected, the selected node is removed
from the node pool and the process continues with visitation of the node. The visitation starts with
the calculation of lower and upper bounds for the node. After that, a check is performed whether the
node directly leads to a solution or not. If the node can be solved directly, we update the value of the
least upper bound (if the lower bound of the node is lower than the least upper bound found thus far).
Thereafter, we continue with selecting a new node to be visited. If the node cannot be solved directly,
we check whether the node is actually feasible, i.e., whether its lower bound does not exceed the least
upper bound. If the node is not feasible, we forget it and continue with selection. Otherwise, we perform
a branch by creating child nodes and adding them to the node pool. After all child nodes have been
created, we continue with selecting the next node to be visited. The algorithm finishes when no nodes
are left in the node pool.

Phasing the Sequential Model

In order to create a first idea of how to componentize the model, we can divide the sequential process
of Figure 7.4 into three different phases: a short initialization phase in which the initial node is created
(starting at state Start of algorithm), a selection phase in which a node is selected from the node
pool (starting at state Start of selection), and a visitation phase in which activities like bounding and
branching are performed (starting at state Start of visitation). Especially the visitation phase is relevant
for parallelism: in a parallel setting, many parallel running visitation processes could be used to visit
nodes from a single node pool. By means of a partition, we are able to formally specify the above phases
on top of the detailed process. A global process Sequential[AsPhased] at the level of such a partition is
given in Figure 7.5. It shows the high-level organization of the detailed process: first initialize, then
repeatedly select nodes and visit them, finish in case no nodes are left. Partition AsPhased is shown in
Figures 7.6 and 7.7. In the next section, we use the three phases Initializing, Selecting and Visiting as a
starting point for componentizing the model.

Initializing Selecting Visiting

selected

visited

initialized

Finished

exit

Figure 7.5: Process Sequential[AsPhased]
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Figure 7.6: Partition AsPhased for Process Sequential – part 1

7.4 Componentized Branch-and-Bound

As an intermediate step towards a PARADIGM model for a parallel branch-and-bound algorithm, we com-
ponentize the sequential model by splitting its single component into multiple separate components.
Each of the components executes a separate part of the sequential process and encapsulates part of the
data structures (i.e., the initial node, the node pool and the least upper bound). We model the compo-
sition of the three components by specifying their interaction in terms of partitions and an interaction
protocol. The resulting componentized model models the same sequential algorithm, but now as a set
of coordinated components.
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Figure 7.7: Partition AsPhased for Process Sequential – part 2

A component diagram for the componentized branch-and-bound model is shown in Figure 7.8. We
distinguish three components: an Initializer, a Pool Manager and a Visitor. The Initializer creates the
initial node which contains the subproblem that has to be solved. The Pool Manager manages the node
pool: selecting and removing nodes from the pool, but also adding nodes to the pool. Finally, the Visitor
visits selected nodes and creates new child nodes, in the meanwhile maintaining a least upper bound to
check the feasibility of nodes. The behavior of the three components is specified in the three respective
detailed processes Initializer, PoolManager and Visitor. As we will show, we base these processes on the
subprocesses which we distinguished in Section 7.3, but rearrange the transitions slightly as to group
into one process the transitions that involve the node pool.
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Figure 7.8: Component diagram of the componentized branch-and-bound algorithm

From an implementation perspective, the communication between the three components consists
of the exchange of nodes: the Initializer and Visitor components send newly created nodes to the Pool
Manager component in order for the latter one to add these to the node pool, while the Pool Manager
component sends selected nodes to the Visitor component for visitation. We envision the implementa-
tion of the communication as shown below the components in Figure 7.8: the components exchange
nodes by means of two unidirectional channels (the small rectangles) to which the components are
connected by means of ports (small squares with an arrow inside indicating the direction of the flow of
nodes). This organization is similar to the organization we adopted in [91].

At the modeling level of PARADIGM, however, we abstract from the way in which the components
communicate and focus on interaction: the way in which the behavior of a component influences the
behavior of other components, the causes and the effects of communication. We create partitions AsCol-
lab (as collaborator) on top of the detailed processes, which provide a suitable abstraction for modeling
this interaction. We coordinate the global processes at the level of partitions AsCollab by means of inter-
action protocol Componentized Coordination Protocol. The order in which the consistency rules anchored
to this interaction protocol can be applied, is fully determined by the behavior of the three components.
Thereby, we avoid an extra manager process to provide additional ordering of these consistency rules,
and are able to use an interaction protocol which is self-managing (see Chapter 4).
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Detailed Processes

We start with creating the detailed processes of the three components, based on the subprocesses of
partition AsPhased for process Sequential. Process Initializer depicted in Figure 7.9 is straightforward:
it creates the initial node and then exits. The transition to add the initial node to the node pool is not
present, although it is part of subprocess Initializing in the sequential version of the algorithm. Adding
the node to the node pool is now done within process PoolManager: this enables us to encapsulate the
node pool inside the Pool Manager component and keep the remaining components unaware of it.

Initial node created
exit

FinishedStart
create initial node

Figure 7.9: Process Initializer

Process PoolManager, shown in Figure 7.10, is an extended version of subprocess Selecting in the
sequential model. Since this part of the original sequential process is repetitive, we have added a transi-
tion back to state Start. Also, a new initial state Idle has been added. A new transition add node to node
pool is present, which replaces the original transitions add initial node to node pool and add child node
to node pool. Intuitively, the process repeatedly performs either the selection of a node from the node
pool, or the addition of a node to the node pool. Note the added transition from state No node is left to
state Start. We will use this transition in Section 7.5 in the parallel version of the algorithm to resolve
the situation in which the node pool is only temporarily empty.
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Finished

exit
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Figure 7.10: Process PoolManager
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Finally, process Visitor is shown in Figure 7.11. It is an adaptation of subprocess Visiting in the
sequential algorithm: an initial state is specified, the process has a termination state, and backward
transitions to state Start of visitation have been added, one from each state inside trap visited of the
original subprocess. Similar to process Initializer, the transition to add a node to the node pool (in this
case, a child node) has been removed: actions in which the node pool is involved, are performed by
process PoolManager only.
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Partitions

On top of the three detailed processes, we create AsCollab partitions and corresponding global processes
which abstract from the details irrelevant to the interaction between the processes. They are shown in
Figures 7.12, 7.13 and 7.14. Global Process Initializer[AsCollab] is only presented here for reasons of
completeness. Global Process PoolManager[AsCollab] nicely shows the intuitive idea of the pool man-
ager: starting in subprocess Idle, the pool manager either selects a node from the node pool (subprocess
Selecting) or adds a node to it (subprocess Adding). In case the node pool is empty, the process either
exits (subprocess Finished) or adds a node to the empty pool manager (subprocess Adding). The lat-
ter subprocess change becomes relevant in the context of multiple parallel visitors, as we will show in
Section 7.5.

FinishedInitializing
node ready

Figure 7.12: Process Initializer[AsCollab]
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Figure 7.13: Process PoolManager[AsCollab]
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Figure 7.14: Process Visitor[AsCollab]
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A similar intuitive idea can be captured from Global Process Visitor[AsCollab]: in subprocess Idle it is
able to repeatedly indicate that it needs a node. If a node is available, it will eventually go to subprocess
Visiting. If a branch takes place, at every creation of a child node the process changes to subprocess
Child created and back to Visiting. Finally, if the node has been visited, the process changes back to
subprocess Idle. If all nodes have been visited, the process can be switched to subprocess Finished.

As an illustration of how the global processes relate to the detailed processes, we show partition
AsCollab for process PoolManager in Figure 7.15. Note in particular the nested traps ready to add and
ready to select in subprocess Idle. Because trap ready to add is the only trap containing state Idle, the
first subprocess change from subprocess Idle must be a change to subprocess Adding. This means that
before any selection takes place, at least one node (the initial node) must be added to the node pool.
For the Visitor and Initializer processes, the definition of the subprocesses and traps for their AsCollab
partitions is relatively straightforward – they can be found in Appendix B.

Interaction Protocols

The self-managing interaction protocol for the coordination of the processes can be found in Table 7.16.
It contains eight rules, of which the first five are of interest. Rule R1 is applied whenever process
Initializer wants to send a node to process PoolManager. Given the definition of process Initializer, this
rule is applied only once, after which process PoolManager adds the node to the node pool. Rule R2
models process Visitor requesting a node from process PoolManager. If the request can be fulfilled, rule
R3 is applied: process PoolManager sends a (selected) node to process Visitor. If the node pool is empty,
rule R4 is applied: the algorithm finishes. Whenever process Visitor wants to send a (child) node to
process PoolManager, rule R5 ensures that this node is added to the pool. The remaining rules R6, R7
and R8 allow single subprocess changes if a certain trap has been entered.

It may seem surprising that the processes of the componentized version do not contain any tran-
sitions which explicitly address the communication of nodes, e.g. in terms of actions like send node or
receive node. For understanding this communication, the synchronizations specified in the interaction
protocol are in fact sufficient. Communication from Initializer to PoolManager, from PoolManager to
Visitor and from Visitor back to PoolManager can be assumed to take place at the application of the
Rules R1, R3 and R5, respectively. As we will discuss in Section 7.6, we realize the communication in
the concrete implementation by attaching code for sending and receiving nodes to the transitions of the
global processes at the level of partitions AsCollab. At each synchronization specified in the interaction
protocol, send and receive actions are executed by the global processes on taking the respective transi-
tions of the applied consistency rule. Hence, understanding the communication in the implementation
is equal to understanding the interaction protocol in the model.

In the next section, we will parallelize the algorithm by replicating the Visitor component. On the
one hand, the replication can be performed relatively easily: it only involves changes to the interaction
protocol, given certain assumptions about the communication infrastructure. On the other hand, a new
issue pops up: the replication of the least upper bound, which is encapsulated in the Visitor component.
We will define an additional component, and additional coordination models, in order to keep a global
least upper bound in the system.
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(R1) ∗ Initializer[AsCollab] : Initializing
nodeReady−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished,

PoolManager[AsCollab] : Idle
readyToAdd−−−−−−−−−−−−−−−−−−−−−−−−−→ Adding

(R2) ∗ Visitor[AsCollab] : Idle
needNode−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle,

PoolManager[AsCollab] : Idle
readyToSelect−−−−−−−−−−−−−−−−−−−−−−−−−→ Selecting

(R3) ∗ PoolManager[AsCollab] : Selecting
selected−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle,

Visitor[AsCollab] : Idle
readyToVisit−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting

(R4) ∗ PoolManager[AsCollab] : Selecting
noNodeLeft−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished,

Visitor[AsCollab] : Idle
readyToVisit−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished

(R5) ∗ Visitor[AsCollab] : Visiting
childNodeCreated−−−−−−−−−−−−−−−−−−−−−−−−−→ ChildCreated,

PoolManager[AsCollab] : Idle
readyToAdd−−−−−−−−−−−−−−−−−−−−−−−−−→ Adding

(R6) ∗ PoolManager[AsCollab] : Adding
added−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

(R7) ∗ Visitor[AsCollab] : ChildCreated
readyToContinue−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting

(R8) ∗ Visitor[AsCollab] : Visiting
visited−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

Table 7.16: Interaction Protocol Componentized Coordination Protocol

7.5 Parallel Branch-and-Bound

Based on the componentized branch-and-bound algorithm of the previous section, the step towards a
parallel branch-and-bound algorithm is relatively small. Now we have three components: Initializer,
Pool Manager and Visitor. Our idea is to replicate the Visitor component, in order to have multiple
“workers” which visit several nodes in the search tree of the branch-and-bound problem in parallel.

The replication of the Visitor component introduces two issues. Firstly, the existing interaction be-
tween the replicated components and the remaining components must be adapted properly: ideally,
only the coordination protocol needs to be adapted and no changes to the components themselves are
necessary. Secondly, because the replicated components keep state over their repetitive behavior (in our
case, they keep track of the least upper bound), new interaction is needed between the replicated com-
ponents to facilitate the communication of this state. We will address both issues in the next subsections,
but first we show an overview of the PARADIGM model for the parallel branch-and-bound algorithm in
Figure 7.17.
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The overview contains a component diagram of a particular instance of the model, which contains
three visitors. Two different self-managing protocols coordinate the communication. On top, the exist-
ing interaction with the Pool Manager and Initializer components is shown, coordinated by the Node
Coordination Protocol, which is an extension of the Componentized Coordination Protocol from the pre-
vious section. The communication infrastructure has not changed: we still assume the existence of
two channels to communicate nodes. At the bottom, a new component LUB Manager is added. This
component maintains the global least upper bound, and communicates with the Visitor components to
keep the least upper bound up-to-date in all components. The communication is coordinated by a LUB
Coordination Protocol.

With regard to the implementation, we assume a similar communication infrastructure for the com-
munication of bounds as we assume for the nodes, be it that the Initializer component plays no role
in this communication. The source resp. sink port of the communication channels for both nodes and
bounds are used by all instances of the replicated visitor component.

Node Coordination

In the parallel version of the model, we can reuse all processes and partitions of the componentized
model without changes. Only the interaction protocol needs to be extended and slightly adapted to
incorporate the coordination of multiple visitors. An extended interaction protocol Node Coordination
Protocol, which supports an arbitrary number of Visitor components, is shown in Table 7.18. Rules P1 to
P3 and P5 to P8 are equal to rules R1 to R3 and R5 to R8 in the componentized version of the interaction
protocol, except that the rules containing a transition of process Visitor[AsCollab] are replicated for each
instance i of this process (0 ≤ i < n).

Rule P4 is adapted and rules P9(i) are added in order to cope with correct termination of the
algorithm. In the componentized version with one visitor, termination of the algorithm can be done as
soon as both the node pool is empty and the visitor is idle (ready to visit a new node). In the parallel
version, this constraint on termination is not sufficient: other visitors could be busy with nodes from
which branching is feasible but not yet performed. In that case, the node pool could be only temporarily
empty. The extended rule P4 makes sure that the algorithm terminates only if the node pool is empty
and all visitors are idle. In case a visitor needs a node but the node pool is temporarily empty, additional
rule P9 allows a new child node from a different visitor to be added to the node pool. To this end, the
consistency rule prescribes global process PoolManager[AsCollab] to take transition noNodeLeft from
subprocess Selecting to subprocess Adding.

An interesting property of any interaction protocol is that it is stateless: it applies any consistency
rule whenever possible. In the case of a self-managing interaction protocol, there is even no manager
process which keeps state. Sometimes, this leads to interesting behavior. Take for example rules P2(i)
and P3(i), which coordinate a visitor’s request for a node and the pool manager’s reply with a selected
node. Neither the interaction protocol nor the pool manager keeps track of whether the node is accepted
by the same visitor as the one that originally placed the request for it. Indeed, this correspondence is
in fact not needed for the coordination to be performed consistently: only the number of requests is of
importance.
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(P1) ∗ Initializer[AsCollab] : Initializing
nodeReady−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished,

PoolManager[AsCollab] : Idle
readyToAdd−−−−−−−−−−−−−−−−−−−−−−−−−→ Adding

(P2(i)) ∗ Visitor(i)[AsCollab] : Idle
needNode−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle,

PoolManager[AsCollab] : Idle
readyToSelect−−−−−−−−−−−−−−−−−−−−−−−−−→ Selecting

(P3(i)) ∗ PoolManager[AsCollab] : Selecting
selected−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle,

Visitor(i)[AsCollab] : Idle
readyToVisit−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting

(P4) ∗ PoolManager[AsCollab] : Selecting
noNodeLeft−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished,

Visitor(0)[AsCollab] : Idle
readyToVisit−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished,

...,

Visitor(n-1)[AsCollab] : Idle
readyToVisit−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished

(P5(i)) ∗ Visitor(i)[AsCollab] : Visiting
childNodeCreated−−−−−−−−−−−−−−−−−−−−−−−−−→ ChildCreated,

PoolManager[AsCollab] : Idle
readyToAdd−−−−−−−−−−−−−−−−−−−−−−−−−→ Adding

(P6) ∗ PoolManager[AsCollab] : Adding
added−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

(P7(i)) ∗ Visitor(i)[AsCollab] : ChildCreated
readyToContinue−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting

(P8(i)) ∗ Visitor(i)[AsCollab] : Visiting
visited−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

(P9(i)) ∗ PoolManager[AsCollab] : Selecting
noNodeLeft−−−−−−−−−−−−−−−−−−−−−−−−−→ Adding,

Visitor(i)[AsCollab] : Visiting
childNodeCreated−−−−−−−−−−−−−−−−−−−−−−−−−→ ChildCreated

Table 7.18: Interaction Protocol Node Coordination Protocol (0≤ i < n)

Bound Coordination

In many cases, the performance of branch-and-bound algorithms considerably depends on finding a
first solution as early as possible. This way, we are able to reject nodes early in the search process due
to infeasibility. Therefore, in parallel versions of these algorithms it is important that once a solution
is found, an updated least upper bound is communicated to all visitors as soon as possible, in order to
allow them to reject nodes in an early stage.
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For this reason, we extend our parallel branch-and-bound PARADIGM model with a component and
the necessary coordination models to facilitate the communication of least upper bounds between visi-
tors. Intuitively, the idea is as follows. An additional component, LUB Manager, keeps track of a global
least upper bound. Once a Visitor(i) component finds a solution, it sends the upper bound of this solu-
tion to the LUB Manager component. After that, the Visitor(i) component updates its local least upper
bound if applicable and continues. Meanwhile, the LUB Manager component checks whether the up-
per bound sent to it is an improvement of the global least upper bound, updates it if this is the case,
and sends the updated global least upper bound to components Visitor(i+1) to Visitor(i+n-1) (indices
modulo n), which update their local least upper bound directly.

We omit the details of the LUBManager process (which can be found in Appendix B) and focus on the
communication of bounds, which is coordinated by means of partitions AsBComm (as bound commu-
nicator) and corresponding global processes on top of both process LUBManager and all processes Visi-
tor(i), in combination with a dedicated interaction protocol LUB Coordination Protocol. The interaction
protocol is of particular interest and can be best understood in coherence with global processes LUBMan-
ager[AsBComm] and Visitor(i)[AsBComm]. The global processes are shown in Figures 7.19 and 7.20,
the consistency rules anchored to the interaction protocol are listed in Table 7.21.
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Figure 7.19: Process LUBManager[AsBComm]
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Figure 7.20: Process Visitor(i)[AsBComm]
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(L1(i)) ∗ Visitor(i)[AsBComm] : Visiting
update−−−−−−−−−−−−−−−−−−−−−−−−−→ IntUpdate,

LUBManager[AsBComm] : Idle
readyToCheck−−−−−−−−−−−−−−−−−−−−−−−−−→ Checking

(L2(i)) ∗ LUBManager[AsBComm] : Checking
not OK−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle,

Visitor(i)[AsBComm] : IntUpdate
ready−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting

(L3(i)) ∗ LUBManager[AsBComm] : Checking
OK−−−−−−−−−−−−−−−−−−−−−−−−−→ Updating,

Visitor(i)[AsBComm] : IntUpdate
ready−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting,

Visitor(i+1)[AsBComm] : Visiting
busy−−−−−−−−−−−−−−−−−−−−−−−−−→ ExtUpdate,

...,

Visitor(i+n-1)[AsBComm] : Visiting
busy−−−−−−−−−−−−−−−−−−−−−−−−−→ ExtUpdate

(L4(i)) ∗ LUBManager[AsBComm] : Updating
updated−−−−−−−−−−−−−−−−−−−−−−−−−→ Updating,

Visitor(i)[AsBComm] : ExtUpdate
ready−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting

(L5) ∗ LUBManager[AsBComm] : Updating
updated−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle,

Visitor(0)[AsBComm] : Visiting
busy−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting,

...,

Visitor(n-1)[AsBComm] : Visiting
busy−−−−−−−−−−−−−−−−−−−−−−−−−→ Visiting

(L6) ∗ LUBManager[AsBComm] : Idle
readyToCheck−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished,

Visitor(0)[AsBComm] : Visiting
exit−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished,

...,

Visitor(n-1)[AsBComm] : Visiting
exit−−−−−−−−−−−−−−−−−−−−−−−−−→ Finished

Table 7.21: Interaction Protocol LUB Coordination Protocol (0≤ i < n, all indices modulo n)

Interaction protocol LUB Coordination Protocol has six consistency rules anchored to it, which intu-
itively serve the following purpose:

• L1(i): process Visitor(i) sends a potential LUB update to process LUBManager.

• L2(i): the potential LUB update turns out not to be an improvement of the current LUB – both
process Visitor(i) and process LUBManager ignore the value and continue.
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• L3(i): the potential LUB update improves the current LUB – process Visitor(i) updates and con-
tinues its work, process LUBManager prepares for sending updates, all other Visitor processes
prepare for receiving an update.

• L4(i): each time this rule is applied, process LUBManager sends the global LUB to one of the
prepared Visitor processes. Due to the fact that this rule changes the subprocess of the Visitor
process involved, the rule can only be applied once per Visitor process.

• L5: Only if all Visitor processes are busy again, process LUBManager continues waiting for a next
potential LUB update.

• L6: If all Visitor processes have finished, process LUBManager also finishes.

The LUB Coordination Protocol is a typical example of a self-managing protocol: the state information
needed to steer the application of consistency rules is completely deferred to the coordinated processes.
At the same time, none of the processes is aware of the global organization of the system. Even process
LUBManager does not “know” the amount of Visitor processes to which it sends LUB updates.

7.6 Implementing Branch-and-Bound

The various versions of the PARADIGM model for the branch-and-bound algorithm can be executed and
visualized using the PARADE distributed runtime environment and runtime viewer (see Chapter 5).
This way, the behavior and interaction of the processes and the application of consistency rules can be
inspected and analyzed. As an illustration, a snapshot of the runtime environment running the PARADIGM

model for the componentized branch-and-bound algorithm from Section 7.4 is shown in Figure 7.22.
It shows process PoolManager and process Visitor, together with the consistency rules of interaction
protocol Componentized Coordination Protocol. At the moment of the snapshot, process PoolManager
has just finished selecting a node from the node pool.

In addition to the visualization of the execution of a PARADIGM model, the PARADE distributed run-
time environment enables the modeler to extend a PARADIGM model with an implementation model.
Essentially, this means that Java code is attached to the transitions of the PARADIGM processes, which
is executed once a transition is taken by the PARADISE interpreter. In those cases where a PARADIGM

model is used to analyze the interaction within a software system, such an extension is valuable for
at least four reasons. Firstly, the modeler gains more confidence in whether his PARADIGM model is a
valid abstraction from a real implementation. If it turns out to be impossible or very hard to extend
the model with an implementation, it is likely that the model can be improved. Secondly, the modeler
can consider various implementation-level aspects at the modeling level, like the frequency of inter-
action and potential bottlenecks in the communication. Thirdly, if the extended PARADIGM model can
indeed be used as a concrete software system, it is possible to use the model as a starting point for an
efficient distributed implementation. Finally, the implementation attached to the PARADIGM model can
serve completely different purposes. For example, it could simulate timings on the transitions, collect
data about the amount of times transitions are taken, or transform a non-deterministic choice into a
stochastic one.
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Figure 7.22: The PARADE runtime viewer showing the componentized branch-and-bound model

In the remainder of this section, we illustrate how the software functionality extension of PARADE can
be applied to the three versions of the PARADIGM model for the branch-and-bound algorithm. We extend
the different versions with code to solve the assignment problem, which we introduced in Section 7.2.
We realize the extension in three steps. Firstly, we implement the lower-level objects, like nodes, a node
pool, and the least upper bound, by creating implementation classes. Secondly, we implement action
classes, which act as a bridge between the PARADIGM processes and the implementation classes. Finally,
we create an implementation model, in which we specify how the implementation classes and action
classes are attached to the processes of the PARADIGM model.

Implementation Classes

In our approach, the implementation classes provide the basic functionality of the system. These can be
e.g. abstract data types for data used by the system, or classes that implement communication primitives
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used to communicate the data. In the case of branch-and-bound algorithms, we consider three abstract
data types: Node (meant as equivalent to (sub)problem), Node Pool and Bound. In the case of distributed
branch-and-bound algorithms, we consider two additional classes which encapsulate communication
primitives: InputPort and OutputPort, which can be used to receive resp. send data from one component
to another. The class specifications of these implementation classes are shown in Figure 7.23, together
with some examples of specializations of these classes. Instances of implementation classes are meant
to be passive objects: they do not own a thread of control. Their operations are either called by other
implementation classes, or by action classes.

+computeLowerBound()

+computeUpperBound()

+getLowerBound() : Bound

+getUpperBound() : Bound

+createChild() : Node

Node

+add(in node : Node)

+select() : Node

+remove(in node : Node)

NodePool

+setToValueOf(in bound : Bound)

+isGreaterThan(in bound : Bound) : bool

+equals(in bound : Bound) : bool

Bound

BestFirstNodePool DepthFirstNodePoolAssignmentProblemNodeTSPProblemNode

+receive() : Object

InputPort

+send(in object : Object)

OutputPort

Figure 7.23: Implementation classes for branch-and-bound algorithms

Action Classes

Action classes act as the bridge between PARADIGM processes and implementation classes. Conceptually,
the behavior of an action class is an operationalization of the semantics of a transition label in a PARA-
DIGM process. The operationalization is specified in terms of operations invoked on a set of instances of
implementation classes. The other way around, one can view a transition label in a PARADIGM process
as an abstract term which denotes an activity composed out of operation invocations on instances of
implementation classes. An action class in PARADE always provides a single operation, run(), which on
invocation intuitively results in “performing the activity”. Action classes are meant to be both stateless
and passive.

A simple example of an action class coded in Java is given in the code snippet below. It performs
the activity of adding a node to the node pool. Firstly, two parameters NodePool and Node are fetched.
After that, the add operation of the nodes class is invoked with the node object as a parameter.
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p u b l i c c l a s s AddNodeToNodePoolAction extends Act ion {
@Override
p u b l i c void run () {

NodePool nodes = ( NodePool) t h i s . getParameter ( " NodePool " ) ;
Node node = (Node) t h i s . getParameter ( " Node " ) ;
nodes . add( node ) ;

}
}

Within action classes, it is possible to influence the behavior of the PARADIGM process through the use
of a result label. The result label can be mapped onto the names of the target states of the transition
to which the action is attached. An example of an action class which uses a result label is shown
below. It implements the activity of selecting a node from the node pool. The action class is attached to
transition select node from node pool of process PoolManager. In the execution of this process, the result
labels “selected” and “not selected” are used to determine whether a transition is taken to state Node
selected or No node is left, respectively. Also, note that the node selected from the node pool is stored in
a parameter with name Node. Thereby, the selected node can be used within subsequent transitions.

p u b l i c c l a s s SelectNodeFromNodePoolAction extends Act ion {
@Override
p u b l i c void run () {

NodePool nodes = ( NodePool) t h i s . getParameter ( " Nodes " ) ;
Node node = nodes . g e tSe l e c t i o n ( ) ;
i f ( node != n u l l ) {

t h i s . s e t Re s u l t ( " s e l e c t ed " ) ;
t h i s . setParameter ( " Node " , node ) ;

} e l s e
t h i s . s e tRe s u l t ( " not s e l e c t ed " ) ;

}
}

Finally, the attachment of action classes to PARADIGM transitions is done in one or more implementation
models.

Implementation Models

In PARADE, an implementation model specifies the relation between PARADIGM process transitions and
action classes. Each implementation model is specific for a single process type (see also Chapter 5). A
visualization of the contents of an implementation model is given in Figure 7.24. It shows which action
classes are attached to the transitions of process PoolManager. It is not obligatory to attach an action
class to every transition in a process. If no action class is attached to a transition, this simply means that
the taking of that transition does not result in the execution of implementation code.

The attachment of action classes to transitions is not restricted to detailed PARADIGM processes only.
On the contrary, in the PARADIGM model versions of the componentized and distributed branch-and-
bound algorithm, we exploit the possibility to attach code to global processes, which are treated in the
PARADISE interpreter framework (see Chapter 3) as ordinary processes. As Figure 7.25 shows, we attach
the action classes which realize the communication of nodes to process PoolManager[AsCollab], a global
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Node selected

No node is left

select node

from node pool
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Idle

[ to start ]

remove node 

from node pool
Node removed
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Finished

exit
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node pool

AddNodeToNodePoolAction SelectNodeFromNodePoolAction RemoveNodeFromNodePoolAction

Figure 7.24: Action classes attached to transitions of Process PoolManager

process defined on top of detailed process PoolManager. Thereby, we nicely separate the actions imple-
menting the essential activities of the algorithm from the actions that implement additional concerns in
the context of componentization or parallelization.

Both processes PoolManager and PoolManager[AsCollab] are part of a single component and share
the instances of implementation classes defined in this component. Their transitions are potentially
taken concurrently, or at least in an interleaved manner, depending on the subprocess definitions of
the partition at whose level the global process is defined. This should be taken into account in the
specification of the object accesses in the action classes.

If we execute the extended PARADIGM model in the PARADE runtime environment, the running model
appears to the user as an inefficient Java implementation of a lazy branch-and-bound algorithm. The
implementation could produce output on a console or in a window, like the amount of nodes in the
node pool, the number of times a solution is found, or the depth of the search tree. Such information
can be valuable in improving the PARADIGM model. The information could also be used to evolve the
PARADIGM model on-the-fly, for example by adapting the amount of visitors or the number of node pools
in the model. This latter possibility, the evolution of a PARADIGM model on-the-fly, is the subject of the
next and final case study.
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Figure 7.25: Action classes attached to transitions of Process PoolManager[AsCollab]

7.7 Discussion

In this case study, we applied the PARADIGM language to model the componentization and parallelization
of a branch-and-bound solver. As we have shown, componentization in a PARADIGM model is a matter
of splitting processes into logical parts. We have applied the partition concept in order to formally
represent the phases in which a process resides. Based on such phases, new processes can be created,
which requires the addition of initial and final states, and the addition of loops if applicable. The newly
created processes are coordinated by applying partitions and interaction protocols in the usual manner.

We exploited the notion of self-managing interaction protocol to extend the componentized model
with multiple Visitor processes, without changing any of the processes or partitions in that model. The
absence of an additional manager process, as an ordering mechanism for the application of consistency
rules, actually forces the modeler to (more) carefully think about the design of the global processes at
the level of partitions.

We were able to model the additional aspects introduced with componentization and parallelization
completely separately from the existing model. Throughout all versions, the core algorithm is captured in
the detailed processes, while additional concerns (interaction, the communication of nodes and bounds)
are captured in partitions, global processes and interaction protocols.

Especially relevant in the context of modeling software is the insight that, in order to achieve an
adequate componentization, the modeler must have an abstract but clearly defined idea of how to
organize the underlying implementation. The (often informal) semantics of the transition labels used in
the PARADIGM processes must be adequately understood. In this respect, the modeling of branch-and-
bound algorithms is a safe choice, since this domain can be considered well studied and understood.
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As the careful reader will have noticed, we have used the same transition labels for all transitions of
detailed processes throughout all three versions of the model. We stress that the same property holds for
the units of activity to which these transition labels refer: we were able to use the same implementation
throughout all versions of the model. Moreover, the separation between the core algorithm and the
additional concerns in the model is also reflected in the implementation: the action classes attached to
the detailed processes realize the core activities of the algorithm, while the action classes attached to
the global processes realize the sends and receives of nodes and bounds.

Finally, we point out how we perceive the relationship between a PARADIGM model for a software
system and the implementation of that system. In the PARADE implementation extension, we use action
classes as behavioral glue between the data objects: they call operations of implementation objects and
pass (parts of) these objects to other implementation objects as operation parameters. Action classes
can be seen as providing a behavioral pattern, which steers a thread of control through various imple-
mentation objects. The PARADIGM processes in the model sequentialize a set of actions: they represent a
higher-level behavioral glue, abstracting from implementation details, but giving insight into how the
system, seen as a process, behaves. They have state, but at a higher level of abstraction, not necessarily
mapping hierarchically onto states at the implementation level. In our opinion, this way of abstract-
ing from the implementation is a key factor in achieving an implementation-independent behavioral
model.



Chapter 8

Evolution On-the-Fly

In this case study, we use PARADIGM for the modeling of evolution on-the-fly: the appli-
cation of changes to a PARADIGM model while it is being executed. In our approach, the
coordination of such evolution is performed by a process McPal, which is added to the
PARADIGM model to be evolved. We introduce a general technique, scaffolding, to tem-
porarily observe and steer the behavior of running processes while changes are applied.
By exploiting the functionality of the PARADE tools, we are able to implement the appli-
cation of changes to PARADIGM models being executed in the PARADE distributed runtime
environment. Our approach is illustrated with two different changes to a running sched-
uler/worker model.

8.1 Introduction

In this chapter, we present the third and final case study, which focuses on the modeling of evolution
on-the-fly – changing a PARADIGM model (its processes, partitions and interaction protocols) while that
model is being executed. We use the extended version of the PARADIGM language (Chapter 4) for mod-
eling the various evolutionary phases of the model as well as the temporary phases required to evolve
the model in a consistent manner. In addition, we use the features of the PARADE runtime environment
(Chapter 5) to apply the changes to the components of a model being executed in the PARADE distributed
runtime environment.

The research done within this case study is closely related to work of Groenewegen and De Vink
presented in [46, 40]. Similar to their work, we explicitly model the evolutionary steps by means of
a special process called McPal (Managing changing Processes ad libitum). This process manages the
evolution of the PARADIGM model, including itself, by taking transitions whose transition labels denote
steps of a certain change to the model. Process McPal is generic with respect to the model being changed
and the actual changes being applied. Because McPal applies changes to a model on-the-fly, care must
be taken that these changes do not cause undesired behavior – where the meaning of “undesired”
depends on the context in which the changes are applied. The PARADIGM language provides a direct
means to avoid undesired behavior by constraining the behavior of processes through the application of
partitions. This is exploited in [46] and [40] at the level of detailed processes: a special partition Evol
is used for this purpose.

151



152 CHAPTER 8. EVOLUTION ON-THE-FLY

In this case study, we generalize the technique of temporarily constraining the behavior of processes
in two respects. Firstly, in line with the ideas presented in Chapter 3, we consider detailed and global
processes both as processes. Therefore, as we will explain, we treat the application of changes to global
processes in the same way as that of detailed processes. Thereby, we have created a more general tech-
nique for modeling evolution on-the-fly, which can be applied in the same manner regardless of the
type of entities involved in the changes. Secondly, in our generalization, the partitions and interaction
protocols needed to coordinate the evolution of the model are added prior to the evolution itself, and
removed afterwards. We call this generalized technique scaffolding – the activity of temporarily extend-
ing a running model with partitions and interaction protocols in order to constrain the behavior of
processes in that model for the sake of evolution. Because the extensions are temporary, this leads to
a cleaner model before and after the changes. In addition, we are better able to adapt the temporary
extensions to the needs of the changes.

In addition to the above contribution, we provide an implementation of PARADIGM models which
evolve on-the-fly, by means of the PARADE tools. We directly make use of the functionality of these tools
to execute both the model and its evolution. We use the flexibility of the PARADISE framework (Chap-
ter 3) for updating the distributed interpreter which runs the model along with updating the model
artifacts themselves. To the transition labels in process McPal, we attach a concrete implementation of
the steps needed for changing the model. The individual steps update parts of the model via the system
channels of components running in the PARADE distributed runtime environment (Chapter 5).

We apply evolution on-the-fly to a PARADIGM model of a scheduler and three workers. Initially, the
workers (concurrent processes) in the model perform their work almost in sequence, due to the way
in which they are coordinated by the scheduler. In addition, the scheduler performs the scheduling of
the workers in a non-deterministic manner. We will show how to evolve this model into one in which
the amount of concurrency between the workers is considerably increased and the scheduler schedules
round-robin. The changes are applied in two steps: firstly, we change the way in which the workers
are coordinated, and secondly, we change the scheduling strategy of the scheduler. For each of these
changes, as we will show, we put a particular scaffold in place before the changes are applied.

The case study points out the suitability of PARADIGM for the modeling of evolution on-the-fly. In
addition, it shows how the scaffolding technique leads to cleaner PARADIGM models, a more uniform
manner in which coordination for the purpose of migration takes place, and a better focus on the
specific coordination needs for a certain migration in the model.

This chapter is structured as follows. In Section 8.2 we provide an introduction to the proposed
technique for modeling evolution on-the-fly, including the McPal process and the notion of scaffolding.
In Section 8.3, we introduce the initial scheduler/worker model, which is the model we will evolve.
In Sections 8.4 and 8.5, we model the two changes mentioned above. Section 8.6 is devoted to the
implementation of evolution on-the-fly in the PARADE distributed runtime environment. We discuss the
insights of the case study in Sections 8.7.

8.2 Evolution On-the-Fly

As a starting point for considering the modeling of evolution on-the-fly, we take the extended PARADIGM

language presented in Chapter 4. That is, we consider three language concepts as the entities amenable
to evolution: processes, partitions and interaction protocols. Each of these entities can be either created,
updated, or deleted. The creation, update and deletion of individual consistency rules is performed by
updating the interaction protocol to which these consistency rules are (to be) anchored.
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Just as in [46] and [40], it is the role of an additional process McPal to manage the evolution of
the model, i.e. to execute the actions to create, update and delete modeling entities. For all migrations
considered in this case study, we use the same process McPal, which is shown in Figure 8.1. Process
McPal can be split up into two different phases, McPalBeforeEvol and McPalDuringEvol, as defined in
partition AsEvol and global process McPal[AsEvol] in Figure 8.2.

Obs Initialized
initialize

OnlyOld
scaffold

StartMigr
updateModels

ContMigr

allowMigration

EndMigr
restrictToNew

unscaffold

OnlyNew
cleanupModels

Figure 8.1: Process McPal
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Figure 8.2: Process McPal[AsEvol] and Partition AsEvol for Process McPal
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Intuitively, in phase McPalBeforeEvol, the process preprares itself for a single migration, i.e., a single
run through all its process steps. It does this by defining the semantics of the transitions belonging to its
phase McPalDuringEvol. In other words, after process McPal has taken transition initialize, the actions
for a specific migration have been associated with the subsequent transitions of the process. Now, in
the second phase, McPalDuringEvol, process McPal realizes the migration of the model by taking the
transitions whose semantics have been defined in the first phase. At the modeling level, we consider
the execution of the creations, updates and deletions associated with a single transition as a single,
non-divisible, atomic action. After having completed all migration steps, McPal returns to phase McPal-
BeforeEvol, in which it prepares itself for the next migration by defining new semantics to the transitions
of phase McPalDuringEvol. Note that we do not further specify how global process McPal[AsEvol] is coor-
dinated – the process is primarily added to the model for illustration purposes. It can be easily executed
in the PARADE distributed runtime environment by treating it as a detailed process, like we mentioned
earlier in the discussion of Chapter 6 about some of the global processes in the PARADIGM model for the
car navigation system.

Before we discuss process McPal in detail, we first introduce the notion of scaffolding. Because cre-
ations, updates and deletions are applied to a model while it is being executed, process McPal needs to
take care that these changes do not lead to undesired behavior, like technical inconsistencies in the
behavior of the model, or behavior which does not adhere to the modeler’s requirements (e.g. deadlock
or starvation). In our approach, McPal uses temporary partitions and interaction protocols which con-
strain the behavior of the running processes in the model for the sake of correctly applying the changes.
These temporary entities together are called a scaffold. McPal builds a scaffold around the model before
changing that model, and removes the scaffold once the changes have been applied. A scaffold can be
very simple or relatively elaborate, depending on the size and scope of the changes.

A scaffold always consists one interaction protocol, with process McPal as a manager, and several
partitions and global processes on top of processes in the model to be evolved, which are coordinated
by the interaction protocol of the scaffold. The example of Figure 8.3 shows a scaffold (the part with
bold lines) with one covering interaction protocol, which poses dynamic constraints on two detailed
processes (one employee, one manager) and one global process. Note in particular that we apply a
partition on top of a global process. Although this way of working is not common in PARADIGM, we
indicated this possibility earlier in Chapter 3. The existing interaction protocol of the model is only
implicitly constrained, via the processes involved in its consistency rules. The purpose of the scaffold is
to constrain the behavior of the processes on top of which its partitions are created. The scaffold can
therefore be limited to those processes which either are changed themselves, or interact with entities to
be changed in such a way that this interaction needs to be constrained.

We now have a closer look at process McPal. Each realization of a migration consists of the same
sequence of transitions, by means of which the application of changes to the model is coordinated.
Process McPal starts the migration by taking transition scaffold. With the taking of this transition, the
original model Mo is extended with a scaffold. This results in a “scaffolded” model [Mo], with which we
denote that the scaffold [ ] restricts the execution of the model to at most all possible behavior defined
in Mo already. In the next transition, updateModels, the model-to-be-evolved is altered by creating and
updating processes, partitions and protocols. In this step, we only consider additions to the model – we
do not (yet) remove any entities. By this, we achieve an updated scaffolded model [Mo] ∪ Mm ∪ Mn,
where Mn stands for the next model and Mm represents the migration model – the intermediate situation
which bridges Mo and Mn. Naturally, Mo ⊆ Mm ⊇ Mn. While we do this, the scaffold ensures that the
execution of the model is constrained to at most the behavior which was possible in the original model
Mo: the models have been updated, but the scaffolds do not allow the newly defined behavior yet.
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Figure 8.3: A PARADIGM model without (left) and with a scaffold (in bold on the right)

In the next step, we use the scaffolds to allow the new behavior to be taken into account in the
execution of the model. That is, we turn [Mo]∪Mm∪Mn into [Mo∪Mm∪Mn]. After this step, the system
could continue behaving according to the original model, but it could also (deliberately or enforced)
start behaving according to newly defined behavior. As soon as the model behaves according to the
desired new behavior (this should be observed by means of the scaffold), McPal restricts the behavior of
the system to the new model by taking transition restrictToNew, thus achieving model Mo ∪Mm ∪ [Mn].
After that, it removes the parts of the original model which are no longer relevant in the the new
model with transition cleanupModels – here, the deletion of entities or the removal of parts of entities
takes place. Thus, we yield [Mn]. Finally, the scaffolds are removed with transition unscaffold, which
concludes the migration to model Mn.
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This same sequence of steps is applied repetitively, once for each change to a model. At each change,
the model itself, i.e. the specification of processes, partitions and interation protocols, moves through
phases of expansion and contraction, growing and shrinking. The scaffold, in turn, ensures that this
expansion and contraction takes place at the appropriate moments in time, taking into account the
runtime state of the processes in the model as it is being executed. Note that a scaffold is a behavioral
construct, directly related to the behavior of process McPal. It enables a modeler to apply constraints
to the behavior of processes, and to alter these constraints during a migration. In addition, it enables
a modeler to observe the state of processes at an appropriate level of abstraction, as a means to de-
cide when a next step in a migration can be taken. The scaffold can be said to realize the semantics
of transitions allowMigration and restrictToNew. In contrast, the semantics of transitions updateModels
and cleanupModels are given by means of a specification, for each of these transitions, of the precise
creations, updates and deletions of entities in the model.

In this case study, we apply the above technique for modeling evolution on-the-fly to a small model
which represents a system consisting of a scheduler with three workers. We have reused this example
from [46] in order to compare our approach to the modeling of evolution on-the-fly with the approaches
presented in [46] and [40]. We start with presenting the initial model of this scheduler-worker system.

Scheduler

Worker(1) Worker(2)Worker(0)

Scheduler

Worker

Worker[AsCSM]

Worker

Worker[AsCSM]

Worker

Worker[AsCSM]

Scheduler

Worker Protocol

Figure 8.4: Component diagram for a Scheduler and three Workers
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8.3 The Scheduler-Worker System

The architecture of the model for the scheduler-worker system is shown in Figure 8.4. All worker
components have the same behavior, but run concurrently. Their detailed process Worker(i) is shown in
Figure 8.5. They each have a critical section (state Crit) in which only one of them may be active at a
time. This is to be coordinated via a partition AsCSM (critical section manipulator) and corresponding
global process Worker(i)[AsCSM], shown in Figure 8.6. The partition creates a view of the detailed
process, by means of which the entrance and exit of the critical section, represented by subprocess
Busy, can be controlled.
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Figure 8.5: Process Worker
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Figure 8.6: Global process Worker[AsCSM] and Partition AsCSM for Process Worker
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It is up to the scheduler component to coordinate the critical sections of the workers. Process Sched-
uler is depicted in Figure 8.7. The process manages the three Worker[AsCSM] processes by means of
interaction protocol SchedulerWorkerProtocol, whose six rules (two for each worker) are given in Ta-
ble 8.8. Initially, process Scheduler schedules the workers in a non-deterministic order.

Asg(0)

Idle

Asg(2)Asg(1)

allow(0)disallow(0)

allow(2)disallow(1)

allow(1) disallow(2)

Figure 8.7: Process Scheduler

(R1,2,3) Scheduler : Idle
allow(i)−−−−−−−−−−−−−−−−−−−−→ Asg(i)

∗ Worker(i)[AsCSM] : Free
started−−−−−−−−−−−−−−−−−−−−→ Busy

(R4,5,6) Scheduler : Asg(i)
disallow(i)−−−−−−−−−−−−−−−−−−−−→ Idle

∗ Worker(i)[AsCSM] : Busy
done−−−−−−−−−−−−−−−−−−−−→ Free

Table 8.8: Interaction Protocol SchedulerWorkerProtocol

In the initial model, subprocess Busy of partition AsCSM is particularly large, while the overlap
between subprocesses Busy and Free is minimal. The result of this is that the coordination of the critical
section results in an almost sequential execution of the three workers. Our first change to the model is
to improve this coordination in such a way that more concurrency between the workers is achieved.

8.4 First Migration

The first migration involves an increment in concurrency. To this end, we define new subprocesses
with different traps for partition AsCSM. As a consequence, we also need to change global processes
Worker[AsCSM] and interaction protocol SchedulerWorkerProtocol. The new subprocesses are intended
to enable the scheduler to schedule the next worker directly after a worker has left its critical section,
while it carries out some post activities.
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Target and Migration Models

The intended target models for partitions AsCSM and processes Worker[AsCSM] after the first migration
are shown in Figure 8.9, the consistency rules for the interaction protocol in Table 8.10. In the partition
definition, subprocesses Free and Busy have been replaced by new subprocesses OutCS and InCS, which
have considerably more overlap. Also, the traps have been enlarged to allow for more concurrency in
the execution of the workers. The consistency rules of the target have a similar structure as the initial
consistency rules, but deal with different global states and transitions.
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Figure 8.9: Process Worker[AsCSM].EVOL1.next and Partition AsCSM.EVOL1.next for Process Worker

(N1,2,3) Scheduler : Idle
allow(i)−−−−−−−−−−−−−−−−−−−−→ Asg(i)

∗ Worker(i)[AsCSM] : OutCS
entering−−−−−−−−−−−−−−−−−−−−→ InCS

(N4,5,6) Scheduler : Asg(i)
disallow(i)−−−−−−−−−−−−−−−−−−−−→ Idle

∗ Worker(i)[AsCSM] : InCS
left−−−−−−−−−−−−−−−−−−−−→ OutCS

Table 8.10: Interaction Protocol SchedulerWorkerProtocol.EVOL1.next
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Next to the target models, we explicitly define a bridge between the initial models and the target
models, for both the AsCSM partitions and the SchedulerWorkerProtocol interaction protocol. We do
this in terms of a migration model, which combines the initial model and the target model, and adds
additional constructs to allow migration from the former to the latter. In Figure 8.11, we show global
process Worker[AsCSM].EVOL1.mig at the level of partition AsCSM.EVOL1.mig. This partition contains
the two subprocesses Free and Busy from the initial model plus the two subprocesses OutCS and InCS
from the target model. The global process defines the transitions between the initial and the target
subprocesses. In Table 8.12, the migration model for the interaction protocol is shown. Next to the initial
and target consistency rules, additional rules M1− M3 are added, which enable controlled migration
from subprocesses Free and Busy to subprocesses OutCS and InCS.

Free

Busy

donestarted

OutCS

InCS

leftentering

[ busyToOutCS ]

[ freeToOutCS ]

Figure 8.11: Process Worker[AsCSM].EVOL1.mig

Migration Scenario

In order to fully realize the migration from the initial to the target models, we define the temporary se-
mantics for the transitions of process McPal contained in its subprocess McPalDuringEvol. We distinguish
between three different types of transitions:

• Transitions updateModels and cleanupModels are meant for realizing changes to the model. For
each of these two transitions, we specify which model creations, updates and deletions are per-
formed.

• Transitions scaffold and unscaffold are meant for adding and removing the scaffold to and from
the model, respectively. For these two transitions, we specify which temporary partitions and
interaction protocols for the scaffold need to be added resp. removed.

• Transitions allowMigration and restrictToNew manage the runtime constraints involved in realizing
the changes. We specify their semantics in terms of consistency rules which are anchored to the
interaction protocol(s) of the scaffold.
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(R1,2,3) Scheduler : Idle
allow(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Asg(i)

∗ Worker(i)[AsCSM] : Free
started−−−−−−−−−−−−−−−−−−−−−−−−−→ Busy

(R4,5,6) Scheduler : Asg(i)
disallow(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

∗ Worker(i)[AsCSM] : Busy
done−−−−−−−−−−−−−−−−−−−−−−−−−→ Free

(N1,2,3) Scheduler : Idle
allow(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Asg(i)

∗ Worker(i)[AsCSM] : OutCS
entering−−−−−−−−−−−−−−−−−−−−−−−−−→ InCS

(N4,5,6) Scheduler : Asg(i)
disallow(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

∗ Worker(i)[AsCSM] : InCS
left−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCS

(M1,2,3) Scheduler : Asg(i)
disallow(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

∗ Worker(i)[AsCSM] : Busy
[ busyToOutCS ]−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCS,

Worker(i+1)[AsCSM] : Free
[ freeToOutCS ]−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCS,

Worker(i+2)[AsCSM] : Free
[ freeToOutCS ]−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCS

Table 8.12: Interaction Protocol SchedulerWorkerProtocol.EVOL1.mig (indices modulo 3)

For this migration scenario, the semantics of the transitions updateModels and cleanupModels are
straightforward, because we only consider updates and no creations or deletions. With transition up-
dateModels, we update the initial model with the migration model, as follows: Initial process Worker(i)-
[AsCSM] for each worker i is replaced by migration process Worker(i)[AsCSM].EVOL1.mig, and the
consistency rules of interaction protocol SchedulerWorkerProtocol are replaced by the consistency rules
of interaction protocol SchedulerWorkerProtocol.EVOL1.mig. With transition cleanupModels, we perform
a similar update: the migration model is updated to the target model.

The crucial concern in performing the above model updates on-the-fly is that we must be sure not
to update the migration model to the target model too early. We should restrict the behavior of the
processes Worker[AsCSM].EVOL1.mig to the target model Worker[AsCSM].EVOL1.next only after these
processes actually have taken a transition from either state Free or Busy to state OutCS. We therefore
organize the scaffold such that we can observe this. The scaffold consists of a partition on top of each
of the global processes Worker[AsCSM], and a single interaction protocol, managed by process McPal.
Both are shown in Figure 8.13 and Table 8.14, respectively.
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Figure 8.13: Process CSM[AsEvol] and Partition AsEvol

(R1) McPal : StartMigr
allowMigration−−−−−−−−−−−−−−−−−−−−−−−−−→ ContMigr

∗ CSM(0)[AsEvol] : FirstPhase
readyForMigrPhase−−−−−−−−−−−−−−−−−−−−−−−−−→ MigrationPhase,

CSM(1)[AsEvol] : FirstPhase
readyForMigrPhase−−−−−−−−−−−−−−−−−−−−−−−−−→ MigrationPhase,

CSM(2)[AsEvol] : FirstPhase
readyForMigrPhase−−−−−−−−−−−−−−−−−−−−−−−−−→ MigrationPhase

(R2) McPal : ContMigr
restrictToNew−−−−−−−−−−−−−−−−−−−−−−−−−→ EndMigr

∗ CSM(0)[AsEvol] : MigrationPhase
readyForNextPhase−−−−−−−−−−−−−−−−−−−−−−−−−→ NextPhase,

CSM(1)[AsEvol] : MigrationPhase
readyForNextPhase−−−−−−−−−−−−−−−−−−−−−−−−−→ NextPhase,

CSM(2)[AsEvol] : MigrationPhase
readyForNextPhase−−−−−−−−−−−−−−−−−−−−−−−−−→ NextPhase

Table 8.14: Protocol EvolutionProtocol
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In subprocess MigrationPhase of partition AsEvol, we use a trap, readyForNextPhase, as an indicator
for the fact that a process Worker(i)[AsCSM] has taken a transition to state OutCS. As the consistency
rules anchored to interaction protocol EvolutionProtocol show, only if all processes Worker(i)[AsCSM]
are inside this trap, process McPal is able to take transition restrictToNew. Note furthermore that sub-
process MigrationPhase of partition AsEvol allows the taking of a transition to OutCS, but it does not
enforce it, because the transitions between states Free and Busy are allowed as well.

The entire migration from the initial model to the target model can now be performed by McPal as
follows. In its phase McPalBeforeEvol, process McPal defines the semantics for the transitions in phase
McPalDuringEvol. Thereafter, McPal enters phase McPalDuringEvol and the actual migration starts. First,
the scaffold is installed, which yields an extended model as shown in Figure 8.15 (scaffold elements are
shown with bold lines). After that, by taking transition updateModels, McPal applies changes to partitions
AsCSM, global processes Worker(i)[AsCSM] and interaction protocol SchedulerWorkerProtocol in order
for the initial model to be updated to the migration model. Since the scaffold is present, the execution of
the global processes Worker(i)[AsCSM] is restricted to the subprocesses Free and Busy (state FirstPhase
of global processes CSM(i)[AsEvol].
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Figure 8.15: The Scheduler/Worker model being scaffolded for the first migration
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By taking transition allowMigration, global processes CSM(i)[AsEvol] enter state MigrationPhase.
Now, at least one of the transitions [freeToOutCS] and [busyToOutCS] is enabled for each of the pro-
cesses Worker(i)[AsCSM]. It is up to the (non-deterministic) choice of interaction protocol Scheduler-
WorkerProtocol when (if at all) migration takes place. However, as soon as one of the migration rules is
applied, the migration is non-reversible. All Worker(i)[AsCSM] processes then change to state OutCS,
by which they enter trap readyForNextPhase of partition AsEvol and McPal’s transition restrictToNew is
enabled. After process McPal has taken this transition, the scaffold restricts the execution of global pro-
cesses Worker(i)[AsCSM] to the subprocesses InCS and OutCS. As soon as process McPal takes transition
cleanupModels, the migration model is updated to the target model . Finally, McPal removes the scaffold
and returns to phase McPalBeforeEvol, ready for a new migration.

8.5 Second Migration

In the second migration, we change the non-deterministic scheduler into a round-robin scheduler. The
idea is as follows. The scheduler, at each round-robin cycle, checks for each worker whether it wants
to access its critical section. If this is the case, it allows the worker to enter the critical section, if not,
it continues with checking the next worker. Our starting point for the second migration is the target
model of the first migration – please note that, in the context of this second migration, we refer to this
model as the initial model.

Target and Migration Models

The intended migration requires three different changes. Firstly, process Scheduler needs to be adapted
to a round-robin scheduler. We create a target model for this process as shown in Figure 8.16. For each
worker, the scheduler checks if it wants to enter its critical section, and decides upon this check whether
or not to allow this. Secondly, we extend processes Worker(i)[AsCSM] with an extra subprocess, which
enables us to distinguish whether a worker wants to access its critical section or not (yet).

Asg(0)

Asg(2)Asg(1)
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allow(0)

allow(1)

allow(2)

disallow(0)

disallow(1)

disallow(2)

skip(0)

skip(1) skip(2)

Check(2)

Figure 8.16: Process Scheduler.EVOL2.next
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Partition AsCSM.EVOL2.next and global process Worker(i)[AsCSM].EVOL2.next are shown in Fig-
ure 8.17. The extra subprocess OutCSBlock contains two traps, entering and notYetEntering, on which the
decision to grant access to the critical section can be taken (note also the absence of a direct transition
from state OutCS to InCS in the global process, which is present in the initial model).

The third and last change to the model involves the interaction protocol SchedulerWorkerProtocol,
in which the changes to process Scheduler and processes Worker(i)[AsCSM] need to be reflected. The
consistency rules anchored to the interaction protocol in the target model are shown in Table 8.18.
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Figure 8.17: Process Worker[AsCSM].EVOL2.next and Partition AsCSM.EVOL2.next
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(N’1,2,3) Scheduler : Check(i)
allow(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Asg(i)

∗ Worker(i)[AsCSM] : OutCSBlock
entering−−−−−−−−−−−−−−−−−−−−−−−−−→ InCS

(N’4,5,6) Scheduler : Asg(i)
disallow(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Check(i+1)

∗ Worker(i)[AsCSM] : InCS
left−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCS,

Worker(i+1)[AsCSM] : OutCS
trivial−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCSBlock

(N’7,8,9) Scheduler : Check(i)
skip(i)−−−−−−−−−−−−−−−−−−−−−−−−−→ Check(i+1)

∗ Worker(i)[AsCSM] : OutCSBlock
notYetEntering−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCS,

Worker(i+1)[AsCSM] : OutCS
trivial−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCSBlock

Table 8.18: Interaction Protocol SchedulerWorkerProtocol.EVOL2.next (indices modulo 3)
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Figure 8.19: Process Scheduler.EVOL2.mig
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The migration model, i.e. the intermediate model which bridges the initial and the target models,
can be easily created by taking the union of the initial and the target model. We add two extra elements
to ensure that the scheduler can be switched from non-deterministic into round-robin, regardless of the
state in which it resides. To the union of the initial and target model for process Scheduler, we add a
transition from state Idle to state Check(0), as shown in Figure 8.19. To the union of the initial and
target model for interaction protocol SchedulerWorkerProtocol, we add the corresponding consistency
rule, which is shown in Table 8.20. This consistency rule bootstraps the round-robin cycle of process
Scheduler if the current state at the moment of migration happens to be state Idle.

(M’1) Scheduler : Idle
start RR−−−−−−−−−−−−−−−−−−−−−−−−−→ Check(0)

∗ Worker(0)[AsCSM] : OutCS
trivial−−−−−−−−−−−−−−−−−−−−−−−−−→ OutCSBlock

Table 8.20: Extra consistency rule for interaction protocol SchedulerWorkerProtocol.EVOL2.mig

Migration Scenario

We define the semantics of the transitions contained in subprocess McPalDuringEvol of process McPal
in a similar manner as we did for the first migration. Again, transition updateModels updates the initial
model to the migration model, and transition cleanupModels updates the migration model to the target
model. In order to perform the changes on-the-fly, the only thing we need to ensure in this case is that
we do not cleanup the migration model before process Scheduler has started with its round-robin cycle.
The states of the workers play no role in this case, since they depend on the management performed
by the scheduler. Therefore, we create a small scaffold, which consists of a partition on top of process
Scheduler, coordinated by an interaction protocol which is managed by McPal. We show the subpro-
cesses of partition AsEvol for process Scheduler in Figure 8.21. The global process at the level of this
partition is equal to global process CSM[AsEvol] of the first migration. Trap readyForNextPhase indicates
that process Scheduler has started with the round-robin cycle. The consistency rules for the interaction
protocol EvolutionProtocol are similar to those of the interaction protocol for the scaffold in the first
migration.

The migration scenario executed by process McPal differs in one respect from the first migration. In
the first migration, we allowed the model to continue with the behavior specified in its initial model,
and waited until we observed that all processes in the model were ready for migration to the target
model. In the second migration, however, subprocess MigrationPhase actually enforces the scheduler to
start its round-robin cycle: it cannot continue with its old non-deterministic behavior.

Now that we have illustrated the technique for modeling evolution on-the-fly, we briefly give the
reader an idea of how this technique can be easily implemented with the PARADE tools.

8.6 Implementing Evolution On-the-Fly

When modeling the evolution of a model on-the-fly in PARADIGM, we basically assume that creations,
updates and deletions of entities in the model “take place”: at the taking of transitions updateModels
and cleanupModels in process McPal, the model-to-be-evolved is updated according to the semantics
defined for these transitions. The same holds for the addition and removal of the scaffold, done at
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Figure 8.21: Partition AsEvol for Process Scheduler
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transitions scaffold and unscaffold. In an implementation, changes to the model need to be concretely
performed. The PARADE distributed runtime environment (DRE), which is based upon the PARADISE

interpreter framework for PARADIGM, provides support to realize such changes to the model during its
execution. We refer to Chapter 5 for a more detailed presentation of the terminology used in PARADE.

In the implementation of evolution on-the-fly with the PARADE tools, we start with the execution of a
model which only contains one component, McPal. This component does not only manage the evolution
of a model, but it also performs the creation of this model in the PARADE DRE. Hence, the first migration
is a migration from an empty model to an initial model. In subsequent migrations, the actual evolution
of the initial model is performed.

The semantics of transitions initialize, scaffold and unscaffold, and updateModels and cleanupModels
are defined in an implementation model, one of the extensions to PARADIGM models provided by PARADE.
The implementation model specifies for each of these transitions an action class which performs the
activities associated with the transition at hand. The two code snippets below show the Java code of
two action classes for transition initialize and scaffold, respectively. As can be seen, a System Handler
is used to perform updates to the model. For transition initialize, an update of component McPal itself
is performed, as specified in XML-document “mcpalduringevol.component". Transition scaffold involves
the creation, update or deletion of elements outside component McPal, the so-called context of the
component. XML-document “schedulerworker.evol1.context" specifies the exact update. The updates
are sent to the appropriate hosts and components in the PARADE DRE via the same system channels
used for the creation and start-up of the initial model.

publ i c c l a s s I n i t i a l i z e A c t i o n extends Act ion {
@Override
pub l i c void run () {

t h i s . getSystemHandler ( ) . updateComponentLayout( " mcpalduringevol . component " ) ;
}

}

publ i c c l a s s Sca f f o l d A c t i on extends Act ion {
@Override
pub l i c void run () {

t h i s . getSystemHandler ( ) . updateContextLayout ( " schedulerworker . evol1 . contex t " ) ;
}

}

The operations updateComponentLayout and updateContextLayout of the PARADE system handler per-
form the creations, updates and deletions as if they are performed as a single atomic action. At this level
of modeling, where we consider the changes involved in the taking of a single transition, these opera-
tions free the modeler from thinking about the order in which changes are applied. In addition, in case
of newly created processes and interaction protocols, these operations take care of their startup. Like-
wise, in case of processes and interaction protocols which must be deleted, a shutdown is performed
prior to deletion. With these features, the PARADE system handler provides a simple and powerful in-
terface for a modeler to evolve its PARADIGM model on-the-fly, while it is being executed in the PARADE

distributed runtime environment.
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8.7 Discussion

In the case study about evolution on-the-fly presented in this chapter, we have shown that the PARADIGM

language is suitable for creating models which coordinate their own evolution. We reused the idea of
having a separate component McPal for coordinating the evolution, as presented in [46] and [40]. The
contribution of this case study to the existing approach is twofold.

Firstly, we have established a clear general approach to the coordination of evolution on-the-fly,
called scaffolding. The approach is general in the sense that we structure the scaffold for a model in
the same way, regardless of the precise changes which must be applied. Furthermore, the scaffold is
perceived as a temporary construct, which leads to a cleaner model-to-be-evolved and a better support
for adapting the scaffold to the needs of a certain set of changes. We made extensive use of interaction
protocols as introduced in Chapter 4, to separate the consistency rules of the model-to-be-evolved from
those that play a role in coordinating the evolution on-the-fly.

Secondly, have illustrated the implementation of evolution on-the-fly for PARADIGM models by means
of the PARADE tools (Chapter 5). These tools are able to create, update and delete entities within running
PARADE components, as well as components themselves. The evolution of the Scheduler-Worker model
in this case study only demonstrated the update of processes, partitions and interaction protocols, and
not their creation or deletion. Further study is needed to show that creations and deletions can be
performed in a similar way, with similar scaffolds to coordinate the changes. Nevertheless, we have
used creations and deletions for constructing and removing the scaffolds themselves.

Furthermore, we point out the clarity of the structure of process McPal in our approach. The six
transitions contained in subprocess McPalDuringEvol are actually three nested groups, each consisting
of two complementary transitions. The first and last transitions, scaffold and unscaffold, construct and
destruct the coordination structure needed for the migration to take place: a temporary growing and
shrinking of the model. The nested transitions updateModels and cleanupModels realize changes to the
model-to-be-evolved: again, growing and shrinking, expansion and contraction, be it at the level of the
persistent model. Finally, the middle transitions use the temporary coordinative structure, the scaffold,
to evolve the model in its execution: once more, growing and shrinking, but now in terms of the possible
runtime states of the model. Consequently, in our approach, evolution on-the-fly can be perceived as
a matter of expansion and contraction at three different levels: the coordination needed for on-the-fly
evolution itself, the static model-to-be-evolved, and the runtime state of the model being executed.



Chapter 9

Conclusions and Future Work

For both the Foundations and the Case Studies part of the thesis, we summarize and draw
conclusions. In addition, we present ideas for future work in three different directions:
theory, tool development and applications.

9.1 Conclusions for the Foundations (Chapters 2 to 5)

Summary

We started our research with developing a software implementation of the language (Chapter 2), in
terms of PARADISE, a distributed interpreter framework for PARADIGM models (Chapter 3). Thereby, we
focused on adopting a key feature of the language as a major design principle for the implementation:
as much concurrency between processes as possible. Based on the insights gained by this effort, we
extended the modeling language (Chapter 4) in order to incorporate interaction protocols, a concept for
structuring consistency rules and for ensuring their conflict-free application. This latter aspect allowed
us to generalize the shape of consistency rules in order to model interaction between peers, without an
additional manager process. We implemented the extended PARADIGM language in the PARADE software
tools (Chapter 5), with which PARADIGM models can be edited, executed and visualized. Here, the focus
was on a distributed runtime environment which supports evolution on-the-fly.

Conclusions

From both a practical and a theoretical perspective, the interaction protocol concept is a valuable addition to
the PARADIGM language. The implementation of PARADIGM in a fully distributed manner has encouraged
us to reconsider the application of consistency rules in the language. This has led to the introduction
of the interaction protocol concept. According to our findings, this concept has proven to be a valuable
addition to the PARADIGM language for the following reasons:

• It introduces separation of concerns at the level of consistency rules, offering a new structuring
dimension which differs from a split-up along the manager processes in a model.

• Since it has its own behavior, we can easily introduce consistency rules with empty manager parts,
which are applied without explicit coordination by means of a manager process. This allows for
modeling the interaction between peers.
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• It provides a notion of concurrency in the application of consistency rules which was not explicitly
present in the original language. If two consistency rules are anchored to two different interaction
protocols, they can be applied concurrently.

• It ensures that consistency rules are applied atomically and in a conflict-free manner, provided
the definition of soundness in Chapter 4 is taken into account. This definition is based on the
light-weight statically verifiable condition of potential conflict.

It is possible to implement PARADIGM in a fully distributed manner, whereby each process runs on a separate
processor and communication between processors is done solely via asynchronous unbounded FIFO chan-
nels. In the PARADISE distributed interpreter framework, each process in a PARADIGM model runs on a
different virtual node. The implementation of partitions requires a minimum of communication between
the detailed and global process involved. The implementation of consistency rules is best served by us-
ing at least one additional virtual node to keep them separate from the nodes on which the processes
run. Relative efficient application of consistency rules is possible by exploiting the semantic properties
of the trap concept.

The usage of views on views can be achieved in PARADIGM. Our effort in tool development has shown that
the application of partitions on top of global processes (views on views), like we used in Chapter 8,
is a straightforward extension. We believe that an operational semantics for this notion can be estab-
lished without considerable effort. At the level of our implementation in PARADISE, it puts an additional
requirement on the application of consistency rules: in order to apply a consistency rule, a two-phase
commit is needed over its manager process and all global processes mentioned in its employee part.

Evolution on-the-fly with PARADIGM can be implemented by building a framework of interpreters for individ-
ual language concepts which can be dynamically composed by a runtime environment into an interpreter for
a full model. The PARADE distributed runtime environment (DRE) provides support for executing models
which evolve on-the-fly. This support is based on the flexibility of our PARADISE distributed interpreter
framework. The PARADE DRE dynamically composes a distributed PARADISE interpreter for a PARADIGM

model based on a model specification in XML. Hence, in PARADE there is no intrinsic difference between
starting a system and evolving it.

9.2 Conclusions for the Case Studies (Chapters 6 to 8)

Summary

For purposes of validation, we successfully applied the extended PARADIGM language and the PARADE

tools in three different case studies, focusing on three related but different applications of the language
and the tools. In Chapter 6, we focused on the modeling of non-trivial interaction in the context of
reconfigurable software. In Chapter 7, we modeled the interaction of three different shapes of generic
branch-and-bound algorithms. We used the software extensions of the PARADE tools to attach a run-
ning branch-and-bound solver to the model, which provided insights in the applicability of the notions
in PARADIGM for software design. Finally, in Chapter 8, we applied PARADIGM and the PARADE tools in
combination for the creation and execution of a model evolving on-the-fly. We introduced a generic
technique, scaffolding, for the enforcement of temporary constraints on the behavior of PARADIGM pro-
cesses.
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Conclusions for Chapter 6

Covering interaction protocols can be applied to address different aspects of interaction separately. Manager
processes can be applied hierarchically to coordinate lower level interactions in terms of higher level inter-
actions. In the case study of Chapter 6, we used covering interaction protocols to distinguish between
different domains of communication at a lower level. We also used a higher-level interaction protocol
on top of manager processes which coordinate the lower-level interaction protocols. This way of work-
ing shows that manager processes can be applied as a “componentization” of an interaction protocol to
gain control over lower-level interaction at a higher level of abstraction.

The PARADE tools can be used for the modeling and execution of open PARADIGM models. As we showed in
Chapter 6, a PARADIGM model does not need to model an entire closed system in order to be executed
in the PARADE distributed runtime environment. Since all processes are treated in an equal manner in
the PARADISE distributed interpreter framework, a global process which is not connected to an interac-
tion protocol can be executed as if it were a detailed process with a simple selector. This strengthens
the applicability of PARADIGM and the PARADE tools for modeling open systems, e.g. in the context of
distributed services.

Conclusions for Chapter 7

Self-managing interaction protocols can be used as an inter-component coordination mechanism for the
control flow in models of reconfigurable systems. In Chapter 7, we successfully applied self-managing
interaction protocols for the coordination of an arbitrarily sized pool of independent visitor processes.
At the modeling level, the addition or removal of visitor processes only requires changes to the self-
managing interaction protocol(s). Hence, no changes to any processes in the model are necessary to
accommodate such reconfigurations.

The application of PARADE’s software extensions in the case study of Chapter 7 shows the value of the PARA-
DIGM world view for purposes of software design. We developed software for a specific branch-and-bound
solver in terms of a small set of Java classes. By using implementation models with choice states as intro-
duced in Chapter 5, and combining these with intermediate action classes, we created a bridge between
the implemented branch-and-bound solver and a PARADIGM model, using the latter one for its coordi-
nation. Although the direct application of PARADIGM models for the purpose of software development
requires considerable performance improvements and probably also code generation facilities, the way
of working adopted in Chapter 7 shows that a PARADIGM model can be used as a high-level coordination
mechanism for a lower-level object-oriented software implementation. In this case study, this exercise
did not only yield a very precise understanding of how the intended software functionality must be im-
plemented in object-oriented terms, but it also led to a better understanding of the intended meaning
of transition labels in the model.

Another interesting application of the world view of PARADIGM in the design of software can be
found in the fact that we successfully separated the core activities of the algorithm from the side issues
of communication as introduced in the componentized and parallel versions of the algorithm. The core
activities were captured in detailed processes, while the side issues were taken up in global processes.
In other words, we used the multiple views principle of PARADIGM at the modeling level as a means to add
software aspects at the implementation level.
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Conclusions for Chapter 8

PARADIGM can be effectively applied as a language to create models of systems which evolve on-the-fly.
The PARADE tools support the execution and visualization of such models. In Chapter 8, we showed a PA-
RADIGM model which coordinates its own evolution while it is being executed. An additional process
McPal takes care of the necessary coordination. The PARADE distributed runtime environment supports
creations, updates and deletions of modeling artifacts while they are interpreted by a dynamically
constructed PARADISE distributed interpreter. The creations, updates and deletions automatically result
in the appropriate construction, update and destruction of concept interpreters in the interpreter.

The scaffolding technique introduced in Chapter 8 enables modelers to coordinate the evolution of a PA-
RADIGM model on-the-fly via temporary coordination constructs with a uniform architecture. This leads
to cleaner PARADIGM models and a better focus on locality of change. Scaffolding means the temporary
addition of an interaction protocol and a set of global (employee) processes on top of existing processes
in a model. These temporary constructs coordinate the expansion and contraction of the behavior of
a specific set of processes during evolution on-the-fly, while leaving remaining constructs in the model
untouched. We strongly believe that the technique is generally applicable for any change to a PARADIGM

model. The technique is fully supported by our tools.

9.3 Future Work

Future Work in the Direction of Theory

In our implementation of PARADIGM, we decided to treat detailed and global processes in the same
way. This yields a new perspective on partitions, consistency rules and interaction protocols in the
language. In fact, we can regard these as different types of constraints on the behavior of processes. It
would be interesting to see whether these constraints could be formalized in terms of communicating
automata, like e.g. the constraint automata [6, 88] used as an operational semantic model for the
exogenous coordination language Reo [5]. For example, the behavior of two processes related by a
partition constraint could perhaps be translated into a set of two or three automata, for which a product
automaton can be taken to yield the behavior of the two constrained processes in combination.

A more formal approach to the scaffolding technique presented in Chapter 8 can further underpin
the strengths of this idea. Especially the three-level view on expansion and contraction (coordination
level, modeling level and runtime behavioral level) is useful as a basis for more formal approaches to
evolution on-the-fly in PARADIGM.

Finally, an interesting exercise would be to transform the informal operational semantics of our
implementation of PARADIGM, now presented as pseudo code in Appendix A, into a specification in a
suitable high-level modeling language. In particular, we consider the object-oriented modeling language
Creol [56, 57], which is executable on the rewriting logic platform Maude [20]. The Creol language is
being applied as a high-level modeling language in the European CREDO Project [94], and also for the
purpose of testing multi-threaded asynchronous systems [1]. It adopts asynchronous message passing
between concurrent objects running on individual processors, which highly corresponds with the notion
of asynchronous channel communication between processes running on virtual nodes as used in the PA-
RADISE interpreter framework.
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Future Work in the Direction of Tool Development

As we concluded in Chapter 5, the tools developed in the course of this thesis are a useful basis for
the further development of an integrated tool suite for PARADIGM. We envision the development of a
graphical editor for PARADIGM models which includes support for modeling evolution on-the-fly. Sec-
ondly, a range of tools for the analysis of PARADIGM models can be developed. The theoretical directions
for future work pointed out above can be used as a starting point for this.

Another useful direction for tool development is to establish efficient code generators for PARADIGM

models, in order to build skeletons for distributed software systems. It is also possible to improve upon
performance in the existing distributed interpreter for PARADIGM through certain optimizations. Typical
examples are the removal of the necessity to implement global processes with a dedicated thread of
control, or the establishment of techniques to compile the control flow within PARADIGM models into
more efficient means of communication at the implementation level. This way, performance could be
improved, possibly losing some adaptivity.

Future Work in the Direction of Applications

The results of this thesis are envisaged to be especially useful in the context of the modeling and analysis
of dynamic orchestrations or choreographies of distributed evolving services. A precise understanding of
the non-trivial and evolving interaction between these services is a necessity. The PARADIGM language,
especially in its extended shape, could be valuable in this field for the study of multiple related concerns
in interaction, like we showed in Chapter 6, or for the study of evolution on-the-fly, as presented in
Chapter 8. More applications of the language are needed in this direction. In this thesis, we did not
validate the concept of non-covering interaction protocols. We foresee applications for this concept in
the direction of e.g. delegation of managership, as we mentioned in Chapter 4.

The methodological aspects of our approach towards combining models and software in Chap-
ter 7, especially its reflection on the design of object-oriented sofware, should be studied further. This
approach could yield valuable insights for the community which studies model driven software devel-
opment.
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Appendix A

PARADISE Pseudo Code

This appendix contains pseudo code specifications for each of the PARADISE framework elements. Each of
the elements in the framework is specified as a class. For each class, we provide the following definitions:

• require definitions: arguments which are required in order to create an instance of the class;

• declare definitions: variables local to instances of the class;

• method definitions: operations which the class implements, possibly with a return value.

For the specification of the method bodies, we use a combination of assignment statements, common
control structures, synchronous method calls, set manipulations, function applications and communi-
cation operations on channels. We include a short informal explanation of the pseudo code with each
PARADISE element.

A.1 Processes

Process Handler

A Process Handler object executes a PARADIGM process. It requires a definition of a PARADIGM process,
a set of role handlers and a selector. The run method of the process handler executes the process,
meanwhile taking into account constraints of both partitions (via the provided detailed and/or global
role handlers) and interaction protocols (via the provided selector). This process handler halts the
execution of its process as soon as a final state is entered.

require: a function T from transition names t to transition definitions t
each t with:

source state name t.ssource
target state name t.starget

require: an initial state name sinitial
require: a set of final state names Sfinal
require: a set of role handlers Hrole
require: a selector s
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declare: a current state name scurrent, initially unknown
declare: a set of enabled transition names Tenabled, initially �
declare: a selected transition name tselected, initially unknown

method run()
scurrent := sinitial
for each h ∈ Hrole do
h.notify(scurrent)

end for
while (scurrent /∈ Sfinal) do

repeat
Tenabled := {t | T (t).ssource = scurrent}
for each h ∈ Hrole do
Tenabled := h.restrict(Tenabled)

end for
s.setEnabledTransitions(scurrent,Tenabled)

until s.selectionMade()
tselected := s.getSelectedTransition()
scurrent := T (tselected).starget
for each h ∈ Hrole do
h.notify(scurrent)

end for
end while

end method

A.2 Partitions

Detailed Role Handler

A Detailed Role Handler object manages a partition at the side of a detailed process. It requires a defini-
tion of the subprocesses of a partition, including the traps, and a partition channel to communicate with
a global role handler. The notify method is called by a process handler after every state change, in order
for the detailed role handler to check whether new traps have been entered. The restrict method is used
by a process handler to determine the set of enabled transitions, according to the current subprocess.

require: a function Σ from subprocess names σ to subprocess definitions ς
each ς with:

a set of transition names ς.T
a function ς.Θ from trap names θ to sets of state names S

require: a partition channel c

declare: a current state name scurrent, initially unknown
declare: a current subprocess name σcurrent, initially unknown
declare: a set of current trap names Trcurrent, initially �
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method notify(s)
scurrent := s
if (σcurrent �= unknown)∧ (Trcurrent ⊂ {θ | scurrent ∈ Σ(σcurrent).Θ(θ)}) then
Trcurrent := {θ | scurrent ∈ Σ(σcurrent).Θ(θ)}
c.send(〈σcurrent,Trcurrent〉)

end if
end method

method restrict(T)
while ¬(c.isEmpty()) do
σcurrent := c.receive()
Trcurrent := {θ | scurrent ∈ Σ(σcurrent).Θ(θ)}
if Trcurrent �= � then
c.send(〈σcurrent,Trcurrent〉)

end if
end while
if σcurrent �= unknown then
Tresult := T∩ (Σ(σcurrent).T)

end if
return Tresult

end method

Global Role Handler

A Global Role Handler object manages a partition at the side of a global process. It only requires a
partition channel in order to communicate with a detailed role handler. The notify method is called
by a process handler after every state change, in order for the global role handler to send the new
state (the newly prescribed subprocess) to the detailed role handler. The restrict method is used by a
process handler to determine the set of enabled transitions, according to the current set of traps entered.

require: a partition channel c

declare: a current state name scurrent, initially unknown
declare: a set of enabled transition names Tenabled, initially �

method notify(s)
if scurrent �= s then
scurrent := s
c.send(scurrent)
Tenabled := �

end if
end method
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method restrict(T)
while ¬(c.isEmpty()) do
〈σ,Tr〉 := c.receive()
if scurrent = σ then
Tenabled := Tr

end if
end while
Tresult := T∩Tenabled

return Tresult

end method

A.3 Selectors

Simple Selector

A Simple Selector object non-deterministically selects a transition out of a set of enabled transitions.
Method setEnabledTransitions is used by a process handler to provide the set of transitions from which
one must be selected. Method selectionmade is used by a process handler to test whether a selection has
already been made. Method getSelectedTransition returns the selected transition. The split-up between
testing if a selection has been made and retrieving the actual selection is only relevant for the Delegating
and Managing Selector, but has been used in this selector as well for reasons of uniformity. All Selector
classes require that their methods are called in a certain order: first provide the set of transitions, then
repetitively test if a selection has been made, finally get the selection as soon as the test returns true.

declare: a set of enabled transition names Tenabled, initially �
declare: a selected transition name tselected, initially unknown

method setEnabledTransitions(s,T)
Tenabled := T

end method

method selectionMade()
if Tenabled �= � then
tselected := t | t ∈ Tenabled

return true
else

return false
end if

end method

method getSelectedTransition()
return tselected

end method
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Delegating Selector

A Delegating Selector object delegates the selection of a transition out of a set of enabled transitions
to an interaction protocol / a manager process. Further differences with a Simple Selector object are
twofold. Firstly, the Delegating Selector requires a set of employee channels in order to connect to em-
ployee proxies at different interaction protocols. Secondly, in method setEnabledTransitions, the set of
transitions is sent to one of employee proxies in order for the latter one to return a selected transition
in method selectionMade.

require: a function C from state names s to employee channels c

declare: a current state name scurrent, initially unknown
declare: a set of enabled transition names Tenabled, initially �
declare: a selected transition name tselected, initially unknown

method setEnabledTransitions(s,T)
if (scurrent �= s)∨ (Tenabled �= T) then
scurrent := s
Tenabled := T
C(scurrent).send(Tenabled)

end if
end method

method selectionMade()
if ¬(C(scurrent).isEmpty()) then
tselected := C(scurrent).receive()
C(scurrent).send(sync)
Tenabled := �
return true

else
return false

end if
end method

method getSelectedTransition()
return tselected

end method

Managing Selector

A Managing Selector object selects a transition out of a set of enabled transitions together with a con-
sistency rule to be applied. It requires mappings from consistency rules to transitions of the manager
process, and from consistency rules to manager channels (in order to communicate with manager prox-
ies at different interaction protocols). Method selectionMade implements a two-phase commit, in order
to ensure that a selected consistency rule is indeed enabled.

require: a function Rmanager from consistency rule names r to transition names t
require: a function C from consistency rule names r to manager channels c
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declare: a set of enabled transition names Tenabled, initially �
declare: a set of enabled consistency rule names Renabled, initially �
declare: a selected transition name tselected, initially unknown

method setEnabledTransitions(s,T)
Tenabled := T

end method

method selectionMade()
for each c ∈ codom(C) do

while ¬(c.isEmpty()) do
Renabled := (Renabled \ {r | C(r) = c})∪ c.receive()

end while
end for
if {r | r ∈ Renabled,Rmanager (r) ∈ Tenabled} �= � then
rselected := r | r ∈ Renabled,Rmanager (r) ∈ Tenabled

C(rselected).send(rselected)
repeat
M := C(rselected).receive()
if M �= sync then
Renabled := (Renabled \ {r | C(r) = C(rselected)})∪M

end if
until M= sync
if rselected ∈ Renabled then
C(rselected).send(commit)
tselected := Rmanager (rselected)
return true

else
C(rselected).send(release)

end if
end if
return false

end method

method getSelectedTransition()
return tselected

end method

A.4 Proxies and Self-Manager

Employee Proxy

An Employee Proxy object communicates with the delegating selector of a single employee process on
behalf of an interaction protocol. It requires a unique role, an employee channel and a set of rule
handlers which handle consistency rules in which the employee process related to this proxy plays a
role. Method check tests for the availability of newly enabled transitions from the employee process,
and notifies the rule handlers accordingly. Method take is used by a rule handler to take one of the
transitions in the employee part of its consistency rule.
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require: a role name ρ
require: an employee channel c
require: a set of rule handlers Hrule

declare: a set of enabled transition names Tenabled, initially �
method check()

while ¬(c.isEmpty()) do
Tenabled := c.receive()

end while
for each h ∈ Hrule do
h.notify(〈ρ,Tenabled〉)

end for
end method

method take(t)
c.send(t)
repeat
M := c.receive()

until M= sync
Tenabled := �
for each h ∈ Hrule do
h.notify(〈ρ,Tenabled〉)

end for
end method

Manager Proxy

A Manager Proxy object communicates with the managing selector of a manager process on behalf of
an interaction protocol. It requires a manager channel and a mapping from consistency rules to rule
handlers which handle these rules. Method check tests for the availability of a consistency rule to be
applied, and applies the rule if applicable. Method notify is used by a rule handler to inform the manager
proxy about the enabling or disabling of a consistency rule.

require: a manager channel c
require: a function Hrule from consistency rule names r to rule handlers hrule

declare: a set of enabled consistency rule names Renabled, initially �
method check()

if ¬(c.isEmpty()) then
rapplied := c.receive()
c.send(sync)
M := c.receive()
if M= commit then
Hrule(rapplied).apply()

end if
end if

end method
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method notify(〈r, i〉)
if i= true then

if r /∈ Renabled then
Renabled := Renabled ∪ {r}
c.send(Renabled)

end if
else

if r ∈ Renabled then
Renabled := Renabled \ {r}
c.send(Renabled)

end if
end if

end method

Self-Manager

A Self-Manager object selects and applies consistency rules with empty manager parts. It requires a
mapping from consistency rules to their corresponding rule handlers. Method check tests whether a
consistency rule with an empty manager part is enabled and applies one if possible. Method notify is
used by a rule handler to inform the self-manager about the enabling or disabling of a consistency rule.

require: a function Hrule from consistency rule names r to rule handlers hrule

declare: a set of enabled consistency rule names Renabled, initially �
method check()

if Renabled �= � then
rapplied := r | r ∈ Renabled

Hrule(rapplied).apply()
end if

end method

method notify(〈r, i〉)
if i= true then
Renabled := Renabled ∪ {r}

else
Renabled := Renabled \ {r}

end if
end method

A.5 Rule and Ruleset Handler

Rule Handler

A Rule Handler object manages a single consistency rule – its enabling and its application. It requires
a consistency rule definition, a mapping from roles to employee proxies and a manager proxy, which
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can be a self-manager. Method notify is used by an employee proxy to notify a change in the set of
enabled consistency rules. If applicable, the manager proxy is informed about the enabling or dis-
abling of the consistency rule. Method apply is used by a manager proxy to apply a consistency rule.

require: a function remplo yee from role names ρ to transition names t
require: a rule name r
require: a function Pemployee from role names ρ to employee proxies pemployee
require: a manager proxy pmanager

declare: a set of enabled employee transition names Tenabled, initially �
method notify(〈ρ,T〉)

if remplo yee(ρ) ∈ T then
Tenabled := Tenabled ∪ {remplo yee(ρ)}
if Tenabled = codom(remplo yee) then
pmanager.notify(〈r, true〉)

end if
else

if Tenabled = codom(remplo yee) then
pmanager.notify(〈r, false〉)

end if
Tenabled := Tenabled \ {remplo yee(ρ)}

end if
end method

method apply()
for each ρ ∈ dom(remplo yee) do
Pemployee(ρ).take(remplo yee(ρ))

end for
end method

Ruleset Handler

A Ruleset Handler object manages an interaction protocol. It requires a set of manager and/or employee
proxies, which may include a self-manager. Its run method continuously loops over the check method of
each of the proxies.

require: a set of proxies P

method run()
while true do

for each p ∈ P do
p.check()

end for
end while

end method
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A.6 Views on Views Support

The following specifications for some of the PARADISE elements are applicable to the situation in which
views on views are used (see e.g. Chapter 8). They only differ from the previous definitions in that they
implement a full two-phase commit for the application of consistency rules. This involves changes in
five classes: Delegating Selector, Employee Proxy, Rule Handler, Manager Proxy and Self-Manager.

Delegating Selector

For the Delegating Selector class, method selectionMade has been adapted in order to check for a commit
after a transition has been selected.

require: a function C from state names s to employee channels c

declare: a current state name scurrent, initially unknown
declare: a set of enabled transition names Tenabled, initially �
declare: a selected transition name tselected, initially unknown

method setEnabledTransitions(s,T)
if (scurrent �= s)∨ (Tenabled �= T) then
scurrent := s
Tenabled := T
C(scurrent).send(Tenabled)

end if
end method

method selectionMade()
if ¬(C(scurrent).isEmpty()) then
tselected := C(scurrent).receive()
C(scurrent).send(sync)
M := C(scurrent).receive()
if M= commit then
Tenabled := �
return true

else
return false

end if
else

return false
end if

end method

method getSelectedTransition()
return tselected

end method
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Employee Proxy

The Employee Proxy class has been extended with two methods commit and release, which are used by a
rule handler to either agree upon the taking of a transition or to abort it.

require: a role name ρ
require: a selector channel c
require: a set of rule handlers Hrule

declare: a set of enabled transition names Tenabled, initially �
method check()

while ¬(c.isEmpty()) do
Tenabled := c.receive()

end while
for each h ∈ Hrule do
h.notify(〈ρ,Tenabled〉)

end for
end method

method take(t)
c.send(t)
repeat
M := c.receive()
if M �= sync then
Tenabled :=M

end if
until M= sync
for each h ∈ Hrule do
h.notify(〈ρ,Tenabled〉)

end for
end method

method commit()
c.send(commit)
Tenabled := �
for each h ∈ Hrule do
h.notify(〈ρ,Tenabled〉)

end for
end method

method release()
c.send(release)

end method
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Rule Handler

The Rule Handler class has been extended with two methods commit and release. These methods are
used by a manager proxy or a self-manager, to either agree upon the application of a consistency rule
or to abort this application.

require: a function remplo yee from role names ρ to transition names t
require: a rule name r
require: a function Pemployee from role names ρ to employee proxies pemployee
require: a manager proxy pmanager

declare: a set of enabled employee transition names Tenabled, initially �
method notify(〈ρ,T〉)

if remplo yee(ρ) ∈ T then
Tenabled := Tenabled ∪ {remplo yee(ρ)}
if Tenabled = codom(remplo yee) then
pmanager.notify(〈r, true〉)

end if
else

if Tenabled = codom(remplo yee) then
pmanager.notify(〈r, false〉)

end if
Tenabled := Tenabled \ {remplo yee(ρ)}

end if
end method

method apply()
for each ρ ∈ dom(remplo yee) do
Pemployee(ρ).take(remplo yee(ρ))

end for
end method

method commit()
for each ρ ∈ dom(remplo yee) do
Pemployee(ρ).commit()

end for
end method

method release()
for each ρ ∈ dom(remplo yee) do
Pemployee(ρ).release()

end for
end method
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Manager Proxy

The check method of the Manager Proxy class has been adapted such that it forwards the commit/release
from a managing selector to the appropriate rule handler.

require: a manager channel c
require: a function Hrule from consistency rule names r to rule handlers hrule

declare: a set of enabled consistency rule names Renabled, initially �
method check()

if ¬(c.isEmpty()) then
rapplied := c.receive()
Hrule(rapplied).apply()
c.send(sync)
M := c.receive()
if M= commit then
Hrule(rapplied).commit()

else
Hrule(rapplied).release()

end if
end if

end method

method notify(〈r, i〉)
if i= true then

if r /∈ Renabled then
Renabled := Renabled ∪ {r}
c.send(Renabled)

end if
else

if r ∈ Renabled then
Renabled := Renabled \ {r}
c.send(Renabled)

end if
end if

end method

Self-Manager

The check method of the Self-Manager class has been adapted such that it sends a commit/release
to the appropriate rule handler in order to confirm or abort the application of a consistency rule.

require: a function Hrule from consistency rule names r to rule handlers hrule

declare: a set of enabled consistency rule names Renabled, initially �
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method check()
if Renabled �= � then
rapplied := r | r ∈ Renabled

Hrule(rapplied).apply()
if rapplied ∈ Renabled then
Hrule(rapplied).commit()

else
Hrule(rapplied).release()

end if
end if

end method

method notify(〈r, i〉)
if i= true then
Renabled := Renabled ∪ {r}

else
Renabled := Renabled \ {r}

end if
end method
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Additional PARADIGM Models

This appendix contains all PARADIGM processes, partitions and interaction protocols which are part of
the case study models, but which have not been included in earlier chapters. Combined with the models
shown in the individual case study chapters, the models included in this appendix form complete PA-
RADIGM models. This appendix only contains additional models for Chapters 6 and 7, since the model
of Chapter 8 has been shown in that chapter in its entirety. We present the additional PARADIGM models
without further explanation.

B.1 Additional Models for Chapter 6

TT OFFTT ON
canBeSwitchedToOff

canBeSwitchedToOn

Figure B.1: Process RouteCalculator[AsTTSwitch]

QR ONSR ON
canBeSwitchedToQR

canBeSwitchedToSR

Figure B.2: Process RouteCalculator[AsCMSwitch]
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2D ON3D ON
canBeSwitchedTo2D

canBeSwitchedTo3D

Figure B.3: Process GraphicsRenderer[AsRMSwitch]

RCOffRCon Cleanup
canBeSwitchedToCleanup canBeSwitchedToOff

canBeSwitchedToOn

Figure B.4: Process GraphicsRenderer[AsRCUsageSwitch]

DisabledEnabled

changeable

changeable

changeable changeable

Figure B.5: Process RouteInfoManager[AsReceiverSwitch]
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Figure B.17: Partition AsRouteSender for Process RouteCalculator
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Figure B.19: Partition AsRunnable for Process RouteCalculator: Subprocess Paused
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Figure B.21: Partition AsRunnable for Process GraphicsRenderer: Subprocess Paused
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Figure B.22: Partition AsActionReceiver for Process GraphicsRenderer: Subprocess Active
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Figure B.23: Partition AsActionReceiver for Process GraphicsRenderer: Subprocess Receiving
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Figure B.24: Partition AsRouteReceiver for Process GraphicsRenderer: Subprocess Active
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(AI1) ActionInfoManager : Idle
get data from S−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Getting data

∗ RC[AsActionSender] : Active
canSend−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Sending

(AI2) ActionInfoManager : Getting data
send data to R1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Sending data to R1

∗ RC[AsActionSender] : Sending
has sent−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active,

GR[AsActionReceiver] : Active
canReceive−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Receiving

(AI3) ActionInfoManager : Sending data to R1
send data to R2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Sending data to R2

∗ GR[AsActionReceiver] : Receiving
hasReceived−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active,

VS[AsActionReceiver] : Active
canReceive−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Receiving

(AI4) ActionInfoManager : Getting data
send data to R2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Sending data to R2

∗ RC[AsActionSender] : Sending
has sent−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active,

VS[AsActionReceiver] : Active
canReceive−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Receiving

(AI5) ActionInfoManager : Getting data
[ to Idle ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

∗ RC[AsActionSender] : Sending
hasSent−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active

(AI6) ActionInfoManager : Sending data to R1
[ to Idle ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

∗ GR[AsActionReceiver] : Receiving
hasReceived−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active

(AI7) ActionInfoManager : Sending data to R2
[ to Idle ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Idle

∗ VS[AsActionReceiver] : Receiving
hasReceived−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Active

Table B.26: Consistency Rules anchored to Interaction Protocol ActionInfoProtocol
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B.2 Additional Models for Chapter 7
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Samenvatting

Centraal in dit proefschrift staat het begrip interactie – wederzijds beïnvloedend gedrag. In heden-
daagse computersystemen speelt interactie een steeds belangrijker rol. Software wordt meer en meer
ontwikkeld als een verzameling zelfstandig werkende componenten die services aanbieden aan andere
componenten. Iedere component kent een eigen “levenscyclus” – hij wordt ontwikkeld, doorontwikkeld,
uitgebreid, gesplitst, samengevoegd, en weer weggegooid. Concrete toepassingen ontstaan doordat
componenten worden samengesteld tot een groter geheel. Zulke toepassingen zijn alleen bruikbaar
als er sprake is van zinvolle interactie tussen de componenten.

De modelleertaal PARADIGM, ontwikkeld aan het Leiden Institute of Advanced Computer Science
(LIACS), is een taal die speciaal geschikt is voor het modelleren en analyseren van interactie. Een PARA-
DIGM-model beschrijft op een abstract niveau het gedrag van individuele componenten, de rollen die de
componenten kunnen spelen in interactie met andere componenten, en de manier waarop die interac-
tie tussen de rollen plaatsvindt. De taal heeft een aantal interessante eigenschappen, niet in de laatste
plaats het feit dat het een executeerbare taal is: PARADIGM-modellen kunnen door een computer wor-
den uitgevoerd. Als bijzondere bijkomstigheid kunnen PARADIGM-modellen zo worden ingericht dat ze
zichzelf veranderen terwijl ze worden uitgevoerd – zo kunnen we ook de levenscyclus van componenten
modelleren.

In dit proefschrift hebben we ons gericht op de vraag welke mogelijke nuttige rollen PARADIGM

kan spelen in het ontwikkelen van software. Om deze vraag te beantwoorden, hebben we drie com-
plementaire activiteiten uitgevoerd. Ten eerste hebben we gereedschappen (software) ontwikkeld om
PARADIGM-modellen op een computer te kunnen uitvoeren en te visualiseren. Ten tweede hebben we de
taal uitgebreid met nieuwe concepten, die ons beter in staat stellen om structuur aan te brengen in de
interactie tussen componenten. Dat vereenvoudigt niet alleen het analyseren van de modellen, maar is
tevens van belang voor een efficiëntere executie van de taal door een computer. Tenslotte hebben we
drie case studies uitgevoerd om de gereedschappen en de nieuwe concepten te kunnen beoordelen. De
case studies tonen aan dat de uitgebreide versie van PARADIGM goed kan worden ingezet voor het model-
leren en analyseren van non-triviale interactie in softwaresystemen. In combinatie met de ontwikkelde
gereedschappen kunnen PARADIGM-modellen rechtstreeks worden gebruikt om concrete softwaresyste-
men mee te realiseren. Tenslotte leent de uitgebreide versie van PARADIGM zich voor het gestructureerd
modelleren van de coördinatie van de evolutie van interagerende softwarecomponenten.
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