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Chapter 1
Introduction

Abstraction may well be an indispensable element in any attempt to formalise real systems.
As N. Dershowitz and Y. Gurevich phrased it ([DG08]), “science in general is impossible
without model[l]ing.” To stress this point, it might be adequate to retrospectively think of the
following lines which belong to A.M. Turing ([Tur54]): “If one wants to treat the problem
seriously and systematically one has to replace the physical puzzle by its mathematical equiv-
alent”. In the context of this thesis, the puzzles are to be understood as complex applications
such as incident management, social simulations, manufacturing applications, electronic auc-
tions, e-institutions, and business to business applications. Their mathematical equivalent is
obtained by adapting an advance in abstraction which is the agent-oriented methodology.

To illustrate key concepts in the agent-oriented paradigm we consider the typical exam-
ple of incident management. In incident management, different organisations are involved,
such as police, fire, and ambulance departments, in order to handle calamity situations. Each
of these organisations can in turn consist in coordinating other organisations or individual
agents. For example, a police department consists in coordinating subdepartments such as
the detective and the administration department, or individual agents such as police officers.
At the level of individual agents, a police officer, for example, needs to coordinate different
actions such as street patrolling and house searching to find criminal evidence. The be-
haviours of the organisations are coordinated by means of social/normative structures, which
are themselves defined in terms of a variety of social concepts and relations like norm, trust,
power, delegation of tasks, responsibilities, access to resources, and communication proto-
cols. In what follows, we shortly describe the key concepts and we highlight, whenever the
case, the problems that might arise and which we dealt with.

Agents An agent is commonly seen as an encapsulated computer system that is situated
in some environment and that is capable of flexible, autonomous action in that environment
in order to meet its design objectives [Woo97]. An important line of research in the agent
systems field is the design of agent languages where the guiding idea is that agent-specific
concepts such as beliefs (representing the environment and possibly other data the agent has
to store), goals (representing desired states), and plans (specifying which sequences of ac-
tions, eventually compositions of other plans, to execute in order to reach the goals) facilitate
the programming of agents. Much of the underlying theory suggesting this particular view is

1



2 Chapter 1. Introduction

based on the work on rational agency, the so-called Belief Desire Intention (BDI) paradigm
[Bra87]. Following this paradigm, several agent programming languages have been devel-
oped with an emphasis on the use of formal methods. In particular, operational semantics
[Plo81] is often used for formally defining the semantics of languages. One feature which is
advantageous to exploit is that operational semantics is easily prototyped. This facilitates, on
the one hand, building an interpreter for the languages, and on the other hand, verification.

Agents and Coordination A multi-agent system (MAS) can be roughly seen as a collection
of interacting agents. One of the challenges in the design and development of multi-agent
systems is to basically define and implement “interaction”. In this respect, two approaches
which aim at achieving interaction are communication and coordination. Communication, in
turn, can be implemented by message passing. Or it can be implemented by channel-based
mechanisms. This latter can be seen as the basis of implementing coordination artifacts.
Such artifacts are usually built in terms of resource access relation in [RVO07], or in terms
of action synchronisation [AAdB+08]. Another reference worth mentioning is the language
Linda [GZ97]. The proposed coordination paradigm has not yet been applied in a multi-agent
setting but to service oriented services, where the notion of data plays a more important role
than synchrony.

Agents and Norms The design of programming languages that support the implementa-
tion of normative systems is an important issue. However, it is still conceptually problematic.
Norms are essential for artificial agents that are to display behaviour comparable to human
intelligent behaviour or collaborate with humans. Norms play a central role in many social
phenomena such as coordination, cooperation, decision-making, etc. There is an increasing
interest in the role of norms in societies, both inside and outside the agent community. Nor-
mative multi-agent systems combine theories and frameworks for normative systems with
multi-agent systems. Thus, these systems provide a promising model for human and artifi-
cial agent coordination, because they integrate norms and individual intelligence. They are a
prime example of the use of sociological theories in multi-agent systems, and therefore of the
relation between agent theory and the social sciences, e.g., sociology, philosophy, economics,
legal science, etc. Regarding penalties, rewards, regulated norms, deontic logic aspects,
the interested reader is invited to check [BvdTV07, BvdT08, BBvdT08, GR08a, GR08b]
for comprehensive discussions. For a game-theoretic approach we refer to the works from
[BvdT07, GGvdT08].

Verification To ensure that the developed multi-agent systems achieve their overall design
objectives and satisfy some global desirable properties, one has to verify both agents and
the organisation artifacts that constitute the coordination and control part of the multi-agent
systems. With respect to verification, some results are as follows: [BFVW06] discusses
model-checking AgentSpeak systems, [BJvdM+06] proposes Temporal Trace Language for
analysing dynamics between agents, [RL07] refers to verifying deontic interpreted systems.



1.1. Thesis Contributions and Structure 3

1.1 Thesis Contributions and Structure
The main contribution of this thesis consists of introducing an executable theory for the re-
finement of multi-agents systems. The effort of introducing the formalism of multi-agent
system refinement is motivated by the need to perform verification. Multi-agent systems
are more complex structures, and their verification tends to become harder. The refinement
relation we aim at is such that the verification of a concrete MAS system reduces to the
verification of the corresponding abstract system.

Technically, the construction of the proposed theory makes use of and integrates different
concepts and results from process theory [vG90], rewriting logic [BM03], and the theory of
timed automata [Alu99]. These concepts will be explained in the sections where they will
appear.

The thesis is organised in three parts. The first part develops a theory of agent refinement.
This is extended in the second part to systems of agents where the notion of coordination
plays the main role. Implementation issues are discussed in the last part.

1.1.1 Part I: “Refinement of Single Agents”

Part I consists of Chapter 2 and 3 and develops an executable theory of agent refinement.
Chapter 2 describes a top-down methodology of agent design by introducing simple but

expressive agent languages, BUnity, BUpL and BUnityK. These languages are inspired by the
already standard GOAL [dBHvdHM07] and 3APL [HdBvdHM99] languages. It is important
to stress from the beginning that the focus is on modelling and not programming agent lan-
guages. The semantics of the languages being introduced is operational. This makes it easy to
prototype the agent languages as rewrite theories. The motto which should become transpar-
ent throughout the chapter advocates prototyping before implementing (complex agent plat-
forms) because prototyping is a quick method for proving that the language definitions fulfill
the initial requirements or have desired properties. The choice to prototype in a rewrite-based
framework is motivated by the fact that rewriting logic (RL) is executable. More precisely, RL
has the advantage that not only is prototyping a straightforward process but it further makes
it possible to execute the prototypes since “computation in rewriting logic is execution”.

The proposed languages represent different levels of abstraction with respect to data and
control. They are meant to illustrate refinement relations which are a natural choice when
defining correctness properties between agents at different specification levels. By correct-
ness it is meant the following statement: “a given implementation is correct with respect to
a given specification when the implementation refines the specification”. Though there are
some general ideas discussed about data refinement between BUnity and BUnityK agents,
the main focus is on control refinement between BUnity and BUpL agents. More precisely,
in this latter case, BUnity is considered as a specification and BUpL as an implementation
agent language. BUpL refines the nondeterminism in the choice of actions inherently present
in BUnity. Control refinement is defined as trace inclusion, namely a BUpL agent is correct
with respect to a BUnity specification if any possible BUpL behaviour (trace) is also a BUnity
one. Control refinement can be encoded in a natural manner as a simulation relation. This
means that the problem of deciding refinement can be reduced to a model-checking problem.
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The main result is a proof-technique for refinement which is extended such that it is suit-
able for the analysis of agents with infinite behaviours. Since some of these behaviours are
unlikely to occur in practice, we provide a declarative approach to modelling fairness as for-
mulae in linear temporal logic (LTL) such that refinement under fairness conditions reduces
again to a model-checking problem.

Chapter 3 focuses on verification techniques. One of these is model-checking, as men-
tioned above. The notable difference with respect to related works (on model-checking
agents) is that here the focus is on refinement, not on arbitrary properties. It is known
that model-checking works well for finite systems, i.e., in an agent-based framework, for
agents with a finite, better said small, number of configurations (observe that this does not
imply that the behaviours are finite). For infinite state agents, however, model-checking is
a semi-decision procedure. Since the languages dealt with are, as one might expect, Turing
complete, a general solution for reachability problems is not possible. Thus one needs to
look for other approaches which would turn adequate to reason about agent programs. One
approach is to define, in the style of [Dij76] a weakest precondition calculus for abstract
agent languages, for instance BUnity, to allow symbolic reasoning about various properties
of agent programs. It is shown that refinement preserves certain properties and this result
brings the benefit that the weakest precondition calculus can be used as an indirect way of
reasoning about the properties of more concrete agent programs, as BUpL agents. For the
reference, there is a variety of weakest precondition calculi designed for imperative and logi-
cal languages [CN00, Jac02, PR98]. A weakest precondition calculus for agent languages as
proposed in this thesis is new.

Another technique being considered in Chapter 3 is to test BUpL agents. It is explained
how to define test cases and how to implement them by means of rewriting strategies. In
the literature, the very basic idea behind testing is that it aims at showing that the intended
and the actual behaviour of a system differ by generating and checking individual executions.
Testing object-oriented software has been extensively researched and there are many pointers
in the literature with respect to manual and automated, partition and random testing, test
case generation, criteria for test selection. A broad overview can be found in [Mey08]. In
an agent-oriented setup, there are less references. A few pointers are [ZTP08, NPT07] for
developing test units from different agent methodologies, however the direction is orthogonal
to the one we consider.

The material from this first part of the thesis is published in [AdB08, AdBvR09]. The
work on refinement appears also in an invited chapter [AB10].

1.1.2 Part II: “Refinement of Multi-Agent Systems”

Part II consists of Chapter 4. It aims at showing how the refinement methodology from Part
I can be extended at a multi-agent level. It begins by proposing different coordination mech-
anisms and by discussing their integration. The essential difference between the proposed
coordination mechanisms is with respect to the dichotomy “action/state”: action-based coor-
dination artifacts are meant to force the synchronisation of action execution, while normative
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artifacts1 are meant to enforce the system to be in a non-violating state.
Action-based coordination is represented by choreographies. Choreographies are seen as

protocols describing when either orderings or synchronisations of the actions executed by
the agents. The concept of choreography and the somehow related concept of orchestration
have already been introduced to web services (to the paradigm Service-oriented Computing),
see [MA07, BBM+07, BBC+09, Mis04] for different approaches. Though in this thesis the
same terminology of choreography is being used, the understanding of this notion is essen-
tially different from the one in the related work since we deliberately ignore communication
issues. The choreography model being defined in Chapter 4 is explicit whereas in the other
works choreography is implicit in the communication protocol. One consequence is that ad-
ditional care needs to be taken with regards to deadlock situations that may appear because of
“mall-formed” choreographies. Being external, the choreography represents, in fact, contexts
while in the other approaches there is a distinction between the modularity and the contextu-
ality of the communication operator.

To have a more expressive framework, it is proposed an extension of choreographies by
incorporating a notion of time as a real value. The extension allows, for example, to im-
pose timing constraints on action execution, or to force independent multiple delays between
actions. Furthermore, the extension is such that there is a clear “separation of concerns”: ac-
tions, as the main building block in timed multi-agent systems, are untimed, while time con-
straints are application-specific. Actions have a natural definition as belief base transformers,
thus having an untimed ontology of actions allows reusability. The main source of inspiration
for timed choreographies is the theory of timed automata. Timed automata has been applied
to testing real-time systems specifications [HLM+08], to scheduling problems [BBL08], and
to web-services [LPSS09]. The use of timed automata in a normative multi-agent setting is
new. One of the advantages of using timed automata is the fact that there exists a suite of
verification tools like UPPAAL [BDL+06], KRONOS [BDM+98]. There is also Real-Time
Maude [ÖM08] which is used as a natural extension to prototype timed-multi-agent systems
as real-time rewrite theories.

The work on normative artifacts has as a starting point a programming language which
was first introduced in [DGMT08] and further extended in [TDM09]. The normative lan-
guage was designed to facilitate the implementation of norm-based organisation artifacts.
Such artifacts refer to norms as a way to signal when violations take place and sanctions as a
way to respond (by means of punishments) in the case of violations. Basically, a norm-based
artifact observes the actions performed by the individual agents, determines their effects in
the environment (which is shared by all individual agents), determines the violations caused
by performing the actions, and possibly, imposes sanctions. The literature on normative con-
cepts is rich and a few pointers are as follows. The early works in [Dig03, FGM03] focus on
social and organisational concepts like norms, roles, groups, responsibility, and mechanisms
like monitoring agents’ actions and sanctioning in order to organise and control the behaviour
of individual agents. Other approaches propose organisation-based coordination artifacts, i.e.,
coordination artifacts that are designed and developed in terms of social and organisational
concepts [DGMT08, TDM08, BvdT08, ERRAA04, HSB02]. The purpose in this thesis is

1For simplicity we refer to artifacts based on counts-as and sanction rules as normative artifacts.
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not to provide more sophisticated normative constructions (i.e., penalties, rewards, regulated
norms, deontic logic aspects). Rather, the normative language in [DGMT08] is being used as
a basic framework which provides the minimal necessary constructions to enable the analysis
of possible operational semantics which can derive from different scheduling strategies for
the application of norms. Each such semantics characterises a specific type of normative sys-
tem. For instance, in the extreme case of an “autocratic agent society” each action an agent
performs is followed by an inspection of the normative rules which might be applicable. At
the other extreme, in a “most liberal society” the monitoring mechanism runs as a separate
thread, independent of the executions of the agents. Furthermore, while in autocratic soci-
eties certain correctness (in terms of safety) properties are modelled by definition, this is no
longer the case in liberal societies with infinite executions. This implies that it is necessary to
consider additional fairness constraints in order to ensure the well-behaviour of the systems.
Such technicalities are discussed in more detail in Chapter 4.

The only extension proposed for the normative language is along the same lines as for
choreographies, that is, a timed extension realised by means of timed automata. The main
benefit is that it makes it possible to time constrain the application of norms, for example,
to signal new violations if certain deadlines have passed, or to cancel sanctions when certain
expiration dates are met. This particular approach is orthogonal on other existing works
which focus on temporal aspects of normative structures like the ones from [ASP09, VFC05].
The difference lies in the understanding of the notion of “time” in the sense that the clocks, as
real-time variables, make time explicit while the related approaches deal with time implicitly.

Thinking of both action and state coordination mechanisms, these are considered as being
orthogonal, each with its own expressiveness power and specific use. Thus, in this view, it
makes little sense to imagine choreographies which play the role of normative rules and vice-
versa. This, however, does not mean that both approaches cannot be integrated in the same
framework. On the contrary, it is thought as being convenient to have different coordination
mechanisms as alternatives provided in a general framework. This is better advocated in
the last part of Chapter 4 where it is also shown, more importantly, that the whole resulting
models, called timed choreographed normative systems, are executable.

The last part of Chapter 4 generalises the theory of agent refinement to multi-agent sys-
tems where coordination is achieved by means of timed choreographies and norms. The
generalisation is such that coordination artifacts do not introduce deadlocks when plugged in
concrete multi-agent systems when they do not cause deadlocks in the abstract systems. This
means that the extension of simulation as a proof-technique for multi-agent systems must be
treated with care. More precisely, it is needed to substitute simulation by a finer notion, the
so-called ready simulation. The next step is to think of agents as elements in an “algebra” of
multi-agent systems where coordination artifacts are operators, acting as contexts precisely in
the following way. Given a coordination artifact c as a context with a hole c[_] and two agents
in a refinement relation, Impl ⊆ Spec, a multi-agent refinement relation⊆MAS is defined such
that c[Impl] ⊆MAS c[Spec], that is after filling the hole with Impl, resp. Spec, refinement is
preserved. In other words, multi-agent refinement is a preorder relation compatible with the
coordination artifact or simply put, a precongruence. Since precongruence is closely rela-
tion to compositionality, one advantage of the proposed approach is that refinement at the
individual level implies refinement at the multi-agent system level. Compositionality is an
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important property since it reduces heavily the verification process: knowing that a property
P holds for Spec, Spec |= P, or equally that c[Spec] |= P and having that Impl refines Spec
one can deduce that P holds also for c[Impl]. Thus having a theory of refinement is a crucial
step towards modular verification of multi-agent systems’ correctness. The material in this
part of the thesis is published in [AdBD09, ADMdB09, AdBD10].

1.1.3 Part III: “Implementation”
The last part of the thesis is divided in Chapter 5 and 6. The motivation is to provide an
illustration that the formalism described in the first two parts is implementable.

Chapter 5 presents a natural and intuitive encoding as executable rewrite theories in
Maude, a rewriting logic software. One of the main advantages of Maude is that it provides a
single framework in which the use of a wide range of formal methods is facilitated. Namely,
being a rewrite-based framework, it makes it is easy to prototype modelling languages with
an operational semantics by means of rewrite theories [MOM00a], and it provides mech-
anisms for verifying programs and language definitions by means of LTL model-checking
[EMS02]. Furthermore, the inherent reflective feature of rewriting logic (and of Maude, in
particular) offers an alternative to model-checking by means of rewrite strategies. With re-
spect to related work, it is worth mentioning that Maude has already been used for prototyp-
ing executable semantics, and the work presented in [SRM09] is an extensive survey. As for
agent-oriented languages, the initiative of modelling agents (a propositional variant of 3APL
[HdBvdHM99]) in Maude is taken in [vRdBDM06] and, in fact, this reference provided the
basis of the current implementation.

Chapter 6 provides a more practical experiment by illustrating the way low-level coor-
dination effectively works within an existing agent platform called 2APL [Das08]. Specifi-
cally, the coordination mechanism in question is realised by means of channel-based connec-
tors designed in the language Reo [Arb04, BSAR06]. Besides Reo, there are several kinds
of channel-based communication models, MoCha [GSAdBB05], Nomadic Pict [WS00], to
name a few. The middleware MoCha, for example, has the advantage of being a real infras-
tructure for distributed implementations. The choice for Reo is motivated by the fact that in
Reo one can use channels not only for communication, but also for building complex con-
nectors by composing channels. Such connectors impose specific coordination patterns on
the execution of individual agents. The idea of using Reo as a coordination language for
agents is not new, it appears first in [DAdB05]. However, what is provided in this thesis is an
executable 2APL platform where it is possible to integrate Reo connectors as the underlying
communication infrastructure and as coordination artifacts in 2APL systems. It is also shown
that the benefits of the integration are in the wreath of existing tools, “The Eclipse Coordina-
tion Tools”2, which facilitates the verification of interaction and communication properties.

The material in this last part of the thesis appears in [RAB10, AAdB+08].

2The Eclipse Coordination Tools are at http://homepages.cwi.nl/ koehler/ect/
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Chapter 2
From Agent Specification to Implementation

In this chapter we first propose a formalisation of what we think that are main concepts in
agents languages, namely, mental states, actions and queries. We then describe a top-down
methodology for the design of agent languages. Our source of inspiration is the classical
design methodology UNITY [CM88] which emphasises the principles:

• “specify little in early stages of design” and

• “program design at early stages should not be based on considerations of control flow”.

Following the above design guidelines, we present a general modelling framework where
we identify two abstraction levels of BDI agents. On the one hand, at a higher level of ab-
straction we introduce the language BUnity as a way to specify “what” an agent can execute.
On the other hand, at a more concrete layer we introduce the language BUpL (Belief Update
programming Language) as implementing not only what an agent can do but also “how” the
agent executes. The agent specification language BUnity is meant to represent an agent in
the first stage of design. One only needs to specify initial beliefs and actions (what an agent
can do). The behaviour of a BUnity agent is given by the set of all possible infinite execu-
tions. These executions are highly nondeterministic because actions may be executed in any
arbitrary order. Since BUnity abstracts away from scheduling policies we have that indeed
BUnity “specifies little”. The agent implementation language BUpL is meant to represent
an agent in the last stage of design. BUpL enriches BUnity constructions with the notions
of plans and repair rules. These refine the early stage nondeterminism by specifying how
and when actions are executed. To illustrate another (orthogonal) refinement we introduce
BUnityK where the accent is on data rather than control.

The semantics of all agent languages we design is operational, given as usually by means
of transition systems. Transition systems have a natural encoding as rewrite systems and
this implies that we can easily prototype BUnity and BUpL as rewrite theories. The main
advantage of doing so is that we obtain executable semantics for free, meaning that we can
execute agent programs by rewriting the corresponding rewrite system. Furthermore, since
rewriting logic is reflective, we can control the agents’ executions by means of strategies.
Strategies work at the meta-level and thus there is a clear separation between the definition
of the semantics and control. This is what we will show in Section 2.6.

11
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2.1 Formalising Basic Concepts of Agent Languages
Agent languages have an underlying logical language which provides the necessary mech-
anisms for agents to reason. In this thesis the underlying logical language we consider is
first-order. For the ease of reference we denote it by L. We recall that a first-order language L
consists of a vocabulary and the set of all formulae defined over it. The vocabulary consists of
logical and non-logical symbols. The logical symbols are the usual connectives, quantifiers
and variables. The non-logical symbols are functions and relations. Functions and relations
have a fixed arity, i.e., number of arguments. 0-arity function symbols are called constants.
We assume the set of constant symbols of L is non-empty. We note that the logical symbols
are fixed a priori while the non-logical ones vary depending on the agent languages and thus
they are the ones identifying and distinguishing them. The non-logical symbols are specified
in a signature denoted by ΣL.

Given a signature ΣL there are two classes of strings that can be defined over ΣL. The
first class represents terms. Terms are built on a vocabulary of function symbols and variable
symbols. They have an inductive definition: (1) any variable and constant are terms; (2) if
f is a function symbol of arity n and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term. Sorted
terms are built from a sorted signature, i.e., an extended signature which contains also a set
of sorts. We use sorts because they are suitable for handling partiality, polymorphism and
errors. We will explain them in more detail when needed. For the rest of the thesis we make
the implicit assumption that agent languages are sorted.

A special set of terms we will work with is the set of ground terms. A term is ground
if and only if it does not have any variables. The set of ground terms over a signature ΣL is
denoted by UL, the Herbrand universe of L1.

Two standard operations on terms are matching and unification. Their definition depends
on the notion of substitution. A substitution is a mapping from variables to terms. Given
a substitution θ which maps a variable x to a term t we abbreviate θ(x) = t as θ = [x/t].
The application of a substitution θ = [x/t] on a term t ′, in symbols t ′θ , consists of replacing
every appearance of x in t ′ by t. A term s matches a ground term t, s ≤? t, if there exists a
substitution (called matcher) such that sθ is syntactically equal to t, sθ = t. Two terms s, t
unify, s =? t, if there is a substitution (called unifier) such that sθ is syntactically equal to tθ ,
sθ = tθ .

The second class represents atoms. Atoms are built on predicate symbols and terms, that
is, if P is a relation symbol of arity n and t1, . . . , tn are terms, then P(t1, . . . , tn) is an atom.
An atom is sorted (respectively ground) when so are the terms defining it. The set of ground
atoms over a signature ΣL is denoted by BL, the Herbrand base of L.

2.1.1. EXAMPLE. Given a language L with a constant c, a function f and a relation P, the
Herbrand universe UL is the infinite set { f i(c) | i ∈ N} and the Herbrand base BL is the
infinite set {P( f i(c)) | i ∈ N}. ♠

Formulae are constructed inductively using the logical connectors in the language L. The
application of substitutions to formulae is similar to the one on terms. An expression is either

1In an algebraic setting the Herbrand universe corresponds to the notion of initial algebra.
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a term or a formula. We use Var(e) to denote the variables from an expression e. If e is a
formula, Var(e) denotes the free variables of e.

When the semantics of logical formulae in the language L is defined with respect to Her-
brand interpretations it is called Herbrand semantics. This is detailed next following closely
the presentation from [Apt88]. We first recall the standard Tarskian notion of interpretation.
Given a first-order language L, an interpretation I for L consists of (1) a non-empty domain,
D, (2) an assignment for each function f of arity n in L of a mapping f I from Dn to D (con-
stants c are assigned elements of D, cI), (3) an assignment for each relation P of arity n in
L of an n-ary predicate PI on D, i.e., a subset of Dn. Herbrand interpretations are obtained
by fixing the universe as being the Herbrand universe. A Herbrand interpretation is uniquely
determined by a subset of the Herbrand base which fixes the assignment of relations. This
allows us to refer to Herbrand interpretations as subsets of BL.

Given a signature ΣL, with its associated Herbrand universe UL and Herbrand base BL,
and a Herbrand interpretation H in BL, Herbrand semantics of a closed formula is defined
inductively on the structure of the formula.

H P(t̄) iff P(t̄) ∈ H

H ¬ψ iff 6 H ψ

H ψ1∨ψ2 iff H ψ1 or H ψ2

H ∃x̄ψ iff H ψ[x̄/t̄] for some t̄ ∈ UL

where the vector notation x̄ represents the set of free variables of ψ , i.e., x̄ = Var(ψ) and
t̄ ∈ UL denotes that any component ti of t̄ is a ground term from UL. The semantics for the
other logical connectives and for the universal quantifier ∀ follows from the combination of
∨, ¬, and ∃.

A Herbrand model for a formula ψ is a Herbrand interpretation which satisfies ψ . A
formula ψ is Herbrand valid, in symbols |= ψ , iff it is satisfied in every Herbrand model.
A formula ψ is a logical Herbrand consequence of φ , in symbols φ |= ψ , if and only if any
Herbrand model satisfying φ satisfies also ψ . Note that ψ is a logical Herbrand consequence
of φ iff φ → ψ is Herbrand valid.

The minimum set of agent-oriented concepts (thus common to all agent languages) should
include a notion of a signature, mental state and action. The signature of an agent A, ΣA, is a
subset of ΣL. ΣA determines the Herbrand universe UA and the Herbrand base BA of A. In
the next sections we focus on two main aspects which relate to mental states and actions: (1)
what is the data agents manipulate? and (2) how is the data transformed by agents?

2.1.1 Mental States
Mental states contain data that agents manipulate. This data we refer to as beliefs. We model
beliefs as sorted ground atoms, i.e., predicates on sorted ground terms. Beliefs are organised
in so-called belief bases which we will denote by B. Each belief base B has a corresponding
signature ΣB which is a subset of ΣA. Since belief bases are sets of ground atoms, they have
a double interpretation: (1) as subsets of the Herbrand base BA and (2) as conjunctions of
ground atoms. This distinction will be useful in Section 2.1.3.
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2.1.2 Actions
Mental states change by means of executing basic actions. Basic actions may be conditional
to allow more expressive constructions. Basic conditional (bc-)actions have the form:

a(t) = (ψ,ξ ) if Cond

with a being an action name, t a list of parameters, ψ (resp. ξ ) a pre- (resp. post-) condition
and Cond an equality-based condition which we detail later. The construction if Cond is not
a required element. When this construction is missing, the action is simply called basic. The
precondition ψ is a first-order formula where the free variables are interpreted existentially.
The post-condition is a set of literals which we also understand as a conjunction when this
notion is more adequate. For clarity, we denote ξ as a set and we will sometimes refer to ξ +

(resp. ξ−) as the set of positive (resp. negative) literals. For a bc-action to be well-defined,
the following condition on variables must be fulfilled:

Vars(ξ )∪Vars(Cond)⊆Vars(ψ)⊆Vars(t)

This requirement has the advantages that it is easy to be checked and that it ensures that the
effects and the equality-based conditions of well-defined actions are ground. The fact that
effects are ground terms is important because, as will be clear from the definition of updates,
it guarantees that the belief bases themselves are collections of ground terms. The fact that
equality-based conditions involve ground terms means that the conditions can be checked
syntactically by matching. We notice that if we were to include Cond in the precondition,
i.e., in the form of ψ ∧Cond, the groundness of equality-based conditions would not have
been trivially ensured anymore.

The mechanism of a bc-action a(t) = (ψ,ξ ) if Cond is simple. Whenever enabled, i.e.:

1. the precondition ψ matches2 the current belief base with a matcher (a ground substitu-
tion) θ

2. the ground condition Condθ is true

3. the ground effect ξ θ is consistent, that is, it does not contain both l and ¬l, where l is
a ground literal

the belief base is updated with the ground effect of the bc-action:

B]ξ θ = B∪{l | l ∈ ξ θ}\{l | ¬l ∈ ξ θ}

where ] denotes the update operation. The result of the update is automatically guaranteed
to be consistent since we add only positive literals.

Both requirements 1 and 2 involve that particular forms of formulae “hold”. We dis-
cuss this in the next section. Requirement 3 is meant to overcome peculiar situations like

2This follows from the fact that the belief bases are ground. It is important to notice that what we solve is a
matching (and not unification) problem. From a complexity point of view, this is important since it is easier to
implement a linear algorithm for matching than for unification.
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the following one. Assume an agent has an initial belief base {P(c),Q(c)} and a basic ac-
tion a(x,y) = (P(x)∧Q(y),{¬S(x),S(y)}). Given that the only matcher is the substitution
[x/c][y/c] the agent is in difficulty: if it first tries to delete S(c) and then to add S(c) the
resulting belief base is {P(c),Q(c),S(c)}, however, if it proceeds the other way around, then
the belief base remains unchanged. One solution is to fix a priority, for example first add and
then delete. However, we find such solutions rather ad hoc and thus we avoid them by forbid-
ding updates with inconsistent ground effects. For a ground effect ξ θ , we use the notation
⊥ ∈ ξ θ to denote that (∃l)({l,¬l} ⊆ ξ θ).

2.1.3 Queries

In what follows we discuss Requirements 1 and 2 by first referring to Requirement 1. Pre-
conditions are understood as implicitly existentially quantifiers, that is, a precondition ψ

represents the formula ∃x̄ψ , where x̄ = Var(ψ). Their purpose is to act as queries for belief
bases. Given an agent A with its associated Herbrand universe UA, the semantics of queries is
with respect to belief bases. Since one way to understand belief bases is that they are subsets
of the Herbrand base BA, we find it natural to define the semantics of queries by means of
Herbrand models. We say that a query ψ holds in a belief base B if and only if B is a Her-
brand model of ψ , in symbols B ∃x̄ψ . We draw attention that the ground terms substituting

x̄ are from UA. For convenience, we use the notation “ B ψθ for some θ : Var(ψ)→ UA”

instead of “ B ψ(t̄) for some t̄ ∈ UA” and “ B ψ” instead of “ B ∃x̄ψ” when it is clear from
the context that ψ is a query.

The definition of Herbrand satisfaction for existential formulae involves choosing “some”
ground terms from the Herbrand universe. It is thus a vague statement, not satisfactory when
the interest is in computability, i.e., when we want to determine precisely those substitutions
θ such that B ψθ . In what follows, we address the same issue as in logic programming

where B ∃x̄ψ has a procedural interpretation “given B, solve ψ” rather than a denotational
one “given B, ψ is true”. To stress the separation we will explicitly use the notation ψ ≤? B
to symbolically represent the procedural interpretation of B ∃x̄ψ .

Solving Queries

In this section the interest is more on how to compute, i.e., on designing an algorithm for
answering queries. Since this is an internal operation upon which the whole agent’s exe-
cution relies, the algorithm, besides being sound and complete, must terminate. Knowing
that the satisfiability of formulae with unrestricted alternations of universal and existential
quantifiers is undecidable, to have an effective algorithm for B ∃x̄ψ , the format of ψ must
be restricted. A natural solution is to think of queries as existential closures of quantifier
free formulae. In such a setup, thinking of B as a conjunction of atoms, B =

∧
n an, and of

ψ as transformed into disjunctive normal form, i.e., ψ =
∨

i ψi and ψi =
∧

j li j , we have the
following reasoning:
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B ∃x̄ψ iff |= B → ∃xψ iff
¬(B → ∃xψ) ≡ B

∧
i¬ψi (*) ≡

B∧ (¬l11 ∨·· ·∨¬l1k) · · ·∧ (¬ln1 ∨·· ·∨¬lnp) is unsatisfiable

where the latter formula is in negation normal form (because B contains only atoms) and all
its variables (i.e., those appearing in the literals) are universally quantified. We know that a
formula in negation normal form containing only universal quantifiers is unsatisfiable iff it is
unsatisfiable in every Herbrand interpretation and, if needed, we refer to [Gal85] for a proof.
That is, if there is a solution, i.e., an answer substitution, for B→∃xψ then this can be found
in the Herbrand universe. Naturally, there may be more solutions (because the belief base is
a set and the goal may be a disjunction). To find one, it suffices to look for those indexes i for
which the set B∪¬ψi is unsatisfiable. By the compactness theorem from first-order logic, we
know that for some literals l of each ψi for which a1∧ . . .an∧¬l is unsatisfiable.

2.1.2. EXAMPLE. Let B be a belief base {on(1,0),on(2,1)} and ψi a query given by the
existential closure of on(x,y)∧ on(y,z)∧¬on(z,x). We have that B ∪¬ψi is unsatisfiable
because we can choose on(x,y) such that on(2,1)∧¬on(x,y) is unsatisfiable with the (partial)
answer being the substitution [x/2][y/1].

The second iteration returns an answer [z/0]. Of course, if in the first step the answer was
[x/1][y/0] (because also on(1,0)∧¬on(x,y) is unsatisfiable), then we had no answer in the
second step, thus an unsuccessful computation.

The answer substitution is [x/2][y/1][z/0] grounds the negative literal¬on(z,y) to on(0,2)
which is not in the belief base thus the answer substitution lead to a success. ♠

To draw a parallel with the standard computations in logic programming, solving ψ in B
is a particular case of SLDNF resolution (Selection rule driven Linear resolution for Definite
clauses with Negation as Failure). It is particular because: (a) B can be seen as a conjunction
of atoms

∧
n an, i.e., a logic program with only ground unit clauses, and (b) ψ is an unre-

stricted goal, a disjunction of general goals, with possible negative literals. We recall that
the basic idea of resolution is to show that the logic program together with the negated goal
is unsatisfiable. A resolution step consists in choosing for each ψi a literal li j which unifies
with the head of a clause in the program. This step is iterated until a resolvent R(t) is found
such that there exists a literal ¬R(t ′) in ¬ψi and t unifies with t ′. In our case, thanks to (a),
solving queries is simpler than resolution: only one iteration step is needed per ψi which
consists of choosing an li j and an an from B. Moreover, since any an is ground, what we
have is a matching and not a unification problem. This justifies our choice to overload ≤? in
the notation ψ ≤? B introduced above. On the other hand (b) makes implementation more
difficult than basic (SLD) resolution because it needs negation as failure (NAF). To conclude,
we can design an algorithm for gathering all possible solutions (matchers) for ψ ≤? B in a
set denoted by Sols and this is what we depict in Figure 2.1. There, ψ

+
i (resp. ψ

−
i ) denotes

the positive (resp. negative) literals from ψi, | l | denotes l stripped of negation and� denotes
an unsuccessful, or better said, failed computation. To compute the substitution from (**)
we only need to compute one element in UB which is not in B. In the line (***) “otherwise”
explicitly means that the atom from l is an element of B | l |∈ B, or that l is not ground
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Sols(B,
∨

i ψi) =
⋃

i Sols(B,ψi)
Sols(B,ψi) = {θ | θ ∈ Sols(B,ψ+

i ) and � 6∈ Sols(B,ψ−i )}
Sols(B,ψ+

i ) =
⋃

l∈ψ
+
i
{Sols(B,(ψ+

i − l)θ) | θ ∈ Sols(B, l)}
Sols(B, l) = {l ≤? an | an ∈ B} (*)

Sols(B,ψ−i ) =

 /0, ∀l ∈ ψ
−
i l is ground and | l |6∈ B

θ , θ ∈ Sols(BB \B,¬l) (∗∗)
�, otherwise (∗∗∗)

Figure 2.1: A Procedure for ψ ≤? B

and that UB equals B3. Further, in line (*) we use l ≤? an to denote the standard syntactic
matching problem. For the sake of completeness, we present below an adaptation of a rule
based algorithm, one of the earliest, due to Huet [Hue76]. The description is based on the one
from [KK99, Chapter 3]. Though not difficult to observe, it is convenient to mention that the

f (t)≤? g(t) = �, if f 6= g [SymbolClash]

f (t1, . . . , tn)≤? f (t ′1, . . . , t
′
n) =

n∧
i=1

ti ≤? t ′i [Decomposition]

t ≤? t ∧Eqs = Eqs [Delete]
t ≤? x∧Eqs = �, if x is a variable [SymbolVariableClash]
x≤? t ∧ x≤? t ′∧Eqs = �, if t 6= t ′ [MergeClash]

n∧
i=1

xi ≤? ti = [x/t], if xi are all different [Match]

Figure 2.2: Syntactic Matching

rules from Figure 2.2 are proved in [KK99] to be sound, complete and terminating. This is
also the case for ψ ≤? B. More precisely, it can be proved that B ∃x̄ψ if and only if B ` ψ ,
where B ` ψ denotes that there is a successful computation of an answer solution, i.e., there
exists a substitution in Sols(B,ψ). For instance, the proof follows by adapting the soundness
and completeness4 for SLDNF. We also notice that, in case of the existence of a solution for

B ∃x̄ψ , B is, in fact, the least Herbrand model for ψ , i.e., the smallest subset of the Herbrand
base where ψ evaluates to true.

Returning to the requirements for updates, we recall that the separation between precon-
ditions and equality-based conditions was intended to ensure that equality-based conditions
are ground which is what Requirement 2 asks for. Thus these can be checked syntactically in

3We note that UB equals B iff there are no function symbols in the agent language L, otherwise UB is infinite, as
we mentioned in the beginning of Section 2.1

4In the general case, due to the so-called floundering programs, the completeness is restricted to allowed pro-
grams [Apt88]. However, this poses no problem in our particular situation where the belief bases are ground unit
clauses because they represent, in fact, allowed programs.
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the theory of equality, denoted by T =, i.e., by means of the equality axioms:

(∀x)(x = x) [reflexivity]
(∀x,y)(x = y→ y = x) [symmetry]
(∀x,y,z)(x = y∧ y = z→ x = z) [transitivity]
(∀x,y)(

∧
xi = yi→ f (x) = f (y)) [function congruence]

(∀x,y)(
∧

xi = yi→ p(x) = p(y)) [predicate congruence]

2.1.3. EXAMPLE. We consider a problem with blocks, where blocks are identified by natural
numbers. An action for moving one block x from block y to block z if there is no block on
neither x nor z can be designed as follows:

move(x,y,z) = ( on(x,y)∧ clear(x)∧ clear(z),
{ on(x,z), ¬on(x,y), ¬clear(z), clear(y) })
i f z 6= 0∧ y 6= z.

with 0 being used to identify the floor where the blocks are situated. Given a belief base
{on(2,1),clear(2),clear(3)}, matching the precondition move(x,y,z) returns the substitution
[x/2][y/1][z/3] which grounds the condition of move to 3 6= 0∧1 6= 3. It is not difficult to see
that the ground conditions reduce to true in T =. ♠

To conclude, the logical framework for solving first-order queries and respectively ground
equality-based conditions requires a first-order computation mechanism which bares resem-
blance with first-order resolution and respectively the axioms of equality. To simplify, for
the rest of thesis we consider that the theory of equality is implicit in the underlying logical
framework of the agent languages we work with. Also, to ease notation, we adopt the shorter
θ ∈ Sols(B,ψ ∧Cond) instead of “θ ∈ Sols(B,ψ) and T = `Condθ”.

2.2 A Specification Agent Language: BUnity
In this section we introduce an abstract agent language which we call BUnity. It is meant to
represents abstract agent specifications and to model agents at a coarse level, using a minimal
set of constructions on top of the notions of mental states and actions which were the subject
of the previous section. A BUnity agent is abstract in the sense that it is oblivious with
respect to any form of specific orderings (for example, action planning). As a consequence,
the executions of a BUnity agent are highly nondeterministic.

2.2.1 Syntax
The mental state of a BUnity agent is simply a belief base. As for actions, besides the basic
conditional ones, BUnity language allows a finer type of construction, triggers, organised in
a set denoted by At . Triggers have the form {φ} . do(a(t)) if Cond where φ is a first-order
formula with only free variables, Cond an equality-based condition, a is a bc-action name and
t the arguments of a such that a(t) can be understood as an “action”-call. Intuitively, triggers
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are like await statements in imperative languages: await φ do a, action a can be executed
only when φ matches the current belief base.

Both bc-actions and triggers have enabling conditions, and this might raise confusion
when distinguishing them. The intuition lying behind the need to consider them both is
that they demand information at different levels. The precondition of a bc-action should be
understood a built-in restriction which internally enables belief updates. It is independent
of the particular choice of application. A trigger is executed in function of certain external
requirements (reflected in the mental state). Thus it is application-dependent. The external
requirements are meant to be independent of the built-in enabling mechanism. Whether is
agent “A” or agent “B” executing an action a, the built-in condition should be the same
for both of them. Nevertheless, each agent may have its own external trigger for a. This
distinction allows re-usability of bc-actions. For example, the action move from the previous
section is implemented in the same way regardless of initial configurations. On the contrary,
triggers are meant to “trigger” bc-actions precisely in function of the initial configurations:

{on(x,y)∧ y 6= 0} . do(move(x,y,0))

which is meant to allow an unstack move of x from y as long as y is not the floor. This will
turn out to be quite useful later in this section.

A BUnity configuration is a tuple (B, Ab, At), where B is a set of beliefs, Ab is the set
of bc-actions and At is the set of triggers. A configuration is called initial when B is a set
of initial beliefs, usually denoted by B0. A BUnity agent is defined as a pair consisting of a
sorted signature Σ and an initial configuration. The sorted signature gives the sorts and ranges
of operations on the sorts. The sorted signature we have used so far makes use of N and has
only one operation on : N×N→ Pred meaning that on is a predicate taking as arguments two
naturals. We assume N (respectively Pred) to be a pre-defined signature (respectively sort)
accessible to any agent program.

2.2.2 Operational Semantics
Since the work of McCarthy [Mcc62], one long advocated approach to describing changes in
programs is by means of operational semantics. This approach is appealing because it is in-
tuitive (compared to denotational) and because it gives flexibility. The operational semantics
works with labelled transition systems whose states represent data by closed terms over an
algebraic structure, and whose transitions between states are obtained from the collection of
so-called transition rules of the form premises

conclusion . This is also the approach we adopt to define
the semantics of BUnity operationally in terms of labelled transition systems. The states are
represented by belief bases, since only these have a dynamic structure and the only possible
transition denotes the transformation of belief bases:

2.2.1. DEFINITION. [BUnity Semantics] Let (B0, Ab, At) be a BUnity configuration. The
associated LTS is (Σ, B0, L,→), where:

• Σ is a set of states (belief bases)

• B0 is the initial state (the initial belief base)
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• L is a set of ground action terms

• → is the transition relation, given by the rule in Figure 2.3.

φ .do(a) ∈ At if Cond1 a = (ψ,ξ ) if Cond2 ∈ Ab

θ ∈ Sols(B,(φ ∧ψ ∧Condi)) ⊥ 6∈ ξ θ

B aθ→B]ξ θ

(act)

Figure 2.3: The Transition Rule for BUnity

�

We consider the meaning of a BUnity agent defined in terms of possible sequences of
mental states, i.e., the set of all (maybe infinite) computations σ =B0

a1→··· ai→Bi
ai+1→ . . . . The

observable behaviour, Tr(B0), is the set of all traces, i.e., the sequences of actions executed
during computations, from the initial configuration. Our choice to observe actions (and not
states) is motivated by the fact that, in studying simulation, we are interested in what we see
and not how the agent thinks. We take the case of a robot: one simulates his physical actions,
lifting or dropping a block, for example, and not the mental states of the robot.

The transition rule (act) captures the effects of performing the action a. It basically says
that if there is a trigger φ . do(a) and the query φ has a solution in the current mental state
then if the precondition of a matches the current belief base new beliefs are added/deleted
with respect to the effects of a.

We take, as an illustration, the Hanoi towers problem. We assume blocks are identified
by natural numbers. The initial arrangement is of three blocks 1,2,3 is given there: 1 and 2
are on the floor, and 3 is on top of 1. The goal5 of the agent is to rearrange them such that
1 is on the floor, 2 on top of 1 and 3 on top of 2. The only action an agent can execute is to
move one block on the floor, or on top of another block, if the latter is clear. To allow moves
on the floor, the floor is always clear. We deliberately separate between moving to the floor
and moving on a different block in order to have a consistent description of the effects, more
precisely, in order to avoid deleting clear(0).

The example from Figure 2.4 is meant to show another situation where the difference
between bc-actions and triggers matters. On the one hand, it is possible to move a block x
on top of another block z, if x and z are clear; on the other hand, given the goal of the agent,
moves are allowed only when the configuration is different than the final one.

2.2.3 Fair Executions of BUnity Agents
State-transition systems describe only the “safe” behaviours of systems. This means that in
nondeterministic systems that abstract from scheduling policies, some traces are improbable

5We do not explicitly model goals. Please check Section 2.5 for a discussion motivating our choice.
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Σ = {on : N×N→ Pred}

B0 = { on(3,1), on(1,0), on(2,0), clear(2), clear(3) }

Ab = { move(x,y,0) = ( on(x,y)∧ clear(x), { on(x,0), ¬on(x,y), clear(y) } )
move(x,y,z) = (on(x,y)∧ clear(x)∧ clear(z),

{ on(x,z), ¬on(x,y), ¬clear(z), clear(y) } ) i f z 6= 0∧ y 6= z }

At = { ¬(on(2,1)∧on(3,2)) . do(move(x,y,z)) }

Figure 2.4: A BUnity Toy Agent

to occur in real computations. In this sense, the operational semantics (given by transition
rules) is too general in practise: if the actions an agent can execute are always enabled, it
should not be the case that the agent always chooses the same action. Such executions are
usually referred to as being unfair. In order to model live behaviours, we have to augment
systems with fairness conditions, which partition the infinite computations of a system into
fair and unfair computations [Fra86].

For example, we imagine a scenario illustrative for cases where modelling fairness con-
straints is a “must”. For this, we slightly complicate the “tower” problem from the previous
section, by giving the agent described in Figure 2.4 an extra assignment to clean the floor, if
it is dirty. Thus the agent have two alternatives: either to clean or to build. We add a basic
action, clean = (¬ cleaned, {cleaned}). We enable the agent to execute this action at any
time, by setting > as the query of the trigger calling clean, i.e., > .do(clean).

We note that it is possible that the agent always prefers cleaning the floor instead of
rearranging blocks, in the case that the floor is constantly getting dirty. We want to cast
aside such traces and moreover, we want a declarative, and not imperative solution. Our
option is to follow the approach from [MP92]: we constrain the traces by adding fairness
conditions, modelled as LTL properties. Fairness is there expressed either as a weak, or
as a strong constraint. They both express that actions which are “many times” enabled on
infinite execution paths should be infinitely often taken. The difference between them is in
the definition of “many times” which is continuously (resp. infinitely often). Due to the
semantics of triggers, it follows that the choice of executing one action cannot disable the
ones not chosen and thus BUnity agents only need weak fairness.

2.2.2. DEFINITION. [Justice [MP92]] A trace is just (weakly fair) with respect to a transition
a if it is not the case that a is continually enabled beyond some position, but taken only a
finite number of times. �

To model such a definition as LTL formulae we need only two future operators, ♦ (even-
tually) and � (always). Their satisfaction relation is defined as follows:

σ |= ♦φ iff (∃i > k)(si |= φ)
σ |=�φ iff (∀i > k)(si |= φ),
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where s0, . . . ,sk, . . . are the states of a computation σ . By means of these operators we define
weak fairness for BUnity as:

just1 =
∧

a∈Act

(♦� enabled(φ .do(a))→ �♦ taken(a)) .

where enabled and taken, predicates on the states of BUnity agents, are defined as:

B |= enabled(φ .do(a))θ iff a = (ψ,ξ ) if Cond∧θ ∈ Sols(B,φ ∧ψ ∧Cond)

B |= taken(a)θ iff B aθ→B′

Such a fairness condition ensures that all fair BUnity traces are of the form (clean∗

(moveθ)∗)ω , or equally {(cleann (moveθ)m)k | ∀n,m ∈ N,k ∈ N∪{∞}}. We note that the
advantage of a declarative approach to modelling fairness is the fact that we do not need to
commit to a specific scheduling policy as it is the case when implementing fairness by means
of a scheduling algorithm, for example Round-Robin. A scheduling policy would basically
correspond to fixing the exponents n and m.

2.3 From BUnity to BUpL: Refining Control
The BUnity agent described in Figure 2.4 is highly nondeterministic. It is possible that the
agent moves 3 on the floor, 2 on 1, and 3 on 2. This sequence represents, in fact, the shortest
one to achieving the goal. However, it is also possible that the agent pointlessly move 3 from
1 to 2 and then back from 2 to 1.

2.3.1 Syntax
BUpL language allows the construction of plans as a way to order actions. We refer to P as a
set of plans, with a typical element p, and to Π as a set of plan names, with a typical element
π . Syntactically, a plan is defined by the following BNF grammar:

p ::= a(t, . . . , t) | π(t, . . . , t) | a(t, . . . , t); p | p+ p

with ’;’ being the sequential composition operator and ’+’ the choice operator, with a lower
priority than ’;’.

The construction π(x1, . . . ,xn) is called abstract plan. It is a function of arity n, defined
as π(x1, . . . ,xn) = p. Abstract plans should be understood as procedures in imperative lan-
guages: an abstract plan calls another abstract plan, as a procedure calls another procedure
inside its body.

BUpL language provides a mechanism for handling the failures of actions in plans through
constructions called repair rules. A plan fails when the current action cannot be executed.
Repair rules replace such a plan with another. Syntactically, they have the form φ ← p, and
it means: if φ matches B, then substitute the plan that failed for p.

A BUpL configuration is a tuple (B0, Ab, P, R, p0), where B0, Ab are the same as for a
BUnity agent, p0 is the initial plan, P is a set of plans andR is a set of repair rules. A BUpL
agent is a pair of a sorted signature and an initial configuration.
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2.3.2 Operational Semantics
Plans, like belief bases, have a dynamic structure, and this is why the mental state of a BUpL
agent incorporates both the current belief base and the plan in execution. The operational
semantics for a BUpL agent is as follows:

2.3.1. DEFINITION. [BUpL Semantics] Let (B0, Ab, P, R, p0) be a BUpL configuration.
Then the associated LTS is (Σ, (B0, p0), L,→), where:

• Σ is a set of states, tuples (B, p)

• (B0, p0) is the initial state

• L is a set of labels, either ground action terms or τ

• → represents the transition rules given in Figure 2.5.

a = (ψ,ξ ) if Cond ∈ Ab

θ ∈ Sols(B,ψ ∧Cond) ⊥ 6∈ ξ θ

(B,a; p′) aθ→ (B]ξ θ , p′θ)
(act)

(B, pi)
µ→ (B′, p′)

(B,(p1 + p2))
µ→ (B′, p′)

(sumi)

(B,a; p) 6 a→ φ ← p′ ∈R θ ∈ Sols(B,φ)

(B, p) τ→ (B, p′θ)
( f ail)

π(x1, . . . ,xn) := p

(B,π(t1, . . . , tn))
τ→ (B, p(t1, . . . , tn))

(π)

Figure 2.5: BUpL Rules

�

As it was the case for BUnity agents, we consider the meaning of a BUpL agent defined
in terms of possible sequences of mental states, and its externally observable behaviour,
Tr((B, p)), as sequences of executed actions.

The transition rule (act) captures the effects of performing the action a which is the head
of the current plan. It basically says that if θ is a solution to the matching problem B |= ψ

where ψ is the precondition of action a then the current mental state changes to a new one,
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where the current belief base is updated with the effects of a and the current plan becomes
the “tail” of the previous one. The transition rule ( f ail) handles exceptions. If the head of
the current plan is an action that cannot be executed (the set of solutions for the matching
problem is empty) and if there is a repair rule φ ← p′ such that the new matching problem
φ leq?B has a solution θ then the plan is replaced by p′θ . The transition rule (π) implements
“plan calls”. If the abstract plan π(x1, . . . ,xn) defined as p(x1, . . . ,xn) is instantiated with the
terms t1, . . . , tn then the current plan becomes p(t1, . . . , tn) which stands for p[x1/t1] . . . [xn/tn].
In both transitions ( f ail) and (π) we use τ as a special label to denote internal changes in
the agent. This is in order to distinguish such internal aspects from the observable behaviour
represented by ground actions. The transition rule (sumi) replaces a choice between two
plans by either one of them. The label µ can be either a ground action name or a τ step, in
which case B′ = B, and p′ is a valid repair plan (if any).

We take as an example a BUpL agent that solves the same Hanoi towers problem. It has
the same initial belief base and the same basic action as the BUnity agent.

Σ = {on : N×N→ Pred}

B0 = { on(3,1), on(1,0), on(2,0),
clear(2), clear(3) }

Ab = { move(x,y,0) = ( on(x,y)∧ clear(x), { on(x,0), ¬on(x,y), clear(y) } )
move(x,y,z) = (on(x,y)∧ clear(x)∧ clear(z),

{ on(x,z), ¬on(x,y), ¬clear(z), clear(y) } ) i f z 6= 0∧ y 6= z }

P = { p0 = move(2,0,1);move(3,0,2) }

R = { on(x,y)← move(x,y,0); p0 }

Figure 2.6: A BUpL Toy Agent

The BUpL agent from Figure 2.6 is modelled such that it illustrates the use of repair
rules: we explicitly mimic a failure by intentionally telling the agent to move 2 on 1. Similar
scenarios can easily arise in multi-agent systems: imagine that initially 3 is on the floor, and
the agent decides to move 2 on 1; imagine also that another agent comes and moves 3 on
top of 1, thus moving 2 on 1 will fail. The failure is handled by on(x,y)← move(x,y,0); p0.
Choosing [x/1][y/3] as a matcher, enables the agent to move C on the floor and after the initial
plan can be restarted.

2.3.3 Fair Executions of BUpL Agents
Though BUpL agents are meant to reduce the nondeterminism from BUnity agent specifi-
cations, unfair executions are not ruled out because of the nondeterminism in the choices
between plans and/or repair rules. To illustrate this, we assign a mission plan to the BUpL
agent described in Figure 2.6, mission = cleanR + rearrange(2,1,3), where cleanR is a tail-
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recursive plan, cleanR = clean; cleanR, with clean being the action defined in Section 2.2.3.
The plan rearrange generalises the previously defined p0: rearrange(x,y,z) = move(x,0,y);
move(z,0,x). It consists of reorganising clear blocks placed on the floor, such that they form
a tower. This plan fails if not all the blocks are on the floor, and the failure is handled by the
already defined repair rule, which we call r1. We add a repair rule, r2, >← mission, which
simply makes the agent restart the execution of the plan mission.

As it was the case with the BUnity agent from the Section 2.2.3, it is possible, in the above
scenario, that the BUpL agent always prefers cleaning the floor instead of rearranging blocks,
though this is useless when the floor has already been cleaned. Nevertheless, such cases are
disregarded if one requires that executions are fair. The only difference from the fairness
condition imposed on the executions of BUnity agents is that plans need not be continuously
but infinitely often enabled.

We consider two scenarios for defining fairness with respect to choices in repair rules and
plans. The execution of rearrange has failed. Both repair rules r1 and r2 are enabled, and
always choosing r2 makes it impossible to make the rearrangement. This would not be the
case if r1 were triggered. It follows that the choice of repair rules should be weakly fair:

just2 =
∧

p∈P
(♦� enabled(φ ← p)→ �♦ taken(p)) .

The repair rule r1 has been applied, and all three blocks are on the floor. Returning to the
initial mission and being in favour of cleaning leads again to a failure (the floor is already
clean). The only applicable repair rule is r2 which simply tells the agent to return to the
mission. Thus, it can be the case that, though rearranging the blocks is enabled, it will never
happen, since the choice goes for the plan clean (which always fails). Therefore, because
plans are not continuously enabled, their choice has to be strongly fair:

2.3.2. DEFINITION. [Compassion [MP92]] A trace is compassionate (strongly fair) with re-
spect to a transition a if it is not the case that a is infinitely often enabled beyond some
position, but taken only a finite number of times. �

As it was the case with justice, modelling the above definition as a linear temporal logic
formula is straightforward, however we refer to plans instead of actions:

compassionate =
∧

p∈P
(�♦ enabled(p)→ �♦ taken(p))

In the above scenarios enabled and taken are defined similarly as in the case of actions
for the language BUnity. The important observation is that a plan are enabled either when
(1) the precondition of its first action is satisfied or (2) it is contained in the expression of a
repair rule which is applicable. A plan is taken when its first action is taken.

(B, p) |= enabled(pθ ) iff p is a; p′ and a = (ψ,ξ ) if Cond and θ ∈ Sols(B,ψ ∧Cond) (1)
or φ ← p is applicable, i.e., θ ∈ Sols(B,φ) (2)

(B, p) |= taken(pθ ) iff p is a; p′ and (B,a; p′) aθ→ (B′, p′)
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The fairness conditions ensure that all fair BUpL traces are of the form (clean∗ (moveθ)∗)ω

which is exactly the same as in the case of the BUnity agent. This is a positive result, since
we are interested in the fair refinement between the BUpL and the BUnity agent.

2.4 From BUnity to BUnityK: Refining Data
If in the previous section we have proposed BUpL as an extension of BUnity specifications by
means of adding more “control” on the structures, in this section we illustrate a perpendicular
extension of BUnity with respect to “data”. This extension is what we call knowledge bases
and we denote them by Ki with i an index. Knowledge bases can be seen as ontologies,
i.e., immutable collections of verified facts which make it possible to express and solve more
sophisticated queries on the contingent set of beliefs. A knowledge base is the minimal setting
which can be added in a modular way, without breaking the semantics of updates, i.e., adding
(deleting) positive (negative) literals.

The knowledge bases that we think of are first-order logical theories, i.e., pairs of signa-
tures and axioms. Our motivation is practical: there are already standard first-order theories
like Presburger, Integer, Rational, or Real arithmetic, and the theory of Arrays or Lists, for
which there are known results about what is decidable. For an overview, we mention [BM07]
which provides detailed references for results with respect to each theory. These standard
theories facilitate the design of more expressive queries and are meant to provide algorithms
for solving the queries in an efficient way.

We distinguish two main orthogonal directions of making use of knowledge bases. On
the one hand, when the interest is in abstraction, we simply need to use axiomatic extensions
of the theory of equality. For example, to say that two beliefs p(a) and p(b) are the same we
can use a theory with an axiom p(a) = p(b) as a knowledge base. If we were to synthesise in
a few words, we could propose the slogan “abstraction is identification” to say that equations
can be used to identify beliefs, or certain patterns in the belief base. This approach can be
exploited especially in verification by abstraction. For example, equations can be used to
finitely partition infinite domains of state spaces, like dividing naturals into odds and evens.

On the other hand, when the interest is in a more expressive representation, we see again
two uses. Firstly, to define attributes, properties for given function or predicate symbols, we
simply think of K as an equational theory.

2.4.1. EXAMPLE. Let T be an extension of the theory of equality with the following set E of
added axioms:

(∀x,y)( f (x,y) = f (y,x)) [comm]
(∀x,y,z)( f (x, f (y,z)) = f ( f (x,y),z)) [assoc]
(∀x)( f (0,x) = x) [l-id].

Thus E contains the axioms for commutativity, associativity and left identity for the func-
tional symbol f . We call it an ACI-theory. ♠

2.4.2. REMARK. Example 2.4.1 brings a relevant observation with respect to the problem of
solving firs-order queries. We notice that it suffices to think of logical operators as functions
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fulfilling certain properties: ¬ is a unary function, ∧,∨ are binary functions satisfying the
axioms of associativity, commutativity and identity (> for ∧, resp. ⊥ for ∨) to reduce ψ ≤? B
to a variant of an ACI-matching problem. Then we can benefit of the vast set of results from
the theory of semantic matching which are also main blocks in automated reasoning and
theorem proving. To name but a few algorithms for AC-matching we refer to [Eke02, HK99,
Con04]. We only note that in our case we always match against a belief base, which is a flat
(depth 1) variadic term, thus we have a particular ACI-matching problem. The variant is with
respect to the operator corresponding to the logical negation. This requires to be handle with
care because trivially ¬(p(t)) cannot match anything from B because there is no term ¬(_)
in there. One way to deal with negative terms is to introduce additional rules for each term
p(t) representing beliefs: p(t)≤? ¬(p(t)) � and to solve (with the help of the new rules)
the matching problems with negative terms at the end, when these terms should already be
grounded. ♣

2.4.3. EXAMPLE. As another example which will turn out to be useful in a later section, we
consider a knowledge base K consisting of a predefined associative operator "," for lists with
an identity element 0 and a predicate symbol tower with the following axioms:

(∀x : N,y : N,z : List)tower((x,y,z)) = on(x,y)∧ tower((y,z)).
(∀x : N)tower((x)) = on(x,0).

where you used N (respectively List) to denote the sort of natural numbers (respectively lists).
This enables us to construct a trigger:

{¬tower((3,2,1))}.do(move(x,y,z))

which says that the agent is allowed to perform any legal move as long as the configuration
of the blocks is not (3, 2, 1). ♠

In this setting of first-order theories, extending the semantics of queries as described in
Section 2.1.3 is easy. The main observation is that a belief base B and a set of knowledge
bases

⋃
i Ki can no longer be seen as a Herbrand model since clearly the logical theories

representing the knowledge bases may contain variables. This means that we need to define
the satisfaction relation by the standard model theoretic semantics with completion in order
to handle negative queries:

B ∪ B ∪
⋃

i Ki |= ∃xψ iff B ∪ B ∪
⋃

i Ki |= ψθ for some ground substitution θ (1)

where ψ is a query. By logical consequence we can also read (1) as “any model of B ∪ B ∪⋃
i Ki is a model of ∃xψ” and write it as |= B ∪ B ∪

⋃
i Ki →∃xψ .

We assume each theory representing knowledge bases comes with its own validity pro-
cedure, i.e., a set of deduction rules6 which enable us to deduce the validity of a formula.
As an illustration, in the ACI-theory from Example 2.4.1 we can prove that the formula
f (0, f (1,2)) = f (2,1) is valid, by using [assoc], then [l-id] for f (0, f (1,2)) and [comm] for
f (2,1).

6This set implicitly contains the rules ` Ax for any axiom Ax.
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We further assume that each formulae expressible in a theory has a normal form which
can be reached by a finite number of applying the deduction rules. Recalling Example 2.4.3,
we obtain that K,T = ` tower(3,2,1) = on(3,2)∧ on(2,1)∧ on(1,0) by applying twice the
first axiom for tower. We call this the normal or irreducible form of tower(3,2,1) and we
use the notation ↓ to denote it.

With the above considerations, we can describe how to extend the matching problem for
solving queries against belief bases which we detailed in Section 2.1.3 by reasoning modulo
knowledge bases. We write B,

⋃
i Ki ` φ to say that the query φ has a solution in B modulo⋃

i Ki. Formally, we have the following definition:

B
⋃

i Ki ` φ iff
⋃

i Ki, T = ` φ = φ↓ and φ↓ ≤? B (2)

which says that φ can be answered by a matcher in B if and only if there exists a normal form
φ↓ of φ which can be deduced in a combination of knowledge bases where we implicitly
consider the theory of equality. We note that we do not need to explicitly add B in line (2)
because of the way we implemented φ↓ ≤? B in Section 2.1.3.

The immediate question is whether deducing φ = φ↓ is a complete procedure in a union
of theories. To this we can answer by referring to the results from theorem proving and
automatic reasoning which state that completeness is guaranteed under requirements as con-
vexity of the theories. This is what is referred as the Nelson-Oppen method [NO79]. We
also mention [Nip89] as a reference for decidability results under regular theories. As a short
observation, these works are the basis of SAT solvers modulo theories. Thus in practice, the
validity of ∃φ can be answered by feeding it to a SMT solver. To name but a few we refer to
Yices and Barcelogic [NORCR07].

With the new definition of matching modulo knowledge bases, the semantics of BUnityK

is given by straightforwardly modifying the transition rule (act) from Definition 2.2.1 as it
can be seen in Figure 2.7. To simplify notation, we use θ ∈ SolsK(B,(φ ∧ψ∧Cond) in place
of “

⋃
i Ki, T = ` φ = φ↓ and θ ∈ Sols(B,(φ ∧ψ)↓ ∧Cond)”.

φ .do(a) ∈ At a = (ψ,ξ ) i f Cond ∈ Ab

θ ∈ SolsK(B,(φ ∧ψ ∧Cond)) ⊥ 6∈ ξ θ

B aθ→B]ξ θ

(act)

Figure 2.7: The Transition Rule for BUnityK

The fact that we can easily generalise the semantics shows the flexibility of our approach.
Furthermore, we note that the above described mechanism is the best we can do without
breaking the validity of the updating operation. This is because we only add structure to the
reasoning process, leaving the updating operation in itself unchanged.We recall that knowl-
edge bases are immutable. The main argument against allowing the modification of the the-
ories representing knowledge bases can be seen more easily by means of an example. We
consider a knowledge base represented by Presburger theory. We have that deleting an ax-
iom would result in losing completeness while adding some new "axiom" would result in
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losing soundness. One might, however, come with a counterargument to our choice of think-
ing of knowledge bases as being immutable. The counterargument could possibly consist
of the following example. We consider a belief base B = {p(a),q(a)}, a knowledge base
K = {q(x)→ p(x)} with only one axiom saying that if q(x) holds then so does p(x), and
an action act(x) = (q(x),{¬p(x)}). Executing act(a) results in deleting p(a). However, the
query q(x) can still provide a solution that p(a) holds and this might be counterintuitive. To
this we answer that the implementation of act may be seen as erroneous since it asks to delete
an element which can be deduced from the knowledge base. Thus, the implementations of
actions should take into account the information provided by knowledge bases.

We conclude the section by making the short observation that a more expressive agent im-
plementation language can be obtained by simply merging BUnityK and BUpL into BUpLK

and this is what illustrates Figure 2.8, where CR (resp. DR) stands for control (resp. data)
refinement. However, for simplicity, in this thesis we mainly focus on the relation between
BUnity and BUpL.

BUnityK

BUpLK

BUnity

BUpL

CR

DR

DR

CR

Figure 2.8: A Diagram of Agent Languages Refinement

2.5 An Implicit Modelling of Goals

We have deliberately cast aside goals in BUnity and BUpL. This is mainly for simplicity
reasons. The usual way ([dBHvdHM07, DvRDM03]) to explicitly incorporate goals is to fix
a particular representation, for example, as a conjunction of ground atoms (which we might
understand as a special case of a belief base). The corresponding change in the semantics
is to extend the queries of BUnity triggers and of BUpL repair rules such that they do not
interrogate only belief bases but also goals. Additionally, plan calls should be extended such
that goals can trigger plan executions.

Given that our focus is on verification, being able to represent goals implicitly is accept-
able enough in our framework. Furthermore, the expressive power of the languages is not
necessarily decreased. We can, without changing the syntax and the semantics of the lan-
guages, have a declarative modelling of goals as LTL formulae. In such a situation, we would
be interested in any agent execution which satisfies a given goal. This problem can be equally
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stated as a reachability problem and the answer can be provided by verification. More pre-
cisely, model-checking the negation of the goal returns, in fact, a counter-example denoting
a successful trace (leading to the achievement of the goal) in the case that there exists one.

For example, we can define, with respect to the scenario introduced in the previous sec-
tions, the LTL predicates

goal1 = ♦ f act(cleaned)
goal2 = ♦( f act(on(1,0))∧ f act(on(2,1))∧ f act(on(3,2)))

where fact is a predicate defined on the mental states of either BUnity or BUpL agents in the
following way:

(B, p) |= f act(P) iff B |= P.

Model-checking that the property ¬ (goal1∧ goal2) holds in a state reachable from the initial
one returns a counterexample representing the minimal trace clean move(3,0) move(2,1)
move(3,2). This execution leads to a state where both goal1and goal2 are satisfied.

2.6 Prototyping BUpL as Rewrite Theories
So far we described a methodology of designing agent languages. In this section we describe
rewriting logic and we show why it is useful for prototyping agent languages. To anticipate,
the main advantages are that prototyping is easy and that we can both execute and verify agent
programs.

Rewriting logic [Mes92] is a suitable computational framework for specifying, exper-
imenting and developing with domain-specific languages that have operational semantics.
This is mainly thanks to the fact that operational semantics can be faithfully captured as
rewriting logic specifications [MOM00b, SRM09]. More precisely, there is a correspondence
between operational steps in the language definition (i.e., with respect to the transitions giv-
ing the semantics of the language) and computational steps in the corresponding rewriting
logic specification. This result presents some important advantages over the typical situation
when one chooses to implement the designed language using a standard programming lan-
guage like Java, for example. In this case, not only is it non-trivial to build a Java interpreter,
often requiring the use of specific hacks, but also, this process is creating a “gap between
the formal operational semantics of the language and its implementation”. Moreover, with
respect to implementing nondeterministic languages in Java, one needs to basically dedicate/-
commit oneself to a particular choice of scheduler, thus breaking the initial nondeterminism.
On the contrary, using rewriting logic, all of the above difficulties are easily handled. Given
that rewritings are computations, one implication of this agreement between operational and
rewriting semantics is the fact that language definitions can be directly executed. From this
one benefits of the possibility of rapid prototyping, in the sense that the language designer
can experiment with the language definitions by only changing the definitions and thus avoid-
ing spending time on implementation details. Thanks to this aspect of rewriting logic, the
correctness between definitions and implementations is immediate. Furthermore, rewriting
logic is intrinsically nondeterministic, thus ideal for modelling nondeterministic languages
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like BUpL. In what comes next, we illustrate the above affirmations by effectively encoding
BUpL as a rewrite theory. In doing so, we follow closely the methodology from [SRM09].

A rewrite theory is a triple (Σ,E,R) with Σ a sorted signature of functional symbols, E a
set of (possibly conditional) Σ-equations and R a set of Σ-rewrite rules. (Σ,E) form the so-
called sorted equational theory [Mes97]. Rewrite rules can be conditional, thus their general
form is:

l : t→ t ′ i f (
∧

i

ui = vi)∧ (
∧

j

w j : s j)∧ (
∧
k

pk→ qk)

It basically says that l is the label of the rewrite rule t → t ′ which is used to “rewrite” the
term t to t ′ when the conditions on t are satisfied. Such conditions can be either equations
like ui = vi, memberships like w j : s j (that is, w j is of sort s j) or other rewrites like pk→ qk.
Alternatively, conditional rewrite rules can be put in the format of inference rules:∧

i

ui = vi
∧

j

w j : s j
∧
k

pk→ qk

t→ t ′
(l)

and this makes more transparent the connection with transition rules in transition systems.
To have the complete picture, rewrite theories axiomatise transition systems whose states are
ground terms in the initial algebra TΣ/E and whose transitions are specified by the rules from
R. The inference system of rewriting logic which we reproduce in Figure 2.9 allow us to
derive as proofs all the possible computations in transition systems. Given a rewrite theory
R7, the sentences thatR proves are universally quantified rewrites of the form (∀X)(t→ t ′),
with t, t ′ ∈ TΣ(X) obtained by a finite application of the deduction rules.

For R = (Σ,E,R), the notation R ` t → t ′ states that the sequent t → t ′ is provable in R
using the inference rules from Figure 2.9. Intuitively, these could be understood as construc-
tions of computations in the transition system specified by R. The rule Reflexivity enables
idling in a state with no change whatsoever. The rule Equality specifies that states are classes
modulo the equations from E. The rule Congruence allows that the arguments of f to rewrite
in parallel. In the rule Replacement θ is a substitution θ : X → TΣ(Y ) and θ ′ is the substi-
tution obtained from θ by some rewritings of each variable x in X . The rule Transitivity
enables the derivation of longer computations by composing them sequentially.

We draw attention that R ` t → t ′ does not necessarily represent an atomic step since it
may contain complex computations. This means that rewriting logic does not have a built-in
“one-step” rewrite relation. To refer precisely to one-step rewrites, we use the notation→1

which denotes a particular case of rewriting ground terms when Transitivity is disabled and
when there is at least one application of Replacement.

To encode BUpL as a rewrite theoryRBU pL = (ΣBU pL,EBU pL,RBU pL), we need to consider
the syntax and the semantics. To encode the BUpL syntax we make use of order-sorted
signature [GM87]. An order-sorted signature is a sorted signature with additional subsort
declarations in the form s < s′, with s,s′ being sorts, to denote that s is a subsort of s′.

7The reader might notice that we use the same symbol as for the sets of repair rules. However, it will be clear
from the context whatR refers to, thus there is no danger of confusion.
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Reflexivity:
(∀X)t→ t

Equality:

(∀X)t→ t ′

E ` (∀X)t = u E ` (∀X)t ′ = u′

(∀X)u→ u′

Congruence:
(∀X)t1→ t ′1 . . . (∀X)tn→ t ′n
(∀X) f (t1, . . . , tn)→ f (t ′1, . . . , t

′
n)

if f ∈ Fn

Replacement:
∧

x(∀Y )θ(x)→ θ ′(x) (∀Y )Cθ

(∀Y )tθ → t ′θ ′
if r : (∀Y )t→ t ′ i f C ∈ R

Transitivity:
(∀X)t→ t ′ (∀X)t ′→ t ′′

(∀X)t→ t ′′

Figure 2.9: The rules for rewriting logic deduction

The BUpL syntax, in its BNF form, can be seen as an order-sorted signature ΣBU pL having
one operation definition per production, terminals giving the name of the operation and non-
terminals the arity. For example, the productions defining plans as sequential compositions
(respectively sums) can be seen as an algebraic operation which is associative and has nil unit
element (respectively also commutative):

_;_ : Action × Plan→ Plan [assoc id: nil]
_+_ : Plan × Plan→ Plan [assoc comm id: nil]

where Action, Plan are the sorts (corresponding to BUpL non-terminals) in KBU pL and “+”,
“;” are operators in ΣBU pL (corresponding to BUpL terminals). Further, we have relations
between sorts, i.e., subsorts, like Action < Plan. This is because any action is a plan.

The sorted signature ΣBU pL contains also sorts for beliefs and belief bases, denoted Belief
and respectively BeliefBase. There is a natural subsort relation between them, Belief < Be-
liefBase, saying that every belief is a belief base. Similarly, ΣBU pL contains the sorts Literal
and Literals with the subsort relation Literal < Literals. Since a belief is a positive literal we
have the additional subsort relation Belie f < Literal. Further, to construct sets of literals we
use the operator “,” in mixfix notation:

_,_ : Literal × Literals→ Literals [assoc comm id: empty]

Thanks to the subsort relation Belie f < Literal we can overload “,” to construct also belief
bases.

Besides syntax, there are a couple of BUpL operations with a fixed definition. We make
the distinction between two levels of definitions. Updating belief bases, matching queries and
checking the consistency of effects are at the level of the language. We call them language
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dependent or BUpL native. Matching terms and applying substitutions are, on the contrary,
at a meta-language level. They are independent of the language, in the sense they belong
to the underlying logical framework of BUpL. In this section we consider only the language
dependent ones and we leave the more detailed discussion of the meta-level ones for the next
section.

The BUpL native operations are organised in EBU pL. We discuss each of them in turn. The
update ] maps to update : BeliefBase×Literals→ BeliefBase which is equationally defined
as follows:

update(B, empty) = B
update(B, (L,Ls)) = i f neg(L) then update(remove(B,L), Ls)

else update(add(B,L), Ls) f i

where B, L and Ls are variables of sorts BeliefBase, Literal and respectively Literals. The
correspondence with the definition of ] from Section 2.1 is immediate.

The other operation on beliefs is match : BeliefBase× Query→ Substitution. Describing
this operation is a good moment to introduce the notion of reflection, an inherent characteris-
tic of rewriting logic. A reflective logic is a logic in which important aspects of its meta-theory
can be represented at the object level in a consistent way, so that object-level representation
correctly simulates the relevant meta-theoretic aspects [Cla00a]. Using reflection, we have
a clear separation between the theory representing the prototype of BUpL language and the
one representing BUpL agents. We assume that at the meta-level we have a functionality
metaMatch which we describe in the next section. We further consider the relation Belief <
Term to say that any belief is a term. This enables us to simply define the basic case of the
match operation as follows:

match((Bel,B), Bel′8) = metaMatch(T , Bel, Bel′)

where R denotes the meta-representation of the theory where the agent itself is defined and
Bel, Bel′ are the representations of the variables Bel,Bel′ at the meta-level. As we show in
Section 2.6.2, the functionality metaMatch is precisely an implementation of ≤?. In particu-
lar, match((Bel,B), Bel′) defined as above represents the basic case l ≤? an from Figure 2.1
where l should be read as Bel and an as Bel′. Along the lines of the procedure from Figure 2.1,
the other cases follow easily from a case analysis on the inductive structure of queries.

We note that metaMatch is not compulsory however it eases the burden of implementing
match. If it were to not use metaMatch we would have had to provide this facility at the
language level. This implies that the underlying logical framework of any agent language
would have had to be piggybacked on each individual language, thus flattening the so-called
meta-level at object-level. At a finer grain of detail, another consequence is that we would
have had to precisely define what terms are, thus we would have had to fix a priori the set of
all functional symbols that might appear in beliefs. Besides being elegant, the separation be-
tween dependent and independent language functionalities is also more practical as it allows
re-usability and modularity.

Checking the consistency of effects, i.e., that ⊥ 6∈ ξ θ is true, is done by means of a
predicate, i.e., a function with boolean values:

8To simplify, we consider the subsort relation Belief < Query to say that a belief can be seen as a basic query.
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consistent((L,neg(L),Ls)) = f alse.

We remark that the above equation makes use of pattern-matching modulo ACI, since the
constructor “,” for Literals is ACI. There is no need to define consistent totally since we are
only interested in consistent(Ls) 6= f alse, thus in this case we benefit from the possibility of
having partial function definitions in equational theories.

The operational semantics given by the BUpL transition rules maps naturally to rewrite
rules. For example, the transition (act) from Figure 2.5:

a = (ψ,ξ ) if Cond ∈ A θ ∈ Sols(B,ψ ∧Cond) ⊥ 6∈ ξ θ

(B,a; p′) aθ→ (B]ξ θ , p′θ)
(act)

maps to the following rewrite rule:

act : 〈B,a; p′〉 → 〈update(B,E),metaSubstitute(p′,θ)〉
if θ := match(B, pre(a))∧θ 6= noMatch
∧E := metaSubstitute(post(a),θ)∧ consistent(E)

where 〈B, p〉 is the term of sort BpState corresponding to the state (B, p). Though we could
have used the same notation, we explicitly use 〈B, p〉 instead to make it clearer when we work
with transition systems and when with the corresponding rewriting theories. This is only in
this chapter, elsewhere we will use the same notation for simplicity.

Though using the same format as the transition rule (act), the rewriting rule act differs
in the following aspects. First, there is no explicit labelling. This can be achieved by means
of an intermediary configuration but we do not give the details here since it is not important
for the moment. We will, however, discuss the construction when we need it, in Section 3.1.
Second, there is no special handling of the equality-based condition Cond. This is thanks
to the equational deduction underlying rewriting logic. Third, the rule makes use of addi-
tional functions. Two of them, pre, post, are implemented at object-level with the purpose
of returning the pre- (respectively, the post-) condition of a. The other one is the meta-level
functionality metaSubstitute for applying substitutions. Roughly, we use a meta-level func-
tionality in order to avoid an explicit implementation of the underlying logical language of
the agent languages. We discuss this matter more thoroughly in Section 2.6.2.

To illustrate the usefulness of memberships, we describe an adaptation of act to a partic-
ular case of observable actions is:

o-act : 〈B,a; p′〉 → 〈update(B,E),metaSubstitute(p′,θ)〉
if θ := match(B, pre(a))∧θ 6= noMatch
∧E := metaSubstitute(post(a),θ)∧ consistent(E)
∧ a : Ao

where Ao denotes the sort of observable actions. As it will be clear in the next sections, we
need the distinction between internal and observable actions for testing, in order to have a
more expressive framework.

All the other transition rules are encoded as rewrite rules in a similar manner and we do
not further explain them. In what follows, we only need to remember that each transition has
a corresponding rewrite rule labelled with the same name.
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It is not difficult to formally state the correspondence between the operational semantics
for BUpL and the associated rewrite theory. This is precisely in the sense that any BUpL
execution trace is in a one-to-one mapping with a computation in the associated rewrite theory
which we denote byRBU pL. Equally stated, BUpL has executable semantics.

2.6.1. PROPOSITION. SOSBU pL ` (B, p)→∗ (B′, p′) iffRBU pL ` 〈B, p〉 → 〈B′, p′〉.

Proof. By induction on the derivation trees.
Proposition 2.6.1 states that rewritings using RBU pL (together with rewriting deduction)

and BUpL computations coincide, thus we have executable BUpL semantics almost for free.
Having defined BUpL as a rewrite theory RBU pL = (ΣBU pL,EBU pL,RBU pL), the only re-

lated matter which needs to be addressed is “how to prototype BUpL agents”. We explain
this by referring to the BUpL example from Figure 2.6. There we see a set of assignments
denoting the initial configuration of the agent. These assignments map in a straightforward
way as equations in an equational theory Tagent = (Σagent ,Eagent ). We depict it in Figure 2.10.
The only extra definition we need to add to Tagent is T = ’Tagent . This is because the match-
ing described above relies on metaMatch which has T as a parameter denoting the meta-
representation of the theory where the matching should take place.

Σagent =
on : N×N → Pred
B0 :→ Belie f Base
move : N×N×N → Ao

p0 : → Plan
r : → RepairRule

Eagent =
B0 = (on(3,1), on(1,0), on(2,0),clear(3),clear(2),clear(0)),
move(x,y,0) = ( on(x,y)∧ clear(x),

(on(x,z), neg(on(x,y)), clear(y)) ),
move(x,y,z) = ( on(x,y)∧ clear(x)∧ clear(z),

(on(x,z), ¬on(x,y), ¬clear(z), clear(y)) ) i f z 6= 0∧ y 6= z,
p0 = move(2, 0, 1); move(3, 0, 2),
r = (on(x,y)← move(x,y,0); p0)
T = ’Tagent

Figure 2.10: The Equational Theory of the BUpL Toy Example

2.6.1 Executing Agents by Rewriting
Proposition 2.6.1 shows that the BUpL semantics are executable. In this section we illustrate
in turn what it means to execute an agent program via rewriting. We consider an initial
configuration like 〈B0, p0〉 with B0, p0 being the ones defined in Figure 2.10. We can rewrite
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〈B0, p0〉 with the rules from RBU pL. As an example of a execution we consider the following
rewritings:

〈B0, p0〉 →1 〈B0,move(3,1,0); p0〉 →1 〈B1, p0〉

where B1 is the placeholder of:

(on(3,0),on(1,0),on(2,0),clear(2),clear(0),clear(1)).

We describe the rewriting logic deduction behind in more detail. First, the rule Replacement
is applied with r being the label ( f ail), C being the condition of ( f ail), that is, the existence
of an enabled repair rule in Tagent , and θ being [B/B0][p/p0][x/3][y/1] such that Cθ holds.
Next, the rule Replacement is applied with r being the label (act), C being the condition of
(act), and θ being [B/B0][a/move(3,1,0)][p′/p][E/(on(3,0),clear(1),neg(on(3,1)))]. Fi-
nally, the rule Equality is applied 3 times by using the equalities:

update(B0,(on(3,0),clear(1),neg(on(3,1)))) =
update(add(B0,on(3,0)),(clear(1),neg(on(3,1)))) =
update(add(add(B0,on(3,0)),clear(1)),(neg(on(3,1)))) =
remove(add(add(B0,on(3,0)),clear(1)),on(3,1)).

From the latter, by applying 3 more times the rule Equality, we obtain the normal form B1.

2.6.2 A Taste of Rewriting as a Metalanguage
Reflection is a powerful and useful feature which makes it possible to “meta-reason” about
languages represented in a logical language in the same logical framework. As it is also the
case with equational logics and Horn logic, rewriting logic is reflective. The corresponding
reflection theorems for these logics are the subject of [CMP07]. Rewriting logic is reflective
precisely in that there can be defined a universal rewrite theory U and a representation func-
tion (_ ` _) such that for any statement φ true in a rewrite theoryR its meta-representation is
true in U :

R ` φ iff U ` (R ` φ).

In the same way there could be defined U such that U can simulate its own meta-level at
the object-level, and this process can be iterated ad infinitum in a so-called “reflective tower”
[Cla00b]:

R ` φ iff U ` (R ` φ) iff U `U ` (R ` φ) iff . . .

Having an explicit specification of universal theories is of great importance since they can
serve as a foundation which provides built-in facilities for meta-reasoning. Among these fa-
cilities we are interested mainly in using meta constructions at object level. To illustrate this,
we first need to describe a few basic concepts from the meta-theory of rewriting logic. More
precisely, we focus on those particular aspects of an universal meta-theory which make it pos-
sible (1) to directly represent elements from the object level as meta-terms, (2) to use meta-
level operations like matching at object-level, and (3) to control the execution at the object-
level by instrumenting rewrite rules at meta-level. The meta-theory we refer to is the one



2.6. Prototyping BUpL as Rewrite Theories 37

providing the main functionality of the universal theory U from [Cla00b, CM02, CMP07].
For the ease of reference we denote it by META-THEORY and we adapt it following the
presentation from [CDE+07]. In META-THEORY terms are meta-represented by elements
of sort Term. The base cases are given by the subsorts Constant and Variable of the sort
Qid which stands for quoted identifiers9. We assume constants (respectively variables) are
quoted identifiers that contain the name and the sort of the constant (respectively variable)
separated by ‘.’ (respectively ‘:’). For example, ’Bel.Belie f (respectively ’VBel:Belief ) de-
notes the meta-representation of a constant Bel (respectively a variable VBel) of sort Belief.
The inductive case defining terms is as follows:

_[_] : Qid × TermList → Term [ctor]
_,_ : TermList × TermList → TermList [ctor assoc id : empty]

where TermList denotes list of terms and the concatenation operator is declared as being
associative with unit element the empty list and a constructor.

In a similar way, theories are meta-represented as elements of sort Theory. Their defini-
tion is easy, however longer, as it includes the meta-representation of all composing (sub)-
elements of equations and rules. In what follows, we only consider that there is a so-called
descent function upTheory which takes as parameter a rewrite theoryR and returns its meta-
representation. To make notation shorter, we denote upTheory(R) by R. Descent functions
enable us to move between reflection levels, that is, to obtain the meta-representation of an el-
ement at object-level and vice-versa. For example, given the meta-theoryR, we can compute
the meta-representation of a particular term using the descent function upTerm:

upTerm(R,c) = ’c.Sort if c is a constant of sort Sort inR
upTerm(R,v) = ’v : Sort if v is a variable of sort Sort inR
upTerm(R, f (tl)) = ’ f [upTerm(R, tl)] if f is an operator inR.

When R is clear from the context we will use the alternative notation t to stand for up-
Term(R, t). We note that we use the terms “constant” and “variable” only to make the de-
scription more intuitive. Actually, at the meta-level, that is, in META-THEORY, where all
meta-representationsR are contained, there is no distinction between constants and variables
since both are represented by identifiers, with the only difference between them consisting in
using “.〈Sort〉” for denoting constants and “: 〈Sort〉” for denoting variables. The inverse of
upTerm the descent function down which returns from a meta-term t the term t at object-level.

To manipulate meta-representation of terms we use the so-called meta-functions. We con-
sider for example the meta-function metaApply. This function reifies the process of applying
a rewrite rule. More precisely, given a meta-representation of a theory R, of a term t, of a
rule name l and of a substitution θ , metaApply(R, t, l,θ) is implemented as follows:

metaApply(R, t, l,θ) = metaSubstitute(t2,θ1)
if (l : t1→ t2) ∈ R ∧
θ1 := metaMatch(R,metaReduce(R, t),metaSubstitute(t1,θ))

9We assume that Qid provides a construction 〈Qids〉 to denote sets of constants without being algebraically
constructed
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where R represents the rewrite rules from the meta-theory R. To explain it in more detail,
metaApply consists of:

1. normalising t using the equations fromR;

2. matching the normalised t against all rules t1→ t2 identified by l partially instantiated
by θ ; and

3. returning the term resulting from the application of the substitution θ1 (from the match-
ing from (2)) on t2.

The functions metaSubstitute, metaReduce, and metaMatch are discussed below. The
function metaSubstitute applies the meta-representation of a substitution on meta-terms in
the usual inductive way:

metaSubstitute(t, none) = t
metaSubstitute(’c.Sort, θ ) = ’c.Sort
metaSubstitute(’v : Sort, (’v : Sort ← t)) = t
metaSubstitute(’ f [tl], θ ) = ’ f [metaSubstitute(tl, θ )]

where none denotes the empty substitution and (’v : Sort ← t) is the meta-representation of
the substitution [v/t].

The function metaReduce uses the equations from R to obtain the form of a term which
can no longer be simplified:

metaReduce(R, t) = if (t = t ′ ∈ E ∧ θ := metaMatch(R, t, t ′)
then metaReduce(R, metaSubstitute(t ′, θ )) else t fi.

where E represents the equations from the meta-theoryR. If E is Church-Rosser (confluent)
and terminating then the computation is guaranteed to terminate.

As it is the case with the usual term matching algorithm which we referred to by using
the notation “≤?” in Section 2.1, the definition of metaMatch follows from a case analysis,
however, for meta-terms:

metaMatch(R, t1, t2) =


c1 ==T c2 i f ∧i∈{1,2}ti = ’ci.Sort
(’v : Sort← t) i f t1 = ’v : Sort
metaMatch(R, tl1, tl2) i f ∧i∈{1,2}ti = ’ f [tli]
noMatch, otherwise

The above definitions of metaReduce and metaApply rely on the existence of a substitution
θ , thus they only provide a partial characterisation. To make it total, it suffices to define their
values as being a constant term failure for the cases when metaMatch returns noMatch.

The reflection theorems which apply to the universal theory allows us to have the follow-
ing equivalences ensuring the correctness of further using the meta-functions defined above:

2.6.2. PROPOSITION. LetR be a theory, t and t ′ be terms, and θ be a substitution. We have
that the following equivalences hold:

• META-THEORY ` metaReduce(R, t) = t ′ iffR ` t = t ′

• META-THEORY ` metaMatch(R, t, t ′) = θ iffR ` t = t ′θ .
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2.6.3 A Strategy Language
The meta-level functionalities are the main building blocks needed to define rewrite strate-
gies languages in a declarative manner. However, the details of the meta-level functionalities
which are used in the definition of strategy are not necessary to follow this section, it suffices
to assume their existence. The section can be also read without the details of the implemen-
tation of the strategies themselves. What we want, in the end, to stress, is the form of the
strategy expressions. This is what is important to remember to understand Section 3.4 where
we make more heavy use of strategies.

The main advantage of designing a strategy language is that it facilitates the use of meta-
level functionalities at object level. The strategy language we refer to has been introduced
in [EMOMV07]. For brevity we denote the strategy language by S. We briefly describe
its formalisation in what follows and refer to [MOMV09] as the underlying source of the
description. We consider R = (Σ,E,R) to be a rewrite theory and a term t which can be
rewritten by the rewrite rules from R. Given a strategy expression s in S, the application of s
to t is denoted by s@t. The semantics of s@t is the set of successors which result by rewriting
t in the associated rewrite theoryRS. More precisely, “@” is a function _@_ : S×TΣ(X)→
2TΣ(X) which is extended to _@_ : S× 2TΣ(X)→ 2TΣ(X) with TΣ(X) being the set of terms in
the rewrite theory R, thus at the object-level. The following assumption is made. For any
term w such that RS ` s@t→∗ w one can define a function sols to denote the set of solution
terms already computed by the strategy. Namely, t ′ is in sols(w) if t ′ is an intermediary term
reached from t to w.

Naturally, S is defined such that there is a correspondence between rewrites in R and
rewrites inRS:

• Soundness. IfRS ` s@t→∗ w and t ′ ∈ sols(w), thenR ` t→∗ t ′.

• Completeness. If R ` t →∗ t ′ then there exists a strategy s ∈ RS and a term w such
thatRS ` s@t→∗ w and t ′ ∈ sols(w).

The simplest strategies we can define in S are the constants idle and fail: idle @ t = {t},
fail @ t = /0. Another basic strategy consists of applying to t a rule from R identified by a
label l, l@t, possibly with instantiating some variables appearing in the rule, l[x/t ′]@t, with
x being a variable in the rule identified by l and t ′ a term. The semantics of l[x/t ′]@t is the set
of all terms to which t rewrites in one step using the rule labelled l where x is substituted by
t ′. To connect to the meta-level functionalities described above, we note that the underlying
implementation of l[x/t ′]@t is based on metaApply, namely:

l[x/t ′]@t0 = {t ′′ | t ′′ := down(metaApply(R, t0, l, [x/t ′]s)) ∧ t ′′ 6= failure
∧ (l : t→ t ′ ∈ R
∧ s := metaXmatch(R,metaSubstitute(t, [x/t ′]), t0) }

where metaXmatch(R, t1, t2) is an extension of metaMatch which returns a substitution when
t1 is successfully matched against of a subterm of t2. Since there might be more subterms
with successful matchings, the application of the strategy l returns sets of terms. Since meta-
functions return meta-representations, we use the descent function down to return the terms
corresponding to the object level.
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Another basic strategy is a test match t ′ s.t. C which returns true if the matching is
successful. As expected, this strategy is based on metaMatch:

match t ′ s.t. C @ t = if s := metaMatch(R, t ′, t) ∧ s 6= noMatch
∧ metaSubstitute(C,s) = true then true else f alse.

where for simplicity we use true to denote the constant boolean true either at the object- or
the meta-level, i.e., true = true.

The language S allows further strategy definitions by combining them under the usual
regular expression constructions: concatenation (“;”), union (“|”), iteration (“*”, “+”). Thus,
given the strategies E,E ′, the strategy (E;E ′)@t is defined as E ′@(E@t), that is, E ′ is applied
to the result of applying E to t. The strategy (E | E ′)@t defined as (E@t)∪ (E ′@t) means
that both E and E ′ are applied to t. The strategy E+@t is defined as

⋃
i≥1

(E i@t) with E1 = E

and En = En−1;E, E∗ = idle | E+, thus it recursively applies itself.
The if-then-else combinators are denoted by E ? E ′ : E ′′ and their definition is (if (E@t)

6= /0 then E ′@(E@t) else E ′′@t fi) with the meaning that if, when evaluated in a given state
term, the strategy E is successful then the strategy E ′ is evaluated in the resulting states,
otherwise E ′′ is evaluated in the initial state. This strategy is further used to define:

not(E) = E ? fail : idle try(E) = E ? idle : idle
test(E) = not(E) ? fail : idle E ! = E* ; not(E)

which have the following meaning. The strategy not reverses the result of applying E. The
strategy try changes the state term if the evaluation of E is successful, and if not, returns the
initial state. The strategy test checks the success/failure result of E but it does not change the
initial state. The strategy E ! “repeats until the end”.

We conclude with the description of a basic strategy combinator for rewriting subterms.
The strategy matchrew t ′ s.t. C by t1 using E1, . . . , tn using En, when applied to a term t,
it first matches the pattern t ′ against the subject t and if successful and furthermore condi-
tion C holds, then it changes according to the subterms ti rewritten under the corresponding
strategies Ei.

matchrew t ′ s.t. C by tE @ t = if s := metaMatch(R, t ′, t) ∧ s 6= noMatch ∧
metaSubstitute(C,s) = true ∧
sol := Πgen-sol(metaSubstitute(t,s), tE)

then { down(metaSubstitute(t,soli)) | 1≤ i≤| sol | }
else /0.

where tE is a strategy list like t1 using E1, . . . , tn using En and Π denotes the cartesian
product of the sets returned by gen-sol. These sets contain substitutions for each ti in the case
the application of Ei is successful. These substitutions are used to compute the solutions of
the whole strategy matchRew.

The function gen-sol is a so-called continuation. The way it works is as follows. First
it checks for each ti if it is a subterm of t with respect to substitution s. This is done at the
meta-level, as the first parameter of gen-sol is a meta-term. If the matching is successful, the
strategy Ei is applied to the substituted subterm.
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gen-sol(t,(ti using Ei)) = if s := metaXmatch(R, ti, t) ∧ s 6= noMatch ∧
metaSubstitute(C,s) = true ∧
soli := Ei@down(metaSubstitute(ti,s))

then map(ti,soli) else /0.

where map builds a set of substitutions by associating to each ti each of the solutions soli j

resulting from applying Ei to the term (at the object-level, see the use of down) corresponding
to the substituted meta-term ti with respect to the meta-substitution s. In this way, gen-sol
returns precisely the set of sets of substitutions {[ti/soli1 ], . . . , [ti/solik ]} in the general case,
that is, for lists with more than one element, by recursively calling itself:

gen-sol(t, tE1tE) = gen-sol(t, tE1) ∪ gen-sol(t, tE)

2.6.4 Controlling Executions with Strategies
In Section 2.6.1 we showed what it means to execute agents by rewriting. In this section we
show how we can strategically rewrite agents by means of rewrite strategies. This has the
advantage that we can control the executions of the agents without changing their code.

We have mentioned that one reason to control the executions is fair behaviours and that
one way to achieve this is by means of fairness constraints expressed by LTL properties. We
now focus on a different situation when control is needed, and that is, for example, when we
want to enforce a certain execution. Thus we are interested not in the properties of the agent’s
behaviour in its totality but in particular executions. This sort of control we can enforce by
means of rewrite strategies. For example, applying the strategy o-act to the initial configura-
tion 〈B0, p0〉 of the BUpL specification from Figure 2.10 has as result /0 because initially the
only possible observable action move(2,0,1) fails. However, applying the strategy fail-act
has as result the set:

{〈B0,(move(3,1,0); p0)〉, 〈B0,(move(1,0,0); p0)〉, 〈B0,(move(2,0,0); p0)〉},

thus the set of all possible states reflecting a solution to the matching problem on(x,y)≤? B0.
Some of these resulting states are meaningless as it is the case with 〈B0,(move(1,0,0); p0)〉
because there is no point in moving a block from the floor to the floor.

A much more adequate strategy is fail-act[θ ← [x/3][y/1]], that is, to explicitly give the
value we are interested in to the variable θ which appears in the rewrite rule fail-act. This
application has a more refined and precise result, in our particular case, a set which contains
only the state〈B0,(move(3,1,0); p0)〉.

Besides forcing an agent to execute a precise action, we can also force an agent reach
a precise mental state without explicitly saying which action can lead to such a state. For
example, applying the strategy:

match 〈B, p〉 s.t. on(2,1) ∈ B

to 〈B0, p0〉 has as result /0 because on(2,1) is not in B0. To synthesise the above in one line
and to also illustrate the usefulness of the strategy combinators we consider the following
strategy definition:
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o-act ? ( match 〈B, p〉 s.t. on(2,1) ) : (fail-act ; o-act[o-a← move(3,1,0))

which has a successful application in two cases: (1) if the agent can perform an observable
action leading to a new configuration where block 2 is on top of 1; (2) if the agent can repair
itself such that it becomes possible to move block 3 on the floor.

Strategies are useful also at a language (and not agent) level. In this respect, the interest is
in experimenting with the nondeterminism in the semantics. For example, BUpL semantics
says nothing about the order of application of sum, fail or o-act. Since more than one may be
applicable at a given point, it is of interest to analyse different scheduling policies. These can
be seen as a first step in defining the so-called agent deliberation cycles. We do not discuss
this issue in more detail here. However, the interested reader can refer to Section 4.4.4 where
we treat a similar topic.

2.7 A Theory of Agent Refinement
In this section we introduce a theory of agent refinement. We do this by taking as working
material the languages from the previous sections where we introduced a top-down design
methodology, from abstract to concrete agent languages. In this setup, a natural question is
with respect to the relation between the abstract and the concrete level, where the abstractness
concerns either control or data. In what follows, we address the problem of when a concrete
BUpL agent program is a refinement of an abstract BUnity agent. More precisely, we focus
on two issues: (1) a formal definition of control refinement as trace inclusion and (2) a proof
technique for refinement by means of the usual notion of simulation. With these being fixed,
we show that two agent programs are in a refinement relation if there is no deadlock in the
automaton corresponding to their “product” with respect to simulation. The product should
be understood as a game the agents play, in the sense that the game advances one step when
both agents can do the same action. A deadlock state is a state from which the game cannot
advance, and is reached when the concrete agent can do an action which the abstract one
cannot mimic. We express deadlock as an LTL property which we can model-check and this
will constitute, in fact, one approach to verification in Chapter 3.

2.7.1 Control Refinement
Refinement is usually defined as trace inclusion, all the traces of the implementation are
contained among the traces of the specification.

2.7.1. DEFINITION. [Control Refinement] Let (B0, A, C) be a BUnity agent with its initial
mental state B0 and let (B0, A, P, R, p0) be a BUpL agent with its initial mental state
(B0, p0). We say that the fair executions of the BUpL agent refine the fair executions of the
BUnity agent ((B0, p0) ⊆ B0) iff every trace of the BUpL agent is also a trace of the BUnity
agent, that is Tr((B0, p0))⊆ Tr(B0). �

Being that we are interested only in fair agent executions, we consider also refinement
in terms of fair trace inclusion where we take into account the definitions of just1, just2 and
compassionate as introduced in the previous sections.
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2.7.2. DEFINITION. [Fair Refinement] Let (B0,A, C) be a BUnity agent with its initial men-
tal state B0 and let (B0, A, P, R, p0) be a BUpL agent with its initial mental state (B0, p0).
We say that the fair executions of the BUpL agent refine the fair executions of the BUnity
agent ((B0, p0)⊆ f B0) iff every fair trace of the BUpL agent is also a fair trace of the BUnity
agent, that is (∀tr ∈ Tr((B0, p0))) (σtr |= compassionate ∧ just2) ⇒ (tr ∈ Tr(B0)∧σ ′tr |=
just1), where σtr (resp. σ ′tr) is any corresponding computation path in the transition system
associated to the BUpL (resp. BUnity) agent. �

We note that in the above definitions we have used the same symbols for both initial belief
bases (B0) and sets of action definitions (A). This is not a restriction, it only simplifies the
notation.

Proving refinement by definition is not practically feasible because the set of traces may
be considerably large. We would need to check that for any solution to matching problems the
corresponding trace belongs to both implementation and specification. Instead, refinement is
usually proved by means of simulation, which has the advantage of locality of search: one
looks for checks at the immediate (successor) transitions that can take place. We recall that
the possible transitions for BUpL and BUnity agents are either τ steps (corresponding to
choices between plans and repair rules) or steps labelled with action terms. Since we are
interested in simulating only visible actions, we refer to weak simulation, which is oblivious
with respect to τ steps.

2.7.3. DEFINITION. [Weak Simulation] Let (B0, A, C) be a BUnity agent with its initial
mental state B0 and let (B0, A, P, R, p0) be a BUpL agent with its initial mental state
(B0, p0). Let Σ, Σ′ be the sets of mental states for each agent (B0 ∈ Σ, (B0, p0) ∈ Σ′) and
let R be a relation, R ⊆ Σ×Σ′. R is called a weak simulation if, whenever B0 R (B0, p0), if
(B0, p0)

a⇒ (B, p), then it is also the case that B0
a→B and B R (B, p). �

2.7.4. DEFINITION. Let (B0, A, C) be a BUnity agent with its initial mental state B0 and
let (B0, A, P, R, p0) be a BUpL agent with its initial mental state (B0, p0). We say that
the BUnity agent weakly simulates the BUpL agent ((B0, p0) . B0) if there exists a weak
simulation R such that B0 R (B0, p0). �

We recall that in general simulation is a sound but not necessarily complete proof tech-
nique for refinement. We take the classical situation from Figure 2.11 as a counter-example.
However, simulation is complete when the simulating system is deterministic (see, for exam-
ple, [vG90]). We make the remark that in the case of finite transition systems it is always
possible to transform a nondetermistic system into a deterministic one by means of a power
set construction ([ATW06] for the case of finite traces, and [Saf89, MS95] for the case of
infinite traces). However, “determinization” is computationally hard (2O(nlogn) in the number
of states [Saf89]) and thus usually infeasible when the focus is on verification.

In our case, the simulating agent is a BUnity one. BUnity agents, though highly nondeter-
mistic with respect to control issues, have the property that they are modelled by deterministic
transition systems. This is because though a BUnity agent makes arbitrary decisions regard-
ing which action to execute, the mental state reflecting the effect of the chosen action is
uniquely determined, thus actions themselves are deterministic. It follows that, in our frame-
work, simulation is not only a sound but also a complete proof technique for refinement.
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Figure 2.11: Refinement but not simulation

2.7.5. PROPOSITION. Let B0 be the initial mental state of a BUnity agent and let (B0, p0)
be the initial mental state of a BUpL agent. We have that ((B0, p0) . B0) if and only if
((B0, p0)⊆ B0).

Proof. The proof follows simply from the fact that BUnity agents are deterministic transition
systems.

To decide simulation we take the following approach. We give a modal characterisation
to simulation by constructing the synchronised product of a BUpL and BUnity agent and by
defining an LTL property on the states of the product which we can effectively model-check
as we shortly explain in Section 3.1.

2.7.6. DEFINITION. [BUpL-BUnity Synchronised Product] Let (B0,A, C) be a BUnity agent
with its initial mental state B0 and let (B0, A, P, R, p0) be a BUpL agent with its initial
mental state (B0, p0). Let also I = (Σ, (B0, p0), Act∪{τ},→) and S = (Σ′, B0, Act,→) be the
corresponding transition systems to the BUpL, resp. BUnity agent. Their left synchronised
product is denoted by I⊗S and is defined as a transition system (Σ×Σ′, 〈(B0, p0),B0〉, Act,
→). The semantics is given by the transition rule in Figure 2.12 where (B1, p) and B2 denote
arbitrary BUpL, respectively BUnity states. �

(B1, p) a⇒ (B′1, p′) B2
a→B′2

〈(B1, p),B2〉
a→ 〈(B′1, p′),B′2〉

Figure 2.12: The Transition Rule for I⊗S

Mathematically, the choice between either first the BUpL agent performs the step and then
the BUnity performs the same step or the other way around is insignificant. However, from
an implementation point of view, it is better to make the transition rule conditional. Only
if the BUpL agent can fire an action the product changes state depending on whether the
BUnity agent can mimic the BUpL agent. We say that the BUpL agent drives the simulation.
We further say that if the BUnity agent can execute the same action, the product reaches a
“good” state. Otherwise, the product is in a deadlocked state.
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2.7.7. DEFINITION. [Deadlock] Let O be the property ((B1, p) a⇒ (B′1, p′) ∧ B2 6
a→). The

state 〈(B1, p),B2〉 has a deadlock when O holds. That is:

〈(B1, p),B2〉 |= O iff (B1, p) a⇒ (B′1, p′) ∧ B2 6
a→.

We say that the product is deadlock-free if it has no deadlocks. �

We note that we make the difference between a deadlocked and a terminal product state,
where the only possible transition for the BUpL agent is the idling transition. We further
make the remark that, since it basically depends on the BUnity agent being able to perform a
certain action, the definition of deadlock introduces asymmetry in the executions of the BUpL
and BUnity product.

2.7.8. PROPOSITION. Let (B0, A, C) be a BUnity agent with its initial mental state B0 and
let (B0, A, P, R, p0) be a BUpL agent with its initial mental state (B0, p0). We have that
the BUpL agent refines the BUnity agent ((B0, p0) ⊆ B0) iff 〈(B0, p0), B0〉 |= �¬O, where
〈(B0, p0),B0〉 is the initial state of the BUpL-BUnity left synchronised product.

Proof. Since the proof is basically a simplification of the one we present for Theorem 2.7.9,
we leave it to the reader.

In what follows we focus on the “fair” version of Proposition 2.7.8.

2.7.9. THEOREM. Let (B0, A, C) be a BUnity agent with its initial mental state B0 and let
(B0, A, P, R, p0) be a BUpL agent with its initial mental state (B0, p0). We then have
that the BUpL agent fairly refines the BUnity agent ((B0, p0) ⊆ f B0) iff 〈(B0, p0),B0〉 |=
compassionate ∧ just2→ just1∧�¬O, where 〈(B0, p0),B0〉 is the initial state of the BUpL-
BUnity left synchronised product.

Proof. We recall that an LTL property holds in a state s if and only if it holds for any
computation path σ beginning with s.
“⇒”:
Assume that 〈(B0, p0),B0〉 6|= compassionate ∧ just2→ just1∧�¬O. This means that there
exists a computation path (σ ,σ ′) in the BUpL-BUnity product such that σ |= compassionate
∧ just2 (*) and either (1) ♦O or (2) ¬ just1 holds. From (*) we have that tr(σ) is a fair BUpL
trace. From the hypothesis (B0, p0) ⊆ f B0 we have that there exists a BUnity computation
path (which must be σ ′ since BUnity is deterministic) such that tr(σ) = tr(σ ′) and σ ′ |= just1
thus (2) cannot be true. Let us now consider (1). In order to have that ♦O holds for (σ ,σ ′)
there must be a deadlocked state 〈(B, p),B〉 on this path. But this implies that there is a fair
BUpL trace tr(σ)a which does not belong to the set of fair BUnity traces, thus contradicting
the hypothesis.
“⇐”:
Assume that 〈(B0, p0),B0〉 |= compassionate ∧ just2, meaning that any product path is fair
with respect to the BUpL path. We make the remark that we do not need to worry about
the “vacuity” problem (compassionate ∧ just2 being always false) since there always exists
a fair computation path (any scheduling algorithm will provide one). We need to prove that
〈(B0, p0),B0〉 |= just1 (*) and 〈(B0, p0),B0〉 |= �¬O (**) implies fair refinement. We do this
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by proving that (**) implies simulation (thus also refinement). Since we have (*), the product
paths are also fair with respect to BUnity.

We construct a relation R containing all pairs of BUpL and BUnity reachable states and
we prove R is a simulation relation. Let R = {((B, p),B) | 〈(B0, p0),B0〉 →∗ 〈(B, p),B〉}.
Let ((B, p),B) ∈ R s.t. (B, p) a⇒ (B′, p′). It is then the case that also B a→ B′ otherwise
〈(B, p),B〉 |= O. We further need to prove that 〈(B′, p),B′〉 is in R. This is, indeed, true
since (B0, p0),B0〉 →∗ 〈(B, p),B〉 a→ 〈(B′, p),B′〉 thus 〈(B′, p),B′〉 is a reachable state of the
product.

2.7.10. REMARK. Refinement does not necessarily imply fair refinement. We consider a
BUpL agent which can continuously perform only action a while the BUnity specification
can additionally perform b. Refinement trivially holds ({aω } ⊂ {(a∗b∗)ω }) however aω is
unfair with respect to BUnity. ♣

We consider, for example, the BUpL and BUnity agents building the ABC tower. Any
visible action that BUpL executes can be mimicked by the BUnity agent, thus in this case
BUnity simulates BUpL and refinement is guaranteed. If we now pose the question whether
fair executions of the BUpL agent refine fair executions of the BUnity agent, we have that,
conforming to Theorem 2.7.9, the answer is positive if the formula (compassionate ∧ just2)
→ (just1 ∧�¬O) is satisfied in the left product. This is because the traces of the product are
of the form (clean∗ (moveθ)∗)ω and thus satisfying the fairness constraints for both BUpL
and BUnity.



Chapter 3
Verification Techniques

In this chapter we introduce several approaches to the verification of agent programs. We
mainly focus on control refinement. In this respect, the simulation technique introduced in
Section 2.7.1 can be seen as one way to verify agent correctness. Being that the technique
can be reduced to model-checking, as we discuss in Section 3.1, this approach works fine,
but for finite (small) state agents. As for infinite (large) state agents, it is a semi-decidable
procedure: if the agents are not in a refinement relation then the procedure stops with a
counter-example showing an example of a trace ending in a deadlock state. If, however, the
agents are in a refinement relation then the procedure never stops. Infinite state agents can
be understood as agents with maintenance goals, thus, their verification might be an issue of
concern. To address it, we first consider in Section 3.2 whether there is a decision procedure
for simulation. The answer to this issue is negative since we can reduce it to the halting
problem for Minsky machines which is well-known to be undecidable ([Min61, SS63]). In
fact, we can show more, namely that the languages are Turing powerful, thus also problems
like reachability and (uniform) termination are undecidable since we can reduce them to
undecidable properties for Turing machines.

Due to the above negative results, we need to tackle the verification of infinite state agents
differently. Following classical approaches like in [CM88], we define a weakest precondition
calculus for BUnity. This permits a more syntactical analysis. More precisely, we compute
assertions about agent programs by simply looking at the specifications of actions, indepen-
dent of the initial configurations. This is a crucial difference with respect to model-checking
where at each step a next configuration is computed. Since we do not need to run the agent
program, the method is naturally applicable to infinite state agents. The main use of a weakest
precondition calculus for BUnity is to prove safety and progress properties. By definition, the
refinement preserves properties, in the sense that any property of a BUpL agent is a property
of the BUnity agent as well. This allows us to study the properties of BUpL by deriving
properties of BUnity. The advantage here lies in the fact that there is no longer needed to
explicitly verify the concrete BUpL agent, which might be, in principle, harder since BUpL
structures are more sophisticated compared to BUnity.

Another orthogonal direction with respect to model-checking and the weakest precondi-
tion calculus is testing and this is the subject of Section 3.4. With respect to the calculus,
testing is a semantical method. It focuses more on the “state-explosion” problem. We recall
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that agent programs can be highly non deterministic and this can give rise to a large state
space. Sometimes, exploring all of them like when model-checking, is unfeasible. This is
why we propose a testing methodology where we define test cases as deterministic protocols
specifying a plausible/possible agent execution. We implement them as test drivers by means
of rewrite strategies, thus having a clear distinction between agent execution and control. This
separation is important since it provides us with a “clean” way to “force” a different execution
by simply defining a new test driver instead of changing the code of the agent itself.

3.1 Model-Checking Control Refinement

The decision procedure for simulation from Section 2.7.1 reduces to model-checking the
BUpL-BUnity product for the absence of deadlock. In this section we explain how we can
effectively model-check refinement via rewriting. To do this, we follow closely [Mes92,
EMS02]. An important observation is that the models of rewrite specifications are, roughly,
transition systems which can naturally be adapted to Kripke structures. We explain this in
more detail by first focusing on the the affirmation that the models of rewrite specifications are
roughly transition systems. We already mentioned in Section 2.6 that rewrite specifications
axiomatise transitions systems. In what follows we give a more precise explanation. We
recall that rewrite rules are meant to model concurrency and nondeterminism, thus, in general,
algebras are not a suitable model choice for rewrite theories. This means that rewriting logic
does not have initial algebraic semantics. Adequate models are instead transition systems
which capture the dynamics and the operational semantics of rewrite rules. Given a rewrite
theoryR= (Σ,E,R) a transition system L(R) is constructed by mapping states to equivalence
classes [t]∈ TΣ/E(X) and transition relation is given by the set of deduction rules together with
the rewrite rules in R. L(R) satisfies the sequent t → t ′ if and only if there is a computation
[t]⇒ [t ′].

To describe the association of a Kripke structure to a rewrite specification we first recall
that Kripke structures are labelled transition systems specialised such that their main use is
in verification. Basically, the specialisation consists in associating to each state a set of prop-
erties in terms of atomic propositions. Given a rewrite specification R with its model L(R),
the associated Kripke structure K(R) extends the transition system L(R) by incorporating
(1) a predefined sort State to Σ (we denote the new signature Σ′) and (2) a labelling function
mapping each state [t] ∈ TΣ′/E to the set of state predicates that hold in [t]. The detailed con-
struction can be found in [EMS02]. In this way, model-checking can be used for verifying
LTL properties explicitly for rewrite specifications. In particular, for a formula φ ∈ LTL,
K(R), [t0] |= φ states that the rewrite specificationR and the initial state [t0] satisfy φ .

With the above, to model-check refinement in our framework, it suffices (1) to prototype
the BUpL-BUnity product as a rewrite theory and (2) to express the deadlock as a state prop-
erty. The latter comes easily from Definition 2.7.7. In what follows we discuss (1). Mapping
the transition rule giving the semantics of the BUnity-BUpL program to a conditional rewrite
rule is almost straightforward using Definition 2.7.6. The only tricky part concerns the pro-
totyping of the conditions. This is because rewriting logic is, unlike structural operational
semantics (SOS), context-sensitive due to the Congruence rule. To see this, we first recall
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the transition rule:

(B1, p) a⇒ (B′1, p′) B2
a→B′2

〈(B1, p),B2〉
a→ 〈(B′1, p′),B′2〉

(sync)

which describes one unique configuration reached under certain conditions. There is no other
possible transition, simply by definition. If we naively encode (sync) into the following
rewrite rule:

sync : 〈(B1, p),B2〉
a→ 〈(B′1, p′),B′2〉 if (B1, p) a⇒ (B′1, p′) ∧ B2

a→B′2,

we may, however, end with unwanted executions corresponding to the situations where any of
the agent configurations can rewrite on its own. We cannot prevent, by default, rewritings of,
for instance, B2, if there are applicable rewrites for this configuration. To see this, it suffices
to take a closer look at the Congruence rule. This observation has the implication that we
should be cautious at the way we handle contexts. In our particular framework, we must seek
that the BUpL and the BUnity agent are executed with respect to the conditions of (sync),
and to forbid their random execution in the product configurations. We can achieve by means
of frozen arguments. This concept is formally introduced in [BM03]. There, the authors
present an extension of rewriting logic called generalized rewriting logic (GRL). GRL theo-
ries contain an additional function for denoting for each operator in the underlying equational
logic signature which arguments are frozen, i.e., the positions under which rewriting is for-
bidden. This addition reflects in the GRL deduction rules Congruence and Replacement in
the precise way that rewritings (resp., substitutions) never occur (resp., apply) below frozen
argument positions in any given operator.

In this setup we take advantage of rewrite theories with flexible context-sensitive rewriting
capabilities by expressing more control of the rewriting under contexts. In our case, we ex-
plicitly declare as frozen [BM03] the operator 〈_,_〉 which we use to represent BUpL-Bunity
configurations in the transition rule (sync)1. In this way we forbid individual rewritings of
the BUpL or the BUnity agent on their own.

What we further need to consider are the following two aspects. We first note that the
above rewrite rule sync is actually incorrect: it contains information about the labels, while
rewriting is oblivious with respect to labelling (*). We address this issue by the solution
we present for the second aspect. This second aspect concerns modelling SOS one-step
semantics ((small)-step semantics. Because of Transitivity, in general R ` t → t ′ does not
represent an atomic step but may involve many complex computations. To explicitly allow
only one step of execution of precisely the same action provided by the label in the transition
(sync), we use auxiliary frozen configurations for each agent:

sync : 〈(B1, p),B2〉 →1 〈(B′1, p′),B′2〉 if (B1, p)→∗ [a] (B′1, p′) ∧ (B2→1 [a] B′2),

where 〈_,_〉 is declared as frozen and [_] _ are the frozen auxiliary configurations for BUpL
and BUnity incorporating also the labelling information and thus solving (*). The construc-
tion [_] contains strings encoding action names modulo τ-steps. By this we mean that the

1For simplicity, we use the same symbol in the rewrite rule corresponding to (sync)
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special label τ play the role of identity in the concatenation operation, i.e., [τ∗a] = [a]. This
allows us to express by x→∗ [a] x any computation like:

x→1 [τ] x . . .x→1 [τ] x→1 [a] x

with an arbitrary number of τ-steps before an a step which ensures that we correctly imple-
ment a⇒ from the transition rule (sync).

The additional constructions [_] _ need to reflect in the rewrite rules corresponding to the
transition rules for action execution. We only include the one for BUpL, as this has already
been described in Section 2.6:

o-act : 〈B,a; p′〉 → 〈update(B,E),metaSubstitute(p′,θ)〉
if θ := match(B, pre(a))∧θ 6= noMatch
∧E := metaSubstitute(post(a),θ)∧ consistent(E)
∧ a : Ao

The change in the rewrite rule o-act is illustrated as follows:

o-act : (B, p)→ [(o-a)θ ] (update(B,ξ θ), . . .) if . . .

where the “. . .” represent the missing information from the original rule. We note that there
is no rewrite rule associated with the configuration [_] _. This ensures that in the rule sync
we force the BUpL configuration to execute precisely one step (up to invisible τ steps). We
remark that the resulting BUpL-BUnity configuration in the right-hand side of the rule sync
contains the usual BUpL, BUnity configurations and not the auxiliary ones, i.e., it makes it
possible to proceed with a new one step of execution for both BUpL and BUnity agents.

3.2 Undecidability results
In this section we address the question whether the proof technique for refinement by means
of simulation works for infinite state agents. We answer this negatively, by first showing
that BUnity is Turing powerful. We do this by adapting the translation of Turing machines
to rewrite systems from [EGZ09, Klo92, BKdV03] which is a simplification of the classical
approach from [HL78].

We recall that a (deterministic) Turing machine is a quadruple (Q,Γ,q0,δ ) where Q is
a finite set of states, q0 is the initial state, Γ is a finite alphabet containing a designated
constant � and δ : Q × Γ → Q × Γ {L,R} is a partial transition function with L (resp. R)
denoting a move to the left (resp. to the right). Informally, a transition δ (q, f ) = (q′, f ′,L)
is read as an instruction “reading symbol f in state q replace f by f ′, go left (or right) and
update the current state as being q′. A configuration of a Turing machine is a pair (q, tape)
where q is a state in Q and tape is the content of the tape, tape : Z → Γ such that the
carrier {n ∈ Z | tape(n) 6= �} is finite. The set of all configurations is denoted by Con fM .
The relation →M on the set of configurations Con fM is defined as (q, tape)→M (q′, tape′)
whenever:

1. δ (q, tape(0)) = (q′, f ,L), tape′(1) = f , and ∀n 6= 0 tape′(n+1) = tape(n), or
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2. δ (q, tape(0)) = (q′, f ,R), tape′(−1) = f , and ∀n 6= 0 tape′(n−1) = tape(n).

The cases correspond to the Turing machine moving its head to the left (resp. right) and
they’re graphically illustrated in Figure 3.1, where ti (resp. t ′i ) stands for tape(i) (resp.
tape’(i)).

t−2 t−1 t0 t1 t2

q

t−2

t ′−1
↓

t−1

t ′0
↓

f ′

t ′1
↓

t1

t ′2
↓

t2

t ′3
↓

q′

(a) An L-Type Move: δ (q, t0) = (q′, f ,L)

t−2 t−1 t0 t1 t2

q

t−2

t ′−3
↓

t−1

t ′−2
↓

f ′

t ′−1
↓

t1

t ′0
↓

t2

t ′1
↓

q′

(b) An R-Type Move: δ (q, t0) = (q′, f ,R)

Figure 3.1: Transitions of (Deterministic) Turing Machines

If one assumes that the set of states and the alphabet are disjoint, one can see configura-
tions (q, tape) as strings w−1

1 qw2 with w1 (resp. w2) being a string over Γ∗ representing the
content of the tape at the left of the state q (resp. to the right) and tape(0) being the first
element to the right of q, i.e., w2(0). More precisely, given a string w−1

1 qw2 we deduce that
the state of the Turing machine is q and that the content of the tape is as follows: tape(−i) = w1(i), 1≤ i≤| w1 |

tape(i) = w2(i+1), 0≤ i <| w2 |
tape(i) =�, i <− | w1 | ∨ i≥| w2 |

Given a Turing machine M = (Q,Γ,q0,δ ) we define a BUnity agent BM as follows. The
signature ΣBM is F = Q∪Γ∪{4} where the symbols q from Q are interpreted as predicates
of arity 2, the symbols f from Γ are interpreted as functions of arity 1, and 4 is a constant
symbol representing an infinite number of blank symbols. We consider that the set of all
possible beliefs, i.e., the Herbrand base of BM , is BB = {q(l,r) | q ∈ Q, l,r ∈ UB} with UB
being T(Γ∪{4}), i.e., the ground terms constructed from the signature represented by Γ∪{4}.
The belief bases pf BM consist of one belief and they change by means of the following basic
actions:

moveR(x,y) = ({q( f (x),y)},{¬q( f (x),y),q′(x, f ′(y))})
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for every move to the right of the Turing machine (δ (q, f ) = (q′, f ′,R)) and respectively,

moveL(x,y) = ({q(g(x), f (y))},{¬q(g(x), f (y)),q′(x,g( f ′(y))}) (3.1)

for every move to the left (δ (q, f ) = (q′, f ′,L)) while reading symbol f . Both moveR and
moveL correspond to the cases when the tape is non-empty and the symbol being read is
non-blank. We now consider the following particular situations:

moveLlb(x,y) = ({q(4, f (y))},{¬q(4, f (y),q′(4,�( f ′(y)))})

for every move to the left (δ (q, f ) = (q′, f ′,L)) on a tape with an empty left hand side and

moveRrb(x,y) = ({q(x,4)},{¬q(x,4),q′( f ′(x),4)})

for every move to the right on a tape with an empty right hand side while reading a blank
symbol (δ (q,�) = (q′, f ′,R)) and

moveLrb(x,y) = ({q(g(x),4)},{¬q(g(x),4),q′(x,g( f ′(4))})

for every move to the left with empty right hand-side while reading a blank (δ (q,�) =
(q′, f ′,L)) and

moveLlrb(x,y) = ({q(4,4)},{¬q(4,4),q′(4,�( f ′(4))})

for every move to the left on an empty tape (δ (q,�) = (q′, f ′,L)).
The terms from UB are meant to represent the content of the tape on the left (resp. on

the right). To effectively translate from terms to tape content, we consider the mapping
ϕ : UB → Γ∗ defined recursively as ϕ(4) = ε and ϕ( f (x)) = f ϕ(x). To make the
connection between BUnity mental states (i.e., belief bases) and configurations of the Turing
machine we consider the mapping φ : BB →Con fM defined as φ(q(l,r)) = ϕ−1(l)qϕ(r)
with l,r ∈ UB.

We can now state the following proposition which says that for any Turing machine M =
(Q,Γ,q0,δ ) we can construct a BUnity agent B′M which simulates M. Basically, B′M is BM
where we fix the initial belief base and we define the set of triggers as {{>} . do(move∗)},
with > denoting the boolean true, and move∗ being the placeholder for any of the move
actions described above. Given the initial state q0 of the Turing machine M, B′M has an initial
belief base B0 = {q0(4,4)}.

To show that B′M simulates M we have to consider three issues: (1) that for any config-
uration c of M there exists a mental state ms of B′M such that φ(c) = ms; (2) that for any
mental state update ms→ ms′ there is a transition φ(ms)→M φ(ms′) of M; and (3) that any
configuration c of M that can be reached from φ(ms) there is a mental state ms′ such that
ms→ ms′ and φ(ms) = c.

3.2.1. PROPOSITION. Let M be a Turing machine. We have that B′M simulates M:

(1) for all c ∈Con fM there exists ms ∈ UB such that φ(ms) = c

(2) for all ms ∈ UB such that ms→ ms′ implies that φ(ms)→M φ(ms′)
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(3) for all ms ∈ UB such that φ(ms)→ c implies that there exists ms′ with ms→ms′ and
c = φ(ms′).

Proof.
(1). follows immediately from the bijectivity of φ .
(2). follows by case analysis. We only consider ms→ms′ by means of a moveL basic action.
All other cases are similar. We further assume that ms is of the form {q(l,r)} with l,r dif-
ferent from 4, i.e., l = g(c1), r = f (c2) and c1,c2 are ground terms in UB. We then have
that φ(ms) = ϕ−1(c1)gq f ϕ(c2) (*). From ms→ ms′ we have that the precondition of moveL
matches ms with a substitution θ . From Equation 3.1 we deduce that θ is [x/c1,y/c2] and
that there is a transition δ (q, f ) = (q′, f ′,L) (**) corresponding to a move to the left in the
Turing machine. The effect of moveL on ms is to change it to ms′ = {q′(x,g( f ′(y))θ}, that
is to ms′ = {q′(c1,g( f ′(c2))}. Thus φ(ms′) is ϕ−1(c1)q′g f ′ϕ(c2) and together with (*) and
(**) we have that ϕ−1(c1)gq f ϕ(c2)→M ϕ−1(c1)q′g f ′ϕ(c2).
(3). is similar to (2). We assume ms = {q(g(c1), f (c2))}, thus we have that φ(ms) =
ϕ−1(c1)gq f ϕ(c2). We further assume that from this configuration the only possible move
is to the left, that is, we consider that the transition is given by δ (q, f ) = (q′, f ′,L). It follows
that φ(ms)→M c where c = ϕ−1(c1)q′g f ′ϕ(c2) which is, in fact, φ(q′(c1,g( f ′(c2))). From
this we conclude that there is a mental state ms′ defined as {q′(c1,g( f ′(c2))} which can be
reached from ms by doing a basic action moveL corresponding to δ (q, f ) = (q′, f ′,L).

From Proposition 3.2.1, the second item, we can show that problems like reachability and
(uniform) termination are undecidable by a reduction to the (uniform) halting problem. By
reachability and (uniform) termination we mean the following:

3.2.2. DEFINITION. [State Reachability and (Uniform) Termination] Given the BUnity men-
tal states ms,ms′ we say that ms′ is reachable from ms if there exist a sequence ms0, . . . ,msn
such that ms = ms0→ ms1 · · · → msn = ms′. We denote this property by reach(ms,ms′).

We say that a BUnity agent with an initial mental state ms is terminating if every execution
from ms is finite. We denote this property by T(ms). Uniform termination is the property that
the agent terminates for any mental state, i.e., UT= (∀ms)T(ms). �

We note that reachability and termination relate to the notion of weak and strong normal-
isation from term rewriting systems. The difference between them is that for reachability we
need to find one possible path leading to a given state while for termination we need to prove
that all paths are finite. We further note that we explicitly distinguish between single and
uniform termination. This is important since the problems lie in different complexity classes,
the universal quantifier in UT classifies the property as Π0

2-complete2, making it harder than
single termination which is Σ0

1-complete.

3.2.3. COROLLARY. For any BUnity mental state ms, we have that T(ms), and respectively
(∃ms′)(reach(ms,ms′)), if and only if M halts on φ(ms), and respectively it halts with final
configuration φ(ms′).

2The interested reader can refer to [EGZ09] for an overview of the arithmetic hierarchy of the complexity of the
undecidable properties.
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Since any BUnity agent is trivially a BUpL agent (with one plan as a choice of all BUnity
basic actions and one repair rule for each BUnity conditional action) the same BUnity unde-
cidability results hold also for BUpL. The fact that BUnity and BUpL are Turing powerful
has also the meaning that the set of BUnity and BUpL executions is recursively enumerable.
From this we have the following proof for the undecidability of refinement.

3.2.4. PROPOSITION. The refinement problem for BUpL and BUnity is undecidable.

Proof. We have that refinement is simulation. Deciding simulation in the context of BUnity
and BUpL reduces to finding an algorithm for the emptiness of recursively enumerable lan-
guages which is undecidable ([HMRU00]).

As a remark, we note that, in the context of the construction of Am, if we think of Q
denoting instructions and fixing Γ = {0,s} for denoting zero and the successor function, we
can imagine the construction of a BUnity agent which simulates a Minsky machine. We then
obtain an encoding like the one used in classical works like [Bör87] for showing the unde-
cidability of query answering in logic programming. We recall that a Minsky machine is a
finite state program consisting of a finite set of instructions which manipulate two counters
by incrementing (type 1.) and decrementing them (type 2.). The type 1. instructions have the
form qi : inc j ; goto(qk) where inc j increments the counter j. The type 2. instructions
have the form qi : if (c1 = 0) then goto(qk) else dec j; goto(qn) where dec j decre-
ments the counter j if its value is nonzero. The BUnity agent is constructed by associating to
each instruction of the Minsky machine of type 1. one basic action:

ai(x,y,k) = ({qi(x,y)}, {¬qi(x,y), qk(s(x),y)})

and to each type 2. instruction two basic actions handling the test on zero:

ai(x,y,k) = ({qi(s(x), y)}, {¬qi(s(x),y), qk(x,y)})
ai(0,y,n) = ({qi(0,y)}, {¬qi(0,y), qn(0,y)})

The same is done for the instructions modifying c2.
Or, taking advantage of conditional actions, we have the following more structured BUnity

program, however at the cost of adding new symbols and basic actions:

B0 = {inst(l0),c1(0),c2(0)}

A = { inc j(x) = ({¬done(l)∧ c j(x)},{¬c j(x),c j(s(x)),done(li)}),
dec j(x) = ({¬done(l)∧ c j(s(x))},{¬c j(s(x)),c j(x),done(li)}),
goto(l′) = ({done(l)},{¬done(l),¬inst(l), inst(l′)})}

C = {{inst(li)}.do(inc(x)), {inst(li)}.do(dec(x))
{inst(li)∧ c j(0)}.do(goto(ln)), {done(li)}.do(goto(lk))}
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3.3 A Weakest Precondition Calculus for BUnity

We recall that proving correctness of BUnity specifications and their refinement using model-
checking techniques requires a reduction to finite models. Therefore, in this section, we intro-
duce a deductive method based on assertions which allow to prove correctness of infinite state
systems. Such proofs in general cannot be fully automated and require human interaction.

The earliest reference to axiomatic semantics is the work on flowcharts by Floyd [Flo67].
The current reference is the subsequent work of Hoare [Hoa69, Hoa72] which proposed a
logical system for proving properties of programs. There, the main concept is of pre-post
formulae {Pre}S{Post} which expresses the correctness of the program fragment S with
respect to Pre and Post. A Hoare theory provides axioms and inference rules to derive pre-
post formulae. Another direction is the one taken by Dijkstra in [Dij76]. This approach
aimed at developing a calculus, and not a logical theory, for reasoning about assertions by
transforming them. Being based on predicate transformers, the approach is somehow closer
to denotational than to axiomatic semantics, however the principles are similar to the ones in
a Hoare theory. The calculus is usually referred to as a weakest precondition calculus. The
main difference with respect to Hoare theories is that the calculus is meant to compute not just
any arbitrary assertion, like one does in a Hoare theory, but the weakest one. This is why we
choose this approach since we see weakest preconditions as being more "interesting" because
they are the most general preconditions and thus we can derive all other preconditions from
them (simply by the consequence rule).

In our framework, the weakest precondition calculus we envisage is meant to compute
assertions about agents without running the agents themselves as it is the case when model-
checking. This means that the computation is independent of any initial configuration. The
main application of the weakest precondition calculus is in reasoning about safety properties
like invariants or about progress properties like leads-to of (maybe infinite) state agents. For
example, we imagine an agent which has a maintenance goal of constructing higher and
higher towers of increasing lengths. Such an agent can be implemented in BUnity by adding
to the set At from Figure 2.4 a trigger like:

{max(x)}.do(move(x+1,z,x)),

where we assume that the move action is modified such that whenever a block x is added on
another of smaller value it records x in the belief base in order to keep track of the maximum
tower constructed so far. For such an agent model-checking a property like the one saying
that towers are sorted, which it is not difficult to check by hand that it holds in all states, never
terminates. It does terminate if there is a state which violates the property we are interested
in. This means that model-checking can still be used in a first phase in order to falsify the
property by finding counter-examples. However, assuming that model-checking does not
terminate in a reasonable amount of time, we need to prove that the property holds by other
means. One possible approach is to use axiomatic semantics in order to reason symbolically
about BUnity agent programs. In an agent setup, an axiomatic semantics defines the meaning
of agents by describing the effects of their actions on assertions about mental states.
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3.3.1 Assertions

Assertions express relevant properties of belief bases. We consider them as first-order for-
mulae extended with equalities. The free variables are to be interpreted as universal, i.e., an
assertion φ represents the formula ∀x̄φ , with x̄ being Var(φ). This is a crucial difference
between assertions and queries as described in Section 2.1.3. In contrast to the semantics of
queries which was defined in terms of Herbrand satisfaction, the semantics of assertions is
defined in terms of Herbrand validity. We say an assertion φ is valid, in symbols |= φ , if and
only if any Herbrand model B in BA satisfies φ , in symbols B ∀φ . As it was the case for
queries, the ground terms substituting x̄ are from UA. We use the same convention as for
queries, that is, we denote “ B φ(t̄) for any t̄ ∈ UA” as “ B φθ for any θ : Var(φ)→ UA”

and “ B ∀φ” as “ B φ” whenever it is clear from the context that φ is an assertion. The
equalities in φθ are interpreted syntactically.

3.3.2 Action Correctness

To deduce properties of agent programs, the assertions are used in two main classes: pre-
conditions and postconditions. Intuitively, an agent is correct with respect to an action a,
a precondition Pre and a postcondition Post if and only if when a is executed in a state in
which Pre is satisfied then the updated state satisfies Post. Syntactically, they form the so
called Hoare triples {Pre}a{Post}.

3.3.1. DEFINITION. [Action correctness] We say that an action a = (ψ,ξ ) if Cond is correct
with respect to precondition Pre and postcondition Post, written |= {Pre}a{Post}, if for belief
base B and for any θ in Sols(B,ψ) such that ξ θ is consistent we have that Condθ is true and

B Preθ implies B′ Postθ , where B′ is B ] ξ θ . �

We draw attention that for a = (ψ,ξ ) if Cond to be executed there must be an answer θ

to the query ψ . We recall that θ guarantees to ground Cond. However, θ does not necessarily
ground a precondition Pre or postcondition Post as there is no constraint on the variables
of Pre and Post and the ones from ξ . Any such variable will be by default considered as
universally quantified. Further, since our Herbrand interpretations do not contain equalities
between ground terms, equality in assertions denotes syntactical identity.

3.3.2. EXAMPLE. Recalling the action move in the case where z is non-zero, let ψ (ξ ) be
the pre (post)condition, and θ a substitution such that ψθ is true. We show that the Hoare
triple {clear(0)}move(x,y,z){clear(0)} is valid. We assume that B clear(0)θ (1). This
means that clear(0) is in B. Because ξ θ does not delete clear(0) we have that (1) implies

B′ clear(0)θ with B′ = B]ξ θ . Thus move(x,y,z) is correct with respect to the precondition
clear(0) and the same postcondition. The Hoare triple {>}move(x,y,z){clear(y)} is also
valid because if the move action is executed then by definition it updates the belief base with
the information that y is clear (clear(y) is in ξ ). ♠
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3.3.3. EXAMPLE. Let {∃w on(x,w)}move(x,y,z){∃w clear(w)} be another example. By
definition, the assertion ∃w on(x,w)θ is satisfied in a belief base B if there is some ground
term t such that on(x, t)θ is in B. This is indeed the case because whatever block represented
by x it must be either on 0 or on another block. In fact, the same t substitutes the variable y in
move (because x cannot be on two different blocks in the same time), thus y and w denote the
same block. This means that, since y is clear after move, the assertion ∃w clear(w) holds. We
note that if the variable w were a free variable, then the assertion on(x,w) would have been
implicitly universally quantified and thus on(x,w) would have been no longer satisfied, as x
cannot be on any block.

As a last example, let {>}move(x,y,z){clear(w)} be another Hoare triple. This triple
is invalid because w is implicitly universally quantified and there is always a ground term t
such that clear(w)[w/t] is false, for instance t is the block denoted by z, the block where x is
placed after the move. ♠

3.3.3 The Predicate Transformer wp
A predicate transformer for actions is a function which takes as parameters an action a and
a postcondition Post and it computes a precondition Pre such that {Pre}a{Post} is valid.
In this section, we introduce wp as a predicate transformer which computes not just any
precondition, but the weakest one.

Before defining wp, we consider some auxiliary constructions intended to simplify the
next definitions and proofs. Given ξ = {l1, . . . , ln} and a predicate symbol P we denote by
I the set of indices such that {li ∈ ξ | i ∈ I} represents all the positive literals with predicate
P. Similarly, we denote by J the set of indices such that {l j ∈ ξ | j ∈ J} represents all the
negative literals with predicate P. We further make use of a special construction which we
denote by Postξ and which we define as follows.

3.3.4. DEFINITION. Given ξ the effect of an action and an assertion Post, we define Postξ
inductively on the structure of Post:

• P(t̄)ξ = (
∧
i∈I

t̄ 6= t̄i)→ (P(t̄)∧
∧
j∈J

t̄ 6= t̄ j)

• (¬Post)ξ = ¬(Postξ )

• (Post1 op Post2)ξ = (Post1ξ ) op (Post2ξ ) with op ∈ {∧,∨,→,=}

• (Qx Post)ξ = Qx (Postξ ) with Q ∈ {∀,∃} and x ∈Var(Post).

�

To give some intuition for the construction Postξ we take a closer look at its definition
in the base case, which is the most interesting. Suppose we want to compute the weakest
precondition such that P(t̄) holds in the state resulting after the execution of an action a =
(ψ,ξ ) if Cond, i.e., that P(t̄) holds after the update ξ θ where θ is any ground substitution
generated by ψ . Basically, we can distinguish between the following cases: either (1) P(t̄)θ
holds before and it is not removed, i.e., (t̄ 6= t̄ ′)θ holds (or equally, t̄ and t̄ ′ are not unifiable)



58 Chapter 3. Verification Techniques

for any ¬P(t̄ ′) in ξ , or (2) P(t̄ ′)θ is added for some P(t̄ ′) in ξ (and here it is important that ξ θ

is consistent) in which case the equality (t = t ′)θ is valid, or equally, t̄ and t̄ ′ are syntactically
the same under any θ . This reasoning justifies the need to allow equalities in assertions.

3.3.5. EXAMPLE. Let ξ be the effect of the move(x,y,z) action when z is non-zero. We have
the following calculations:

clear(0)ξ = (0 6= y)→ (clear(0)∧0 6= z)
≡ 0 = y∨ clear(0)∧0 6= z (∗)

clear(y)ξ = (y 6= y)→ (clear(y)∧ y 6= z)
(using(y = y)≡>)
≡>

∃w clear(w)ξ = ∃w ((w 6= y)→ (clear(w)∧w 6= z))
≡ ∃w ((w = y)∨ (clear(w)∧w 6= z))

clear(z)ξ = (z 6= y)→ (clear(z)∧ z 6= z)
(using(z 6= z)≡⊥)
≡ (z = y)

With respect to the above calculations we may notice that the first three relate Example 3.3.2.
To link assertion (∗) to the precondition from {clear(0)}move(x,y,z){clear(0)} we actually
need the complete definition of wp. As explained in Example 3.3.13, the wp computation
yields an assertion weaker than clear(0). The assertion computed for clear(y)ξ coincides
with the precondition from {>}move(x,y,z){clear(y)}. The third computation is slightly
more tricky to relate to the Hoare triple {∃w on(x,w)}move(x,y,z){∃w clear(w)}. The rele-
vant observation is that the satisfiability of ∃w (w = y) is implied by the satisfiability of the
precondition ∃w on(x,w). ♠

3.3.6. LEMMA (SUBSTITUTION). For any belief base B, any assertion Post, any effect ξ ,
and any substitution θ which grounds ξ , under the assumption that ξ θ is consistent, we have
that B (Postξ )θ iff B′ Postθ where B′ is B ]ξ θ .

Proof. By induction on Post. We treat the base case: P(t̄) and either I or J is non-empty:
We begin with B P(t̄)ξ θ (1). By the definition of P(t̄)ξ we have that (1) holds iff

B (
∧
i∈I

t̄θ 6= t̄iθ )→ (P(t̄θ)∧
∧
j∈J

t̄θ 6= t̄ jθ ) (2)

For technical convenience only, we assume that P(t̄)ξ θ does not contain (implicitly univer-
sally quantified) free variables. If

∨
i∈I t̄θ = t̄iθ then there exists an index k in I such that

t̄θ = t̄kθ , that is, lkθ = P(t̄θ), by the definition of ξ . Taking into account that ξ θ is consis-
tent, by the definition of ] it follows that B′ P(t̄θ). Otherwise, it follows that B P(t̄θ) and

l jθ 6= P(t̄θ), for all j ∈ J. By the definition of ] we then have that B′ P(t̄θ).
Thanks to the definition of Postξ we can now define wp in a concise way as follows:
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3.3.7. DEFINITION. Let a = (ψ,ξ ) if Cond be a bc-action and Post be an assertion. The
predicate transformer wp : A×Pred→ Pred is defined as:

wp(a,Post) = ψ ∧Cond→ Postξ
wp({φ}/do(a),Post) = φ → wp(a,Post).

�

Intuitively, wp(a,Post) describes all agent states such that Post holds in the next states result-
ing from executing a. Since wp defines a transformation of Post into another assertion it is
called a predicate transformer.

The Substitution Lemma facilitates the proof that wp is a weakest precondition, where
the relation “weaker than” is defined as follows. We say that an assertion φ1 is weaker than
an assertion φ2 if φ2 logically implies φ1.

3.3.8. THEOREM. The predicate wp is a weakest precondition, i.e., the following two state-
ments hold:

1. |= {wp(a,Post)}a{Post}

2. if |= {Pre}a{Post} then |= Pre→ wp(a,Post).

Proof. Let a be (ψ,ξ ) if Cond, B a belief base, θ a substitution such that (ψ ∧Cond)θ
holds in B(*) and ξ θ is consistent. Let also B′ be B]ξ θ .
By Definition 3.3.1, proving 1. is equivalent to proving that B wp(a,Post)θ (**) implies

B′ Postθ for θ . By Definition 3.3.7, using (*), (**) is equivalent to B (Postξ )θ . From
this, the implication follows easily by using “⇒” of Lemma 3.3.6 and this proves the first
statement.
By Definition 3.3.1, we have that B (Pre∧ψ)θ (1) implies B′ Postθ (2). From (“⇐” of

Lemma 3.3.6) and using that B ψθ follows from (1), (2) is equivalent to B (ψ → Postξ )θ .

Thus we have that B Preθ (from (1)) implies B wp(a,Post)θ . By ground satisfaction and

by the definition of the semantics for assertions, we obtain that B Pre→ wp(a,Post) and
from this follows the second statement.

Further, we show that wp satisfies the usual properties like strictness and monotonicity
which we use in Section 3.3.5.

3.3.9. PROPOSITION. For any action a, and any assertions p and q, wp has the following
properties:

(wp-1) wp(a,⊥) =⊥

(wp-2) |= p→ q implies |= wp(a, p)→ wp(a,q)

Proof.

(wp-1) Assume that wp(a,⊥) 6=⊥. Then, using Lemma 3.3.6, we have that B wp(a,⊥)θ

iff B′ ⊥, with B′ = B]ξ θ , absurd.



60 Chapter 3. Verification Techniques

(wp-2) It suffices to note that p→ q implies that pξ → qξ .

3.3.4 Invariants
An important use of the above weakest precondition calculus for actions is in proving invari-
ants for BUnity programs. Invariants are usually defined as properties which hold in every
reachable state. In LTL terminology, they correspond to “always” formulae �φ .

3.3.10. DEFINITION. [Invariant] A property I is an invariant for a BUnity agent 〈B0,Ab,At〉
if and only if for any BUnity execution B0, . . . , Bi, . . . we have that Bi

I for any i. �

Definition 3.3.10 is a semantic definition which requires the exploration of the whole (possi-
bly infinite) state space. Therefore we introduce inductive invariants which can be proved by
the weakest precondition calculus.

3.3.11. DEFINITION. [Inductive Invariant] A property I is an inductive invariant for a BUnity
agent 〈B0,Ab,At〉 iff B0

I and for belief bases B, B’ and any trigger a ∈ At s.t. B I and B
a→ B’ then we have that B′ I. �

Intuitively, definition 3.3.11 says that an assertion I is an inductive invariant if it holds in the
initial belief base and if, whenever it holds in a belief base B and B changes by action a to B’,
then I holds also in B’. As an example, we consider clear(0) which is an inductive invariant
for the BUnity agent from Figure 2.4. First, the predicate clear(0) holds in the initial belief
base. Second, if clear(0) holds in a belief base B, then by Herbrand satisfaction clear(0) is
in B; since no ground effect of move deletes clear(0) it follows that clear(0) holds also in
the updated belief base.

In general, invariants are not necessarily inductive. One classical example, referred to
as “alternating” in the literature [BM08], is as follows. We consider the following action
a(x) = (P(x),{¬P(x),P(−x)}) and an initial belief base B = {P(1)}. We have that, I(x) =
(P(x)→ x≥−1) is an invariant (because there is one possible execution {P(1)} a→{P(−1)}
a→ {P(1)} . . . and it is clear that in any belief base I holds) but it is not inductive because

I(x) is not guaranteed to hold in B ]ξ (x ≥−1 does not imply −x ≥−1). However, I′(x) =
P(x)→ (x≥−1∧ x≤ 1) is inductive.

We note that the inductive definition relates to the LTL operator “next”: “if I holds in
the current state, it will hold in the next state”. This affirmation can be expressed by means
of correctness assertions, i.e., the Hoare triples {I}a{I} must be valid for any a. In UNITY
[CM88] terms, whenever |= {I}a{I}, I is called stable. With this in mind, thanks to The-
orem 3.3.8 we show there is a direct connection between inductive invariants and weakest
preconditions.

3.3.12. PROPOSITION. Any inductive invariant I of a BUnity agent 〈B0,Ab,At〉 satisfies the
following properties:
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(I-1) I holds in B0

(I-2) |= I→ wp(a, I) for all triggers a in At .

Proof. I is an inductive invariant iff I holds in the initial belief base and |= {I}a{I}. Since
wp(a, I) is the weakest we must have |= I→ wp(a, I) for all triggers a.

3.3.13. EXAMPLE. To see an application of Proposition 3.3.12 we show how to compute
wp(move(x,y,z),clear(0)). If we let ψ be the query of move(x,y,z), from Definition 3.3.7 and
from the calculations from Example 3.3.5 we have that wp(move(x,y,z),clear(0)) reduces to
ψ ∧ z 6= 0∧ y 6= z→ (y = 0 ∨ clear(0) ∧ 0 6= z) which is equivalent to ψ ∧ y 6= z→ (y =
0 ∨ clear(0)). Thus, clear(0)→ wp(move(x,y,z),clear(0)) is valid and wp(a,clear(0)) is
weaker than clear(0). ♠

3.3.5 Leads-to Properties
In this section we show how we can use the wp predicate to compute the weakest precondition
which leads to a postcondition. Leads-to properties are typical progress properties, usually
denoted as Pre 7→ Post. To see an example relating the action move, we consider the property
that from any initial configuration of 3 blocks, after an arbitrary number of execution steps an
agent reaches a configuration illustrating that block 3 is on 2 and 2 is on 1. Let Post be this
property, i.e., Post = on(3,2)∧ on(2,1). With no interesting triggers, besides a default one
like {>} .do(move(x,y,z)) which allows any action, under fairness assumptions, a leads-to
property is > 7→ Post. The fairness assumptions forbid executions like moving to and fro a
single block by requiring that each enabled action will be at a point executed.

However, > provides little information. Depending on the initial setup, the configuration
reflecting Post is attained after a certain number of steps. For each trace there is an assertion
which leads to Post. The weakest one is the disjunction of them all.

Originally, leads-to was formulated as a relation defined as the disjunctive transitive clo-
sure of a relation ensures:

p ensures q
p 7→ q

p 7→ q q 7→ r
p 7→ r

∀p(p 7→ q)
∃p(p 7→ q)

where ensures satisfies the requirements stated as follows:

(E1) p ensures p

(E2) p ensures ⊥ implies ¬p

(E3) p ensures q and q→ r implies p ensures r.

This relation ensures was formalised in UNITY by means of another relation unless. We
recall their definitions, adapted to our framework:

Pre unless Post iff |= (Pre∧¬Post)→ wp(a,Pre∨Post)),
for all enabled instantiated action a

Pre ensures Post iff |= Pre unless Post ∧ (Pre∧¬Post→ wp(a′,Post)),
for some enabled instantiated action a′
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The definition of ensures is such that the Requirements (E1)-(E3) are satisfied.
Intuitively, two assertions Pre and Post belong to the relation unless if and only if for any

enabled instantiated action a, whenever Pre holds but not also Post, the weakest precondition
of Pre∨Post with respect to a holds. The latter ensures, by definition, that in each next state
either Pre or Post holds. Similarly, Pre and Post belong to the relation ensures if and only if
there exists an enabled a′ such that in the next state resulting after a we have that Post holds.
To draw another parallel to LTL notation, we observe the correspondence between unless and
“until”, resp., between ensures and “eventually”.

We make the observation that the above definitions can be used to check if a given pre-
condition Pre leads to a given postcondition Post. However, they do not say how to compute
Pre and this is what we are interested in. We want to use wp in order to define a predicate
transformer which, given a postcondition Post, computes the weakest precondition Pre such
that Pre 7→ Post. These issues have already been addressed in the literature and we refer in
particular to [JKR89] as the work which we follow closely in the rest of the section. There
the authors defined a predicate transformer wlt for computing the weakest precondition which
leads-to a postcondition. The construction of wlt uses a generic wp with an abstract defini-
tion in terms of the property which wp must fulfil. This property is monotonicity and this
implies that we can make use of their results, thanks to Proposition 3.3.9 which says that our
concrete definition of wp enjoys monotonicity. In what follows, we motivate and to explain
the construction of wlt by reasoning at a “meta-level” about the wp predicate. To begin, we
take a closer look at the definition of Pre ensures Post. By the definition of unless, Pre
ensures Post is then equivalent to:∧

a
(Pre∧¬Post→ wp(a,Pre∨Post))∧ (Pre∧¬Post→ wp(a′,Post)). (3.2)

Using p→ q∧ p→ r ≡ p→ q∧ r, (3.2) is equivalent to:∧
a

(Pre∧¬Post→ wp(a,Pre∨Post)∧wp(a′,Post)). (3.3)

Using p∧¬q→ r ≡ p∨q→ r∨q, (3.3) is equivalent to:

Pre∨Post→
∧
a

(wp(a,Pre∨Post)∧wp(a′,Post)∨Post). (3.4)

Substituting Pre∨Post by Y on the right-hand side of (3.4) we obtain the implication:

Pre∨Post→
∧
a

(wp(a,Y )∧wp(a′,Post)∨Post). (3.5)

Since the right-hand side of the implication is monotonic, we can apply Knaster-Tarski Theo-
rem to derive that the equation Y =

∧
a

(wp(a,Y )∧wp(a′,Post)∨Post) in the unknown Y has

a weakest solution which in [JKR89] is denoted by st p(a′,Post). This means that Implica-
tion (3.5) is equivalent to:

Pre∨Post→ (st p(a′,Post)). (3.6)
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The next step is to think of (st p(a′,Post)) as a predicate transformer which entails Post via a
single fixed action. In [JKR89] this predicate transformer is denoted by we(Post) (since a′ is
fixed we can abstract away from it). We note that the difference between we and wp is that
we is oblivious with respect to “which” action entails Post. If we replace Post by wlt(Post)
Implication (3.6) is equivalent to:

Pre∨wlt(Post)→ we(wlt(Post)). (3.7)

Using p→ p∨q on both sides in Implication (3.7) we obtain the following derivation:

Pre→ Pre∨wlt(Post)→ we(wlt(Post))→ we(wlt(Post))∨Post. (3.8)

Taking into account that we are interested in the weakest precondition which leads to Post,
(3.8) brings us to the fixpoint characterisation of wlt.

3.3.14. DEFINITION. [[JKR89]] The weakest predicate that leads to a postcondition Post is
recursively defined as:

wlt(Post) = Post ∨we(wlt(Post))

�

The advantage of Definition 3.3.14 (over ensures) is that wlt is computable. Furthermore,
it can be shown that wlt and 7→ as defined in UNITY have the same expressive power. These
connections are stated in Proposition 3.3.15.

3.3.15. PROPOSITION ([JKR89]). The following statements hold:

1. Pre ensures Post implies that Pre→ wlt(Post).

2. Pre→ wlt(Post) iff Pre 7→ Post.

We stress that the above fixpoint characterisation of wlt would not have been possible if it
weren’t for Proposition 3.3.9.

3.3.16. EXAMPLE. Let Post be (on(2,1)∧ on(3,2)). We show how to compute wlt(Post).
We use the abbreviations: P1 = st p(move(2,0,1),Post), P2 = st p(move(3,0,2),P1), ψ1 as
the query of move(2,0,1) and ψ2 as the query of move(3,0,2). The next calculations are
derived from Definition 3.3.4:

wp(move(2,0,1),Post) = ψ1→ on(3,2) (3.9a)
wp(move(3,0,2),Post) = ψ2→ on(2,1) (3.9b)

wp(move(3,0,2),ψ1→ on(3,2)) = ψ2→ ψ1 (3.9c)

The definition of st p gives a fixpoint characterisation such that either in the current state or
in the next state (after executing a fixed) the postcondition holds. Since st p is the weakest
solution it is a disjunction of all possible preconditions resulting when fixing the actions. For
the sake of the example, we only detail a “local” view of this disjunction which is relevant to
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us, i.e., the locality is with respect to the assumption that for any enabled action the weakest
precondition for Pi is true which we consider as implicit in the following computations.

P1 = wp(move(2,0,1),Post)∨Post (using (3.9a))
≡ (ψ1→ on(3,2))∨Post

P2 = wp(move(3,0,2),P1)∨P1 (using (3.9b), (3.9c))
≡ (ψ2→ ψ1)∨ (ψ2→ on(2,1))∨Post

wlt(Post) = Post ∨we(Post ∨we(Post ∨wlt(Post)))
≡ Post ∨ st p(move(3,0,2),Post ∨

st p(move(2,0,1),Post ∨wlt(Post)))︸ ︷︷ ︸
P3

= Post ∨ st p(move(3,0,2),Post ∨P3)︸ ︷︷ ︸
P4

P3 = P1∨Post ∨wlt(Post)
P4 = P2∨P1∨Post ∨wlt(Post),

where we used p∨ p≡ p. Thus, from the calculations for Pi:

wlt(Post) = Post ∨ (ψ1→ on(3,2))∨ (ψ2→ on(2,1))
∨ (ψ2→ ψ1)∨wlt(Post)

which illustrates that the weakest precondition that leads to Post from a state B is either one
of the following assertions:

• Post itself, if B Post (0 steps needed)

• ψ1→ on(3,2), if B on(2,1) (1 step needed)

• ψ2→ on(2,1), if B on(3,2) (1 step needed)

• ψ2→ ψ1, if none of the above (2 steps needed)

• wlt(Post), i.e., further unfoldings are needed (Post cannot be reached in at most 2
steps).

♠

3.3.17. REMARK. The definition of “ensures” uses the keyword “enabled”. This is to avoid
typical situations where actions are not enabled. For instance, given a = (P(c),{Q(c)}) we
have that wp(a,Q(c)) is true. If P(c) is in the current belief base, i.e., a is enabled, then
> 7→Q(c), however this is not the case if P(c) were not in the belief base. A cleaner solution,
i.e., which does not use semantic notions like the fact that actions are enabled, is to use the
so-called “weak-until” relation [CM88] instead of “unless”. This allows the computation of
Pre such that Pre 7→ Post regardless of initial configurations. ♣
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Extending BUnity with knowledge bases requires little changes in the wp-calculus thanks
to the fact that our formalisation allows in a straightforward manner to handle assertions
expressed by means of knowledge bases. The main observation is that, together with a set
of knowledge bases, a belief base can no longer be seen as a Herbrand model since clearly
the logical theories representing the knowledge bases may contain variables. This means that
we only need to define the Herbrand satisfaction relation by the standard model theoretic
semantics.

3.3.18. EXAMPLE. This example illustrates the use of immutable knowledge bases in a wp
calculation. Given the implication P(c)→ Q(c) and the action a = (>,{¬Q(c)}), we want
to prove using the wp calculus that |= {P(c)}a{Q(c)} which shows that in the context of this
implication removing Q(c) in a belief base which contains P(c) does not have any observable
effect. First we observe that, by Definition 3.3.4, Q(c){¬Q(c)} equals the assertion > →
(Q(c)∧c 6= c) which is logically equivalent inconsistent! However, computing P(c){¬Q(c)}
gives (again, by Definition 3.3.4) the assertion > → (P(c)∧>) which is clearly logically
equivalent to P(c). So we derive by the wp calculus that |= {P(c)}a{P(c)}. Since P(c)→
Q(c),P(c) |= Q(c), we obtain the desired result by the consequence rule.

This example shows that we can still use the basic wp-calculus (without knowledge bases)
to reason about correctness of BUnity agents in the presence of knowledge bases. ♠

To conclude, we discuss the relation between our approach (as inspired by the classical
works on weakest preconditions) and the closest reference in the field of artificial intelligence.
This is the situation calculus [Rei01], used in solving the frame problem which consists in
characterising the changes due to action execution. As explained in [KMS09], Reiter’s solu-
tion is the so-called successor axiom which describes the precondition that ensures successful
performance of actions. Informally, the successor axiom says that under some conditions per-
taining to an action (to be read “the existence of answers for queries” in our framework), the
fluent f (to be read “the postcondition”) becomes true if and only if either the condition mak-
ing f true holds (in our case ξ + unifies with Post) or f is already true and the condition
making f false does not hold (in our case Post and ξ− does not unify with Post). Though the
idea is similar, there are a couple of notable differences. First, the successor axiom gives a
generic definition which means that in order to use it one has to think of what exactly are the
conditions which make the fluent f true or false. In contrast, what we have is a precise char-
acterisation of such conditions thanks to the fact that we work with a fixed language, BUnity,
and this allows us to be specific, for instance we can say that the condition of the effect which
makes Post boils down to syntactic equalities between terms. Second, all possible actions
need to be considered in the successor axiom due to the universal quantification while the
wp approach allows modularity by computing weakest assertions for each action separately.
Third, the purposes are, in our view, different: for instance, there is no explicit application of
the successor axiom in verification.

As a final remark, as pointed out in the recent survey from [KMS09], the techniques
inspired either by the results in computer science (the wp calculus approach) or artificial in-
telligence (the situation calculus approach) can be seen as belonging to a larger class which
concerns the problem of reasoning about actions. In fact, [KMS09] goes beyond these tech-
niques and details the history of the logic of action not only in computer science and artificial
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intelligence, but also in philosophy and in linguistics. As the authors note, the intention is to
overview techniques developed in different communities while emphasising their similarities
in the hope of future cross-fertilisation between communities.

3.4 Testing BUpL Using Strategies
In this section we attack the verification problem from a different perspective. More pre-
cisely, we investigate the problem whether a BUpL agent is conformant with respect to a
given specification which is not necessarily a BUnity agent. We understand conformance as
control refinement, that is, it holds when the set of traces of a BUpL agent is included in
the set of traces of the specification. In a straightforward approach, one solution is to look
at each execution trace of the agent and to check whether it is also a trace of the specifica-
tion. However, this is often practically unfeasible due to large (possibly infinite) sets of agent
executions. A more clever way is to consider the trace inclusion problem in the opposite
direction, that is, to look first at the traces of the specification and to check whether these
are also traces of the agent. Usually, “check” is achieved by model-checking or inductive
verification. However, both approaches have their disadvantages: with model-checking one
might run into the state explosion problem, while inductive verification is not automatic. An
orthogonal technique is to use testing, and thus we describe a methodology for testing agents.
Besides the expected use of finding “bugs“ in an agent program, with respect to the previously
introduced techniques, testing can be of further use either as an alternative to model-checking
refinement in the state explosion problem or as a specialised check for invariants.

As a motivating example, throughout this section we use an extension of the BUpL builder
described in Figure 2.6. We consider the agent from Figure 3.23. It is meant to implement
the specification “the agent should always construct towers, the order of the blocks is not
relevant, however each tower should use more blocks than the previous, and additionally, the
length of the towers must be an even number”4 (for example, 21, 4321 are “well-formed”
towers).

The agent is designed such that it always builds a higher tower. The example can be
understood as a typical agent with maintenance goals. Since the number of its mental states
continuously increases, instead of model-checking, we test it. For illustration purposes, the
implementation of the agent is on purpose faulty: assuming a correct initialisation, the agent
program does not check the parity of X before adding the fact done(X) to signal that it
constructed a tower X .

3.4.1 Methodology
Our testing methodology consists of the following steps. We see the traces of the specifica-
tion as the basic constructions for test cases. Since specifications are meant to be “small”,
generating test cases is a much simpler task than exhaustively exploring possible agent execu-
tions. Either represented by regular expressions or by finite transition systems, specifications

3The code presents only the constructions which are additional to the ones from Figure 2.6.
4Since it is just meant to be an illustration, the notion of specification is merely informal.
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A = { incLength(x) = (length(x), { ¬length(x), length(x+1) }),
addBlock(x) = (¬on(x,0), { on(x,0),clear(x) }),
setMax(x,y) = (max(y), { ¬max(y),max(x) }),
f inish(x,y) = (¬done(x)∧done(y), { ¬(done(y)),done(x) }) }

P = { build(n,c) = move(c−n,0,c−n−1); incLength(c−n−1);build(n−1,c)
generate(x,y) = addBlock(x); generate(x−1,y),
p0(x,y) = setMax(x,y);generate(x,y)) }

R = { length(x)∧max(y)∧ (x≤ y)← build(y,y+ x−1),
length(x)∧max(x)∧done(y)∧ (x≥ y)← f inish(x,y);⊥,
max(x)∧done(x)← setMax(x+2,x),generate(x+2,x) }

Figure 3.2: A BUpL Builder with Infinite State Space

can be used to generate test cases by model-checking, for example. Traces are deterministic,
and since we build test cases on top of traces, also test cases are deterministic, in contrast to
specifications. This is an important feature which makes testing an efficient approach. We
define test cases as pairs of tests on actions and tests on facts. The tests on actions are finite
sequences of pairs (a,E) where a is the action to be executed and E is the set of actions
which are allowed to be executed at a given state. Whenever the agent cannot execute the
action specified by the test on actions, or whenever the agent can execute a forbidden action,
the corresponding trace represents a non-conformant execution. Tests on facts are temporal
formulae that are checked on the traces generated with respect to tests on actions. They can
be further used to detect “bad” executions.

Given that we define a formal language for expressing what a test case is, we then de-
scribe how to implement test cases. Namely, we use rewriting strategies to define test drivers.
We recall that in a rewrite-based framework, strategies are meant to control nondeterministic
executions by instrumenting the rewrite rules at a meta-level. Usually, in concrete imple-
mentations the nondeterminism is reduced by means of scheduling policies. While testing
a concrete implementation, e.g., a multi-threaded Java application, there is no obvious dis-
tinction between testing the program itself and testing the default scheduling mechanism of
the threads. We emphasise that the language we consider, BUpL, is a modelling language,
where the nondeterminism in choices among plans, exception handling mechanisms and in-
ternal actions is a main aspect we deal with. Strategies give a great degree of flexibility which
becomes important when the interest is in verification. For example, in our case, in order to
analyse or experiment with a new testing formalism one only needs to change the strategy
instead of changing the semantics of the agent language or the agent program itself.

Though test cases are deterministic, test drivers need to search all intermediary states that
can be reached by nondeterministically executing internal BUpL computations. Defining test
drivers by means of strategies is an elegant solution to the implicit nondeterminism in BUpL.
However, it does not directly solve the problem of possibly divergent executions of internal
steps. To avoid some divergent computations, we need to impose restrictions on the applica-
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tion of the strategies. This makes it less intuitive that test drivers are faithfully implementing
test cases, and thus the last issue we focus upon is the correctness of our mapping between
test cases and test drivers.

3.4.2 Formalising Test Cases
Our test case format is based on two main concepts: observable actions and facts as appearing
in belief bases. Our test case format is a kind of black box testing, aimed at testing the
observable behaviour of agents. For this reason, we have made a distinction between internal
and observable actions. The idea is that the execution of observable actions is visible from
outside the agent. Observable actions can be actions the agent executes in the environment
in which it operates. In the sequel, we will sometimes omit the adjective “observable” if it is
clear from the context.

We introduce a general test case format that allows to express that certain sequences of ob-
servable actions are executed, and that the belief bases of the corresponding trace satisfy cer-
tain properties. That is, we consider that a test case T is a pair consisting of a test on actions
Ta and a test on facts T f . Tests on actions are finite sequences of pairs (a0,E0); . . . ;(an,En).
Each pair (ai,Ei) consists of a ground observable action ai to be executed and a set of actions
Ei which are allowed to be executed from the current state. The idea is that a test on actions
controls the execution of the agent in the sense that only those actions are executed that are
in conformance with the action expression. Furthermore, the sets E can be used to identify
“bad” traces. If, at a certain state of execution, the agent can perform a forbidden action,
i.e., which is not allowed by the test case, then the corresponding trace is seen as a counter-
example. If no restriction is imposed on the enabled actions we simply use the notation a
instead of the pair (a,E). It is then the case that a counter-example can be generated when
the agent cannot execute the action indicated by the test. Tests on actions can be derived
from a given specification by means of model-checking, for example. We stress that though
the specification may be nondeterministic, tests on actions should be deterministic. This is
crucial for reducing the state space and makes this approach essentially different from search
techniques since it is more efficient. Tests on facts are specified like LTL formulae. For ease
of presentation, we work only with a subset of basic formulae:

T f ::= true | f act | ¬ f act |�(¬© true→ f act) | f act ∧ f act |� f act | ♦ f act

with f act being a ground atomic formula. Observe that the syntax allows also test cases
consisting of tests on actions only, (Ta, true) which we write shortly as Ta. The LTL for-
mula �(¬© true→ f act) can be used to check if f act holds in the last states, that is, in the
states reachable after executing the test on actions. Tests on facts are meant to provide ad-
ditional counter-examples besides those reflecting forbidden actions. While tests on actions
can be automatically derived from the specification (where the tester needs only to choose
adequate test cases), using tests on facts requires more effort and intuition from the tester.
For illustration purposes, we provide an example of an adequate test on facts by the end of
the paper.

To define formally when a BUpL agent satisfies a test we use induction on the structure of
test cases. We denote the application of a test T on an initial configuration (an initial BUpL
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mental state) ms0 as T@ms0. The (set) semantics is defined such that it yields the set of final
states reachable through executing the agent restricted by the test, i.e., only those actions are
executed that comply with the test. This means that an agent with initial mental state ms0
satisfies a test T if T@ms0 6= /0, in which case we say that a test T is successful.

T@ms0 =


{ms | ms0

a⇒ ms}, T = (a,E)∧E(ms0)⊆ E
/0, T = (a,E)∧E(ms0) 6⊆ E
T 2

a @(T 1
a @ms0), T = T 1

a ;T 2
a

{ms | ms ∈ Ta@ms0∧ΠTa
ms0

(ms) |= T f }, T = (Ta,T f )

The arrow a⇒ stands for⇒ a→⇒, where⇒ denotes the reflexive and transitive closure of τ→,
and E(ms) denotes the set of enabled actions, i.e., the actions that can be readily executed
from ms, E(ms) = {a | ∃ms′ s.t. ms a⇒ ms′}. The idea behind the definition of the semantics
of (a,E)@ms0 is that the test should be successful for ms0 if action a can be executed in ms0,
while the enabled actions from the states reached by doing a should be a subset of E (defined
by E(ms) ⊆ E). The result is then the set of mental states resulting from the execution of a,
as defined by {ms |ms0

a⇒ms}. We need to keep those mental states to allow a compositional
definition of the semantics. In particular, when defining the semantics of T 1

a ;T 2
a we need the

mental states resulting from applying the test T 1
a , since those are the mental states in which

we then apply the test T 2
a , as defined by T 2

a @(T 1
a @ms0). In the definition of the semantics

of (Ta,T f ), by abuse of notation, we use ΠTa
ms0

(ms) to denote the paths from ms0 to ms which
are taken while executing Ta. These paths are with respect to observable actions, that is, we
abstract from intermediary states reached by doing τ steps. More specifically, each state in
a path is reached from the previous by executing an observable action and then executing a
number of τ steps until an observable action is again about to be executed (or no transitions
are possible). In the initial state, first τ steps can be executed before the first observable
action is executed. Tests on facts are thus checked in states resulting from the execution of an
observable action and as many τ steps as possible. We call these states stable. The definition
says that the result of applying the test (Ta,T f ) is a subset of Ta@ms0, namely, those states
ms which are reachable after executing Ta and the corresponding path LTL satisfies T f .

Our language is such that tests on facts can be omitted. By design, they are meant to
provide more expressiveness and to give more freedom to the tester. One might raise the
issue that inspecting facts classifies our method as white-box testing. However, since facts
can be deduced from the effects of actions, our method lies at the boundary between black-
box and grey-box testing. In order to define test cases, there is no need to understand the way
BUpL agents work (i.e., the internal mechanism for updating states or the structure of repair
rules and plans), but only to look at basic actions, which we see as the interface of BUpL
agents.

3.4.3 Using Rewrite Strategies to Define Test Drivers
In this section we describe how to define test drivers for test cases by means of the strategy
language S described in Section 2.6.2. To give some intuition and motivation, we consider
the way one would implement the basic test case a. By definition, the application of this test
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case to a BUpL mental state ms is the set of all mental states which can be reached from
ms by executing the observable action a after eventually executing τ steps corresponding to
internal actions, applying repair rules or making choices, i.e., after computing closure sets
of particular types of rewrite rules. It thus represents a strategic rewriting of ms. We are only
interested in those rewritings which finally make it possible to execute a. To achieve this at
the object-level means to have a procedure implementing the computation of the closure sets.
However, the semantics of the application of the test a is independent of the computation
of closure sets. Following [EMOMV07], we promote the design principle that automated
deduction methods (e.g., closure sets of τ steps) should be specified declaratively as non-
deterministic sets of inference rules and not procedurally. Depending on the application,
specific algorithms for implementing the specifications should be given as strategies to apply
the inference rules. This has the implication that there is a clear separation between execution
(by rewriting) at the object-level and control (of rewriting) at the meta-level.

In what follows, for ease of reference, we denote by S (resp. T) the set of strategies (tests)
and by s the mapping from tests to test drivers, i.e., s : T→ S. Since the definition of tests is
inductive, so is the definition of s. We first consider the test drivers for tests on actions:

s(T ) =
{

allow(E) ;do(a), T = (a,E)
s(T1) ;s(T2), T = T1 ; T2

thus sequences of tests map to sequences of strategies. We describe the basic test driver
do(a) in more detail. Observe that though tests on actions are deterministic, there are still
possibly many executions due to internal actions, choices in plans and repair rules. Thus the
test driver must search “all” possible intermediary states which can be reached by doing τ

steps. By means of strategies, this is an easy process. By definition, the transitive closure of
τ steps,⇒, is τ→

∗
, with τ being one of the label sum, i-act, or fail-act and the corresponding

being maximal, in the sense that no τ steps are possible from the last state. Thus, in a naive
approach, we could simply consider the following test driver:

tauClosure = (sum | i-act | fail-act)!

which is clearly implementing ⇒. However, though the order of application of the τ steps
does not matter when the computation paths are finite, this is no longer the case when con-
sidering infinite paths. Consider an extraneous agent program with a plan p = i-a+ i-b where
i-a is always enabled and i-b, on the contrary, is never enabled and a repair rule (true← i-b)
which says that whenever there is a failure repair it by executing i-b. Applying tauClosure
as defined above we obtain two solutions corresponding to a finite path reflecting the choice
for executing i-a and a divergent path reflecting the choice for executing i-b then failing all
the time. As long as we are only interested in the “first” solution, then tauClosure is fine,
however, if we want to generate also the “next” solution then the computation will not termi-
nate. From this we conclude that we may lose termination if any application order is allowed
while we may be able to achieve it if we impose a certain order. Since one source of non-
termination is mainly in a sort of “unfairness” with regard to enabled internal actions, a much
more adequate test driver is implemented if we enforce the execution of internal actions after
eventually applying the sequence (sum; fail-act). That is, tauClosure becomes:
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tauClosure = (try(sum); try(fail-act); i-act)!; try(sum); try(fail-act)

We make a few observations with respect to the new definition of tauClosure. First, since
one might expect multiple sum and fail applications before an internal action is executed,
it is no longer immediately clear that tauClosure faithfully implements ⇒. We present a
correctness proof by the end of the section. Second, because we use the sequential strategy,
we need to surround both sum and fail-act by try blocks. Otherwise, if either one of them
were not applicable, i.e., the current plan is not a sum and the “head” action is enabled,
then the strategy (sum ; fail-act; i-act) fails which is not what we want. By means of the
parametrised strategy try the initial state is preserved in the case that sum or fail-act fails.
Third, we order fail-act after sum because if we were to use the strategy (try(sum | fail-act) ;
i-act) and the current plan is a sum of two failing plans, then the whole strategy fails though
there might have been possible to replace the failing plans with a “good” plan by applying
fail-act. Fourth, we require that repair rules are of a particular format, that is φ ← p with p
not containing the sum operator. This is in order to avoid situations where the application
of fail-act entails the application of sum which entails the application of fail-act and so forth
(that is, non-terminating strategies (sum ; fail-act)!). Such format does not result in the loss
of expressiveness since having one repair rule φ ← p1 + p2 is equivalent to having two repair
rules φ ← pi, with i ∈ {1,2}. Fifth, the use of strategies can be tricky. Though one might
be tempted to use the strategy try(sum ; fail-act) instead of try(sum) ; try(fail-act), the first
one is “wrong”, meaning that if fail-act is not applicable after sum then the original state is
returned instead of the one reached by applying sum. The last observation is with respect to
the normalisation strategy. Since “!” returns the state previous to the one that failed, we need
to apply again try(sum); try(fail-act) to make sure that from the resulting state no τ steps can
be taken.

By means of tauClosure, the definition of do(a) is straightforward:

do(a) = tauClosure;o-act[o-a← a]; tauClosure

which corresponds to the definition of a⇒. We note that tauClosure is no longer applicable
when i-act fails after sum and fail-act have been applied. This means that the only possible
scenario is that the head of the current plan is an observable action. If this action is in fact a,
then o-act[o-a← a] is successful, otherwise it fails.

The definition of the strategy allow(E) makes use of the match construction:

allow(E) = match ms s.t. ready(ms)⊆ E

which means that allow(E) succeeds if the current mental state satisfies the condition ready(ms)
⊆ E, where ready is a function defined on BUpL mental states. This function is implemented
such that it returns the set of actions ready to be executed. For simplicity, we do not detail
its implementation but briefly describe it. Recall that BUpL mental states are pairs of belief
bases and plans. The function ready reasons on possible cases. If the current plan is a sum of
plans then ready is called recursively. Otherwise, depending on the action a in the head of the
plan, either a is enabled and so the function ready returns a, or a fails and the function ready
recursively considers all the plans that can substitute the current one, that is, it recursively
analyses the active repair rules.
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So far, we have focused on tests on actions Ta. We focus now on the general test
cases(Ta,T f ). We begin by first considering the test driver implementing the test case for
checking whether f act is in the last states reachable by executing Ta, i.e., s((Ta,�(¬©
true→ f act))). For this, we consider an auxiliary strategy check( f act):

check( f act) = match(B, p) s.t. f act ∈ B

which is successful if f act is in the belief base from the current state. With this strategy
we can define s((Ta,�(¬© true→ f act))) simply as s(Ta);check( f act). We can further
use check( f act) for defining test drivers working with ¬ f act as not(check( f act)) and with
f act1∧ f act2 as check( f act1);check( f act2). The cases with respect to the temporal formulae
are defined by case analysis. We present only the implementation of the non-trivial ones:

s(((a,E);Ta,♦ f act)) = check( f act) ? s((a,E);Ta) : s((a,E)) ; s((Ta,♦ f act))
s(((a,E);Ta,� f act)) = check( f act) ; s((a,E)) ; s((Ta,� f act))

which illustrates that the main difference between them is that for ♦ f act we stop checking
f act as soon as we reached a state where f act is in the belief base; from this state we continue
with only executing the test on actions. However, for � f act we check until the end.

Observe that the semantics of the testing language was defined such that we have a sep-
aration between implementing test drivers and reporting the results. This is important since
running a test driver should be orthogonal to the interpretation and the analysis of the possible
output. One plausible and intuitive interpretation is the following one. When the test driver
is successful the tester has the confirmation that the test case corresponds to a “good” trace in
the agent program. When the test driver fails, the tester can further define new strategies to
obtain more information. Consider, as an example, a strategy returning the states previous to
the failure. More sophisticated implementations like gathering information about traces in-
stead of states are left to the imagination of the reader. These traces correspond to the shortest
counter-examples. This follows from the semantics of the testing language. At each action
execution a check is performed whether forbidden actions are possible. If this is the case,
then the test fails.

Assuming that we fix an interpretation of the results as above, we proceed by showing
that test drivers are partially correct and complete with respect to the definition of test cases.

3.4.1. DEFINITION. Given a test case T and the corresponding test driver s(T ), we say that
the application of s(T ) is correct, if, on the one hand, successful executions of the test driver
are successful applications of the test case, and if, on the other hand, the test driver fails then
test case also fails. Similarly, s is complete if (un)successful applications of the test case T
are (un)successful executions of the test driver s(T ). �

Before stating the main result, we show two helpful lemmas. Recall that, at each repeti-
tion step, the strategy tauClosure tries to apply sum and fail-act only once. Intuitively, this is
sufficient for the following reason. Let us first consider fail-act: if, on the one hand, after the
application of fail-act no action can take place then applying fail-act again can do no good,
since nothing changed; if, on the other hand, after applying once fail-act the first action of
the new plan can be executed then we are done, the faulty plan has been repaired. From this,
we have the following lemma:
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3.4.2. LEMMA. The strategy try(fail-act) is idempotent, i.e., for any ms try(fail-act)2 @ms =
try(fail-act) @ms.

Proof. Let Res = try(fail-act) @ms. Any ms′ ∈ Res different from ms is the result of
applying the rewrite rule fail-act so it has the form (B, pθ), where φ ← p ∈ R (the set of
repair rules) and θ ∈ Sols(B,φ). If fail-act were again applicable for such ms′, the resulting
term ms′′ is also of the same form since R is fixed and B does not change. Thus, any ms′′ is
already an element of Res and so try(fail-act) @Res = Res.

An analogous reasoning works also for sum. Taking into account that the “+” operator is
commutative and associative and that the “;” operator is associative, a normal form (i.e., sum
of plans with only sequence operators) always exists. Since sum is applied to states where
the plans are reduced to their normal form we have that states with basic plans will always
be in the result of trying to apply sum more than once.

3.4.3. LEMMA. Given a mental state ms we have that sum! @ms ⊆ try(sum) @ms.

Proof. We only consider the interesting case where sum is applicable, that is, when try(sum)

@ms = sum @ms. Let ms = (B, p) where p has been reduced to the form
n

∑
i=1

pi and pi are

basic plans (composed by only the “;” operator). Since sum is commutative, we have that

sum @ms = {(B,
k

∑
j=1

pi j) | ∀k, i j ∈ {1, . . . ,n}}, i.e., any possible combination of pi. On the

other hand, sum! @ms = {(B, pi) | i ∈ {1, . . . ,n}} which is clearly included in sum @ms.

3.4.4. THEOREM (PARTIAL CORRECTNESS & COMPLETENESS). Given ms a mental state,
T a test case we have that s(T )@ms = T@ms.

Proof. We consider only the strategy do. The proof for the compositions follows from the
definitions of the strategies. We proceed, by showing, as usually, a double inclusion.
“⊆”: By the definition of do(a) we have that the result of applying it on ms is:

Res = tauClosure @ (o-act[o-a← a] @ tauClosure @ ms︸ ︷︷ ︸
Res′

)

︸ ︷︷ ︸
Res′′

If the normalisation strategy “!” from the definition of tauClosure terminates, then by defini-
tion, there exists an i≥ 0 s.t.:

Resi = i-act @ (try(fail-act) @ (try(sum)@Resi−1))

and for any msi ∈ Resi we have that i-act @ (try(fail-act) @ (try(sum) @msi)) is empty (1).
Thus, we can construct the computation:

ms0
τ→
∗

ms1
τ→
∗

. . .
τ→
∗

msi−1
τ→
∗

msi
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where we take ms j ∈Res j with j≤ i, ms0 as ms and ∗ denotes at most 3 τ steps, corresponding
to the 3 possible rule labels for τ steps. By the definition of tauClosure, Res′ is the union
of try(fail-act) @ (try(sum)@Resi). This implies that any ms′ ∈ Res′ is obtained from a msi
after eventually applying sum and fail-act. From (1) we have that from ms′ it is not possible
to apply i-act. Furthermore, by the lemmas, whatever state can be reached from ms′ by sum
and fail-act is already in Res′. Thus, ms⇒ ms′.
By definition, Res′′ is empty iff o-act[o-a← a] @ms′ fails for any element ms′ ∈ Res′. That
is, if Res′′ is empty then ms 6 a⇒ ms′ and thus a@ms returns the empty set.
If Res′′ were not empty, then for any element ms′′ contained in it we have that ms′ a→ ms′′,
thus ms⇒ a→ ms′′. Similarly, for any element ms f ∈ Res we have ms′′⇒ ms f and from this
we can conclude that ms a⇒ ms f , thus ms f is also an element of a@ms.
“⊇”: By the definition of ⇒ we have that, if no τ divergence, then there exists a k ≥ 0 s.t.

ms τk
→ ms1 and ms1 6→. The trace τk can be divided in m packages of the form:

σm = (sumim ; fail-act jm ; i-actlm)m,

with ∑m(im + jm + lm)∗m = k. By the lemmas we have that sumim ; fail-act jm ; i-act is obtained
by applying the strategy try(sum); try(fail-act); i-act (2). As for i-actlm−1, it is obtained by
(try(sum); try(fail-act); i-act)lm−1 (3). If successive applications of i-act are possible then
neither fail-act nor sum is applicable (at most one of i-act, fail-act, sum is enabled at a time)
thus trying to applying them is harmless, i.e., does not change the state. Repeating m times
the same argument from (2) + (3) and taking into account that we have that sequences σm
where lm is 0 are mapped to try(sum); try(fail-act) we can derive that ms1 ∈ tauClosure@ms
(4).
If ms1

a→ ms′, then ms′ ∈ o-act[o-a ← a] @ms1. Applying a similar reasoning for ms′ we
obtain (4’): ms2 ∈ tauClosure@ms′. In consequence, we have that if ms a⇒ ms2 then also
ms2 ∈ do(a)@ms.
If ms1 6

a→ ms′, then o-act[o-a← a] @ms1 fails, thus this is also the case for do(a).
Observe that in our proof we consider only finite computations. Thus, infinite computa-

tions do not violate the result. Since τ divergence is undecidable for BUpL agents, we cannot
provide conditions such that test drivers terminate for all test cases. The most we can do, with
respect to divergent computations, is to state the following proposition as a consequence of
the above result:

3.4.5. COROLLARY (DIVERGENCE). If the application of s(T ) diverges then so does T .

We conclude with an illustration of an application of a test case to the BUpL agent de-
scribed in the beginning of the section in Figure 3.2. We consider the test whether done(2)
appears in the belief base after executing move(2,0,1). The corresponding test driver is the
strategy do(move(2,0,1)); check(done(2)). The application of the strategy fails, meaning
that the agent is not conformant with the test case.
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Chapter 4
From Agents to Multi-Agent Systems

If in the previous chapters it was enough to refer to an agent by its current mental state, this is
no longer the case when considering multi-agent systems. This is why we associate with each
agent an identifier and we consider a multi-agent system as a finite set of such identifiers. We
further denote a state of a multi-agent system byM= {(i,msi) | i ∈ I}, where I is the set of
agent identifiers and msi is a mental state for the agent i. We abstract from what is the mental
state of an agent. The choice of representation is not relevant, we only need to consider that
the way to change (update) the mental state of an agent is by performing actions. However,
for illustration purposes, we will instantiate such generic msi by either a BUnity or a BUpL
mental state whenever the distinction is necessary.

We further note that considering the behaviour of a multi-agent system as simply the sum
of the behaviours of individual agents is a too unrealistic idea since interaction is ignored. In
this respect, we understand interaction as coordination and we look at it from two orthogonal
perspectives with respect to the dichotomy action/state.

4.1 Classifying Coordination
We see action-based coordination as a mechanism to force certain groups of agents to ex-
ecute certain actions synchronously while imposing to other groups certain restrictions or
particular orders, i.e., scheduling policies on action execution. This is what inspired us to call
them choreographies. One can picture them as global protocols which dictate the way agents
behave by imposing ordering and synchrony constraints on their action executions. They
represent exogenous coordination patterns and they can be seen as an alternative to message
passing communication, with the potential advantage of not needing to establish a “common
communication language”. Choreographies are useful in scenarios where action synchrony
is more important than data. Choreographies are the subject of Section 4.2. Somewhat re-
lated to action-based coordination is the so called channel-based coordination. An already
standard example in the coordination community is the language called Reo[Arb04]. The
language is implemented as a Java software which makes it possible to design connectors by
combining basic channels. These connectors can be seen as implementing sophisticated coor-
dination patterns for agents. To have a complete experiment we take the Java 2APL platform
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for designing agents and we propose a small tool integration exercise. Since the experiment
is at a more practical level, not to interrupt the line of reasoning, we postpone the discussion
to the last part of the thesis, in Chapter 6.

At a different1 level, in Section 4.4.4, we look at what we will call, for simplicity, though
by abuse of terminology, normative mechanisms as a way to enforce states, and not actions.
More precisely, we describe a programming language that is designed to facilitate the im-
plementation of norm-based organisation artifacts. Such artifacts refer to norms as a way to
signal when violations take place and sanctions as a way to respond (by means of punish-
ments) in the case of violations. In this context, a norm-based artifact observes the actions
performed by the individual agents, determines their effects in the environment (which is
shared by all individual agents), determines the violations caused by performing the actions,
and possibly, imposes sanctions. Thus a normative artifact can be used to enforce the system
to be in a specific, i.e., non-violating, state. Though the concepts we work with are simple,
a couple of design decisions need to be considered. We can, for example, describe differ-
ent scheduling strategies for the application of norms. From these strategies, if implemented
directly into the language, different semantics arise, each characterising a different type of
normative system. For instance, in the extreme case of an “autocratic agent society” each
action an agent performs is followed by an inspection of the normative rules which might
be applicable. At the other extreme, in a “most liberal society” the monitoring mechanism
runs as a separate thread, independent of the executions of the agents. Such technicalities we
discuss in more detail in Section 4.4.4. We further address normative properties like enforce-
ment, regimentation, and their connection to different agent societies. For example, while in
autocratic societies certain correctness (in terms of safety) properties are modelled by defini-
tion, this is no longer the case in liberal societies with infinite executions. This implies that
we need to consider additional fairness constraints in order to ensure the well-behaviour of
the systems.

A more expressive framework can be obtained when we extend both action-based coordi-
nation and normative mechanisms by explicitly modelling time. Time is an issue of concern
since it allows one to model deadlines, timeouts, action scheduling or dynamic behaviour.
Our approach in modelling time consists of adapting the theory of timed automata[Alu99].
There, time is modelled as clocks denoted by real-valued variables. Initially, all the clock
variables are initialised with zero. They increase synchronously at the same uniform rate,
counting time with respect to a fixed global time frame. Clocks are understood as fictitious,
invented to express the timing properties of the system. We equip both agents and choreogra-
phies with clocks. In this way it is possible to model clock constraints which can (1) time
restrict action execution, to force action execution to happen before certain time invariants
are violated, (2) enforce delays between actions and (3) enable the sanctioning of delays, for
example, postponing to pay a fine, or we can cancel the application of sanctions when certain
deadlines have passed. Both extensions are discussed in Section 4.3 and 4.5.

Action-based (resp. channel-based) coordination artifacts and normative ones are orthog-
onal since neither choreographies nor coordination patterns imposed by Reo connectors are
suitable for expressing organisational concepts like norms. Each concerns with distinct is-

1It is tempting to see it as a "higher", however some might argue that this is not distinctive feature differentiating
between actions and states.
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sues: coordination artifacts enforce specific actions to be executed while normative artifacts
enforce the system to be in a specific, e.g., non-violating, state. Thus they have different,
non-comparable expressive power. This is why we use the classification low-level vs high-
level coordination. Since the expressive power is not the same we discuss the combination of
their timed versions in Chapter 4.6.

4.2 Action-Based Coordination
Introducing coordination while respecting the autonomy of the agents is still a challenge in
the design of multi-agent systems. The mechanisms we introduce, i.e., choreographies, are
suitable in scenarios where synchronisation is important, take, for example, two agents being
assigned the task of lifting a table together. To justify the choice of the naming, we imagine
the setting of a ballet play where the main actors are the agents. In this context, agents may be
able to perform many actions. However, they are supposed to perform precisely those actions
which are indicated by the choreography. Once the agents adopt their roles, the play goes on
without further assistance from any central coordinator. Thus, the advantage of the infrastruc-
tures we propose lies in their exogenous feature. This implies that the maintenance, i.e., the
update of the agent’s internals, i.e., mental states is separated from the coordination pattern.
Consequently, nobody changes the agent’s beliefs but itself. Besides that choreographies are
oblivious to mental aspects, they control without having to know the internal structure of the
agent. For example, whenever a choice between plans needs to be taken, a BUpL agent is
free to make its own decision. The degree of freedom can be seen also in the mechanism
for handling action failures. The agent chooses one among possibly many available repair
rules without being constraint by the choreography. In these regards, the autonomy of agents
executed with respect to choreographies is preserved.

4.2.1 Choreographies
For the ease of presentation, we introduce choreographies as regular expressions. The basic
choreographic elements are pairs (i,a) which denote that the agent with identifier i should per-
form the action a. These pairs can be combined by sequence, parallel, choice or Kleene oper-
ators, with the usual meaning: (i1,a1);(i2,a2) models orderings, agent i1 executes a1 which
is followed by agent i2 executing a2; (i1,a1) ‖ (i2,a2) models synchronisations between ac-
tions, agent i1 executes a1 while i2 executes a2; (i1,a1)+ (i2,a2) models non-deterministic
choices, either i1 executes a1 or i2 executes a2; (i,a)∗ models iterated execution of a by i.
The operators respect the usual precedence relation2. Further, since “‖” and “+” are asso-
ciative and commutative, for simplicity, we use the notation opI(i,ai) to denote (i1,ai1) op
. . . op (i j,ai j) where op ∈ {‖,+}, I = {i1, . . . , i j} and j ≥ 2. The BNF grammar defining a
choreography is as follows:

la ::= (i,a) | (i,xa) | la ‖ la
ch ::= la | ch+ ch | ch;ch | ch∗

2If we denote ≤p the precedence relation, then we have ’+’ ≤p ’‖’ ≤p ’;’ ≤p ’*’
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where xa denotes an action variable. We use the naming convention that action variables are
denoted by small letters with a as subscript (xa, ya, za...). They are meant to be placeholders
for action names. Action variables are seen as global static variables, thus, once bound, their
value cannot be changed. The binding is according to the actions that an agent is enabled to
execute at a given time. Variable bindings are recorded as action substitutions. The applica-
tion of action substitutions to action variables is the same as for general expressions: given xa
an action variable and θ an action substitution containing [xa/a], the effect of the application
of θ to xa, denoted by xaθ , is a. If θ does not contain any [xa/a] then xaθ equals xa.

We note that the BNF syntax of choreographies allows parallel compositions only at the
level of basic choreographic elements la. This is because our intention is to synchronise
agents performing actions and not choreographies. As an example, we consider the following
choreographic definition:

ch = (i1, clean) ‖ (i2, move(3,1,0));
(i1, move(2,0,1)); ((i1, move(3,0,2)) ‖ (i2, clean)) +
(i2, move(2,0,1)); ((i2, move(3,0,2)) ‖ (i1, clean)); (i2, xa).

The choreography specifies that two agents i1, i2 work together in order to build the tower
123 and furthermore, that while one is building the tower the other one is cleaning the floor,
all ending with i2 executing no matter what action. More precisely, the definition of the
choreography says that first i2 deconstructs the initial tower (by moving the block 3 on floor)
while i1 is synchronously cleaning; next, either i1 constructs the final tower while i2 cleans
or the other way around; in this latter case, after i2 finishes the tower and i1 the cleaning,
i2 executes any action and this leads the system to a final state. Further variations (like for
example, in the case of a higher tower, one agent builds an intermediate shorter tower leaving
the other to finish the construction) are left to the imagination of the reader.

The semantics of choreographies is given in terms of transition systems. These transi-
tion systems are in fact automata (equipped with final states) accepting choreographies. Such
automata always exist as their construction is the one used for regular expressions. The stan-
dard approach from [MY60, HMRU00] is based on induction3 on the structure of the regular
expression. We adapt this construction to show how it works for choreographies. Given a
choreography ch, we denote by Ach the associated automaton. The automaton associated
with a basic choreography la has two states and one transition labelled with la. Given Ach1

and Ach2 the automata associated with the choreographies ch1 and ch2, the automaton Ach1;ch2

is the one obtained by concatenating Ach1 and Ach2 . As an example, Figure 4.1 illustrates the
transition system corresponding to the choreography ch defined above.

We denote by Ach⊗I the synchronised product of a choreography ch and a multi-agent
system I. The states of Ach⊗I are pairs 〈(cs,θ),M〉 where (cs,θch) is a choreography state
with a substitution recording a choreography state cs of Ach and an action substitution θch, and
M is a state of the multi-agent system I. The transition rule for Ach⊗I is given in Figure 4.2.
There, cs,cs′ are states of Ach, θch, θ ′ch are action substitutions, a j denote instantiated actions
xa jθ

′
ch, J is a subset of I, ms j,ms′j are mental states of agent j and M,M′ are states of

the multi-agent system with M′ being M\{( j,ms j) | j ∈ J }∪ {( j,ms′j) | j ∈ J }. The

3The reader can refer to [Brz64] for a direct deterministic construction using the derivatives of a given regular
expression.
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cs0start cs1

cs2

cs4

cs3

cs5 cs6

(i1, clean) ‖

(i2, move(3,1,0))

(i 1,
mov

e(2
,0
,1
))

(i2 , move(2,0,1))

(i1, move(3,0,2))

‖ (i2, clean)

(i2, move(3,0,2))

‖ (i1, clean)

(i2, xa)

Figure 4.1: The Automaton Ach Associated to the Choreography ch

notation ms j
a j⇒ ms′j represents that agent j performs action a j (eventually with τ steps) in

ms j resulting in ms′j. “Eventually τ steps” is needed for agents performing internal actions,
like making choices among plans or handling failures in the case of BUpL agents. In the
case of agents “in the style of BUnity”, a⇒ is simply a→ since Bunity agents do not have τ

steps. By abuse of notation, we use the construction Sols(
∧

j

(E(ms j),xa j θch)) to denote the

set of solutions for matching xa j θch against the set of names of actions E(ms j). We recall
that in Section 3.4 we defined E(ms) as the set of actions that are enabled to be executed
from ms, E(ms) = {a | there exists ms′ s.t. ms a⇒ ms′}. We also recall that in general, xaθ

can be either (1) a variable xa or (2) an action name a if θ contains [xa/a]. This means that
matching xaθ against a set of action names E can be an action substitution (if (1)), the identity
if xaθ = a and a is in E or a clash if a is not in E (if (2)). With this, we define Sols(E,xaθ)
as {θ ′ | xaθθ ′ ∈ E}.

cs
‖J ( j,xa j)
−−−−−−→ cs′ θ ′ch ∈ Sols(

∧
j

(E(ms j),xa jθch))
∧

j∈J ms j
a j⇒ ms′j

〈(cs,θch),M〉
l→ 〈(cs′,θchθ ′ch),M′〉

(sync-act)

Figure 4.2: The Transition Rule for Ach⊗I

The transition rule (sync-act) shows the changes in the multi-agent system and in the
choreography state with substitution. With respect to the state of the multi-agent system, the
transition says that only the agents from the subset {ms j | j ∈ J } are allowed to execute
actions while the other ones remain unchanged. The new state of the multi-agent system
reflects precisely the updates of action substitutions and the updates of mental states of the
individual agents. With respect to the choreography state with substitution, the transition
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says that the choreography state changes accordingly to the transition from Ach and that all
action variables xa j are bound to a ground action name corresponding to one of the actions
that agent j is enabled to execute. This binding is recorded in θ ′ch such that whenever xa j

appears in a choreography label from Ach it will be substituted by the binding.

4.3 Timed Choreographies
In order to model timed choreographies we adapt the theory of timed automata [Alu99].
A timed automaton is a finite transition system extended with real-valued clock variables.
Time advances only in states since transitions are instantaneous. Clocks can be reset at zero
simultaneously with any transition. States and transitions have clock constraints, defined by
the following grammar:

φc ::= xc ≤ t | t ≤ xc | xc < t | t < xc | φc∧φc,

where t ∈ Q is a constant and xc is a clock variable4. When a clock constraint is associated
with a state, it is called invariant, and it expresses that time can elapse in the state as long as
the invariant stays true. When a clock constraint is associated with a transition, it is called
guard, and it expresses that the action may be taken only if the current values of the clocks
satisfy the guard.

To record clock values one uses clock interpretations. A clock interpretation ν for a set
of clocks λ assigns a real value to each clock. A clock interpretation ν is said to satisfy a
clock constraint φc, ν |= φc, if and only if φc evaluates to true according to the values given
by ν . For δ ∈R, ν +δ denotes the clock interpretation which maps every clock xc ∈ λ to the
value ν(xc)+δ . For any λ1 ⊆ λ , ν [λ1 := 0] denotes the clock interpretation which assigns 0
to every xc ∈ λ1 and agrees with ν over the other clocks.

In our multi-agent setting, timed choreographies are meant to impose time constraints on
the actions executed by the agents. Syntactically, the BNF notation of timed choreographies
extends the notation for the untimed ones:

lδ ::= xc ≤ t
la ::= (i,a) | (i,xa) | (la ‖ la)
ch ::= lδ | la | (φc, la,λ ) | ch;ch | ch+ ch | ch∗

where lδ denotes an additional elementary choreography for passing the time by delaying
clocks. Timing the synchronisation is modelled by means of choreography states (φc, la,λ ),
that is, by surrounding la with a clock constraint φc and a set of clocks λ to be reset. As we
will see in the semantics, the purpose of the constructions (φc, la,λ ) is (1) to time constrain
the execution of the action denoted by la and (2) to update the clock valuation by resetting
the clocks from λ .

We model timed choreographies as timed automata. The construction is similar to the one
from choreographies to automata. The only additional construction corresponds to lδ basic
choreographies which instead of being labels on new transitions are associated to states to
denote invariants. We consider as an example the following choreography t-ch:

4We use the naming convention of denoting clock variables by small letters with c as a subscript (xc, yc, zc, . . . )
in order to distinguish them from action variables
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t-ch = ((i1, clean), xc := 0) ‖ (i2, move(3,1,0)); (xc ≤ 5);
(i2, move(2,0,1)); ((i1, move(3,0,2)) ‖ (xc > 6, (i2, clean) ) ).

The corresponding timed automaton is depicted in Figure 4.3. It shows that there is a single
clock xc. The initial state cs0 has no invariant constraint and this means that an arbitrary
amount of time can elapse in cs0. The clock x is always reset with the transition from cs0 to
cs1. Corresponding to a lδ label, xc ≤ 5 is associated to the state cs1 as an invariant. It ensures
that the synchronous actions clean and move(3,1,0) must be executed within 5 units of time.
The guard xc > 6 associated with the transition from cs2 to cs3 ensures that the agents cannot
spend an indefinite time in cs2 because they must finish their tasks after 6 units of time.

cs0start cs1
xc ≤ 5 cs2 cs3

((i1, clean), xc := 0)

(i2, move(3,1,0)) ‖ (i1, move(2,0,1)) (i1, move(3,0,2)) ‖

(xc > 6, (i2, clean))

Figure 4.3: The Timed Automaton Ach Associated to the Choreography t-ch

For convenience, we use Ach instead of ch or t-ch. We define the semantics of timed
choreographies Ach by means of transition systems where the states are denoted as 〈cs,ν〉
with cs being a state of Ach and ν the current clock interpretation. The transition rules are
with respect to the transition labels of Ach, that is, corresponding to delay (lδ ) and to agents’
actions (la). These are illustrated in Figure 4.4. The first rule says that the choreography can
pass time as long as the new valuation does not violate the invariant I(cs) associated with
the state cs. The second rule says that for any label (φc,‖J (ms j,xa j),λ ) in Ach we construct
a transition labelled ‖J (ms j,xa j) from 〈cs,ν〉 only if φc is satisfied by the current clock
interpretation ν and if after resetting in ν the clocks from λ the new interpretation ν ′ does
not violate the invariant associated with cs′.

〈cs,ν〉 δ→ 〈cs,ν +δ 〉 if ν +δ |= I(cs) for any δ ∈ R+

〈cs,ν〉
‖J ( j,xa j)
−−−−−−→ 〈cs′,ν ′〉 if cs

φc,‖J ( j,xa j),λ
−−−−−−−−−→ cs′, ν |= φc, ν ′ := (ν [λ := 0]) and ν ′ |= I(cs′).

Figure 4.4: Transition Rules for Timed Choreographies

Having timed choreographies, however, does not make much sense without having time
in the agents’ programs. In what follows we illustrate how to extend BUnity and BUpL with
time. We begin with some general remarks. We see basic actions as a common ontology
shared by all agents. Since the nature of basic actions does not specify when to be executed,
our extension is thought such that the ontology remains timeless and “when” becomes a
specific part of the syntax of the language. In this regard, we consider that agents have a set
of local clocks and that clock valuations can be performed by an observer. We further pose the
problem of how agents make use of clocks. We recall the design principle: “the specification
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of basic actions does not come with time”, thus actions are instantaneous. This implies that,
in order to make the time pass, we need to extend the syntax of the agent languages with new
application specific constructions such that the ontology of basic actions remains timeless
(basic actions being specified only in terms of pre/post conditions). This is why we introduce
delay actions, φ → I, where φ is a query on the belief base and I is an invariant like xc ≤ 1.
Basically, their purpose is to make time elapse in a mental state where certain beliefs hold. As
long as the invariant is true, the agent can stay in the same state while time passes. We refer
to D as the set of delays of either a BUnity or a BUpL agent. This is because, as it is the case
for basic actions, delays are syntactical constructions belonging to both BUpL and BUnity
languages. In what follows, we discuss the time extension for each language separately.

4.3.1 Timed BUnity

Extending BUnity with time reduces to considering time extensions for BUnity triggers. First,
the queries of triggers are defined both on belief bases and clock valuations. Second, triggers
specify the set of clocks to be reset after the execution of basic actions. Their syntax becomes
{φ ∧ φc} . do(a),λ . Timed triggers are meant to say that if certain beliefs φ hold in the
current mental state of a BUnity agent (as before) and additionally, certain clock constraints
φc are satisfied, then the basic action a is executed and the clocks from the set λ are reset
to 0. Taking into account the previous discussion of the mechanism of delay actions, the
corresponding changes in the semantics are reflected in Figure 4.5.

φ → I B |= φ

(δ ∈ R+)(ν +δ ∈ I)

(B,ν) δ→ (B,ν +δ )
(delay)

{φ ∧φc}.do(a),λ

ν ∈ φc B aθ→B′

(B,ν) aθ→ (B′,ν [λ := 0])
(t-act)

Figure 4.5: Transition Rules for Timed BUnity

In the transition rule (t-act), λ is the set of clocks reset by performing action a and ν

represents the current clock valuations. We use the notation ν ∈ I (resp. ν ∈ φc) to say that
the clock valuations from ν satisfy the invariant I (resp. the constraint φc). When φc is absent
we consider that trivially ν ∈ φc holds. We make a short note that our design decision is to
separate the implementation of delays from the one of triggers. This is because a construction
like {φ}. I,do(a),λ is ambiguous. If φ holds, it can either be the case that time elapses with
respect to the invariant I and a is suspended, or that a is immediately executed. However, it
sometimes is important to ensure that “time passes in a state”, instead of leaving this only as
a non deterministic choice.

To illustrate the above constructions we recall the BUnity agent ia from Figure 2.4. We
basically extend the BUnity agent such that the agent has one clock, be it yc, which is reset
by triggers, and such that the agent can delay in given states, thus letting the time pass.

Figure 4.6 shows a possible timed extension. The clock yc is reset after either performing
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At = { >. (do(clean),yc := 0), ¬on(2,1) . do(move(2,0,1)),
¬on(3,2)∧on(2,1) . do(move(3,0,2)),
¬(on(2,1)∧on(3,2)) . (do(move(x,y,0)),yc := 0) }

D = { on(3,0)∨ cleaned→ (yc < 9), on(2,1)∨ cleaned→ (yc < 10) }

Figure 4.6: Extending ia with clock constraints

clean or moving a block on the floor. The agent can delay until the clock valuates to 9 (resp.
10) units of time after moving 3 on the floor (resp. 2 on 1).

4.3.2 Timed BUpL
The timed extension of BUpL concerns changing plans such that previous calls a; p are re-
placed by (φc,a,λ ); p and (φ → I); p, where φc is time constraining the execution of action
a and λ is the set of clocks to be reset. To simplify notation, if clock constraints and clock
resets are absent we use a instead of (a).

We make the remark that if previously actions failed when certain beliefs did not hold in
a given mental state, it is now the case that actions fail also when certain clock constraints are
not satisfied. Consider, for example, the plan ((xc < 1),a, [xc := 0]);((xc > 2),b, /0). There is
no delay action between a and b, thus the time does not pass and xc remains 0, meaning that
b cannot be executed. Such situations are handled by means of the general semantics of the
repair rules. There are two possibilities: either to execute an action with a time constraint that
holds, or to make time elapse. The latter is achieved by triggering a repair rule like true← δ ,
where for example δ is a delay action true→ true which allows an indefinite amount of time
to pass. The corresponding changes5 in the semantics are reflected in Figure 4.7.

p = (φ → I); p′ B |= φ

(δ ∈ R+)(ν +δ ∈ I)

(B, p,ν) δ→ (B, p′,ν +δ )
(delay)

p = (φc,a,λ ); p′

ν ∈ φc (B, p) aθ→ (B′, p′θ)

(B, p,ν) aθ→ (B′, p′θ ,ν [λ := 0])
(t-act)

Figure 4.7: Transition Rules for Timed BUpL

To see a concrete example, we recall the BUpL agent from Section 2.3.3. We consider
two delay actions true→ (yc < 9) and true→ (yc ≤ 10). We further make the delays and the
clock resets transparent in the plans. The plan cleanR changes to (true, clean, yc := 0);cleanR
such that the clock yc is reset after a clean action. The plan rearrange(x1,x2,x3) changes
to true→ (yc < 9);move(x1,0,x2); true→ (yc ≤ 10); move(x3,0,x1) such that time passes
between moves.

5With respect to the untimed BUpL rules, we only present the extension for the rule (act). In the case of timed
repair rules the extension is similar and thus we do not include it.
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The observable behaviour of either timed BUnity or BUpL agents is defined in terms of
timed traces. A timed trace is a (possibly infinite) sequence (t1,a1) (t2,a2) . . .(ti,ai) . . . where
ti ∈ R+ with ti ≤ ti+1 for all i ≥ 1. We call ti a time-stamp of action ai since it denotes the
absolute time that passed before ai was executed. We then have that a timed BUnity or BUpL
agent computation over a timed trace (t1,a1)(t2,a2) . . .(ti,ai) . . . is a sequence of transitions:

ms0,ν0
δ1→ a1→ ms1,ν1

δ2→ a2→ ms2,ν2 . . .

where msi is a BUnity (BUpL) mental state and ti are satisfying the condition ti = ti−1 + δi
for all i≥ 1.

For example, a possible timed trace for either the timed BUpL or BUnity agent is (0,
clean), (7, move(3,1,0)), (8, move(2,0,1)), (9, move(3,0,2)). It is, in fact, the case that any
BUpL timed trace is also a BUnity timed trace, thus the two agents are again in a refinement
relation. We elaborate more on timed refinement in Section 4.7.1.

4.3.3 Timed Multi-Agent Systems

In the new context of timed choreographies, we need to revise the semantics of multi-agent
systems. First we consider the set νM as representing the valuation of all of the clocks of
all agents from M, i.e., νM = {νi | i ∈ I}6. We say that νM |= φc is true whenever the
valuations from νM satisfy the clock constraint φc. For example, let us consider a multi-
agent system with two agents, i1 and i2 with i1 having two clocks xc,yc and i2 having one
clock zc. Let us further assume that we “freeze” the system for an instant in a state where the
clock interpretation ν1 of the first agent is ν1(xc) = 2,ν1(yc) = 4 and the clock interpretation
ν2 of the second agent is ν2(zc) = 6. We have that, in the clock interpretation νM, i.e.,
ν1∪ν2, the clock constraint φc = (xc < 3)∧ (zc > 5) is satisfied however this is not the case
for the clock constraint φc = (yc < 3).

The transition rules for timed multi-agent systems running under the directions of timed
choreographies are depicted in Figure 4.8. They follow from the transitions for timed chore-
ographies (Figure 4.4) and extend the transition (act) for the untimed multi-agent systems
(Figure 4.2). More precisely, the transition (delay) for passing time says that the whole sys-
tem can delay δ units as long as the updated valuations do not violate the invariant of the cur-
rent choreography state. The transition rule (t-sync-act) replaces the transition (sync-act).
The changes reflect that, in addition, the new clock valuations should satisfy the invariant
associated to the new choreography state in order to allow the transition to take place. We
conclude with an illustration of one possible timed trace of a multi-agent system composed
of two BUpL agents i1 and i2 having the same code described in Section 4.3.2. We consider
that the system runs under the timed choreography from Figure 4.3. Recalling that the clock
of the choreography was denoted by xc and assuming that i1 has a clock y1c, resp. i2 has a
clock y2c, we have the following computation:

6In order to have a well-defined interpretation νM the set of clock variables of individual agents must be disjoint,
i.e., each clock variable is unique.
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〈cs,ν〉 δ→ 〈cs,ν +δ 〉∧
i

((msi,νi)
δ→ (msi,νi +δ )) (νM∪ν +δ ) |= I(cs)

〈(cs,ν ,θch),M〉
δ→ 〈(cs,ν +δ ,θch),M′〉

(delay)

〈cs,ν〉
l:=‖J ( j,xa j)
−−−−−−−−→ 〈cs′,ν ′〉 θ ′ch ∈ Sols(

∧
j

(E(ms j),xa jθch))

a j := xa jθ
′
ch

∧
j

((ms j,ν j)
a j⇒ (ms′j,ν

′
j)) νM′ ∪ν ′ |= I(cs′)

〈(cs,ν ,θch),M〉
l→ 〈(cs′,ν ′,θchθ ′ch),M′〉

(t-sync-act)

Figure 4.8: Transitions Rules for Timed Multi-Agent Systems

((i1, clean) ‖ (i2, move(3,1,0)), xc = 0, y1c = 0, y2c = 4), (1)
((i2, move(2,0,1)), xc = 6, y1c = 6, y2c = 10), (2)
((i1, move(3,0,2)) ‖ (i2, clean), xc = 6, y1c = 6, y2c = 0), (3)

where we have ignored substitutions from choreography states since in this particular case all
the choreographic labels are ground. The snapshot represented by (1) illustrates that after i1
performed clean both its clock y1c and xc have been reset to 0 while the clock of i2 shows how
much time has passed, i.e., 4 units. As a short note, we recall that the invariant associated
to the choreography state cs1 is xc ≤ 5 and that i2 could delay at most 10 units before the
next move action, thus the maximum time that y2c could have shown is 9 units. Snapshot
(2) illustrates that after i2 performs move(2,0,1) the agents and the choreography delays for
5 units. This is due to the guard xc > 6 from the transition between cs2 and cs3. Finally,
snapshot (3) illustrates that after the last moves the clock of i1 has been reset due to the
specification of the plan cleanR.

4.4 A Normative Language
In this section, we present a programming language that facilitates the implementation of
multi-agent systems with norms. Individual agents are assumed to be implemented in a pro-
gramming language, not necessarily known to the multi-agent system programmer, who is
assumed to have a reference to the (executable) program of each individual agent. Most no-
ticeably, it is not assumed that the agents are able to reason about the norms of the system
since we do not make any assumptions about the internals of individual agents.

Agents perform their actions in an external environment which is part of and controlled
by the organisation. The initial state of an environment can be implemented by means of a set
of facts. In order to implement the effects of the external actions of individual agents in the
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environment, we propose a programming construct by means of which it can be indicated that
a set of facts should hold in the environment after an external action is performed by an agent.
As external actions can have different effects when they are executed in different states of the
environment, we add a set of facts that function as the precondition of those effects. In this
way, different effects of one and the same external action can be implemented by assigning
different pairs of facts, which function as pre- and postconditions, to the action. The multi-
agent system organisation determines the effect of an action by the following mechanism: if
the precondition holds in the current state of the environment (the execution of the action is
enabled), then the state is updated with the facts which represent the postcondition.

We consider norms as being represented by counts-as rules [Sea95], which ascribe “in-
stitutional facts” (e.g. “a violation has occurred”) to “brute facts” (e.g. “the agent is in
the train without a ticket”). In our framework, brute facts constitute the factual state of the
multi-agent system organisation, which is represented by the environment (initially set by the
programmer), while institutional facts constitute the normative state of the multi-agent sys-
tem organisation. The institutional facts are used with the explicit aim of triggering system’s
reactions (e.g. sanctions). As claimed in [GDM07] counts-as rules enjoy a rather classical
logical behaviour. In our framework, the counts-as rules are implemented as simple rules that
relate brute and institutional facts. It is important to note that the application of counts-as
rules corresponds to the triggering of a monitoring mechanism since it signals which changes
have taken place and what are the normative consequences of the changes.

Sanctions can also be implemented as rules, but follow the opposite direction of counts-
as rules. A sanction rule determines what brute facts will be brought about by the system
as a consequence of normative facts. Typically, such brute facts are sanctions, such as fines.
Notice that in human systems sanctions are usually brought about by specific agents (e.g.
police agents). This is not the case in our computational setting, where sanctions necessarily
follow the occurrence of a violation if the relevant sanction rule is into place (comparable to
automatic traffic control and issuing tickets). It is important to stress, however, that this is not
an intrinsic limitation of the system since we do not aim at mimicking human institutions but
rather providing the specification of computational systems.

4.4.1 Syntax

In order to represent brute and institutional facts in our normative multi-agent system pro-
gramming language, we introduce two disjoint sets of first-order atoms <b-atoms> and
<i-atoms> to denote these facts. Moreover, we use <ident> to denote a string and
<int> to denote an integer. Figure 4.9 presents the syntax of the language in EBNF nota-
tion. A normative multi-agent system program N-MAS_Prog starts with a non-empty list of
clauses, each of which specifies one or more agents. The list of agent specifications is pre-
ceded by the keyword ’Agents:’. Unlike in non-normative MAS programming language,
we do not specify the agents’ access relation to environments in these clauses because we as-
sume that the access relations can and should be specified by means of norms and sanctions.
In each clause, <agentName> is a unique name to be assigned to the individual agent that
should be created, <agentProg> is the reference to the (executable) agent program that
implements the agent, and <nr> is the number of such agents to be created (if the number is
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〈N-MAS_Prog〉 = "Agents:" ( 〈agentName〉 〈agentProg〉 [〈nr〉] )+

"Facts:" 〈bruteFacts〉
"Effects:" { 〈effect〉 }
"Counts-As rules:" { 〈counts-as〉 }
"Regimentation rules:" { 〈regimentation〉 }
"Sanction rules:" { 〈sanction〉 };

〈bruteFacts〉 = 〈b-literals〉 ;
〈effect〉 = "{"〈b-literals〉"}" 〈actName〉 "{"〈b-literals〉"}" ;
〈counts-as〉 = 〈literals〉 "=>" 〈i-literals〉 ;
〈regimentation〉 = 〈b-literals〉 "=> viol⊥" ;
〈sanction〉 = 〈i-literals〉 "=>" 〈b-literals〉 ;
〈agentName〉 = 〈ident〉 ;
〈agentProg〉 = 〈ident〉 ;
〈nr〉 = 〈int〉 ;
〈actName〉 = 〈ident〉 ;
〈b-literals〉 = 〈b-literal〉 {"," 〈b-literal〉} ;
〈i-literals〉 = 〈i-literal〉 {"," 〈i-literal〉} ;
〈literals〉 = 〈literal〉 {"," 〈literal〉} ;
〈literal〉 = 〈b-literal〉 | 〈i-literal〉 ;
〈b-literal〉 = 〈b-atom〉 | "not" 〈b-atom〉 ;
〈i-literal〉 = "viol⊥" | 〈i-atom〉 | "not" 〈i-atom〉 ;

Figure 4.9: The EBNF syntax of normative multi-agent programs
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greater than one, then the agent names will be indexed by a number). After the specification
of individual agents, the initial state of the environment is specified as a set of first order
literals denoting brute facts. The set of literals is preceded by the keyword ’Facts:’. The
effects of an external action of an individual agent are specified by triples consisting of the
action name, together with two sets of literals denoting brute facts. The first set specifies the
states of the environment in which the action can be performed, and the second set specifies
the effect of the action that should be accommodated in the environment. The list of the ef-
fects of agents’ external actions is preceded by the keyword ’Effects:’. A counts-as rule
is implemented by means of two sets of literals. The literals that constitute the antecedent
of the rule can denote either brute or institutional facts, while the consequent of the rules are
literals that denote only institutional facts. This allows rules to indicate that a certain brute
or institutional fact counts as another institutional fact. For example, speeding is a violation
of traffic law (institutional fact), but this violation together with not paying your fine in time
(brute fact) is considered as another violation (institutional fact). The list of counts-as rules
is preceded by the keyword ’Counts-As rules:’. A regimentation rule is a special type
of counts-as rule. The difference is that the antecedent is defined only on brute facts and
the consequent is a specifically designated literal viol⊥. Regimentation rules are normative
enabling conditions on top of external actions. They function as one look-ahead step, spec-
ifying when the execution of an action leads to a forbidden state of the environment, thus
preventing it from taking place. The list of regimentation rules is preceded by the keyword
’Regimentation rules:’. Finally, the list of sanction rules can be specified in a nor-
mative multi-agent program. The antecedent of a sanction rule consists of literals denoting
institutional facts while the consequent of a sanction rule consists of literals denoting brute
facts. The list of sanction rules are preceded by the keyword ’Sanction rules:’.

Figure 4.10 presents a normative multi-agent system program that implements a small part
of a train system. The program creates from the file passenger_prog one agent called
psg. The Facts, which implement brute facts, determine the initial state of the shared
environment. In this case, the set of brute facts is empty, meaning, for example, the agent
is not at the platform and has no ticket7. The Effects indicate how the environment can
advance in its computation, for instance, psg performing enter when not at the platform,
results in psg being at the platform (with or without a ticket). The Counts-As rules de-
termine the normative effects for a given state of the multi-agent system. In our case, the only
count-as rule states that being at the platform without having a ticket is a specific violation
(viol_ticket(X)). The rule functions as an enforcement mechanism [GDM07] and it is
based on the idea of responding to a violation such that the system returns to an acceptable
state. However, there are situations where stronger requirements need to be implemented, for
example, where it is never the case that psg enters the train without a ticket. This is what we
call regimentation and in order to implement it we consider the literal viol⊥(X) by means
of regimentation rules. The operational semantics of the language ensures that viol⊥(X)
can never hold during any run of the system. Intuitively, regimentation can be thought of as
placing gates blocking an agent’s action. Finally, the aim of Sanction rules is to deter-
mine the punishments that are imposed as a consequence of violations. In the example the

7In our framework we consider the closed world assumption, thus negation as failure.
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violation of type viol_ticket(X) causes the sanction fined(X,25) (e.g., a 25 EUR
fine).

Agents:
psg passenger_prog 1

Facts:
Effects:

enter(X) = ({not at_platform(X)}, {at_platform(X)})
buy-ticket(X) = ({not ticket(X)}, {ticket(X)})
embark(X) = ({at_platform(X), not in_train(X)},

{not at_platform(X), in_train(X)})
Counts-As rules:

at_platform(X), not ticket(X) => viol_ticket(X)
Regimentation rules:

in_train(X), not ticket(X) => viol_|_(X)
Sanction rules:

viol_ticket(X) => fined(X,25)

Figure 4.10: An example of a Normative MAS file

4.4.2 Operational Semantics
The state of a normative multi-agent system is an extension of a multi-agent system state as
defined in Chapter 4. More precisely, it consists of the state of the external environment, the
normative state of the organisation, and the states of individual agents. We recall that we
abstract away from the internal configuration of individual agents. The language of design is
left to the choice of the programmer as long as it allows reasoning on the observable actions
executed by agents.

4.4.1. DEFINITION. [Normative MAS Configuration] Let Pb and Pn be two disjoint sets of
first-order atoms denoting brute and normative facts (including a predefined viol⊥), respec-
tively. Let msi denote the configuration of individual agent i. The configuration of a norma-
tive multi-agent system consisting of a set of agents identified by I is defined as 〈M,σb,σn〉
whereM = {(i,msi) | i ∈ I}, σb is a consistent set of ground literals from Pb denoting the
brute state of the multi-agent system, and σn is a consistent set of ground literals from Pn
denoting the normative state of the multi-agent system. �

Before presenting the transition rules for specifying possible changes between normative
multi-agent system configurations, we fix some notation. The normative rules we consider,
counts-as or sanction rules8, are defined as first order implications, l = (Φ⇒Ψ), with Φ and
Ψ being sets, or equally conjunctions, of literals. We use condl and consl are used to indicate
the condition Φ and the consequent Ψ of l, respectively. Given a set R of normative rules and
a set σ of ground atoms, we define the set of applicable rules in σ as:

8Counts-as and sanctions are usually considered as being context dependent. Our framework can be extended by
considering both rule types in a non-monotonic way capturing their context dependence.



92 Chapter 4. From Agents to Multi-Agent Systems

ApplR(σ ) = { ( Φ⇒Ψ )θ | Φ⇒Ψ ∈ R ∧ ∃θ s.t. σ |= Φθ },

with θ being a ground substitution.
The ground closure of σ under R, denoted as ClR(σ ), is inductively defined as follows:

Base : ClR
0 (σ) = σ ∪ (

⋃
l∈ApplR(σ)

consl)

Inductive Step : ClR
n+1(σ) = ClR

n (σ)∪ (
⋃

l∈ApplR(ClR
n (σ))

consl).

We note that such a computation does not always reach a fixpoint. Not to interrupt the flow
of reasoning, we postpone this discussion to Section 4.4.5.

We do not make any assumptions about the internals of individual agents. Therefore, for
the operational semantics of normative multi-agent system we assume msi

a→ms′i as being the
transition of configurations for individual agent i. Given this transition, we can define a new
transition rule to derive transitions between normative multi-agent system configurations.

4.4.2. DEFINITION. Let 〈M,σb,σn〉 be a configuration of a normative multi-agent system.
Let Rc be the set of counts-as rules, Rr

9 be the set of regimentation rules, Rs be the set of
sanction rules, and a be an external action. The transition rule for the derivation of normative
multi-agent system transitions is defined in Figure 4.11. �

msi
a→ ms′i a = (ψ,ξ ) θ ∈ Sols(σb,ψ) σ ′b := σb]ξ θ

ApplRr(σ ′b) = /0 σ ′n := ClRc(σ ′b)\σ ′b S := ClRs(σ ′n)\σ ′n σ ′b∪S 6|=⊥
〈M,σb,σn〉 → 〈M′,σ ′b∪S,σ ′n〉

(ACS)

Figure 4.11: The Transition Rule for Normative Multi-Agent Systems

In the transition (ACS) msi is the current state of agent i, i.e., msi ∈ M, M′ reflects
the changes with respect to the new states, i.e., M′ = (M\{msi})∪ {ms′i}, and ] is the
function from Section 2.1 used to update the environment of a normative multi-agent system
with the effects of an action performed by an agent. The transition rule captures the effects
of performing an external action by an individual agent on both external environments and
the normative state of the multi-agent system. First, the effect of a on the environment σb
is computed. Then, the updated environment σ ′b is used to check whether ApplRr (σ ′b) is
empty. This means that an agent can execute an external action only if the execution does not
result in a state containing viol⊥. This captures exactly the regimentation of norms. Thus,
once assumed that the initial normative state does not include viol⊥, it is easy to see that the
system will never be in a viol⊥ -state.The updated state of the environment σ ′b is further used
to determine the new normative state σ ′n by applying all counts-as rules to σ ′b. The next step
consists in adding to the environment state all possible sanctions by applying sanction rules
to the new normative state of the system. The result is saved in S. Finally, both σ ′b and S are

9We consider Rc and Rr as separate sets in order to model regimentation more easily.
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used to check whether no contradictory state is reached. This is denoted by the construction
σ ′b∪S 6|=⊥, with⊥ as the logical boolean false, which stands for the case where from σ ′b and
S one can conclude f and ¬ f , with f being a ground fact.

4.4.3 Normative Properties
We would like to make sure that our language definitions fulfill some properties. Namely, we
would be interested in whether the semantics of the language models the enforcement and
the regimentation of norms. We recall that enforcing a norm means that if a violation occurs
then a corresponding sanction is applied while regimenting a norm means that the associated
violation can never occur.

We can express such concepts as LTL properties, enforcement(c,s) = condc ∧ (consc
→ conds) → ♦ conss and regimentation(r) = �¬condr. On the one hand, the definition
of enforcement says that for an arbitrary counts-as rule c with a valid antecedent (condc is
true) and for a sanction rule s with the antecedent being implied by the consequence of c
(consc → conds) it is the case that the sanctioning will eventually be applied (♦conss). On
the other hand, the definition of regimentation says that for an arbitrary rule r from Rr (consr
= viol⊥) it is never the case that the antecedent condr holds.

It is not difficult to see that the transition (ACS) models regimentation. This is because
the execution of an action is performed only when the set of applicable regimentation rules
is empty (ApplRr (σ ′b) = /0), which means that no regimentation rule r has a true antecedent
(¬condr). However, this is not the case for enforcement and the reason is that the application
of a sanction can enable the application of a previously not enabled counts-as rule. This is
possible since the antecedents of counts-as are defined on both brute and normative facts.
Thus though there is no change in the set of normative facts, the change in brute facts (due to
the application of sanctions) might have as a follow-up the enabling of new counts-as rules.
We note however, that such scenarios are more peculiar, even hard to implement, and that
in general, the semantics models for most scenarios not only regimentation but also enforce-
ment. How we can change the transition (ACS) such that it always models enforcement and
other possible variations on the semantics are discussed in the next section.

4.4.4 From Totalism to Liberalism in Operational Semantics
The transition rule (ACS) gives an operational semantics which characterises agent societies
implementing almost Orwell’s like “1984” societies, where each single step is being super-
vised and faults are being handled accordingly. We say “almost” since there might arise
cases when mistakes are being left unpunished, thus the societies are not “completely” vig-
ilant. Consider a traffic scenario where an actor drives through the red light, thus violating
the traffic law. Consequently, a fine is applied. Assume that this is done automatically by
withdrawing a certain amount of money from the actor’s account. It is then the case that not
enough money in the account results in a new violation. This is under the supposition that
the bank has a regulation specifying that the client must not go below a certain debt level,
otherwise the client is added to the bank’s black list and has to pay an additional fee. We
note that this latter sanction rule can never be applied when the system runs with respect to
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the transition (ACS). What happens is that after computing the closure of normative facts
under counts-as rules and respectively the closure of brute facts under sanctions, the system
changes state with no further check for new counts-as rules which are enabled by the update
of brute facts. In the new state, by the definition of the semantics, previous normative facts
play no role (this makes sense in most cases).

From the above scenario it follows that in certain circumstances the application of a sanc-
tion enables the execution of a new counts-as rule which should be taken into consideration.
In order to implement such a requirement, we need to consider, with respect to the applica-
ble norms and sanctions, the sequences defined on σn,σb satisfying the following recurrent
relations:

σni = σni−1 ∪
⋃

l∈ApplRc (σbi )
consl

σbi = σbi−1 ∪
⋃

l∈ApplRs (σni−1 )
consl ,

where i≥ 1, σn0 = σn∪
⋃

l∈ApplRc (σb)
consl and σb0 = σb. We denote by σ∗n (resp. σ∗b ) the

limit of the sequence σni (resp. σbi ). We note that simply considering the closure ClRc∪Rs

is not enough since we cannot distinguish anymore between brute and normative facts.The
new transition (ACS) is reflected in Figure 4.12. This new rule always models enforcement.
However, there is also a price to pay since, as we have already mentioned, when computing
fixpoints, limits of recurrent sequences in this case, one might run into the problem of non-
termination. We further discuss this in Section 4.4.5.

msi
a−→ ms′i a = (ψ,ξ ) θ ∈ Sols(σb,ψ)

σ ′b := σb]ξ θ ApplRr(σ ′b) = /0 σ∗b 6|=⊥
〈M,σb,σn〉 → 〈M′,σ∗b ,σ∗n 〉

(A(CS)∗)

Figure 4.12: A Totalitarian Semantics

What is distinctive to both (ACS) and (A(CS)∗) is that the application of normative rules
is performed in the same step with the execution of actions. We now consider the case when
the process of applying normative rules is separated from the one for action execution. This
gives rise to new variations on the operational semantics of normative multi-agent systems.
The key concept is the scheduling of the monitoring mechanism, i.e., the application of nor-
mative rules. To illustrate this, we start with traces. We understand traces as sequences of
observables with respect to the executions of a system. By observables we mean actions
and normative rules. In what follows, we use the notation α for denoting an arbitrary ac-
tion, γ ∈ 2Rc for the set of counts-as rules which are applicable after the execution of α , and
ς ∈ 2Rs for the set of sanctions which are applicable after the execution of the counts-as rules
from γ . With this, traces of normative multi-agent systems are regular expressions defined
on α,γ,ς . For example, the regular expression which characterises the traces of normative
multi-agent systems running with respect to the transition (ACS) is (αγς)∗, after one action,
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apply all valid counts-as rules and then all valid sanction rules. On the other hand, when
running with respect to (A(CS)∗) the traces are of the form (α(γς)∗)∗.

Scheduling strategies give us the freedom to think of more relaxing societies. We show
that such societies can be not only imagined but also implemented. For example, it suffices
to consider a strategy where the application of sanctions is performed in a transition distinct
from the one corresponding to the execution of actions and counts-as rules. This implies
that the sanctioning mechanism runs independently, as a separate thread. We would then
implement a more liberal society characterised by the scheduling strategy ((αγ)∗ς)∗. The
illustrative situation is that of a video camera monitoring in a supermarket, or of a radar
measuring the velocity of the passing vehicles. In such cases, sanctions do not necessarily
follow immediately after the recording of an infraction. To make this transparent from the
semantics means that the rule (ACS) splits into two rules depicted in Figure 4.13.

msi
α−→ ms′i a = (ψ,ξ ) θ ∈ Sols(σb,ψ)

σ ′b := σb]ξ θ ApplRr(σ ′b) = /0
σ ′n := ClRc(σ ′b)\σ ′b

〈M,σb,σn〉
αγ−→ 〈M′,σ ′b,σn∪σ ′n〉

(AC)

S := ClRs(σn)\σn σb∪S 6|=⊥

〈M,σb,σn〉
ς→ 〈M,σb∪S,σn〉

(S)

Figure 4.13: Transition Rules for ((αγ)∗ς)∗-semantics

In Figure 4.13, γ (resp. ς ) represents the set of all counts-as (resp. sanctions) that have
been applied during the computation of the closure set ClRc(σ ′b) (resp. ClRs(σn)).

Even closer to human societies, we could imagine a scheduling strategy (α∗γ∗ς∗)∗. The
corresponding transition rules are illustrated in Figure 4.14.

At this point, we make a few observations. First, as it has been pointed out in the case of
the transition rule (ACS), regimentation is modelled in both transitions (AC) and (A) by means
of checking for the emptiness of the set of applicable regimentation rules. Second, ((αγ)∗ς)∗

cannot be subsumed by (α∗γ∗ς∗)∗. This is because in the latter case a scenario like taking
without paying a product from a supermarket with no camera supervision and bringing it
back is possible, while in the first case it is not. Third, when the systems run with respect to
(ACS) we know, by definition, that faults are being handled. This is no longer the case when
considering the scheduling policies for liberal infinite behaviours. In order to guarantee such
requirements (faults are being handled) we need an additional fairness constraint. In our case,
fairness means that an active (enabled) normative rule is eventually applied, or equivalently,
the transitions (C), (S) are eventually taken:

fairness =
∧
l∈R

(♦� enabled(l)→ �♦ taken(l))
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msi
α−→ ms′i α = (ψ,ξ ) θ ∈ Sols(σb,ψ) σ ′b := σb]ξ θ ApplRr(σ ′b) = /0

〈M,σb,σn〉
α→ 〈M′,σ ′b,σn〉

(A)

N := ClRc(σb)\σb

〈M,σb,σn〉
γ→ 〈M,σb,σn∪N〉

(C)

S := ClRs(σn)\σn σb∪S 6|=⊥

〈M,σb,σn〉
ς→ 〈M,σb∪S, /0〉

(S)

Figure 4.14: Transition Rules for (α∗γ∗ς∗)∗-semantics

where R is the set of normative rules. The predicates enabled and taken are defined on
normative multi-agent system configurations as:

〈M,σb,σn〉 |= enabled(l) iff l ∈ ApplR(σ)

〈M,σb,σn〉 |= taken(l) iff 〈M,σb,σn〉
ls→ 〈M,σ ′b,σ

′
n〉∧ l ∈ ls∧ ls = ApplR(σ)

where σ = σ ′b = σb and ls is the set of applicable counts-as when l is a counts-as rule (a (C)
transition has been applied), resp. σ = σ ′n = σn and ls is the set of applicable sanctions when
l is a sanction (a (S) transition has been applied).

One might wonder why not, instead of having four possible operational semantics, defin-
ing a most general one (the latter, in our case, corresponding to the strategy (α∗γ∗ς∗)∗) and
only mention the other three (((αγ)∗ς∗)∗, (αγς)∗, (α(γς)∗)∗) as more restrictive, particu-
lar cases. This is because we want to implement the strategies directly into the semantics.
Transition rules by themselves say nothing about the order in which they should be executed.
When more of them are active, one is chosen among them in a non deterministic way. In-
deed, when it comes to building an interpreter for a given language a decision needs to be
taken with respect to the choice of the scheduling algorithm (for example a Round-robin one)
which would implement a given strategy (like (αγς)∗). However, we avoid such choices by
incorporating the strategies in the semantics. Being more accurate and precise when defining
the semantics has the advantage of avoiding possible future errors in the implementations.

4.4.5 A Short Note on Computing Closures
We have mentioned in Section 4.4.2 that the computation of closures does not always termi-
nate. This is the case when computing closures under “malformed” counts-as rules and the
main reason lies in the fact that the antecedents of counts-as are defined on both brute and
normative facts. Thus it can be that the process consisting of applying a counts-as result-
ing in a new normative fact which enables the application of a new counts-as can repeat ad
infinitum.
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We take, as an abstract example, σb = {p(x)} and Rc = {p(x)⇒ q(x),q(x)⇒ q(q(x))}.
It is then the case that ClRc

i (σb) = {p(x),qi(x) | i ∈ N}, thus no m exists such that ClRc
m =

ClRc
m−1. Since we work with sets, one immediate solution is to restrict facts to terms with

depth 1, that is, terms which contain only one functional symbol. However, if one finds such
a restriction as being too severe, some “healthiness” conditions can be imposed. Namely,
we require that a counts-as c = (condc⇒ consc) is well-defined in the sense that (1) there is
at least one brute fact in condc and (2) Vars(condc) = Vars(consc), where Vars denotes the
set of variables from a formula. Since we consider that σb is finite, the conditions (1) and
(2) are enough to guarantee that the computation of the closure always terminates. We take,
as an illustration, σb = {p(x), f (x)} and Rc = {p(x)⇒ q(x), f (x)∧q(x)⇒ q(q(x))}, where,
for convenience, “∧” denotes “,”, which we interpret as conjunction. It is then the case that
ClRc

2 (σb) = ClRc
1 (σb) = {p(x), f (x),q(x),q(q(x))}, since due to (1) and (2) the only possible

substitution for p(x)∧ f (x)∧q(x)∧q(q(x)) |= f (x)∧q(x) is [x/x], thus no new elements can
be added to the closure.

Heaving healthiness conditions for counts-as rules is, however, not sufficient when it
comes to computing the limit of the sequence σ∗b as introduced in Section 4.4.4. Following
the same line of reasoning, it is now the case that the process of applying a sanction results in
adding a new brute fact which enables the application of a counts-as rule can be iterated “ad
infinitum”.

We reconsider the previous example. If we now take Rs as being {s = (q(x)⇒ f (x))} the
computation of σ∗b can never reach its limit since at each step the application of s feeds the
set of brute facts with a new f i(x) which makes it possible to apply the counts-as rule c2 with
the substitution [x/ f i(x)]. This is what we call a productive rule. A solution for avoiding
productiveness is to impose a syntactic condition on sanctions. Namely, we require that for
any counts-as rule c = (condc ⇒ consc), sanction s = (conds ⇒ conss), a fact name f , and
ground terms t, t ′ such that f (t) is in condc and f (t ′) is in conds we have that the length of t ′

is smaller than t.
where t, t ′ are arbitrary terms. That is, if there exists a brute fact f (t ′) in the consequence

of s (thus heaving the same head as a brute fact from the antecedent of c) then t ′ is shorter in
length than t. This guarantees that no new substitution is generated and this implies that the
computation terminates.

4.5 Timed Normative Artifacts

In this section we introduce in a modular way a time extension of the normative language
presented in the previous section. A timed normative multi-agent system is a collection of
timed agents where the behaviour in time of the individual agents is monitored and normative
rules are applied consequently. The choice of agent language is not relevant. However, for
the sake of completeness, we consider timed agent languages like the timed extensions of
BUnity and BUpL as we have described them in Section 4.3. In this way we can describe in a
uniform manner a timed, agent-based framework. We recall that we designed timed agents as
agents equipped with clocks and that these clocks can be seen as stop-watches which can be
started and checked independently of one another, however they use the same unit to measure
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the passing of time. At each moment the clocks’ values of any agent can be checked by an
external observer. The observer cannot, however, change the agents’ clocks values since it
is only the agents that manipulate their own clocks by delaying and resetting, actions which
are invisible to the environment. The advantage of agents having their own clocks is that
the normative system does not need to have a clock on its own. In order to (dis)allow the
execution of actions at given instances of time or to punish delays it is sufficient10 to consult
the clocks of the agents.

Timed normative rules extend normative rules by allowing clock constraints in their pre-
conditions. We motivate this design choice by noting that in a timed framework new viola-
tions and sanctions can arise due to time delays. For example, not paying a fine in a given
amount of time might entail the application of a new violation. It is also the case that a
sanction might be cancelled when the expiration time has passed.

The semantics of timed normative multi-agent systems extends the untimed one from Sec-
tion 4.4.4 as follows. A timed normative multi-agent system state 〈M,σb,σn〉 differs from
an untimed state in only one aspect, namely, the recorded states of the constituting agents
are timed: M = {(msi,νi) | i ∈ I} with ν denoting clock interpretations, i.e., νi represents
the current clock values of msi. The timed version of the transition rules for the untimed
normative language change as shown in Figure 4.15.

(φc,a = (ψ,ξ )) (msi,νi)
a⇒ (ms′i,ν

′
i )

θ ∈ Sols(σb,φ) νi |= φc

〈M,σb,σn〉→〈M′,σb]ξ θ ,σn〉
(t-A)

(φc,Φ⇒Ψ) ∈ Rc
θ ∈ Sols(σb∪σn,Φ) νM |= φc

〈M,σb,σn〉→〈M,σb,σn]Ψθ〉
(t-C)

(φc,Φ⇒Ψ) ∈ Rs
θ ∈ Sols(σb∪σn,Φ) νM |= φc

〈M,σb,σn〉→〈M,σb]Ψθ ,σn〉
(t-S)

(φc,Φ⇒ viol⊥) ∈ Rr
Sols(σb∪σn,Φ) 6= /0 νM |= φc

〈M,σb,σn〉→O
(t-R)

Figure 4.15: The Transition Rules for Timed NMAS

With respect to the previous untimed rule (A) from Figure 4.14, in the transition rule (t-
A), the double arrow a⇒ denotes the transitive closure not only of τ steps, →, for internal

actions, but also δ steps, δ→, for delay actions. The rule (t-A) has also an additional premise

10Please note that by definition clocks cannot “break” or have “fake time units”.
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saying that agent i is enabled to perform a when the clock constraint φc is satisfied by the
clock valuation νi. In the case that the transition is possible, the system changes such that it
reflects the possibly new clock value ν ′i which might have changed while δ steps. As for the
meaning of the timed transition rules for the application of norms we note that it only differs
from the meaning of the untimed ones in that an additional check if the clock constraint φc
is satisfied by the current clock valuation νM. The transition (t-R) is new. It expresses that
whenever a regimentation rule is applicable the system goes into a deadlock state which is
represented byO. This rule is not meant to be executable but only to provide information. We
use the information when effectively implementing the different normative semantics from
Section 4.4.4 by means of strategies. As we will explain in more detail in Section 4.6.2,
strategies use (t-R) only to test that this rule is not applicable before allowing the execution
of any action. This is in order to forbid action execution in the case where a regimentation
rule were applicable.

We take as an illustration a timed variant of the train scenario described in Figure 4.10.
With respect to that example, the changes are as follows. First, we see that the two agents

Agents:
psg1 clock1 passenger_prog1 1
psg2 clock2 passenger_prog2 1

Facts:
Effects:

enter(X) = ({not at_platform(X)}, {at_platform(X)})
(clock(X) < 10, buy-ticket(X) = ({not ticket(X)}, {ticket(X)}))
embark(X) = ({at_platform(X), not in_train(X)},

{not at_platform(X), in_train(X)})
Counts-As rules:

at_platform(X) /\ not ticket(X) =>
viol_ticket(X)

( fined(X, Y) /\ not paid-fine(X),
clock(X) > 100 ) => viol_fine(X, Y)

Regimentation rules:
in_train(X) /\ not ticket(X) => viol_|_

Sanction rules:
viol_ticket(X) => fined(X, 25)
viol_fine(X, Y) => fined(X, 2*Y)

Figure 4.16: A Timed NMAS Program

psg1 and psg2 are declared as having one clock each: clock1 and clock2. The speci-
fication of the action buy-ticket changes such that buying a ticket is allowed only if this
is done at most until clock(X)11 shows 10 units of time. The last change regards norms:
the clock constraint in the second counts-as rule says that fines which are not paid within
100 units of time entail new violations. In order to analyse this scenario, we assume a spe-
cific behaviour for the agents psg1 and psg2, and further, that psg1 can be dishonest. By

11For our scenario, clock(X) can be seen as a “library function” returning the valuation of the clock of agent X.
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“specific” we mean that we think of psg1 and psg2 as BUpL agents and their plans are
illustrated in Figure 4.17.

p1 = ( ((xc < 9), buy-ticket) +
((xc >= 9), enter) );
embark; (true -> (xc < 200)); p’

p2 = ((yc < 8), buy-ticket, yc := 0);
enter; (true -> yc < 10); embark

Figure 4.17: The plans of psg1 and psg2

The plan p1 says that psg1 intends to buy a ticket if its clock xc shows less than 9 units,
otherwise it will enter without a ticket. It further says that if psg1 manages to embark, it
spends at most 200 units in the train. Depending on the scheduling of normative artifacts, we
obtain different timed traces. One such trace is (10, enter), (10, embark), (50,
γ1,ς1), (80, pay-fine)12 illustrating that psg1 entered the train at time 10, that after
40 units of time the counts-as rule and the corresponding sanction fined(psg1, 25)
have been applied, and finally that, at time 80, psg1 paid the fine. Another possible trace is:
(10, in-train), (50, γ1,ς1), (110, γ2,ς2) illustrating that psg1 did not pay the
fine in time and consequently the new norms have been applied resulting in doubling the fine.
We discuss in more detail possible executions under different scheduling of the normative
artifacts in Section 4.6.

On the other hand, we assume that psg2 is correct and its plan, p2, is to always buy a
ticket before entering the platform. Furthermore, it has up to 8 units of time to decide what
ticket to buy and it resets the clock after the action is done. The delay true -> yc < 10
means that psg2 waits at most 10 units of time before embarking the train. Being that p2
is deterministic, all possible timed traces of psg2 differ only in the timings. One example
is: (7, buy-ticket), (0, enter), (4, embark) illustrating that at time 7 psg2
bought a ticket, entered the platform at time 0 (after resetting its clock), and after 4 units
psg2 in the train.

4.6 Executable Timed Choreographed Normative Systems
In this chapter we combine under the same multi-agent framework both low and high level
timed coordination artifacts. The integration reduces to extending the timed normative lan-
guage from Section 4.5 by adding the constructions specific to timed choreographies. This
new extension makes it possible to design timed choreographed normative multi-agent sys-
tems (TCNMAS). We describe how we can execute such systems by means of a rewriting
logic extension called real-time rewriting logic [ÖM02]. We show that the nondeterminism
in the application of norms can be still an issue in the new setup and how the same notion

12For illustration purposes, we assume that in this particular case the action pay-fine is in plan p’.
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of scheduling policies presented in Section 4.4.4 remains a valid solution. Furthermore, we
propose the use of strategies to effectively implement scheduling policies. In this way, there
is no dependency between the normative artifact corresponding to a given scheduling policy
and the normative language. Consequently, one clear benefit is that changing to a different
normative artifact must not be reflected in the semantics of the normative language itself.
Moreover, the separation between execution and control makes it simpler to reason in a mod-
ular way about normative multi-agent systems. This is useful for example when “debugging”:
to find an error in the system one can first verify the normative artifact. Only if this process
is unsuccessful further effort is needed to debug one by one the constituting agent programs.
We conclude the section with a short discussion of how we can further use strategies at a
more theoretical level. If, at a practical level we can use strategies to analyse the execution of
normative systems in the context of different normative artifacts, at a more theoretical level
we can study possible connections among normative artifacts themselves and how they relate
to low level coordination mechanisms like choreographies.

4.6.1 Combining Timed Choreographies and Norms

We recall that the states of the timed normative systems were defined as 〈M,σb,σn〉. In
the context of timed choreographies, this is no longer enough since they should reflect also
the choreographic states. We denote the new configurations by the notation 〈M,σch,σb,σn〉,
where the symbol σch denotes the triples (cs,ν ,θch) which were introduced in Section 4.3.
The semantics of the timed normative language running under the directions of a timed chore-
ography is given by the rules in Figure 4.18. They are a combination of the rules from Fig-
ure 4.8 and Figure 4.15. More precisely, the rules for the application of norms reflect the
incorporation of choreographic states σch, and the rule (t-sync-act) (replacing (t-A)) as well
as (delay) reflect the incorporation of both brute and normative sets σb, σn.

4.6.2 Execution by Real-Time Rewriting

In this section we describe the mapping of timed choreographed normative multi-agent sys-
tems as real-time rewrite specifications [ÖM07] such that we can execute TCNMAS. The
execution of the untimed choreographed normative systems follows directly from the map-
ping of the untimed transitions from Figure 4.18 as rewrite rules. This mapping does not pose
difficulties and it follows the same lines described in Section 2.6.

Real-time rewrite specifications are rewrite specifications where some rules, called tick
rules, model the passing of time, leaving the “ordinary” rewrite rules are instantaneous. More
precisely, a real-time rewrite specification T t is a tuple (T,H,δ r) where T is a rewrite theory
(Ω,E,R) such that:

• H is a morphism H : T IME → (Ω,E) which interprets the abstract equational theory
T IME in the underlying equational theory of T . T IME is a commutative monoid with
an order T IME = (Time,0,+,<) and additionally with −̇ (standing for x− y when
x > y or 0 otherwise) and ≤. The morphism H is a nice solution which avoids fixing
a time domain for all real-time rewrite specifications. Depending on the application,
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〈cs,ν〉 δ→ 〈cs,ν +δ 〉
∧

i

((msi,νi)
δ→ (msi,νi +δ ))

(νM∪ν +δ ) |= I(cs)
〈M,(cs,ν ,θch),σb,σn〉→〈M′,(cs,ν +δ ,θch),σb,σn〉

(delay)

〈cs,ν〉
‖J ( j,xa j)
−−−−−−→ 〈cs′,ν ′〉 θ ′ch ∈ Sols(

∧
j

(E(ms j),xa jθch))

a j := xa j θ
′
ch

∧
j

(φc j,a j = (ψ j,ξ j)) θ ∈ Sols(σb,
∧

j

ψ j)∧
j

((ms j,ν j)
a j⇒ (ms′j,ν

′
j)) νM∪ν |=

∧
j

φc j νM′ ∪ν ′ |= I(cs′)

〈M,(cs,ν ,θch),σb,σn〉→〈M′,(cs′,ν ′,θchθ ′ch),σb]ξ ′,σn〉
(t-sync-act)

(φc,Φ⇒ viol⊥) ∈ Rr Sols(σb∪σn,Φ) 6= /0 νM |= φc

〈M,σch,σb,σn〉→O
(t-R)

(φc,Φ⇒Ψ) ∈ Rc θ ∈ Sols(σb∪σn,Φ) νM |= φc

〈M,σch,σb,σn〉→〈M,σch,σb,σn]Ψθ〉
(t-C)

(φc,Φ⇒Ψ) ∈ Rs θ ∈ Sols(σb∪σn,Φ) νM |= φc

〈M,σch,σb,σn〉→〈M,σch,σb]Ψθ ,σn〉
(t-S)

Figure 4.18: Transition Rules for Timed Normative MAS and Time Choreographies



4.6. Executable Timed Choreographed Normative Systems 103

the type of domain can be, for example, discrete or dense. When the time domain is
discrete, H should interpret the sort Time as N, and the corresponding operators as the
usual arithmetic operators. When the time domain is dense, H can interpret Time as
Q+.

• Ω contains two predefined sorts System and GlobalSystem, on which only one oper-
ator is defined {_} : System→ GlobalSystem. This is in order to make it possible
to distinguish instantaneous from tick rules. Namely, to those particular rewrite rules
from R which are on terms of sort GlobalSystem, i.e., l : {t}→ {t ′}, a duration δ r(l)
is associated by means of the mapping δ r. This is in the idea that the rule l is a tick
rule and it can be executed in at most δ r

l time. In this case, the following notation is

adopted T t ` {t} δ r(l)−→ {t ′}. All other rules are instantaneous, i.e., their duration is 0.
Their notation is simply T t ` t → t ′.

It is shown in [ÖM02] (and further simplified in [ÖM07]) how real-time rewrite theories map
to rewrite theories. The idea is to associate to terms of sort GlobalSystem {t} with “clocked
terms” ({t} in time δ ). The sort GlobalSystem becomes a subsort of ClockedSystem, the sort
for clocked terms. It is then the case that it can be proved that for any computation path in T t

there is a corresponding path in TC and vice-versa, as stated in Theorem 4.6.1.

4.6.1. THEOREM ([ÖM07]). For all terms {t}, {t ′} of sort GlobalSystem and for any time
variables denoted by the terms δ , δ r(l) of sort T IMEH , the following equivalences hold:

T t ` {t} δ r(l)−→ {t ′} ⇔ TC ` {t} → ({t ′} in time δ r(l)) (1)
⇔ TC ` ({t} in time δ )→ ({t ′} in time δ +H δ r(l))

T t ` t→ t ′ ⇔ TC ` ({t} in time δ )→ ({t ′} in time δ ).

4.6.2. REMARK. Thanks to Theorem 4.6.1, recalling the connection between rewrite theories
and Kripke structures, it can be stated that model-checking can be used also for real-time
rewrite specifications. This has the convenient implication that the same technique we have
used in Section 3.1 for verifying agent refinement works also for timed-agent refinement. ♣

The time variable δ in Theorem 4.6.1 denotes the duration of a tick step, and it is meant
to compute the successor time value. In the case of a discrete time domain like N, δ is by
default 1, the unit element of (N, 0). That is, at each step the time is incremented by 1. In the
dense case, δ corresponds to a chosen time sampling strategy. For example, δ could be set
to 2, meaning that time advances at each step by 2 units. Fixing a time sampling strategy has
the consequence that the completeness of (1) is lost. More precisely, (1) holds in only one
direction as Proposition 4.6.3.

4.6.3. PROPOSITION ([ÖM07]). Given a real-time rewrite theory T t and a time sampling
strategy s with the corresponding rewrite theory T s, the following implication holds for all
terms of sort GlobalSystem and for all ground terms δ :

T s ` t δ→ t ′⇒ T t ` t δ→ t ′



104 Chapter 4. From Agents to Multi-Agent Systems

4.6.4. REMARK. One needs to be cautious in what concerns model-checking dense time do-
mains. Due to Proposition 4.6.3, the fact that no counterexample is found when model-
checking a property for T s does not imply that there is no counterexample in the original
real-time rewrite theory T t . Instead, when a counterexample is found in T s, then this is also
a counter-example in T t . ♣

By fixing a time sampling strategy the rewrite rule {t} → ({t ′} in time δ r(l)) becomes
executable because the strategies assign a particular value to the uninitialised duration vari-
able δ r. This result we use to effectively execute timed choreographed normative multi-agent
systems. To show this, we first describe how Timed BUpL agents are prototyped as real-
time rewrite theories. We recall that Timed BUpL configurations are pairs of mental states
and valuations of the agent’s clocks, i.e., (ms,ν) (Section 4.3.2) and that mental states are
mapped to terms of sort BpState from the rewrite theory TBU pL (Section 2.6). The natural
mapping of (ms,ν) to terms in a real-time rewrite theory T t

BU pL consists in defining a new
sort T BpState with a constructor (ms,ν) taking as parameters a term of sort BpState and a
term of sort Set{Times}. T BpState is defined as being a subsort of System such that its terms
can appear in tick rules. More precisely, in T t

BU pL, there is only one tick rule corresponding
to the transition (delay) in Figure 4.7:

delay : {(B,(φ → I); p′,ν)} → {(B, p′,ν ′)} in time δ

if B |= φ ∧ ν ′ := inc(ν ,δ ) ∧ eval(ν ′, I) = true

where inc is a function which increments the current valuations of the clocks with the duration
δ and eval is a function which checks if the invariant I remains true with respect to the new
valuations. All the other Timed BUpL rules are instantaneous. We only present the rewrite
rule corresponding to (t-act) in Figure 4.7:

t-act : (B, p,ν)→ (update(B,ξ θ), p′θ ,reset(ν ,λ ))
if p = (φc, a, λ ); p′ ∧ a = (ψ,ξ ) ∧ θ = match(B,ψ)∧ eval(ν ,φc) = true

where the function reset works as expected, it resets the clocks from λ .
The next issue to look at before moving at the agent system level is how to prototype time

choreographies as real-time theories. This is done in a similar13 manner as above. Briefly,
the prototyping consists of two steps: (1) declare the sort of timed choreography states as a
subsort of System; (2) mapping the transition rules from Figure 4.4 to a tick and resp., an
instantaneous rule.

Having the prototypes for Timed BUpL and timed choreographies we describe the proto-
typing of the rules in Figure 4.18. We first declare the sort TCNState of the terms correspond-
ing states of the timed choreographed normative system 〈M,σch,σb,σn〉 as being a subsort
of System. The prototyping of the normative rules t-R, t-C, and t-S is easy: they are mapped
to instantaneous rules. For a more suggestive reading, we make a convention to label these
instantaneous rules by reg, counts-as, and sanction. The only difficulty might be in prototyp-
ing the synchronisation of actions

∧
i

((msi,νi)
ai⇒ (ms′i,ν

′
i )) in the rule t-sync-act. Since the

number of agents participating in a synchronisation step is not fixed a priori, but depends on
13The reader can also refer to [ÖM02] for the original specification of timed automata as real-time rewrite theories.
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the concrete definition of the choreography used at “runtime”, to have a generic rewrite rule
means that we need a continuation function which takes as parameter the the choreographic
label and recursively applies itself until no longer possible. At each application, one agent
configuration is rewritten with respect to the choreographic label. To implement this means
that we need to force a particular action to take place. We recall that rewriting has big-step
semantics thus one solution could be to use a combination of frozen declarations and inter-
mediary configurations as we did in Section 3.1. Another solution is to use meta-functions to
control the execution at a meta-level. We present this approach since it is more elegant and it
gives the opportunity to illustrate another use of strategies:

t-sync-act : 〈M,(cs,ν ,θch),σb,σn〉 →
〈M′,(cs′,ν ′,θchθ ′ch),update(σb,getPost(l)θ),σn〉

(*) if [l]〈cs′,ν ′〉 ∈ ch-rule2 @〈cs,ν〉 ∧ lθ ′ch := matchNames(l,θch) ∧
(**) M′ ∈ ( matchRew M by s(lθ ′ch)@M) ∧ θ ∈ Sols(σb,getPre(lθ ′ch))

∧ νM∪ν |= getTC(lθ ′ch) ∧ νM′ ∪ν ′ |= I(cs′)

To simplify, we assume that the instantaneous rewrite rule implementing the second transi-
tion from Figure 8.4 incorporates the corresponding choreographic label as a list in the next
state, i.e., 〈cs,ν〉 l→ 〈cs′,ν ′〉 where, for convenience, l is a list such as (i1,xa1) . . .(ik,xak).
We briefly explain t-sync-act. First the list l is grounded by replacing all action variables
with actions which the agents are enabled to execute. This is what line (*) says. The ground
list lθ ′ch has the form (i1,a1) . . .(ik,ak) and it is used in all get functions to recursively col-
lect the relative information. More precisely, getPre (resp., getPost) returns all pre- (resp.,
post-) conditions and getTC returns all clock constraints from the timed specifications of the
actions a1, . . . ,ak. Line (**) illustrates the use of the strategy matchRew from Section 2.6.2
for rewriting the subterms representing the agents i1, . . . , ik. The symbol M in the expression
of the strategy denotes a variable of the sort for multi-agent states. The function s transforms
the ground list lθ ′ch into a list of strategy definitions:

s((i1,a1)) = (msi1 by using (test(t-act) ? t-act[a← a1]; fail : delay)!) (1)
s((l1 l)) = s(l1), s(l) (2)

where in (2) “,” is used as a separator for lists of strategy definitions. Line (1) represents the
base case, it builds the strategy corresponding to a basic choreographic pair: first it tests if
the rule t-act is enabled; if this is the case then it forces fail to break the “repeat until the
end” strategy; if not, then it delays for some time and then the whole cycle repeats. Line
(2) represents the inductive case: the result of s consists of applying s to the first element l1
concatenated with the result of applying s to the tail of the list l.

Though t-sync-act is not explicitly a tick rule itself, time advances because of the delays
in the agent programs. The only “true” tick rule is the one corresponding to the rule delay in
Figure 4.18:

delay : 〈M,(cs,ν ,θch),σb,σn〉 → 〈M′,(cs′, inc(ν ,δ ),θch),σb,σn〉
if (〈cs,ν〉 → 〈cs′,ν ′〉 in time δ ) ∧ (M→M′) ∧ (νM∪ inc(ν ,δ ) |= I(cs))

where by (M→M′) we mean the following rewrite rule:
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{(ms,ν)}∪M → {(ms′, inc(ν ,δ ))}∪M′

if ((ms,ν)→ (ms′, inc(ν ,δ )) in time δ ) ∧ (M→M′)

which increments all agents’ clocks in the system, that is, implements the synchronisation of

delays
∧

i

((msi,νi)
δ→ (msi,νi +δ )).

Having the timed choreographed normative language encoded as a real-time rewrite the-
ory we can execute timed choreographed normative multi-agent systems by real-time rewrit-
ing. As an illustration, we reconsider the train scenario described in Section 4.5. There, the
“actors” are two agents psg1 and psg2. The agent psg1 intends to behave dishonestly
instead of missing the train. The agent can be “forced” to act correctly by means of a timed
choreography like:

chStrict = (zc < 4); (psg1, (zc ≥ 3, buy-ticket));
(zc < 7); (psg2, (zc ≥ 6, buy-ticket)).

In this particular case, one possible resulting computation of the system from Figure 4.16
running under the timed choreography is as follows:

((psg1, buy-ticket), xc = yc = zc = 3),
((psg2, buy-ticket), xc = zc = 6, yc = 0)

illustrating that there was a delay of 3 units before each agent bought a ticket and that psg2
reset clock yc because this action was built in the plan p2. The computation is unique “mod-
ulo timings”, i.e., with respect to the action names appearing in it. This would not have been
the case if, for instance, in the choreographic label (psg1, (zc ≥ 3, buy-ticket))
the action name were substituted by an action variable. Such a situation might have triggered
the application of normative rules and so far as the semantics is concerned with, this process
is nondeterministic. For the ease of reference, we denote this more permissible choreogra-
phy as chLax. The issues of nondeterminism and possible scheduling policies of norms
were discussed in Section 4.4.4. In this section we describe how to effectively implement
scheduling policies by means of strategies. We begin with the strategy corresponding to the
scheduling policy ((αγ)∗ς)∗ which we discussed in Section 4.4.4:

vigilant = ( test(t-sync-act ; reg) ? fail :
(t-sync-act ; counts-as ! ; sanction ! )! )!

The strategy vigilant says that actions are executed only if they do not enable the application
of regimentation rules (in which case the strategy fails). After executing an action, counts-as
rules are applied until no longer possible. Finally, all corresponding sanctions are applied.
This process is iterated until no action can be executed. In our train scenario, if we assume
a less restrictive choreography extending chLax, then the result of applying this strategy
reflects that both agents are in the train with tickets and that previously, psg1 has been
sanctioned. If this were not the case, then the system is in a deadlock state because psg1
embarks without a ticket, thus enabling the application of the regimentation rule.

A simple change in vigilant consisting in substituting “;” by “|” in counts-as ! ; sanction !
leads to a less restrictive normative system. An illustrative scenario is that of a video camera
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monitoring in a supermarket, or of a radar measuring the velocity of the passing vehicles. In
such cases, sanctions do not necessarily follow immediately after recording an infraction.

A more restricted society conforms to the scheduling policy (α(γς)∗)∗ and is imple-
mented by means of:

totalitarian = ( test(t-sync-act ; reg) ? fail :
(t-sync-act ; ( counts-as ! ; sanction ! )!) )!

saying that the process of applying counts-as rules followed by sanctions is iterated until it is
no longer possible. This characterises scenarios where the application of a sanction enables
the application of a new counts-as. We take, for instance, a traffic scenario where an actor
drives through the red light, thus violating the traffic law. Consequently, a fine is applied.
We assume that this is done automatically by withdrawing a certain amount of money from
the actor’s account. It is then the case that not enough money in the account results in a new
violation. This is under the supposition that the bank has a regulation specifying that the
client must not go below a certain debt level, otherwise the client is added to the bank’s black
list and has to pay an additional fee. We note that this latter sanction rule can never be applied
when the system runs with respect to the strategy vigilant. However, in the case of the train
scenario the result of applying either one of the strategies vigilant or totalitarian is the same.

A liberal society as described by the scheduling policy (α∗γ∗ς∗)∗ is implemented using
the strategy:

liberal = (test(t-sync-act ; reg) ? fail : t-sync-act)* ;
(try(counts-as) ? try(sanction) : idle)*

This strategy imposes no restrictions on when normative rules are applied. One possible
result could be that the agent psg1 was sanctioned because of being at the platform without
a ticket. Another solution in a “liberal” agent society could be also the case that psg1
is at the platform without a ticket and without being fined. Such a scenario would never
be possible when using either one of the strategies vigilant or totalitarian. This observation
leads to formulating Proposition 4.6.5 stating that the property enforcement, which we defined
in Section 4.4.3, is guaranteed to hold in normative systems where the normative artifacts
are implemented by either vigilant or totalitarian strategy. Before presenting the result, we
introduce a more convenient definition of the semantics of the strategy language S. Under
certain requirements like monotonicity and persistence, which the interested reader can find
in [MOMV09], the set-theoretic semantics of a strategy language has an alternative definition
as follows:

{[s@t]} = {t ′ ∈ TΣ(X) | (∃w).S(T ) ` s@t→∗ w∧ t ′ ∈ sols(w)}.

Equally stated, a computation like

s@t→ w1→ w2→ . . .wn→ . . .

always exists such that {[s@t]} is ∪n∈N(sols(wn)). The strategy language that we use, i.e.,
the one described in Section 2.6.2 fulfils the above mentioned requirements, the proof is
presented in [MOMV09]. For convenience, we use this alternative definition.
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4.6.5. PROPOSITION. Let t be the term corresponding to an initial normative multi-agent
system state 〈M,σb,σn〉. Given that the associated normative artifact is implemented by the
strategyN being either vigilant or totalitarian, the following statement holds: {[N@t]}14 |=
(∀c ∈ Rc)(∀s ∈ Rs)enforcement(c,s).

Proof. We recall that enforcement(c,s) is defined as:

(condc∧ (consc→ conds))→ ♦conss.

We proceed by reduction to the absurd. We assume that there exists k≥ 1 such thatN@t→∗
wk, that wk can no longer be rewritten (1), that there exists a counts-as rule c and a sanction
rule s such that wk |= (condc∧ (consc→ conds)) (2) and wk 6|= conss (3), and that k is the first
one with these properties, i.e., for any i≤ k, sols(wi) |= (∀c ∈ Rc)(∀s ∈ Rs)enforcement(c,s)
(4). We do a case analysis on the possible rewritings wk−1→wk and show that such a k cannot
exist. The rewriting wk−1→ wk can only be due to the application of (a) act, (b) counts-as or
(c) sanction:

(a) because of (2) + (4) condc is due to the action executed in the step from wk−1 to
wk. But then counts-as is applicable (and allowed by N , thanks to the normalising
strategy “!”) from wk which contradicts (1).

(b) there are two possibilities: if condc holds in wk−1 then one application of counts-as
can at most add consc to the normative facts; otherwise, condc is the effect of the
application of counts-as. In either case at least one sanction (and allowed by N ,
thanks to the normalising strategy “!”) is applicable from wk which contradicts (1).

(c) because of (3), the application of sanction from wk−1 handled a different counts-
as rule. But then another sanction is applicable (and allowed by N , thanks to the
normalising strategy “!”) from wk which contradicts (1).

thus, by absurd, no wk satisfying (1)-(4) exists.
Having a classification of types of normative systems we can systematically study the

expressive power for each class separately. By expressive power of a normative artifact we
mean the domain of possible resulting behaviours when the multi-agent system runs under the
coordination of an artifact. One example of a study is represented by Proposition 4.6.5 which
focuses on a liveness property, enforcement. In what follows we concentrate on regimentation
as a safety property. We begin our analysis with the remark that, for instance in totalitarian
societies, regimentation is modelled by definition. However, the way in which the normative
artifacts ensure that regimentation holds is by forcing the system to a deadlock state whenever
a regimentation rule is applicable. This is usually not a reasonable solution. Instead, we
can use choreographies to avoid reaching a deadlock when this is possible, i.e., when there
exist other execution paths with no deadlock states. Proposition 4.6.6 states precisely this:
choreographies can be seen as a way to implement regimentation.

14By abuse of notation, we apply strategies implementing normative artifacts not only to choreographed normative
systems but also to those without choreographies. To be formally correct, it is enough to make a simple replace-
ment in the definition of strategies, namely, to replace t-sync-act by the usual act rule from the semantics of agent
languages.
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4.6.6. PROPOSITION. Let t be the term corresponding to an initial normative multi-agent
system state 〈M,σb,σn〉 and let N be the strategy implementing the normative artifact as-
sociated to the system. If there is a computation path N@t →∗ w such that sols(w) |=(∀r ∈
Rr) regimentation(r), then there exists a choreography ch such that {[N@t ′]} |= (∀r ∈
Rr)regimentation(r), where t ′ is the term corresponding to the choreographed normative
state 〈M,σch,σb,σn〉.

Proof. We prove the existence of a choreography by effectively constructing it from the
computation path N@t →∗ w. Let w1, . . . ,wk be the intermediary terms. The choreography
ch is constructed by iterating the steps (1) - (3):

(1) for any wi → wi+1 by applying the rule t-act, where the formal parameter a is in-
stantiated by a ground action ai, on an agent i, concatenate the choreographic label
(i,ai);

(2) for any delay action with δ units for a clock xc, concatenate the choreographic label
xc≤ δ ;

(3) for any other rule application skip.

Since we only consider finite computation paths, the above iteration will eventually stop. The
resulting choreography has the nice property that it prevents the system entering a deadlock
state.

Further connections between types of normative systems can be discussed. We only men-
tion them briefly. As we have already pointed out by means of examples, enforcement does
not necessarily hold in liberal societies. In this case, it might be of interest to synthesise cer-
tain choreographies which ensure that enforcement holds. Naturally, when the participating
agents, either by themselves or forced by a choreography, behave honestly, it trivially follows
that all normative artifacts have the same power since there is no need to apply normative
rules.

4.7 Multi-Agents Systems Refinement
Having fixed what is a multi-agent system, we address the problem of how to relate them.
We recall that at the level of individual agents the relation was refinement, given our interest
in incremental design and verification. It is this refinement relation we would like to extend
at a multi-agent setup such that we can reuse the previous work modularly. We mainly focus
on multi-agent systems where coordination is achieved by means of choreographies. For the
sake of completeness, in Section 4.7.2 we discuss the general case of timed choreographed
normative multi-agent systems, however only briefly.

Generalising the refinement relation from individual agents to multi-agent systems in
the presence of choreographies requires solving a new problem since choreographies may
introduce deadlocks. It can be that though there is refinement at the individual agent level,
adding a choreography deadlocks the concrete multi-agent system but not the abstract one.
We take, as example, a choreography which specifies a BUpL agent to execute an action not
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defined in the agent program itself (but only in the BUnity specification). In this situation,
refinement as trace inclusion trivially holds since the set of traces from a deadlocked state
is empty. Our methodology in approaching this problem consists of, basically, formalising
the following aspects. On the one hand, we define the semantics of multi-agent systems
with choreographies as the set of maximal traces, where we make the distinction between
a success and a deadlock. These traces consist of the parallel agents’ executions guided by
the choreography. We define multi-agent system refinement as maximal trace inclusion. On
the other hand, agent refinement becomes ready trace inclusion, where a ready trace records
not only the actions being executed, but also those ones which might be executed. We show
that multi-agent system refinement is compositional. More precisely, the main result is that
agent refinement implies multi-agent system refinement in the presence of any choreography.
Furthermore, the refined multi-agent system does not introduce deadlocks with respect to
the multi-agent system specification. With respect to changing from traces to ready traces,
another aspect we discuss is the proof technique for the refinement of multi-agent systems.
As one might expect, “readiness” plays the main role, namely, we show that ready simulation
is indeed a proof technique for the refinement of multi-agent systems.

4.7.1 A Finer Notion of Refinement

To simplify, we mainly focus on describing our methodology only in the case of untimed
multi-agent systems. We provide a brief explanation of how this methodology generalises to
timed choreographed normative systems in Section 4.7.2.

The question we address in this section is “what are the conditions which ensure that if the
agents (for example BUpL) in a multi-agent system I1 are refining the (BUnity) agents in I2
then the whole system running under a choreography Ach⊗I1 is a refinement of Ach⊗I2’?”.
When refinement is defined as trace inclusion, this is, indeed, the case, as we can shortly
prove in Proposition 4.7.1.

4.7.1. PROPOSITION. Given a choreography as Ach and given two multi-agent systems I1,
I2 such that (∀i1 ∈ I1)(∃i2 ∈ I2) (msi1 ⊆ msi2) the following inclusion holds: Ach⊗I1 ⊆
Ach⊗I2.

Proof. Let M1 and M2 be the initial states of the multi-agent systems I1 and I2. Let
also cs0 be the initial state of the transition system Ach associated to the choreography c. It is
enough to notice that Tr((cs0,M1)) = Tr(cs0)∩Tr(M1) and that msi1 ⊆msi2 for all i1 ∈ I1
implies Tr(M1)⊆ Tr(M2).

However, adding choreographies to a multi-agent system may introduce deadlocks. On
the one hand, we would like to be able to infer from the semantics when a multi-agent system
is in a deadlock state. On the other hand, we would like to have that the refinement of
multi-agent systems does not introduce deadlocks. Trace semantics is a too coarse notion
with respect to deadlocks. There are two consequences: neither is it enough to define the
semantics of a multi-agent system as the set of all possible traces, nor is it satisfactory to
define agent refinement as trace inclusion. We further illustrate these affirmations by means
of simple examples.
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We consider, for instance, the choreography ch = (i,move(2,0,3)), where i symbolically
points to the BUpL agent from Section 2.3. Looking at the plans and repair rules of the BUpL
agent we see that such an action cannot take place. Thus, conforming to the transition rule
(mas), there is no possible transition for the product Ach⊗I. Just by analysing the behaviour
(the empty trace) we cannot infer anything about deadlocked states: is it that the agent has no
plan, or is it that the choreography asks for an impossible execution? This is the reason why,
in order to distinguish between successful and deadlocked executions, we explicitly define a
transition label

√
different from any other action relations. We then define for the product

Ach⊗I an operational semantics O
√

(Ach⊗I) as the set of maximal (in the sense that no
further transition is possible) traces, ending with

√
when the last state is successful:

{tr
√
| (cs0,M0)

tr→ (cs,M) 6→,cs ∈ F(Ach)} ∪
{tr | (cs0,M0)

tr→ (cs,M) 6→,cs 6∈ F(Ach)} ∪ {ε | (cs0,M0) 6→},

where tr is a trace with respect to the transition rule (mas),M0 (resp. cs0) is the initial state
of I (resp. Ach) and ε denotes that there are no possible transitions from the initial state.

The definition of the operational semantics O leads naturally to the following definition
of multi-agent systems’ refinement.

4.7.2. DEFINITION. [MAS Refinement] Given a choreography ch, we say that two multi-
agent systems I1 and I2 are in a refinement relation if and only if the set of maximal traces
of Ach⊗I1 are included in the set of maximal traces of Ach⊗I2. That is, O

√
(Ach⊗I1) ⊆

O
√

(Ach⊗I2). �

The other problem we mentioned in connection to considering agent refinement defined
as trace inclusion is explained as follows. It can be the case that the agents in the concrete
system refine (with respect to trace inclusion) the agents in the abstract system, nevertheless
the concrete system deadlocks for a particular choreography. We consider, for instance, the
BUnity and BUpL agents from Sections 2.2 and 2.3. For the ease of reference, we identify
the BUnity agent by ia (since it is more abstract) and the BUpL agent by ic (since it is more
concrete). We can easily design a choreography which works fine with ia (does not deadlock)
and on the contrary, it deadlocks with ic. Such a choreography is for example the one men-
tioned in the beginning of the section, ch = (i,move(2,0,3)), where, i points now to either
ia or ic up to a renaming. We recall that ic is a refinement of ia. However, we have already
mentioned, ic cannot execute the move (since the move is irrelevant for building the ABC
tower and at implementation time it matters to be as precise as possible), while ia can (since
in a specification “necessary” is more important than “sufficiency”).

What the above illustration implies is that refinement as trace inclusion, though being a
satisfactory definition at individual agent level, is not a strong enough condition to ensure
refinement at a multi-agent level, in the presence of an arbitrary choreography. It follows that
we need to redefine individual agent refinement such that multi-agent system refinement (as
maximal trace inclusion) is compositional with respect to any choreography. In this sense,
a choreography is more like a context for multi-agent systems, meaning that whatever the
context is, it should not affect the visible results of the agents’ executions but restrict them by
activating only certain traces (the other traces still exist, however, they are inactive).
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In order to have a proper definition of agent refinement we look for a finer notion of traces.
The key ingredient lies in enabling conditions for actions. Given a mental state ms, we look
at all the actions enabled to be executed from ms. We recall that in Section 3.4 as well as in
Section 4.2 we denoted them by E(ms) = {a ∈ A | ∃ms′(ms a→ ms′)}. To relate E(ms) to the
notion of traces which we need we call it a ready set. We can now present ready traces as
possibly infinite sequences X1,a1,X2,a2, . . . where ms0

a1→ms1
a2→ms2 . . . and Xi+1 = E(msi).

We denote the set of all ready traces from a state ms0 as RT (ms0). Compared to the definition
of traces, ready traces are a much more finer notion in the sense that they record not only
actions which have been executed but also sets of actions which are enabled to be executed
at each step.

4.7.3. DEFINITION. [Ready Agent Refinement] We say that two agents with initial mental
states ms and ms′ are in a ready refinement relation (i.e., ms⊆rt ms′) if and only if the ready
traces of ms are included in the ready traces of ms′ (i.e., RT (ms)⊆ RT (ms′)). �

We can now present our main result which states that refinement is compositional, in
the sense that if there is a ready refinement between the agents composing two multi-agent
systems it is then the case that one multi-agent system refines the other in the presence of any
choreography.

4.7.4. THEOREM. Let I1, I2 be two multi-agent systems such that (∀i1 ∈ I1) (∃i2 ∈ I2)
(msi1 ⊆rt msi2) and a choreography ch with the associated LTS Ach. We have that I1 refines
I2, that is, O

√
(Ach⊗I1)⊆O

√
(Ach⊗I2).

Proof. What we need to further prove with respect to Proposition 4.7.1 is that the set of
enabled actions is a key factor in identifying failures in both implementation and specifica-
tion. Assume a maximal trace tr in O

√
(Ach⊗I1) leading to a non final choreography state

cs. Given cs0 and M1 as the initial states of Ach, I1, we have that (cs0,M1)
tr→ (cs,M)

(cs,M) 6 l→ for all l =‖ j∈J ( j,a j) such that cs l→ cs′. By rule (mas) this implies that there
exists an agent identified by j which cannot perform the action indicated. Thus the corre-
sponding trace of j ends with a ready set X with the property that a j is not included in it. We
know that each implementation agent has a corresponding specification, be it j′, such that
j ready refines j′. If we, on the other hand, assume that j′ can, on the contrary, execute a j
we would have that in a given state j′ has besides the ready set X another ready set Y which
includes a j. This contradicts the maximality of the ready set.

As a direct consequence of the above theorem, we are able to infer the absence of deadlock
in the concrete system from the absence of deadlock in the abstract one:

4.7.5. COROLLARY. Let I1, I2 be two multi-agent systems with initial statesM1 andM2.
Let ch be a choreography with the associated LTS Ach and initial state cs0. We have that
if I1 refines I2 (O

√
(Ach⊗I1) ⊆ O

√
(Sc′ ⊗I2)) and c does not deadlock the specification

((cs0,M2) |= �¬O) it is then also the case that c does not deadlock the implementation
((cs0,M1) |=�¬O).

As we have already explained in Section 2.7.1, proving refinement by deciding trace
inclusion is an inefficient procedure. This is also the case with ready refinement, thus a more
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adequate approach is needed. If previously we have adopted simulation as a proof technique
for refinement, now we consider weak ready simulation.

4.7.6. DEFINITION. [Weak Ready Simulation] We say that two agents with initial mental
states ms and ms′ are in a (weak) ready simulation relation (ms.rs ms′) if and only if ms.ms′

and the corresponding ready sets are equal (E(ms) = E(ms′)). �

As it is the case for simulation being a sound and complete proof technique for refinement,
analogously we can have a similar result for ready simulation. We recall that determinacy
plays an important role in the proof for completeness.

4.7.7. PROPOSITION. Given two agents with initial mental states ms and ms′, where the one
with ms is deterministic, we have that ms.rs ms′ if and only if ms′ ⊆rt ms.

4.7.8. REMARK. For the sake of generality, in the definitions from this section we have used
the symbolic notations ms, ms′. BUnity and BUpL agents can be seen as (are, in fact) par-
ticular choices instantiating ms, ms′. Proposition 4.7.7 relates to Proposition 2.7.8. The only
difference is that, for simplification, Proposition 4.7.7 refers directly to ready simulation and
not to its modal characterisation, as it was the case for simulation in Proposition 2.7.8. It is not
difficult to adapt Definition 2.7.6 to the ready simulation. One needs only to change the con-
dition on the transition (mas) from (B, p) a⇒1 (B′, p′) to the conjunction (B, p) a⇒1 (B′, p′) ∧
E((B, p)) = E((B)) which checks also the equality on the ready sets. ♣

Recalling the BUpL and BUnity agents ic and ia, we note that though ia simulates ic
it is not also the case that it ready simulates. This is because the ready set of the BUnity
agent is always larger than the one of the BUpL agent. One elementary argument is that
ia can always “undo a block move”, while ia cannot. However, if, instead, we change ia
by replacing the trigger set from Figure 2.4 with the set from Figure 4.19: we obtain a less

At = { ¬on(2,1) . do(move(2,0,1)),
¬on(3,2)∧on(2,1) . do(move(3,0,2)),
¬(on(2,1)∧on(3,2)) . do(move(x,y,0)) }

Figure 4.19: Adapting ia to ready simulate ic

abstract BUnity agent which we briefly explain in what follows. The instantiation from the
first two triggers disallows any spurious “to and fro” sequence of moves like move(x,y,z)
followed by move(x,y,z) which practically undoes the previous step leading to exactly the
previous configuration. This instantiation is obvious when one looks at the final “desired”
configuration. The last trigger allows “destructing” steps by moving blocks on the floor. With
these changes, the new BUnity agent ready simulates ic. To see this, it suffices to notice that
the only BUpL ready trace is {move(3,1,0)}, move(3,1,0), {move(2,0,1)}, move(2,0,1),
{move(3,0,2)}, move(3,0,2) which is also the only BUnity ready trace. The new BUnity
agent can be still considered as a specification as it provides no information about the order
of executing the moves (we recall that orderings should be cast aside at the abstraction level).
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We recall the choreography from Figure 4.1 and we consider a BUnity multi-agent system
which consists of two copies of ia (enabled to execute also clean). For either branch, the
executions (with respect to the transition (mas)) of the multi-agent system are successful
(the choreography reaches a final state). Since ic ready refines ia, by Corollary 4.7.5 we can
deduce that also the executions of a multi-agent system which consists of two ic copies are
successful.

4.7.2 A Short Note on TCNMAS Refinement

We begin by first looking at the refinement of individual timed agents. We recall that the
key element in having simulation as a proof technique for individual agent refinement was
the determinacy of BUnity agents. To have a similar “timed” result we only need to impose
the restriction that clock constraints associated with the same action must be disjoint. This
restriction ensures determinacy of timed automata. A weaker restriction (which nevertheless
requires a “determinisation” construction) is to require that each basic action is associated
with at most one clock and that triggers can only reset the clock corresponding to the basic
action being executed; however, the guards in triggers may consult different clocks. Under
the disjointness condition, we have that timed BUnity agents are deterministic, thus the same
proof technique as in Section 2.7.1 can be applied. We make the remark that timed simulation
differs from simulation in only one aspect: we further need to consider simulating δ steps
and not only a steps.

Switching to the refinement of timed multi-agent system running under timed choreogra-
phies, the methodology described in the previous section can be readily adapted. A priori,
one aspect worth paying attention to is the possibility of introducing new deadlocks due to
the fact that the transition (delay) can take place only if all agents are able to delay. However,
this is no real problem because delays are not compulsory and thus no deadlocks are being
introduced. With this, in order to define timed refinement it suffices to define the semantics of
a timed agent system together with a timed choreography as the set of maximal timed compu-
tations. To have that timed ready simulation is an adequate proof technique for the refinement
of timed multi-agent systems, we only need to require that clock constraints associated with
the same action are disjoint such that timed choreographies are deterministic.

We conclude with a short example. We take a timed BUpL multi-agent system consisting
of two instances of the agent described in Section 4.3.2 running under the timed choreography
from Figure 4.3. It is not difficult to see that this BUpL system is a timed refinement of a timed
BUnity multi-agent system consisting of two instances of the agent described in Section 4.3.1
running under the same choreography. Furthermore, both systems are deadlock free. To
illustrate this latter affirmation, we present a small experiment in UPPAAL [BDL+06], a tool
for verifying timed automata. At a more abstract and syntactic level, we model the timed
choreography and the timed BUpL agent as timed automata in UPPAAL. We use UPPAAL
that the choreography always reaches the final state. In our specific context, this reduces to
verifying that the values of the clocks are always greater than 6. Figure 4.20 illustrates the
timed BUpL system consisting of two instances of the BUpL agent and the choreography.
The BUpL agent is parametrised by id_b, a bounded integer variable which is in our case
0 or 1. We note that we had to “approximate” and implement the parallel operator using an
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interleaving mechanism (first one agent cleans and after the other one moves C on the floor).
The synchronisation between the choreography and the BUpL agents is in the CCS style (e.g.,
clean[1-e]! and clean[1-e]?).

Figure 4.20: A Timed BUpL System Modelled in UPPAAL

Using the UPPAAL Simulate command one can experiment with different timed ex-
ecutions of the system. Figure 4.21 represents one of them. The trace shows that the BUpL
instance Bp(0) is the first to execute clean followed by Bp(1) executing the destructing
step (C on the floor). From this point Bp(0) finishes the ABC tower. Finally, Bp(1) exe-
cutes, at its turn, the action clean.

We conclude by briefly discussing the relevance of the notion of refinement in the context
of (timed) choreographed normative multi-agent systems. Intuitively, by fixing a specific nor-
mative artifact, the system behaves normatively in a deterministic manner and consequently
the above refinement methodology trivially applies. The situation is slightly more compli-
cated when considering the refinement relation between systems with different normative
artifacts. One possible approach is to abstract away from the norm application when consid-
ering the traces of the system and use the same refinement methodology. This abstraction
does not break the definition of refinement, since by refinement we mean “to reduce the non-
determinism in agent programs”. Yet the question of what role should the normative rules
play in a refinement relation is of particular interest. Any answer could be an adding to the
study of the relationship between the normative classes we discussed in Section 4.4.4. In fact,
the refinement of normative systems can be a subject on its own and this is why we do not
include it in this thesis but rather leave it for future work.
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Figure 4.21: A Resulting Timed Trace
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Chapter 5
Maude at Practise

In this chapter, we advocate the use of the Maude language [CDE+09] and its supporting tools
for prototyping, verifying, and testing agent programming languages and agent programs.
One of the main advantages of Maude is that it provides a single framework in which the
use of a wide range of formal methods is facilitated. Maude is a high-performance reflective
language and system supporting equational and rewriting logic specification and program-
ming. The language has been shown to be suitable both as a logical framework in which many
other logics can be represented, and as a semantic framework through which programming
languages with an operational semantics can be implemented in a rigorous way [MOM00b].
Maude comes with an LTL model-checker [EMS02], which allows for verification. More-
over, Maude facilitates the specification of strategies for controlling the application of rewrite
rules [EMOMV07].

We will demonstrate how these features of Maude can specifically be applied for devel-
oping agent programming languages and programs based on solid formal foundations. We
use BUpL to illustrate how Maude can be used for prototyping (Section 5.1), model-checking
(Section 5.2), and testing (Section 5.3). The complete Maude source code of the implementa-
tions discussed in this chapter can be downloaded from http://homepages.cwi.nl/
~astefano/agents/.

5.1 Prototyping
In this section, we describe how the operational semantics of agent programming languages
can be implemented in Maude. The main advantage of using Maude for this is that the trans-
lation of operational semantics into Maude is direct [SRM09], ensuring a faithful implemen-
tation. Because of this, it is relatively easy to experiment with different kinds of semantics,
making Maude suitable for rapid prototyping of agent programming languages. This is also
facilitated by the fact that Maude supports user-definable syntax, offering prototype parsers
for free. Another advantage of using Maude for prototyping specifically logic-based agent

1An earlier version of this chapter has appeared as: B.M. van Riemsdijk, L. Aştefănoaei, F. S. de Boer, “Us-
ing the Maude Term Rewriting Language for Agent Development with Formal Foundations”, In Specification and
Verification of Multi-Agent Systems/Programs, Springer, 2010.
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programming languages is that Maude has been shown to be suitable not only as a semantic
framework, but also as a logical framework in which many other logics can be represented.

We use BUpL to illustrate the implementation of agent programming languages in Maude.
BUpL has beliefs and plan revision features, but no goals. We refer to [vRdBDM07] for a
description of the Maude implementation of a similar agent programming language that does
have goals. While the language of [vRdBDM07] is based on propositional logic, BUpL
allows the use of variables, facilitating experimentation with more realistic programming
examples. An implementation of the agent programming language AgentSpeak in Maude is
briefly described in [FD07].

5.1.1 Introduction to Maude

A rewriting logic specification or rewrite theory is a tuple 〈Σ,E,R〉, where Σ is a signature
consisting of types and function symbols, E is a set of equations and R is a set of rewrite
rules. The signature describes the terms that form the state of the system. These terms can be
rewritten using equations and rewrite rules. Rewrite rules are used to model the dynamics of
the system, i.e., they describe transitions between states. Equations form the functional part of
a rewrite theory, and are used to reduce terms to their “normal form” before they are rewritten
using rewrite rules. The application of rewrite rules is intrinsically non-deterministic, which
makes rewriting logic a good candidate for modelling concurrency.

In what follows, we briefly present the basic syntax of Maude, as needed for understand-
ing the remainder of this section. Please refer to [CDE+09] for complete information. Maude
programs are built from modules. A module consists of a syntax declaration and statements.
The syntax declaration forms the signature and consists of declarations for sorts, which give
names for the types of data, subsorts, which impose orderings on data types, and operators,
which provide names for the operations acting upon the data. Statements are either equations
or rewrite rules. Modules containing no rewrite rules but only equations are called functional
modules, and they define equational theories 〈Σ,E〉. Modules that contain also rules are
called system modules and they define rewrite theories 〈Σ,E,R〉. Functional modules (system
modules) are declared as follows:

fmod (mod) <ModuleName> is

<DeclarationsAndStatements>

endfm (endm)

Modules can import other modules, which helps in building up modular applications from
short modules, making it easy to debug, maintain or extend.

One or multiple sorts are declared using the keywords sort and sorts, respectively,
and subsorts are similarly declared using subsort and subsorts. The following defines
the sorts Action and Plan and their subsort relation, which is used for specifying the BUpL
syntax.

sorts Action Plan . subsort Action < Plan .
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We can further declare operators (functions) defined on sorts (types) as follows:

op <OpName> : <Sort-1> ... <Sort-k> -> <Sort>
[<OperatorAttributes>] .

where k is the arity of the operator. For example, the operator declaration below is used
to define the BUpL construct plan repair rule. The operator ((_<-_)) takes a query of
sort Query that should be tested on the belief base, and a plan, and yields a term of sort
PRrule. The operator is in mixfix form, where the underscores indicate the positions of
its parameters. This also illustrates how Maude can be used to define the syntax of a BUpL
language construct.

op ((_<-_)) : Query Plan -> PRrule .

Equations and rewrite rules specify how to transform terms. Terms are variables, con-
stants, or the result of the application of an operator to a list of argument terms. Variables are
declared using the keywords var and vars. For example, var R : PRrule declares a
variable R of sort PRrule. Equations can be unconditional or conditional and are declared
as follows, respectively:

eq [<Label>] : <Term-1> = <Term-2> .
ceq [<Label>] : <Term-1> = <Term-2>

if <Cond-1> /\ ... /\ <Cond-k> .

where Cond-i is a condition which can be an ordinary equation t = t’, a matching equa-
tion t := t’ (which is true only if the two terms match), a Boolean equation (which con-
tains, e.g., the built-in (in)equality =/=, ==, and/or logical combinators such as not, and,
or), or a membership equation t : S (which means that t is a member of sort S).

For example, the following conditional equation is part of a module for specifying when a
formula logically follows from the belief base. The belief base is defined as a commutative se-
quence of ground belief atoms of sort Belief, separated
by #. The conditional equation specifies that matching term T against a belief base containing
belief B yields substitution S, if match(T, B) yields a substitution S that is different from
noMatch, the built-in Maude constant to indicate that no substitution has been found.

var B : Belief .
var BB : BeliefBase .
var T : Term .
var S : Substitution .

ceq match(T, B # BB) = S if S := match(T, B) /\ S =/= noMatch .

Operationally, equations can be applied to a term from left to right. Equations in Maude
are assumed to be terminating and confluent,1 i.e., there is no infinite derivation from a term
t using the equations, and if t can be reduced to different terms t1 and t2, there is always
a term u to which both t1 and t2 can be reduced. This means that any term has a unique
normal form, to which it can be reduced using equations in a finite number of steps.

1If this is not the case, the operational semantics of Maude does not correspond with its mathematical semantics.



122 Chapter 5. Maude at Practise

Finally, we introduce rewrite rules. Like equations, rewrite rules can also be unconditional
or conditional, and are declared as follows:

rl [<Label>] : <Term-1> => <Term-2> .
crl [<Label>] : <Term-1> => <Term-2>

if <Cond-1> /\ ... /\ <Cond-k> .

where Cond-i can involve equations, memberships (which specify terms as having a given
sort) and other rewrites. We will present several examples in the next section.

5.1.2 Implementing BUpL: Syntax
In this section, we use BUpL to illustrate how the syntax of agent programming languages can
be implemented in Maude. We make a distinction between the logical parts of the language
and the non-logical parts.

Logical Part

First, we have to define the logical language on which BUpL is based. Logical formulae
occur in the belief base (ground atoms), in actions specifications (a formula as precondition,
and a set of literals as effects), and in repair rules (a formula as the application condition).
For the representation of atoms, the Maude built-in sorts GroundTerm and Term are used.
That is, any Maude (ground) term can be used as an atom of our logical base language. In
addition, we define the following sorts to represent also negated (ground) terms and (ground)
sets of literals.

sorts NegGroundTerm NegTerm GroundLitSet LitSet .

The following subsort relations are defined on these sorts. Note that GroundTerm < GroundLitSet
specifies that any Maude ground term can be a (set of) ground literals, and similarly for
Term < LitSet.

subsorts GroundTerm GroundTermList < GroundLitSet .
subsorts Term NegTerm GroundLitSet < LitSet .
subsort NegGroundTerm < NegTerm .

GroundLitSet is defined as a supersort of the Maude built-in sort
GroundTermList, since we use its constant empty to represent an empty set of ground
literals. The sorts Belief and BeliefBase are introduced with the subsort relations

subsorts Belief < GroundTerm GroundTermList < BeliefBase
< GroundLitSet .

to represent beliefs. The following operators are introduced to syntactically represented
(ground) literal sets, belief bases, and negated (ground) terms. The attributes assoc comm id: empty
declare that the operator is associative and commutative with identity the empty set. The
attribute ctor declares that the operator is a constructor, which means that it is used to con-
struct terms rather than to apply it as a function and calculate the result. We overload the
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operator #, using it for representing both (ground) literal sets and belief bases. The attribute
ditto specifies that an overloaded operator has the same attributes as the first declaration
of the operator (excluding ctor).

op _#_ : LitSet LitSet -> LitSet [ctor assoc comm id: empty] .
op _#_ : GroundLitSet GroundLitSet -> GroundLitSet [ctor ditto] .
op _#_ : BeliefBase BeliefBase -> BeliefBase [ctor ditto] .

op neg_ : Term -> NegTerm [ctor] .
op neg_ : GroundTerm -> NegGroundTerm [ctor] .

We call formulae that are evaluated on the belief base queries. The query language is defined
over terms as follows. The definition is more general than the DNF of Section 2.3. However,
when defining the semantics, formulae are first transformed into DNF.

sort Query .
subsort Term < Query .

ops top bot : -> GroundTerm .
op ~_ : Query -> Query [ctor] .
op _/\_ : Query Query -> Query [assoc] .
op _\/_ : Query Query -> Query [assoc] .

This completes the specification of the syntax of the logical part of BUpL.
It is important to note that Maude is suitable as a framework in which many logics can be

represented, using equations to axiomatise the logic and using rewrite rules as inference rules.
This facilitates experimentation with different logics for representing agent beliefs, making
the framework flexible.

Non-Logical Part

The non-logical part consists of the specification of actions, plans, procedures, and repair
rules. We distinguish between internal and observable actions. This is useful for testing.
Actions are specified as functions using equations. The action name is the function name
specified as an operator, and applying the equation yields the precondition and effect of the
action. Preconditions and effects are defined using the operators o[_,_] and i[_,_] for
observable and internal actions, respectively. nilA is the “empty” action, used to define an
empty plan. The code below shows an example specification of the move action from the
tower of blocks example of Figure 2.6.2 The sort Nat represents natural numbers.

sorts Action I-Action O-Action .
subsorts I-Action O-Action < Action .

ops nilA : -> Action .
op o[_,_] : Query LitSet -> O-Action .

2Note that in the specification of the move action in Maude, we have added the condition X =/= Z, which is
easily done using conditional equations.
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op i[_,_] : Query LitSet -> I-Action .

op on : Nat Nat -> Belief .
op clear : Nat -> Belief .

op move : Nat Nat Nat -> O-Action .

ceq [act] : move(X, Y, Z) = o[on(X, Y) /\ clear(X) /\ clear(Z),
neg on(X, Y) # on(X, Z) # clear(Y)
# neg clear(Z) # clear(0)]

if X =/= Z .

Plans are built from actions, procedure calls (at the end of a plan), sequential composition
(pre), and non-deterministic choice (sum). The operators pre and sum are declared to
be constructors, reflecting the fact that they are used to construct plans. Procedure names are
introduced as operators, and a procedure is defined as an equation that yields the plan forming
the body of the procedure. For example, the procedure build as declared below is used for
building a tower of three blocks (321).

sort Plan .
subsort Action < Plan .

op pre : Action Plan -> Plan [ctor id: nilA strat (1 0)] .
op sum : Plan Plan -> Plan [ctor comm] .

op build : -> Plan .
eq build = pre(move(2, 0, 1), move(3, 0, 2)) .

Note that the operator pre has the attribute strat (1 0). This specifies that only its first
argument (an action) can be normalised using equations (expressed by the 1), before any
equations are applied on the operator pre itself (expressed by placing 1 before 0).3 The
second argument (a plan) is not normalised using equations. Using this attribute thus changes
what a normal form is for the operator pre: the normal form is obtained by normalising the
operator’s first argument and then normalising the operator itself at top level, while leaving
the second argument intact. This prevents the continuous application of equations, which
would lead to a stack overflow in case a non-terminating procedure is specified. For example,
if we would specify a recursive procedure build using the equation

eq build = pre(move(2, 0, 1), pre(move(2, 1, 0), build)) .

without using strat in the declaration of pre, the continuous application of the equation
to normalise build as occurring in the right-hand side of the equation would lead to a stack
overflow.

Repair rules are defined similarly to procedures, using equations. An operator is intro-
duced to define the name and parameters of the repair rule, and the equation yields the repair
rule itself. On the basis of the equations, repair rules can be collected into a repair rule base

3In our implementation, no equations are specified for normalising pre itself.
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(of sort PRbase). The example repair rule pr shown below can be used to deal with a failing
move(X,Y,Z) action. The action fails if Y or Z are not clear. In this case the repair rule
can be applied to move a block to the table (clearing the block on which it was placed), after
which it is tried again to build the tower.

sorts PRrule PRbase .
subsort PRrule < PRbase .

op ((_<-_)) : Query Plan -> PRrule .
op empty-prb : -> PRbase .
op __ : PRbase PRbase -> PRbase [assoc comm id: empty-prb] .

ops pr : Nat Nat -> PRrule .
eq [pr] : pr(X, Y) = ((on(X, Y) /\ Y > 0 <-

pre(move(X, Y, 0), build))) .

Finally, we define an operator for representing BUpL mental states. The operator takes a la-
bel, belief base and plan, and yields a term of sort LBpMentalState. The label represents
the label of the transitions in the transition system, i.e., it represents which actions have been
executed.

op <<_,_,_>> : Label BeliefBase Plan -> LBpMentalState .

5.1.3 Example BUpL Program
Using the implementation of the BUpL syntax in Maude, one can easily specify BUpL pro-
grams in Maude. An example is the following tower building agent, which represents the
example agent from Figure 2.6 in Maude. The move action and the procedure and plan re-
pair rule have already been introduced above. In addition, the program specifies the initial
belief base bb, which expresses where blocks are positioned initially and which blocks are
clear. Moreover, the initial mental state of the builder agent is specified using the opera-
tor builder. The initial plan is build. Since no actions have been executed yet in the
initial mental state, its label is empty. The equation module-name is specified to obtain
a reference to the module in which the BUpL program is written. This will be used when
implementing the semantics.

mod AGENT-DATA
protecting BUPL-SYNTAX .
protecting NAT .

eq module-name = ’AGENT-DATA .

op on : Nat Nat -> Belief .
op clear : Nat -> Belief .

op bb : -> BeliefBase .
eq bb = on(3, 1) # on(1, 0) # on(2, 0) # clear(0) #

clear(3) # clear(2) .
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op move : Nat Nat Nat -> O-Action .
vars X Y Z : Nat .
ceq [act] : move(X, Y, Z) =

o[on(X, Y) /\ clear(X) /\ clear(Z),
neg on(X, Y) # on(X, Z) # clear(Y)
# neg clear(Z) # clear(0)]

if X =/= Z .

op build : -> Plan .
eq build = pre(move(2, 0, 1), move(3, 0, 2)) .

ops pr : Nat Nat -> PRrule .
eq [pr] : pr(X, Y) = ((on(X, Y) /\ Y > 0 <-

pre(move(X, Y, 0), build))) .

op builder : -> LBpMentalState .
eq builder = << bLabel(empty), bb, build >> .

endm

5.1.4 Implementing BUpL: Semantics
The implementation of the semantics of BUpL in Maude can again be divided into the imple-
mentation of the logical part and of the non-logical part.

Logical Part

Implementing the semantics of the logical part means implementing matching a query against
a belief base. Matching takes place both to determine whether an action can be executed, as
well as to determine whether a repair rule can be applied. It is defined using the operator
match : Query BeliefBase -> Substitution, which takes a query and a belief
base, and yields a substitution in case the query matches the belief base, and the special
substitution noMatch otherwise.

This operator is defined by making use of Maude’s reflective capabilities [Cla00a]. Maude
is a reflective logic since important aspects of its meta-theory can be represented at the ob-
ject level, so that the object level correctly simulates the meta-theoretic aspects. The meta-
theoretic aspect that we use here, is matching two terms. Maude continually matches terms
when using equations and rewrite rules. This meta-level functionality can be conveniently
used to match a term against a belief.

The meta-level operator that can be used for implementing this, is metaMatch. This
operator takes the meta-representation of a module and two terms, and tries to match these
terms in the module. If the matching attempt is successful, the result is the corresponding
substitution. Otherwise, noMatch is returned. Obtaining the meta-representation of mod-
ules and terms can be done using the operators upModule and upTerm, respectively. The
module that we use for this is the module containing the BUpL program, since the belief
base is defined there. The name of the module is obtained by defining an equation for the
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operator module-name, as shown in the example program of Section 5.1.3. The sort Qid
is a predefined Maude sort for identifiers. The base case for the operator match, where a
term is matched against a belief, is defined using metaMatch as follows.

var T : Term .
var B : Belief .

op module-name : -> Qid .

eq match(T, B) =
metaMatch(upModule(module-name), upTerm(T), upTerm(B)) .

Matching a term against a belief base is then defined by making use of the former equation.

var S : Substitution .
var BB : BeliefBase .

ceq match(T, B # BB) = S if S := match(T, B) /\ S =/= noMatch .
eq match(T, B # BB) = noMatch [owise] .

For reasons of space, we omit the additional equations for matching composite formulae
against a belief base.

Non-Logical Part

As proposed in [VMO03], the general idea of implementing transition rules of an operational
semantics in Maude, is to implement them as (conditional) rewrite rules. The premises of a
transition rule then form the conditions of the corresponding rewrite rule, and the conclusion
forms the rewrite itself.

We illustrate the implementation of transition rules using those for action execution and
repair rule application. The transition rule for action execution

a(x1, . . . ,xn) =def (ϕ,ξ ) ∈ A a(t1, . . . , tn) = (ϕ ′,ξ ′) θ ∈ Sols(B,ϕ ′)

(B,a(t1, . . . , tn); p′)
a(t1,...,tn)θ
−−−→ (B]ξ ′θ , p′θ)

(act)

is implemented in Maude as two rewrite rules: one for internal actions and one for observable
actions. Here, we present only the rule for observable actions.

ops eqSC : -> EquationSet .
eq eqSC = upEqs(module-name, false) .

var OA : O-Action .

crl [exec-OA] : << L:Label, BB, pre(OA, P) >> =>
<< oLabel(getName(OA, eqSC)),

update(BB, downTerm(substitute(upTerm(effect(OA)), S), ’err)),
downTerm(substitute(upTerm(P), S), ’err) >>

if S := match(prec(OA), BB) /\ S =/= noMatch .
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Recall that equations are used to map actions to their specification in terms of preconditions
and effects (expressed using the operator o[_,_] in case of observable actions). Before
Maude applies rewrite rules to a term, it first reduces the term to its normal form using equa-
tions. This means that all actions in a plan of a mental state that is rewritten, are first replaced
by their preconditions and effects. Any substitutions that are calculated while executing the
plan, are therefore applied to these preconditions and effects. This implements the first two
conditions of the corresponding transition rule.

In order to implement the third condition, an auxiliary operator prec is used, which
yields the precondition of an action. The precondition is then matched against the belief base
to yield a substitution. The rule can only be applied if a substitution is indeed found, i.e., if
the precondition matches the belief base.

Updating the belief base according to the effect of the action is done using the oper-
ator update : BeliefBase GroundLitSet -> BeliefBase. The ground set
of literals, which forms a parameter of this operator, is obtained from applying the calcu-
lated substitution S to the effect of the action using the operator substitute : Term
Substitution -> Term. This operator is general in that it applies a substitution to any
term of sort Term. In this case, we want to apply the substitution to the effect of an action.
This can be done using the operator upTerm to obtain the meta-representation of the effect
of the action, which is of sort Term, and after applying the substitution transforming the
term again into its object-level variant using downTerm. In a similar way, the calculated
substitution is applied to the rest of the plan, according to the transition rule. The operator
getName, which is used for obtaining the label of the new mental state, retrieves the name of
the action (including instantiated parameters) from its precondition/effect specification and
the action equations of the BUpL program (obtained using the meta-level built-in Maude
function upEqs).

The transition rule for applying a plan repair rule

(B,α; p) 6αθ ′→ ϕ ← p′ ∈R θ ∈ Sols(B,ϕ)

(B, p) τ→ (B, p′θ)
( f ail)

is implemented in Maude as the following rewrite rule:

crl [exec-fail] : << L:Label, BB, pre(A, P) >> =>
<< tLabel, BB, downTerm(substitute(upTerm(P’), S), ’err) >>
if match(prec(A), BB) == noMatch /\

(((Q <- P’)) PRB) := getPR(eqSC) /\
S := match(Q,BB) /\ S =/= noMatch .

The first condition of the rewrite rule checks that the action that is to be executed, cannot
be executed (which is the case if no substitution can be found when the precondition of the
action is matched against the belief base). This implements the first condition of the transition
rule.

The second condition of the rewrite rule implements the second condition of the transition
rule as follows. Since repair rules are implemented as equations that yield a repair rule (see
Section 5.1.2), we need an operator to collect the rules into a repair rule base. This is done by
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getPR : EquationSet -> PRbase, which takes the equations corresponding to the
repair rules and yields a repair rule base consisting of the rules as defined by the equations.

The third and fourth conditions of the rewrite rule implement matching the condition of
the repair rule to the belief base, corresponding to the third condition of the transition rule.
The resulting substitution is applied to the plan of the repair rule, which becomes the plan of
the next mental state.

5.1.5 Executing an Agent Program

The BUpL example agent from Section 5.1.3 can be executed in Maude using the command
rew builder. Maude then uses the implemented BUpL semantics to rewrite the term
builder, which is first reduced to the initial mental state of the builder agent using the
equation eq builder = << bLabel(empty), bb, build >>, after which other
equations and rewrite rules are applied that specify the semantics of BUpl. The Maude output
looks as follows.

Maude> rew builder .
rewrite in AGENT-DATA : builder .
rewrites: 4722 in 202ms cpu (252ms real) (23264 rewrites/second)
result LBpMentalState:
<< oLabel(’move[’s_^3[’0.Zero],’0.Zero,’s_^2[’0.Zero]]),
clear(0) # clear(3) # on(1, 0) # on(2, 1) # on(3, 2), nilA >>

This says that the builder finished its execution after moving block 3 onto 2 (the current plan
is empty), and that the belief base reflects the current configuration of the blocks, namely the
tower 321. The output ’move[...] is the meta-representation of move(3, 0, 2). For
example, ’s_^3[’0.Zero] represents the third successor of zero, i.e., 3.

One can also rewrite the builder step by step. For example, the following shows the
resulting mental state after one step of rewriting, namely, a τ transition corresponding to
handling the failure of action move(2, 0, 1) which cannot be executed since block 3 is
on top of 1. We can see that the belief base remains unchanged, and the only change is in the
current plan. The application of the repair rule pr replaces the failing plan by a plan which
consists of first executing the action of moving a block (in our case block 3) onto the floor
and then trying build again. Note that the action is represented by its precondition and
effect in the form o[precondition,effect].

Maude> rew [1] builder .
rewrite [1] in AGENT-DATA : builder .
rewrites: 4141 in 181ms cpu (228ms real) (22756 rewrites/second)
result LBpMentalState:
<< tLabel,
clear(0) # clear(2) # clear(3) # on(1, 0) # on(2, 0) # on(3, 1),
pre(o[clear(0) /\ (clear(3) /\ on(3, 1)),
neg clear(0) # neg on(3, 1) # clear(0) # clear(1) # on(3, 0)],
build) >>
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5.2 Model-Checking
In Section 5.1, we have shown how the syntax and semantics of BUpL can be implemented
in Maude, and how an example BUpL program can be defined and executed. One of the main
advantages of using Maude for agent development is that it supports software development
using formal methods. In this section, we show how the Maude LTL model-checker [EMS02]
can be used for verifying agent programs. Verification is important in order to ensure that the
final agent program is correct with respect to a given specification or that it satisfies certain
properties. Properties are specified in linear temporal logic (LTL) [MP92] and are verified
using a model-checking algorithm. Model-checking only works for finite state systems.

We briefly recall some of the LTL concepts which we will refer to in the following sec-
tions. The basic LTL formulae are the booleans true (>) and false (⊥) and atomic propo-
sitions. Inductively, LTL formulae are built on top of the usual boolean connectives like
negation and conjunction. Typical LTL operators are next (©) and until (U). The operator U
can be used to define the connective eventually, ♦φ = >Uφ . The connective ♦ can be used
to further define the connective always, �φ = ¬♦¬φ .

The semantics of LTL formulae is defined in the usual way. The satisfaction of an LTL
formula φ in a finite transition system S with an initial state s is defined as follows:

S,s |= φ iff (∀π ∈ Paths(s))(S,π |= φ)

which means that the LTL formula φ holds in the state s if and only if φ holds for any path
in Paths(s), the set of paths in S starting at s. Given a path π , the satisfaction relation for
a formula φ is defined inductively on the structure of φ . We present, as an example, the
semantics of the operator “next” and of the connective “until”:

S,π |=LT L©φ iff S,π(1) |=LT L φ

S,π |=LT L φUψ iff (∃n)(S,π(n) |=LT L ψ)∧ (∀m < n)(S,π(m) |=LT L φ)

where n, m are natural numbers and π(n) denotes the subpath of π starting in the “n”-th state
on π . Basically,©φ is satisfied in a state if and only if φ is satisfied in the successor state.
The formula φUψ holds on a path π if and only if there is a state which makes ψ true and in
all the previous states φ was true.

Intuitively, a given path π satisfies the temporal formula ♦φ if there exists a state on π

which satisfies φ . Similarly, π satisfies the temporal formula �φ if there does not exist a
state on π which does not satisfy φ . By means of these operators, LTL allows specification of
properties such as safety properties (something “bad” never happens) or liveness properties
(something “good” eventually happens). These properties relate to the infinite behaviour of a
system. We will provide concrete examples in the next sections.

5.2.1 Connecting BUpL Agents and Model-Checker
Maude system modules can be seen as specifications at different levels. On the one hand they
can specify systems (in our case, BUpL agents), on the other hand they can specify properties
that we want to prove about a given system. The syntax of LTL is defined in the functional
module LTL (in the file model-checker.maude). The following code, which is a part of
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the module LTL, shows the declaration of the temporal operators “until” (U), “release” (R),
“eventually” (<>) and “always” ([]). It further shows the definitions of <> f (resp. [] f).

fmod LTL is
protecting Bool .
sort Formula .

*** primitive LTL operators
ops True False : -> Formula [ctor ...] .
op _U_ : Formula Formula -> Formula [ctor ...] .
op _R_ : Formula Formula -> Formula [ctor ...] .
...

*** defined LTL operators
op <>_ : Formula -> Formula [...] .
op []_ : Formula -> Formula [...] .
...
var f : Formula .
eq <> f = True U f .
eq [] f = False R f .
...

endfm

In order to use the Maude model checker, one needs to do two main things: (i) define which
sort represents the states of the system that is to be model-checked, and (ii) define the atomic
predicates that can be checked on these states. LTL formulae defined over these atomic
predicates are then used to specify the property that is to be model-checked.

In our case, the states are the BUpL mental states of sort LBpMentalState. In order
to express that these are the states of our system, we need the Maude model-checker module
SATISFACTION, which is defined as follows.

fmod SATISFACTION is
protecting BOOL .

sorts State Prop .
op _|=_ : State Prop -> Bool [frozen] .

endfm

We import this module into our own module BUPL-PREDS for defining the BUpL atomic
predicates, and declare subsort LBpMentalState < State to express that BUpL
mental states are to be considered the states of the system that is to be model-checked. More-
over, we use the operator _|=_ for defining the semantics of the atomic state predicates,
which are declared as predicates of sort Prop. We define the state predicate fact(B) to
express that ground atom B is believed by the BUpL agent.

mod BUPL-PREDS is
including BUPL-SEMANTICS .
including SATISFACTION .
including MODEL-CHECKER .
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including LTL-SIMPLIFIER .

subsort LBpMentalState < State .
op fact : Belief -> Prop .
var B : Belief .
eq << L:Label, B # BB:BeliefBase, P:Plan >> |= fact(B) = true .

endm

In the sequel, we will introduce additional state predicates to specify properties of BUpL
agents.

5.2.2 Examples
To run the model-checking procedure we need, after loading in the system the predefined
file model-checker.maude, to call the operator modelCheck with an initial state and
a formula, specifying the property that is to be checked, as arguments. The result of the
algorithm is either the boolean true (if the property holds) or a counterexample. The oper-
ator modelCheck is declared in the system module MODEL-CHECKER which is defined in
model-checker.maude.

fmod MODEL-CHECKER is
including SATISFACTION .
including LTL .
subsort Prop < Formula .
...
subsort Bool < ModelCheckResult .
op modelCheck : State Formula ~> ModelCheckResult [...] .

endfm

Recall that State and Formula are sorts we have already seen declared in the modules
Satisfaction and LTL, respectively (Section 5.2.1).

We can use the predicate fact (defined in Section 5.2.1) in order to define safety proper-
ties. As an example, we model-check that it is never the case that the agent believes the table
is on block 3. The following Maude output shows that the result is the boolean true.

Maude> red modelCheck(builder, []~ fact(on(0, 3))) .
reduce in AGENT-DATA : modelCheck(builder, []~ fact(on(0, 3))) .
rewrites: 4811 in 196ms cpu (241ms real) (24425 rewrites/second)
result Bool: true

The predicate fact enables us to express properties of the beliefs of a BUpL agent. In order
to express properties of actions, we define another state predicate taken using the label of a
BUpL state. Recall that the label specifies which action has been executed.

mod BUPL-PREDS is
...
op taken : Action -> Prop .
ceq << oLabel(T), BB:BeliefBase, P:Plan >> |= taken(A) = true

if T := getName(A, eqSC) .
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The predicate taken(A) is true in a state if the label T matches A. Note that we can-
not match A and T directly, since T is an action name with instantiated parameters, while
A is an action specified by means of a precondition and effect (that is, it has the form
o[precondition,effect]). The operator getName is used to obtain the name and
instantiated parameters of A (see Section 5.1.4).

We can use the predicate taken to verify that a certain sequence of actions has been
executed. For instance, the following Maude output shows that eventually, if block 2 is
moved onto block 1 then moving block 3 onto block 2 takes place after this. This is an
example of a liveness property.

Maude> red modelCheck(builder,
<> (taken(move(2, 0, 1)) -> O taken(move(3, 0, 2)))) .

reduce in AGENT-DATA : modelCheck(builder,
<> (taken(move(2, 0, 1)) -> O taken(move(3, 0, 2)))) .

rewrites: 30 in 1ms cpu (0ms real) (30000 rewrites/second)
result Bool: true

We can define more meaningful liveness properties such as goals that should be reached from
an initial configuration. The equation g1 defines the predicate goal321 as being true if the
agent believes that block 3 is on block 2 and block 2 is on block 1, expressing that the agent
built the tower 321.

mod AGENT-DATA-PREDS is
including BUPL-PREDS .
including AGENT-DATA .

op goal321 : -> Prop .
eq [g1] : goal321 = fact(on(3,2)) /\ fact(on(2,1)) .

endm

While the generic BUpL predicates fact and taken were specified in BUPL-PREDS, the
predicate goal321 is specific to the tower building agent and is consequently specified in
the module AGENT-DATA-PREDS.

The following Maude output shows that the result of model-checking
[]<>goal321 is true, meaning that the BUpL agent will always eventually build the
tower 321 from the initial configuration.

Maude> red modelCheck(builder, []<> goal321) .
reduce in AGENT-DATA-PREDS : modelCheck(builder, []<> goal321) .
rewrites: 4816 in 245ms cpu (292ms real) (19580 rewrites/second)
result Bool: true

We might be interested in knowing not only that goal321 is reachable from the initial
state, but also in the corresponding trace. For this, it suffices to model-check the negation of
goal321. This returns a counterexample representing the trace that we want.

Maude> red modelCheck(builder, []~ goal321) .
reduce in AGENT-DATA-PREDS : modelCheck(builder, []~ goal321) .
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rewrites: 4568 in 188ms cpu (249ms real) (24173 rewrites/second)
result ModelCheckResult: counterexample(
{<< empty-l,..., ... >>,’exec-fail}
{<< tLabel,..., ... >>,’exec-OA}
{<< oLabel(’move[’s_^3[’0.Zero],’s_[’0.Zero],’0.Zero]),

..., ... >>,’exec-OA}
{<< oLabel(’move[’s_^2[’0.Zero],’0.Zero,’s_[’0.Zero]]),

..., ... >>,’exec-OA},

{<< oLabel(’move[’s_^3[’0.Zero],’0.Zero,’s_^2[’0.Zero]]),
clear(0) # clear(3) # on(1, 0) # on(2, 1) # on(3, 2),

nilA >>, deadlock}
)

To understand the counterexample we first detail the predefined operator counterexample.
This operator is declared in the module MODEL-CHECKER. It is formed by a pair of transi-
tion lists:

op counterexample : TransitionList TransitionList ->
ModelCheckResult [ctor] .

A transition list is composed of transitions, and a transition records a state and the name of
the rule which has been applied from that state.

subsort Transition < TransitionList .
op {_,_} : State RuleName -> Transition [ctor] .
op __ : TransitionList TransitionList ->

TransitionList [ctor assoc id: nil] .

The first list of counterexample represents the shortest sequence of transitions (which
record the states being visited) that leads to the first state of a loop. This loop is represented
by the second list from counterexample. In our example, the first list consists of four
transitions. It shows that first the rewrite rule exec-fail has been applied from the initial
state (for readability, the belief base and plan are omitted), and consequently the label of the
next state denotes a τ step. Then, the rule exec-OA is applied, which changes the label of
the next state into the meta-representation of the action move(3,1,0). A similar reasoning
applies for the next transition.

The second list of the counterexample (after the white line) consists of only one transition.
The initial plan has terminated (the action nilA is reached) and the belief base reflects that
tower 321 is built. The rule name from this last transition is deadlock, a predefined
constant which is declared in MODEL-CHECKER. It means that from the state that the agent
reached, no further rewrite rule is applicable. Thus, the system “cycles” in a deadlock state
and this is the loop represented by the second transition list. We note that a Maude deadlock
state is, in our case, a termination BUpL state.

5.2.3 Fairness
The BUpL agent we have described always terminates, i.e., all execution paths are finite. In-
finite behavior can occur due to recursive abstract plans, and because of the non-determinism
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of the operator sum. The reason in the latter case is that it is possible that the choice between
a failing and a terminating action goes always in favour of the failing one. We call such
behavior unfair.

In practise, unfair traces are generally prevented from occurring through scheduling algo-
rithms such as round-robin. However, at the level of prototyping BUpL in Maude we would
like to abstract from controlling the non-deterministic choices. Rather, non-determinism is
reduced at a later phase of design, at a more concrete implementation level. We stress that it
is important to abstract from control issues at the prototype level, since the main concern is
to experiment with language definitions rather than scheduling algorithms.

Nevertheless, when model-checking BUpL agents one may want to ignore unfair traces
and show that the agent satisfies certain properties assuming fairness. Since we work in
a declarative framework, our solution is to model-check only the traces that satisfy certain
fairness constraints and to define fairness using LTL. To illustrate this, we first introduce the
predicate enabled. The proposition enabled(A) holds in a state if the action A can be
executed in that state, i.e., if the action’s precondition holds.

op enabled : Action -> Prop .
ceq << L:Label, BB, P >> |= enabled(A) = true

if match(prec(A), BB) =/= noMatch .

Following [MP92], we then define fairness with respect to an action as follows.

op fair : Action -> Prop .
eq fair(A) = <>[] enabled(A) -> []<> taken(A) .

This says that if an action is continuously enabled it should be infinitely often taken. This re-
quirement casts aside traces where the failing action is always chosen in spite of a terminating
action a since such traces are unfair with respect to a.

For a concrete example where fairness is useful, we modify the BUpL example from Sec-
tion 5.1.3 such that the initial plan of the agent is p1, which is defined as a non-deterministic
choice (sum) between an always failing action and the plan build. We further add an al-
ways enabled repair rule pr1 to handle the case where the failing action has been chosen in
p1.

eq p1 = sum(i[bot, empty], build) .
ops pr1 : -> PRrule .
eq [pr1] : pr1 = (( top <- p1 )) .
...
eq builder = << bLabel(empty), bb, p1 >> .

It is now the case that achieving goal321 is no longer always possible, demonstrated
by the following counterexample, which is generated when model-checking the property
[]<> goal321.

Maude> red modelCheck(builder, []<> goal321) .
reduce in AGENT-DATA-PREDS : modelCheck(builder, []<> goal321) .
rewrites: 4875 in 209ms cpu (254ms real) (23217 rewrites/second)
result ModelCheckResult: counterexample(
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{<< empty-l, ..., ... >>,’sum}
{<< tLabel, ..., ... >>,’exec-fail},

{<< tLabel, ..., ... >>,’sum}
{<< tLabel, ..., ... >>,’exec-fail})

The counterexample shows that first the failing action was chosen to be executed, which is
then handled by the repair rule pr1. In this counterexample, this leads to a loop in which
over and over the failing action is chosen and then the repair rule is applied. This loop is
represented in the second parameter of counterexample (below the white line).

However, if we consider the paths which are fair with respect to move(3,1,0) then we
have that goal321 is always achieved.

Maude > reduce in AGENT-DATA-PREDS :
modelCheck(builder, fair(move(3, 1, 0)) -> []<> goal321) .
rewrites: 9097 in 196ms cpu (231ms real) (46184 rewrites/second)
result Bool: true

5.3 Testing
In the previous section, we have illustrated how Maude can be used for model-checking
BUpL agents, using the tower builder of Section 5.1.3 as an example. Since the tower builder
has a finite number of mental states, verification by model-checking is in principle feasi-
ble. However, the state space of agents can also be infinite, making direct model-checking
impossible. This issue may be addressed within the context of model-checking, e.g., by in-
vestigating abstractions techniques for reducing the state space. In this section, however, we
are concerned with a different technique than model-checking, namely testing. Testing can
be used for identifying failures in infinite state systems or in finite state systems where the
state space becomes too large for model-checking.

In this section, we present two kinds of testing that fit Maude very well. The first is
testing for satisfaction of invariants by means of search (Section 5.3.1), and the second is
testing through the specification of test cases (Section 5.3.3). The latter is implemented by
means of Maude strategies, which are used to control the application of rewrite rules on a
meta-level.

The running example that we use in this section is a variant of the tower builder intro-
duced previously. Here we consider a tower builder that should respect the specification “the
agent should continually construct towers, the order of the blocks is not relevant, however
each tower should use more blocks than the previous, and additionally, the length of the
towers must be an even number”. Since the agent keeps on building higher towers, its state
space is infinite. We assume that the programmer decides to refine the specification and tries
to implement a BUpL agent that builds towers where the constituting blocks are assigned
consecutive numbers, thus 21 and 4321 are examples of “well-formed” towers.

Initially, there is one block and it is on the table. In order to indicate that the agent
has finished building a tower of length X, it inserts a predicate done(X) in the belief base
by means of the action finish(X,Y) (where Y is added for technical reasons that we
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do not further explain). For indicating that the next tower that is to be built has length X,
the agent uses a predicate max(X). The predicate length(X) is used to represent the
current length X of the tower. The builder agent is executed by rewriting a term of the form
builder(X,Y), where X is the length of the tower that is to be built as the first one, and
Y is added for technical reasons that we do not further explain. For illustration purposes, we
consider two variants of this tower builder: a correct one and a faulty one that builds odd
length towers. Since it is not needed for explaining the techniques presented in this section,
we do not provide the code for these tower builders.4

5.3.1 Searching
Maude provides a search command that can be used, among other things, to test for the
satisfaction of invariants. Invariants are defined as properties of states. Search is breadth-
first, which means that if there is a state where the invariant does not hold, then the search
terminates.

Searching in Maude for invariants can be done using the Maude search command with
parameters of the following form.

search init =>* x:k such that I(x:k) =/= true .

Here, init is the initial state from which the search starts. It searches for states x of sort
k that are reachable from this initial state through zero or more rewrite steps (represented
by =>*) and for which the invariant I does not hold. This is helpful when verifying safety
properties. For example, an invariant for the BUpL builder is the length of the towers, which
should always be even. This invariant can be specified by means of a predicate doneEven
as follows.

mod BUPL-BUILDER-INVARIANTS is
including AGENT-DATA .

op doneEven : LBpMentalState -> Bool .
ceq doneEven(<< L:Label, done(X) # BB, P:Plan >>) = true

if (2 divides X) .
eq doneEven(<< L:Label, done(X) # BB, P:Plan >>) = false

[owise] .
var MS : LBpMentalState .

endm

If we search, in the faulty implementation, for a state where the property doneEven(MS)=/=
true with MS being a variable of sort LBpMentalState is satisfied, then we obtain a so-
lution, i.e., a state where the invariant does not hold (done(3) appears in the belief base):

search in BUPL-BUILDER-INVARIANTS :
builder(3, 0) =>* MS such that doneEven(MS) =/= true .

4It can be downloaded from http://homepages.cwi.nl/~astefano/agents/
bupl-strategies.php.
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Solution 1 (state 11)
states: 12 rewrites: 21030 in 1220ms cpu (1301ms real)
(17226 rewrites/second)
MS --> << ..., clear(0) # clear(3) # length(3) # max(3) #

done(3) # on(1, 0) # on(2, 1) # on(3, 2),
... >>

However, this procedure terminates only when the implementation is faulty, since in the cor-
rect implementation no state would be found where the invariant does not hold. A possible
solution is to bound the search. This can be done by explicitly giving a depth bound, for
example 100, as in the following example where the correct implementation is searched.

search [1, 100] in BUPL-BUILDER-INVARIANTS :
builder(3, 0) =>* MS such that doneEven(MS) =/= true .

No solution.
states: 10 rewrites: 15266 in 779ms cpu (821ms real)
(19574 rewrites/second)

5.3.2 Rewrite Strategies in Maude
We recall that state terms t are BUpL mental states. In order to rewrite builder(3, 0)
using a strategy E, we only need to input the command srew builder(3,0) using E
after loading the Maude file maude-strat.maude where the strategy language is defined.
If E is a rule name, for example, exec-IA, then the result is the mental state after performing
an internal action, in this case setting max(3) which corresponds to the first parameter of
builder(3, 0).

Maude> (srew builder(3, 0) using exec-IA .)
rewrites: 1384 in 30ms cpu (55ms real) (44652 rewrites/second)
rewrite with strategy :
result LBpMentalState :

<< iLabel(’set-max[’s_^3[’0.Zero],’0.Zero]),
clear(0) # done(0) # length(1) # max(3) # on(1,0),
... >>

Strategies are declared and defined only in strategy modules. Strategy modules have the
following syntax:

smod <STRAT-MODULE-NAME> is
protecting <M> .
including <STRAT-MODULE-NAME1> . ...
including <STRAT-MODULE-NAMEk> .
<DeclarationsAndDefinitionOfStrategies>

endsm

where M is the module containing the terms which we want to rewrite using strategies defined
in the imported strategy modules STRAT-MODULE-NAME1, . . . , STRAT-MODULE-NAMEk.
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Similarly to the declaration of operators, strategies are declared using the following for-
mat:

strat <STRAT-NAME> : <Sort-1> ... <Sort-m> @ <Sort> .

where Sort is the sort of the term which will be rewritten using the strategy STRAT-NAME.
Like equations, strategies can be unconditional or conditional and are defined using the fol-
lowing syntax:

sd <STRAT-NAME>(<P1>, ..., <Pm>) := <Exp> .
csd <STRAT-NAME>(<P1>, ..., <Pm>) := <Exp> if <Cond> .

with Pi being the parameters of the strategy STRAT-NAME and Exp being a strategy ex-
pression.

5.3.3 Using Maude Strategies for Implementing Test Cases
We now illustrate how the test definitions of Section 3.4.2 can be implemented by means of
Maude strategies. First, we show how the syntax of tests can be specified as a Maude func-
tional module. We then describe a generic strategy test2Strat which associates to each
test a corresponding strategy that implements the test. Finally, we focus on the implementa-
tion of the basic test a.

The following module defines the syntax of tests, in correspondence with the BNF gram-
mar for tests of Section 3.4.2.

fmod TEST-SYNTAX is
protecting SYNTACTICAL-DEFS .
sort TestA .
subsort O-Action < TestA .
op _;a_ : TestA TestA -> TestA .
op _+a_ : TestA TestA -> TestA .
op _*a : TestA -> TestA .

endfm

The code shows that we first declare a sort TestA for denoting tests. In order to express that
any observable action is a test we use the subsort relation subsort O-Action < TestA.
Further, we declare regular expression operators to construct new tests. We use the index a
in their declaration in order to distinguish them from the regular expression operators defined
for Maude strategies.

Given that we have defined the syntax of tests as above, we can define the rewrite strategy
test2Strat inductively on the structure of tests:

strat test2Strat : Test @ LBpMentalState .
var Oa : O-Action . vars Ta1 Ta2 : TestA .
sd test2Strat(Oa) := do(Oa) .
sd test2Strat(Ta1 ;a Ta2) := test2Strat(Ta1) ; test2Strat(Ta2) .
sd test2Strat(Ta1 +a Ta2) := test2Strat(Ta1) | test2Strat(Ta2) .
sd test2Strat(Ta1 *a) := test2Strat(Ta1) * .
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The strategy do is meant to implement the basic test a. Note the natural mapping from tests
to the corresponding strategy.

We now focus on describing how to implement the basic test a, i.e., the strategy do. We
recall that, when applied to a mental state ms, this test succeeds only if after performing some
internal steps (corresponding to internal actions, repair rules, and choices among plans) the
agent reaches a state where a is enabled. This means that we need to implement a strategy,
tauClosure, for computing the transitive closure of τ steps. A simple5 way to do this is
as follows:

strat tauClosure : @ LBpMentalState .
sd tauClosure := (sum | exec-fail | exec-IA)! .

that is, by non-deterministically applying one of the rules which correspond to τ steps until
no longer possible. Given that we have the strategy tauClosure, the implementation of
the test a is straightforward:

strat do : O-Action @ LBpMentalState .
sd do(Oa) := tauClosure ; exec-OA[OA <- Oa] .

where exec-OA[OA <- Oa] applies exec-OA with the variable OA from the definition
of the rewrite rule being instantiated by the argument Oa of the strategy. Note that the strategy
tauClosure returns precisely those states from which no τ steps are possible, that is,
the states where the head of the current plan is an observable action. If this observable
action is the one given as argument to the strategy do then it succeeds and computes again
the transitive closure. Otherwise, it fails. To see how this strategy works in practise, we
strategically execute builder(3, X:Nat) using do(move(2, 0, 1)). This means
that we test whether the agent executes move(2, 0, 1) as the first observable action.

Maude> (srew builder(3,X:Nat) using do(move(2,0,1)) . )
rewrites: 18463 in 1415ms cpu (1417ms real) (13040 rewrites/second)
rewrite with strategy :
result LBpMentalState :
<< oLabel(’move[’s_^2[’0.Zero],’0.Zero,’s_[’0.Zero]]),

clear(0)# clear(2)# clear(3)# done(0)# length(1)# max(3)#
on(1,0)# on(2,1)# on(3,0), ...>>

Maude> (next .)
rewrites: 1210 in 10ms cpu (11ms real) (110020 rewrites/second)
next solution rewriting with strategy :
No more solutions .

What we obtain is a state reflecting that the agent moved block 2 onto block 1. This can
be seen either from the label of the resulting mental state, or from the fact that on(2,1)
is in the current belief base. Furthermore, we can also notice that this is the only possible
resulting mental state since the command (next .) for obtaining other solutions returns
No more solutions.

5The strategy described here does not always terminate. One immediate solution is to bind the number of itera-
tions. For a more detailed discussion, we refer to Section 3.4.
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We recall that our purpose is to test whether “bad” states are reachable from the initial
configuration of builder and that “bad” means odd length towers in our case. Thus, a suit-
able test is move(2,0,1);move(3,0,2); f inish(3,0), meaning that we test whether the agent
(in its faulty variant) executes the action finish(3,0) after moving block 2 onto 1 and
block 3 onto 2:

Maude> (srew builder(3,X:Nat) using
test2Strat(move(2,0,1) ;a move(3,0,2) ;a finish(3, 0)) .)

rewrites: 50421 in 2069ms cpu (2082ms real) (24361 rewrites/second)
rewrite with strategy :
result LBpMentalState :
<< oLabel(’finish[’s_^3[’0.Zero],’0.Zero]),

clear(0)# clear(3)# done(3)# length(3)# max(3)#
on(1,0)# on(2,1)# on(3,2), ...>>

The output shows that this is indeed the case, meaning that the agent is not safe to this test.
Performing the same test on the correct builder yields no possible rewriting, and from this we
can conclude that the correct builder agent is safe with respect to the test.

5.4 Executable Normative Multi-Agent Systems
We prototype the language for normative multi-agent systems in two modules: the first one,
which we call SYNTAX, is a functional module where we define the syntax of the language,
and the latter, which we call SEMANTICS, is a system module where we implement the
semantics, namely the transition rule (ACS).

We recall that the state of a normative multi-agent system is constituted by the states of
the agents together with the set of brute facts (representing the environment) and normative
facts. The following lines, extracted from the module SYNTAX, represent the declaration of
a normative multi-agent system and the types on which it depends:

sorts BruteFacts NormFacts NMasState .
op <_,_,_> : AgentSet BruteFacts NormFacts -> NMasState .

The brute (normative) facts are sets of ground literals. The effects are implemented by means
of two projection functions, pre and postwhich return the enabling condition and the effect
of a given action executed by a given agent:

op pre : Action Qid -> Query .
op post : Action Qid -> LitSet .

Norms or sanctions are implemented similarly. Both have two parameters, an element of
type Query representing the conditions, and an element of type LitSet representing the
consequent. Take, for example, the declaration of norm(s):

sorts Norm Norms . subsorts Norm < Norms .
op norm : Query LitSet -> Norm .
op _*_ : Norms Norms -> Norms [assoc comm] .
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The effect of a norm is to update the collection of normative facts whenever its condition
matches either the set of brute facts or the set of normative facts:

op applyNorms : Norms Norms BruteFacts NormFacts NormFacts
-> NormFacts .

ceq applyNorms(NS, norm(Q, E) * NS’, BF, NF, OldNF) =
applyNorms(NS, NS’, BF, update(NF, E), NF)
if matches(Q, BF ; NF) =/= noMatch .

where NS is an auxiliary variable which we need in order to compute the transitive closure of
the normative set:

ceq applyNorms(NS, empty, BF, NF, OldNF) =
applyNorms(NS, NS, BF, NF, NF) if NF =/= OldNF .

eq applyNorms(NS, empty, BF, NF, NF) = NF [owise] .

meaning that we apply the norms until no normative fact can be added anymore.
The application of norms entails the application of sanctions which, in a similar manner,

update the brute facts when their conditions match the set of normative facts:

ceq applySanctions(SS, sanction(Q, E) * SS’, NF, BF, OldBF) =
applySanctions(SS, SS’, NF, update(BF, E), BF)
if matches(Q, NF) =/= noMatch .

In a normative multi-agent system certain actions of the agents are monitored. Actions
are defined by their pre- (enabling) and their postconditions (effects). We recall the basic
mechanism which takes place in the normative multi-agent system when a given monitored
action is executed. First the set of brute facts is updated with the literals contained in the
effect of the action. Then all possible norms are applied and this operation has as result
an update of the set of normative facts. Finally all possible sanctions are applied and this
results in another update of the brute facts. The configuration of the normative multi-agent
system changes accordingly if and only if it is not the case that violationReg, the literal
we use to ensure regimentation (corresponding to viol⊥ in Section 4.4.3), appears in the
brute facts. Consequently, the semantics of the transition rule (ACS) is implemented by the
following rewrite rule:

crl [ACS] : < A * AS, BF, NF > =>
< A’ * AS, BF’; BF’’, NF’ >

if A => [Act] A’
/\ S := matches(pre(Act, Id), BF) /\ S =/= noMatch
/\ BF’ := update(BF, substitute(post(Act, Id), S))
/\ NF’ := setminus(applyNorms(nS, nS, BF’, NF, NF), BF’)
/\ BF’’ := setminus(applySanctions(sS, sS, BF’, NF’, BF’), NF’)
/\ matches(violationReg(Id), NF’) == noMatch .

where nS, sS are constants defined as the sets of instantiated norms, sanctions. Please note
that we implement negation as failure and this implies that our update function preserves
the consistency of the set of facts.
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Given the above, we can proceed and describe how we can instantiate a concrete nor-
mative multi-agent system. We do this by creating a system module PSG-NMAS where we
implement the constructions specified in Figure 4.10:

mod PSG-NMAS is
including SEMANTICS .
including BUPL-SEMANTICS .
op psg : Qid BpMentalState -> Agent .
eq pre(enter, X) = ~ at-platform(X) .
eq post(enter, X) = at-platform(X) .
eq pre(buy-ticket, X) = ~ has-ticket(X) .
eq post(buy-ticket, X) = has-ticket(X) .
eq pre(embark, X) = at-platform(X) /\ ~ in-train(X) .
eq post(embark, X) = in-train(X) /\ ~ at-platform(X) .
ops n r : Qid -> Norm .
eq [norm] : n(X) = norm(at-platform(X) /\ ~ has-ticket(X),

ticket-violation(X)) .

***( eq [reg] : r(X) = norm(in-train(X) /\ ~ has-ticket(X),
violationReg(X)) . )

op s : Qid -> Sanction .
eq [sanction] : s(X) = sanction(ticket-violation(X),

pay-fee-ticket(X)) .
op nmas-state : Qid -> NMasState .
eq [init] : nmas-state(X) = < psg(X), nil, nil > .

endm

The operator psg associates an identity to a BUpL agent. We stress that using BUpL agents
is only a choice. Any other agent prototyped in Maude can be used instead. The actions
being monitored are enter, buy-ticket, embark, with obvious pre- and postcondi-
tions. The equation norm defines a norm which introduces a ticket violation and the equa-
tion sanction introduces a punishment in the case of a ticket violation. The equation
reg defines the normative enabling condition for the action enter, making it impossible
for psg to be in the train without a ticket. However, it will not be taken into consideration
because it is in a comment block and the reason will be clear in the next section. We further
consider that psg has a plan which consists of a sequence of only two actions, enter;
embark, meaning he tries to embark without a ticket. This gives rise to special situations
where model-checking turns out to be useful, as we will see in the following.

In order to model-check the system defined in the module PSG-NMASwe create a module
PSG-NMAS-PREDS where we implement the predicates regimentation and enforcement as
introduced in Section 4.4.3. Creating a new module is justified by the fact that state predicates
are part of the property specification and should not be included in the system specification.

mod PSG-NMAS-PREDS is
including PSG-NMAS .
protecting SATISFACTION .
extending LTL .
subsort NMasState < State .
op fact : Lit -> Prop .
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ceq < AS, BF, NF > |= fact(L) = true if in(L, BF) = true .
ops enforcement regimentation : Qid -> Prop .
eq [enf] : enforcement(X) =

fact(at-platform(X)) /\ not fact(has-ticket(X))
-> <> fact(pay-fee-ticket(X)) .

eq [reg] : regimentation(X) =
[] (fact(in-train(X)) -> fact(has-ticket(X))) .

endm

The state predicate fact(L) holds if and only if there exists a ground literal L in the set of
brute facts of the normative multi-agent system. We need this predicate in order to define the
properties enforcement and regimentation, which we are interested in model-checking. The
equation enf defines the predicate enforcement such that it holds if and only if any agent
X which is at the platform and has no ticket (fact(at-platform(X)) /\ not fact
(has-ticket(X)) can be entailed from the brute facts) will eventually pay a fee. On the
other hand, the equation reg defines the predicate regimentation such that it holds if
and only if it is always the case that any agent in the train has a ticket.

If we model-check whether enforcement holds for an agent identified by a1:

Maude> red modelCheck(nmas-state(’a1), enforcement(’a1)) .
reduce in PSG-NMAS-PREDS :

modelCheck(nmas-state(’a1), enforcement(’a1)) .
result Bool : true

we obtain true, thus the normative structure enforces a1 to pay a fee whenever it en-
ters without a ticket. This is not the case for regimentation, the result of model-checking
is a counter-example illustrating the situation where the agent enters the train without a
ticket. However, if we remove the comment of the equation labelled reg in PSG-NMAS
the application of the regimentation rule results in the update of the normative facts with
violationReg(’a1). Consequently, ACS is not applicable and nmas-state(’a1) is
a deadlock state. The result of the model-checking is true, since in-train(’a1) is not
in the brute facts. We note that trivially regimentation would hold if the plan of psg consisted
in buying a ticket before embarking.



Chapter 6
Coordinating 2APL with Reo Artifacts

As a short illustration of how to practically deal with both communication and coordination
in multi-agent systems, we present a tool integration experiment. We take advantage of the
existing software Reo and 2APL. The 2APL framework consists of agents and environments
to which the agents have access. We understand nodes in a Reo network as a particular envi-
ronment through which the agents can communicate. By connecting channels in a particular
way, we obtain specific infrastructures on top of the nodes, which can be used as a coordi-
nation mechanism which, for example, restricts the execution of the agents. We explain how
Reo and 2APL are integrated by means of a auction scenario.

The advantages of this approach are as follows. One important feature of the Rem lan-
guage lies in the concept of “exogenous coordination”. A direct consequence is that there is
a clear separation between execution (of agent programs) and control (of executions). This
makes analysis, extensions much cleaner and modular. It is also the case that there exists a
wreath of tools, “The Eclipse Coordination Tools”1, which provide facilities for designing
and verifying Reo networks.

6.1 A Short Overview of Reo
Reo [Arb04, BSAR06] is a channel-based exogenous coordination language wherein com-
plex coordinators, called connectors, are built out of simpler ones. Reo can be understood as
a “glue language” for compositional construction of connectors which represent coordination
artifacts in component-based systems. The emphasis in Reo is on connectors and their com-
position, not on the components, which are seen as “black-boxes”. The connectors impose a
specific behaviour on the components, without the knowledge of the internal structure of the
components.

The mechanism for constructing connectors is channel composition. Channels are prim-
itive connectors, with two ends which can be either source or sink. At a source end data
enters the channel by performing a corresponding write operation, while at a sink end data
leaves the channel by performing a corresponding read operation. Reo imposes no restriction
on the behaviour of the channels and thus it allows an open-ended set of channel types with

1The Eclipse Coordination Tools are at http://homepages.cwi.nl/ koehler/ect/
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user-defined semantics. Figure 6.1 depicts the graphical representation of three basic chan-

Figure 6.1: Basic Channel Types in Reo

nel types: ab is a synchronous channel (Sync), cd is a one buffer cell asynchronous FIFO
channel (FIFO1), and ef is a synchronous drain channel (SyncDrain). Synchronous and
FIFO channels have both a source and a sink end each. In a Sync channel data is simultane-
ously accepted at the source end and dispensed at the sink end. In a FIFO1 channel data is
accepted at the source only if the buffer is empty and data is dispensed at the sink end only if
the buffer is full. SyncDrain channels have two source ends and no sink. In a SyncDrain
channel data is simultaneously accepted at the source ends and then destroyed.

Channels are composed via a join operation in a node which consists of a set of channel
ends. Such a node is either source, sink, or mixed depending on whether all channel ends
which coincide on the node are only source, only sink or a combination of source and sink.
Source and sink nodes represent input and output ports where components connect to the
network. A component can write data to a source node (input port) only if all source ends
coincident on the node accept the data, in which case the data is written on each source end.
Source nodes, thus, replicate data. A component can obtain data from a sink node (output
port) only if at least one of the sink nodes coincident on the node offers data. In the case of
more offers one is chosen nondeterministically. Sink nodes, thus, nondeterministically merge
data. We take as an example the Reo diagram shown in Figure 6.2. This diagram represents

Figure 6.2: A Barrier Synchroniser Connector
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a Reo connector which we use later in the paper. It implements a barrier synchronisation:
by definition, the SyncDrain channel ef ensures that a data item passes from ab to cd only
simultaneously with the passing of a data from gh to ij (and vice-versa). In this section
we briefly describe the process of building up a custom Java application which implements a
component-based system coordinated by a Reo connector. The design mechanism relies on a
bundle of plugins for the Eclipse development environment called “The Eclipse Coordination
Tools”.

We take as an illustration a system with two components which simply alternate write
and read operations. We assume that the behaviour of one component is to first write to the
source node a and then read from the sink node g, and the same for the other one (a write to g
is followed by a read from j). We further assume that the writings are controlled by a barrier
synchroniser, and in this way, we have a simple mechanism of coordinating the components.
Basically, the programmer starts by drawing the Reo connector from Figure 6.2 using the
Reo editor. This diagram is automatically converted to the Java code which we denote as
Barrier in Figure 6.3. Given that the components are implemented as Java threads (Comp1
and Comp2 in Figure 6.3), the programmer simply needs to drag and drop their corresponding
code and the code for the barrier synchroniser into the Casp editor, which is meant to facilitate
the programmer to wire the components to the coordinator. After the linking is completed, the
system automatically generates code that implements the whole application (i.e., it generates
a Java class where the constructors for Comp1, Comp2, Barrier are properly instantiated
and the corresponding threads are started). Note that connectors can be exported as Reo
libraries which can be later on reused. A growing collection of commonly useful connectors
already exists.

Figure 6.3: Implementing a Component-Based System with a Barrier Synchroniser

6.2 A Short Overview of 2APL
2APL (A Practical Agent Programming Language) is an agent-oriented programming lan-
guage that provides two distinguished sets of programming constructs to implement both
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multi-agent as well as individual agent concepts. At the multi-agent level one can specify
which agents should be created and which external environments they have access to. At
the individual agent level, one can specify each (to be created) agent in terms of declarative
concepts such as beliefs and goals, and imperative concepts such as events and plans. 2APL
multi-agent systems run on the 2APL platform2, a development tool that is designed to sup-
port the implementation and execution of multi-agent systems programmed in 2APL. In this
section we briefly describe those parts of the syntax and intuitive semantics of 2APL that
are relevant to this paper. For a complete overview of the syntax and formal semantics of
the 2APL programming language we refer to [Das08]. The specification at the multi-agent
level indicates which type of agents and how many of them constitute a multi-agent system.
Moreover, it indicates which external environments are involved in the multi-agent system
and which agent can interact with which external environment. The syntax for multi-agent
level specification is as follows:

agentname$_1$ : filename$_1$ N$_1$ @env$_1^1$,...,env$_1^n$
$...$
agentname$_p$ : filename$_p$ N$_p$ @env$_p^1$,...,env$_p^m$

Here agentnamei is the name of the agent to be created, filenamei is the file name in
which the agent is specified, Ni is the number of such agents to be created (if Ni > 1, then
the agent names will be indexed by a number), and @env j

i is the name of the environment
that the agents can access and interact with. Each environment env j

i is specified by a Java
class of which one instance is created by the 2APL platform when loading the multi-agent
specification. We explain later in this section how such a Java class implements an environ-
ment. Next, we will describe the relevant concepts by which a 2APL agent is specified. A
2APL agent has beliefs and goals. The beliefs of an agent represent the information the agent
has (about itself and its environments). The goals of an agent specify the situation the agent
wants to realise. The agent’s beliefs are stored in its belief base, which is implemented as
a Prolog program. The agent’s goals are stored in its goal base as conjunctions of ground
atoms. A 2APL agent has only goals it does not believe to have achieved. Consider, for
example, the belief and goal base of an auction agent with the goal of having a bike.

Beliefs:
bid(100). step(30). maximalBid(400).

Goals:
have(bike)

In this example, the agent believes its current bid to be EUR 100 (at the first round this is
its initial bid), and will increase its bid each round with EUR 30 to a maximum of EUR
400. As soon as the agent believes to have bought the bike (i.e., have(bike) can be
derived from the agent’s beliefs) this goal is removed from the goal base. To achieve its
goals an agent needs to act. Actions that a 2APL agent can perform include actions to update
its beliefs, actions to query its belief and goal base and external actions to interact with its
environment. The belief base of the agent can be updated by the execution of a belief update

2The 2APL Platform can be downloaded at http://cs.uu.nl/2apl
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action. Such belief updates are specified in terms of pre- and postconditions. Intuitively, an
agent can execute a belief update action if the precondition of the action is derivable from its
belief base. After the execution of the action, the beliefs of the agent are updated such that
the postcondition of the action is derivable from the agent’s belief base. The belief update
UpdateBid(R) for updating the current bid bid(X) to bid(R), for example, is specified
as:

{bid(X)} UpdateBid(R) {not bid(X), bid(R)}

A test action can be used to test whether the agent has certain beliefs and/or goals. A test
action is a conjunction of belief and goal tests. Belief test actions are of the form B(φ) in
which φ is a (Prolog) query to the belief base. Similarly, goal test actions are of the form
G(φ) in which φ is a query to the goal base. A goal test action G(φ) is successful if φ is
derivable from the agent’s goal base. A (belief or goal) test action can result in a substitution
for variables that occur in φ . For example, given the above belief base, the belief test action
B(bid(X)) is successful resulting in the substitution X/100. A test action can be used
in a plan to (1) instantiate variables in the subsequent actions of the plan (if the test can be
entailed by the agent’s beliefs and goals), or (2) to block the execution of the plan (in case
the test cannot be entailed by the agent’s beliefs and goals). A 2APL agent performs external
actions to act upon its environment. In 2APL environments are implemented as Java classes
of type Environment. External actions that can be performed in this environment are then
to be implemented as methods of this class having a predefined signature:

Term actionName(Term t$_1$,...,Term t$_n$)

in which Term is the Java equivalent of 2APL terms such as constants (numbers and idents)
or variables. External actions in the 2APL programming language are then of the form:

@env(actionName(t$_1$,...,t$_n$),R)

with actionName(t1,...,tn) corresponding to the signature of the Java method imple-
menting the action, R is the return value that can be used to capture (a part of) the result of the
action, and env being the unique identifier of the Environment object that implements the
environment. The performance of an external action then boils down to invoking the method
specifying the external action and binding the return value of this method to R.

A 2APL agent adopts plans to achieve its goals. These plans are the recipes that describe
which actions the agent should perform to reach the desired situation. In particular, plans are
built of basic actions and can be composed (amongst others) by a sequence operator (i.e., ;)
and a conditional choice operator. Conditional choice operators are of the form if ϕ then
π1 else π2. The conditional part of these expressions (ϕ) is a conjunction of belief tests
B(φ ) and goal tests G(φ ) that are evaluated on the agent’s beliefs and goals. Such a condition
thus expresses that the agent should perform plan π1 in case ϕ can be entailed by the agent’s
beliefs and goals and otherwise plan π2. Note that the conditional part of such an expression
may result a substitution that binds some variables in the π1 part of the expression.

An agent possibly has more than one plan to reach its goals. Which plans are the best
usually depends on the current situation. Planning goal rules are used to generate plans based
on the agent’s goals and beliefs. Such a rule is typically of the form head <- guard |
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body. The head of the rule is a goal expression indicating whether the agent has a certain
goal. The guard of the rule is a belief expression indicating whether the agent has a certain
belief, and the body of the rule is the plan that can be used to achieve the goal as stated by the
head. A planning goal rule can be applied if the head and guard of the rule can be entailed by
the agent’s beliefs and goals, respectively. As an example, consider the following planning
goal rule of our auction agent:

have(X) <- not finished | { ... }

indicating that the plan between the brackets can be used to achieve the goal of having product
X in case the agent believes the auction is not finished.

6.3 Integrating Reo Connectors into the 2APL platform
The mechanism for integrating Reo connectors into the 2APL platform is as follows. For
this we consider a particular environment reo. The execution of any 2APL external action
in the environment reo is a read from or a write to a given sink or source node, respec-
tively. It is the task of the MAS programmer to setup the links between 2APL action names
and Reo nodes. This should be done in a configuration class, which, in this section, we
call ReoCustom. This class should be understood as an interface between the Reo network
and 2APL agents. The MAS programmer should bear in mind that the association of an
action name to a source node is to be interpreted as a write operation to the node. Simi-
larly, the association of an action name to a sink node is to be interpreted as a read operation
from the node. We take, for instance, the following setup. We assume that the MAS pro-
grammer creates a MAS file with the specification bidder1 : bidder1.2apl @reo
and that the 2APL code for the agent bidder1.2apl contains the external action call
@reo(bid(100),_). This means that there exists a corresponding node in the Reo net-
work. Let this node be a source node p4. Under these assumptions, if the MAS programmer
wants to implement that @reo(bid(100),_) is a write on p4, then he or she needs to
associate the action bid of bidder1 to p4. This association is done in the ReoCustom
configuration class by the following statement:

addSourceNode(‘‘bidder1’’,‘‘bid’’,p4)

where the parameters are the name of the agent, the name of the 2APL action and a source
node. Similarly, the association of an action name with a sink node is done by calling
addSinkNode. These functions are implemented in ReoEnvironment, a specific en-
vironment. Besides providing functions which facilitate the MAS programmer to make the
associations between action names and nodes, ReoEnvironment has a further use as well.
Please note that the @reo external actions have a generic execution mechanism (either a read
from or a write to a given node). It follows that it is desirable that the MAS programmer is
spared the trouble of implementing them (as it is the case with external actions in general).
ReoEnvironment is designed especially to make the implementation of @reo external
actions transparent to the MAS programmer.

We note that, so far, we have left the “wiring” up to the MAS programmer. However, we
can imagine other options through which the interface is created automatically. For instance,
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we could think of scripting languages, where one could even design mechanisms which sup-
port parametrised MAS files as input. It should also be possible to use the Casp editor (see
Section 6.1) as such an alternative. For this, MAS files should specify for each agent its
interface to the Reo network. For example, the MAS file

bidder1 : bidder1.2apl @reo (bid p4) (readMax p3)

specifies that bidder1 can perform the external actions bid and readMax in the environ-
ment reo. Furthermore, it specifies that the action bid is associated with the node p4, and
readMax with p3. Such an approach has the advantage that a node could be associated with
more than one action.

To picture the above mechanism, we propose an auction scenario illustrating the use of
Reo based coordination artifacts in a 2APL system. We assume that we have a set of agents
taking part in a sealed-bid auction. Each agent has its own maximal bid and its own strategy
of increasing the bid. All participants submit their initial bid at the same time, then they wait
for a response with the highest bid. If they want to continue they increase the highest bid
with their chosen amount, otherwise they submit a default value 0. The auction ends when all
minus one of the participants submit 0. The winner is the one with a non-zero bid. Typically,
the planning goal rule of such a bidder is implemented in 2APL as follows:

have(X) <- highestBid(H) and maximalBid(Max) and step(S) and
bid(C) and oldBid(O) and not finished | {

if B(Max > H + S)
then { @reo(bid(H + S), _); UpdateBid(H + S) }
else { @reo(bid(0), _) };
@reo(readMax(nil), NH); UpdateHighestBid(NH);
if B(highestBid(0) and oldBid(Y) and bid(Y))
then Bought(X) else if B(highestBid(0)) then Finish() }

where updateBid(X), updateHighestBid(X), Bought(X), Finish() are the in-
ternal actions of the bidder agent, defined simply as belief updates, and bid(X), readMax(X)
are the only external actions that bidders can perform in the environment reo. Assume that
auction.mas is the MAS file describing two bidders, and assume that the bidding agents
are implemented in bidder1.2apl and bidder2.2apl:

bidder1 : bidder1.2apl @reo
bidder2 : bidder2.2apl @reo

We implement the mechanism of the auction as a Reo connector. Whenever a bidder submits
a bid, a writing to the corresponding node occurs. We ensure that the bids happen simul-
taneously by using the barrier synchroniser described in Section 6.1, as it can be noticed in
Figure 6.4.

Adding components to a multi agent system has the advantage of making our approach
more powerful, generic and modular. We advocate the use of components whenever a stan-
dard task, with a clear meaning, needs to be implemented. This is why we choose to imple-
ment the auctioneer as a component, Max, which basically takes the data from its input nodes
and forwards the maximum value. The value computed by Max is broadcast to readMax1
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Figure 6.4: A Reo Connector Implementing an Auction

and readMax2, which coincide with the sink nodes associated to the action readMax of
the bidders, thus the bidders can read the value of the highest bid and continue the auction.

Given that we generated from the Reo diagram in Figure 6.4 a Java class Auction
by the mechanism described in Section 6.1, we can now proceed with filling in the miss-
ing information in the interface we referred to as ReoCustom in Section 6.3. Since it
is application dependent, we name it ReoAuction. This is the place where we setup
the links between the nodes of the coordinator and the nodes of all other components, in
our case, the bidding agents and Max. This is partially done by generating code from
the Casp diagram (see Figure 6.5). We further need to setup the associations between the
external actions and the nodes of the bidders. Take, as an illustration, the function call
addSinkNode("bidder1","readMax", p3), where p3 is a synchronisation point
representing, on the one hand, coordinator’s source node readMax1, and on the other hand,
bidder1’s sink node readMax. This establishes that whenever bidder1 performs a
readMax action it reads the data written to readMax1.

We assume that the first bidder has an initial bid of EUR 150, and that he is willing to
increase the highest bid with the amount of EUR 10, until it reaches an upper limit of EUR
300. Similarly, we assume that the second bidder has an initial offer of EUR 100, that the
increasing step is of EUR 30, and that the maximal bid is EUR 400. We also assume that both
bidders have the goal of buying a bike. The implementation of the bidders’ planning goal rule
suggests that these are naive, as we can easily foresee the winner. The auction stops when
the bidder with the smallest upper limit submits 0, in our case after bidder1 bids EUR 290.
This means that bidder2 wins the bike for EUR 310. Running the application confirms our
expectations.

For the sake of clarity, the above scenario is on purpose simple. However, we could fur-
ther make it more complex. For example, we could implement a component which validates
the bids submitted by the agents: here we assume that the bidders always submit a higher bid
than the previous one, however, this is a particular case. It is possible that the bidders have
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Figure 6.5: ReoAuction: The Interface between the Bidders and the Connector Auction

a different implementation, and that we might not even have access to the source code. It
follows that it is desirable to impose a validation step in the Reo connector implementing the
auction. Figure 6.6 shows the result of adding a validator component for bidder1. There,
the component Validator simply compares the bid submitted by the agents with the pre-
vious ones. In order to record previous bids and input them to the Validator we basically
create a new node cache and a Sync channel connecting the input of Max to cache, such
that each time bidder1 submits a valid bid this value is fed to cache. The node cache
is connected to the input of Validator through a full FIFO1, which initially, at the first
round contains value 0. The SyncDrain channel ensures that the Validator component
can fetch data only when the bidder submits a bid. Only if the bid is greater than the value
read from the cache is the cache updated by inserting the bid, otherwise not. Note that in
such a situation the flow of data through the connector is stopped.

The Eclipse Coordination Tools are useful not only in designing Reo connectors but also
in verifying them, as they contain an animation and a model-checker tool. The Reo animation
is handy in the design phase. It helps the programmer to better understand the data flow in
the Reo connector. The Reo model-checker [KB07] can be used in model-checking whether
properties expressed in Branching Time Stream Logic (BTSL) are valid for the designed Reo
coordination artifacts.

BTSL combines features of CTL [CES86], PDL [FL79] and time data stream logic
(TDSL) [ABdBR04]. We can therefore express properties like ∀〈bid1 ∧ bid2〉true. This
means that for all executions, there exists a prefix which satisfies the constraint bid1 ∧ bid2
such that it reaches a state where true holds. The constraint bid1∧bid2 denotes that the oper-
ations on the nodes bid1 and bid2 happen simultaneously. The constraints in PDL-like formu-
lae can also be defined on the data passing through nodes. A property like ∀〈dbid1 = di1〉true
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Figure 6.6: The Auction Connector with a Validator for bidder1

expresses that for all paths there exists a prefix where it holds that the data written at the node
bid1 (symbolically denoted by dbid1 ) is the same with the data di1 read at the node i1.

We can further extend our example by adding a sequencer connecting the sources and the
sink of Max, as it can be noticed in Figure 6.7. For the sake of illustration, Figure 6.8 shows
a two place sequencer. It consists of two FIFO1 and three Sync channels, with the leftmost
FIFO1 being initialised with a data item (the value is irrelevant). The sequencer ensures that
the read operations succeed only in the strict order from left to right. The construction is
generic, one just needs to insert some more pairs of Sync and FIFO1 channels in order to
obtain a k-Sequencer. Given the connector described in Figure 6.7 we can model-check
that it can never be the case that the component Max outputs a higher bid before receiving the
actual value of the highest bid: ¬∃〈readMax1;bid1〉true. The regular expression readMax1;
bid1 has precisely the meaning of “an operation on readMax1 is followed by an operation
on bid1”. As one might expect, all the properties defined above hold for the connector from
Figure 6.7.

Currently, no model checking tools exist for 2APL programs. However, using Reo en-
courages a compositional approach to the verification of systems, where (1) the externally
observable behaviour of each 2APL agent is represented by a constraint automaton; (2) the
system is verified as the product of the constraint automata of its agents and Reo connec-
tors; and (3) the compliance of each individual agent with its constraint automaton model is
verified separately. We note that properties involving the effective data values (numerical)
passing through the connector could be integrated by making use of Filter channels. Such
channels have predicates as labels which enables data to pass. The predicates can typically
be (in)equalities between functions defined on the values from the source (sink) nodes. In
this way we could replace the Sync channel connecting the sink node of Validator to the
source cache by a filter with the predicate dbid j > dcache as the corresponding label.
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Figure 6.7: The Auction Connector with a Sequencer

Figure 6.8: A 2-Sequencer Connector





Chapter 7
Conclusions and Perspectives

In this thesis we presented an executable theory of multi-agent systems. In the first part of
the thesis we focused upon individual agent refinement. The results can be grouped in two
classes. The first class relates the design of agent languages. There, the main message is
to design from abstract specifications to more concrete implementations by means of refine-
ment. The second class relates the verification of the correctness of agent programs where an
agent is “correct” with respect to a specification if it refines the specification. As a concluding
picture, we provide the following overview together with possible directions for future work.

Concerning the design of agent languages, we introduced BUnity as an abstract specifi-
cation language, BUpL as a more concrete agent language which refines BUnity by adding
control structures, and BUnityK as a more expressive agent language which allows to de-
fine more sophisticated queries by making use of knowledge bases. We proposed a theory
of control refinement illustrated by means of BUnity and BUpL. As future work, we discuss
the following aspects. With respect to BUnityK there are two main directions. The first
one is to use knowledge bases in verification for abstraction, under the slogan “equations are
abstractions”. The second direction could explore data refinement between BUnityK and
BUnity. One possible idea is to define data refinement as answers’ inclusion, in the sense that
one agent is more “data” concrete if the querying mechanism provides more answers.

Concerning the verification of agent programs, first we showed how to model-check re-
finement. We then showed that even simple agent languages as BUnity are Turing complete
with the consequence that a decidable algorithm for the refinement of infinite state agents
does not exist. We further presented two orthogonal approaches to the verification of infinite
agent programs. One is a symbolic approach based on a weakest precondition calculus, and
the other one is based on testing. As possible extensions relating verification aspects, new
results may be obtained on the connection between our application of the weakest precon-
dition calculus for invariants, induction, and strengthening. With respect to testing, further
extensions concern the automatic generation of test cases.

The connection between the two classes lies in our choice to use rewriting logic as a
suitable semantical and logical framework for prototyping agent languages and verification
techniques. We promoted rewrite strategies for a clear separation between agent executions
at object-level and control of executions at meta-level. With respect to strategies, future work
may concern their usefulness and applicability in the design of agent deliberation cycles,
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repair mechanisms and synthesising reconfiguration schemata.
In the second part of the thesis we extended the refinement relation to timed chore-

ographed normative multi-agent systems. To summarise, the main messages are as follows.
With respect to coordination, this can be achieved at two orthogonal levels by means of ac-
tions and norms. The action-based artifact that we proposed is represented by choreographies
which enforce action synchronisation between agents. The norm-based artifact that we de-
scribed forces the multi-agent system to be in a normative state. Choreographies and norms
concern with separate issues, however, we shown that their integration is possible and that
furthermore, coordinated multi-agent systems can be extended to timed coordinated multi-
agent systems by means of timed automata.

As future work we see some directions relating the implementation of the normative
mechanisms at meta-level via strategies. Two aspects which have not been discussed are
termination and deadlock. With respect to termination, we note that because of “malformed”
counts-as rules, e.g., recursive, the application of vigilant may not always terminate. It is also
the case that “circularities” can lead to non-terminating totalitarian strategies. Thus it may
be of interest to determine conditions or to find special classes of normative rules such that
the termination of the strategies is guaranteed. With respect to deadlock, we recall that the
current mechanism for handling the case when a regimentation rule is applicable, is to “send”
the system to a deadlock state. This is not an optimal exception handling mechanism. If an
agent tries to do an action which leads to the application of reg but it can also do a permitted
action a, it should not be the case that the system enters a deadlock state but it constrains the
agent to execute a. We view such mechanisms as a sort of self repairing mechanisms. Their
investigation and formalisation could be a subject of future work.

The last part of the thesis was concerned with more practical aspects of, on the one hand,
implementing the theory of refinement in Maude, and on the other hand, describing the inte-
gration of a more powerful coordination tool Reo in a more advanced agent platform 2APL.
There are two main messages that become transparent. The first one is that Maude offers
a homogeneous framework for prototyping agent languages, executing agent programs and
verifying properties of the agents. The second one is that by means of Reo connectors 2APL
applications are modular, distributed and multitasking.

As for future work, with respect to our Maude implementation, a short term project may
focus on automatically generating Java code from the Maude agents’ prototypes. This is
in the idea of providing a plugin in Eclipse which would facilitate the prototyping of agent
languages through a friendly interface while ensuring the efficiency of executing Java code.
The main benefit of this approach would consist in the fact that the correctness of the Java
implementation follows from the correctness of the translation, thus whatever agent program
we execute in Java we can be sure that it is a correct implementation of the Maude prototype.
Along the same line, another aspect that might deserve attention is to make a case study on
the use of Rascal [KvdSV09] for prototyping and verifying agents. Rascal is a domain spe-
cific language for source code analysis and manipulation a.k.a. meta-programming. Though
we used Rascal only for some short experiments, these turned out to be exciting and com-
pensating. The main adding to what we focused upon in this thesis is that Rascal would be a
syntactic approach to verification. Furthermore, besides being a standalone application, Ras-
cal is provided also as an Eclipse plugin and this may constitute a possible link to the above
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mentioned project.
With respect to the integration of Reo and 2APL, we remark that the coordination patterns

imposed by Reo connectors are not suitable for expressing organisational concepts like norms
or sanctions. Thus, it may be of interest for future work to extend the 2APL platform such that
conceptually different coordination artifacts are incorporated into 2APL systems. Another
future project may concern scalability aspects. Currently, the number of the agents specified
in a multi-agent system file is a priori fixed, and the same holds for the elements of a Reo
network. However, there is current work on dynamic reconfiguration of Reo networks which
could be integrated such that the network copes with agents entering and leaving a multi-agent
system.
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Samenvatting

Het gebruik van complexe applicaties zoals incident management, sociale simulaties, produc-
tie applicaties, elektronische veilingen, e-instellingen, en business to business applicaties is
groeiende en zeer belangrijk geworden. De agent-georiënteerd methodologie is een volgende
abstractie die door software ontwikkelaars gebruikt kan worden om dergelijke applicaties
te modelleren en ontwikkelen. Voor alle ontwerp methodologieën geldt, in het algemeen,
dat control structures in latere stadia van het ontwerp moeten worden toegevoegd in een
natuurlijke top-down manier, van specificatie naar implementatie, door middel van refine-
ment. Te veel detail in de specificaties (bij voorbeeld, ten behoeve van efficiëntie) heeft vaak
negatieve gevolgen. Om D.E. Knuth te parafraseren: “Premature optimization is the root of
all evil”(geciteerd in "De Unix Programming Environment ’van Kernighan en Pine, blz. 91).

Het doel van dit proefschrift is het aanpassen van bestaande formele technieken voor
de agent-georiënteerde methodologie ten behoeve van een executeerbare refinement theorie.
De rechtvaardiging hiervoor is het leveren van agent-based software wiens correctheid reeds
gegarandeerd wordt door het ontwikkelproces. Het onderliggende logische framework van
de theorie die we introduceren is gebaseerd op rewriting logic. Hierdoor is onze theorie op
dezelfde manier executeerbaar als rewriting logic is. De verhaallijn is als volgt. We begin-
nen met een motivatie voor en beschrijving van de onderdelen van bestaande agent talen die
we gekozen hebben voor de representatie van zowel abstracte als concrete ontwerpniveaus.
Vervolgens stellen we een definitie van refinement tussen agenten, die geschreven zijn in
deze talen, voor. Deze notie van refinement verzekert dat concrete agenten correct zijn ten
opzichte van hun abstractie. Het voordeel van deze definitie is dat het de formulering van een
bewijstechniek voor refinement eenvoudig maakt met behulp van de klassieke notie van sim-
ulatie. Dit maakt het mogelijk om refinement effectief te verifiëren middels model-checking.
Daarnaast stellen we een weakest precondition calculus voor als een op asserties gebaseerde
deductieve methode waarmee de correctheid van agenten met een oneindige state space kan
worden bewezen. We generalizeren de refinement theorie naar multi-agent systemen zodanig
dat concrete multi-agent systemen hun abstracties verfijnen. We zien multi-agent systemen
als verzamelingen van gecoördineerde agenten, en we beschouwen coördinatie artefacten al-
sof ze gebaseerd zijn op acties of normatieve regels. We integreren deze twee orthogonale
mechanismen voor coördinatie binnen dezelfde theorie, die we uitgebreid hebben tot een
framework waarin ook tijd een rol speelt. Tot slot bespreken we implementatie aspecten.
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Abstract

Complex applications such as incident management, social simulations, manufacturing ap-
plications, electronic auctions, e-institutions, and business to business applications are per-
vasive and important nowadays. Agent-oriented methodology is an advance in abstraction
which can be used by software developers to naturally model and develop systems for such
applications. In general, with respect to design methodologies, what it may be important to
stress is that control structures should be added at later stages of design, in a natural top-down
manner going from specifications to implementations, by refinement. Too much detail (be it
for the sake of efficiency) in specifications often turns out to be harmful. To paraphrase D.E.
Knuth, “Premature optimization is the root of all evil” (quoted in ‘The Unix Programming
Environment’ by Kernighan and Pine, p. 91).

The aim of this thesis is to adapt formal techniques to the agent-oriented methodology
into an executable theory of refinement. The justification for doing so is to provide correct
agent-based software by design. The underlying logical framework of the theory we propose
is based on rewriting logic, thus the theory is executable in the same sense as rewriting logic
is. The storyline is as follows. We first motivate and explain constituting elements of agent
languages chosen to represent both abstract and concrete levels of design. We then propose
a definition of refinement between agents written in such languages. This notion of refine-
ment ensures that concrete agents are correct with respect to the abstract ones. The advantage
of the definition is that it easily leads to formulating a proof technique for refinement via
the classical notion of simulation. This makes it possible to effectively verify refinement by
model-checking. Additionally, we propose a weakest precondition calculus as a deductive
method based on assertions which allow to prove correctness of infinite state agents. We
generalise the refinement relation from single agents to multi-agent systems in order to en-
sure that concrete multi-agent systems refine their abstractions. We see multi-agent systems
as collections of coordinated agents, and we consider coordination artefacts as being based
either on actions or on normative rules. We integrate these two orthogonal coordination
mechanisms within the same refinement theory extended to a timed framework. Finally, we
discuss implementation aspects.
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