
Frequency conversion in two-dimensional photonic structure
Babic, L.

Citation
Babic, L. (2011, May 17). Frequency conversion in two-dimensional photonic
structure. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/17642
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/17642
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/17642


i
i

i
i

i
i

i
i

Chapter 6

Second harmonic generation in
transmission from photonic crystals
on a gel substrate

6.1 Introduction

Increasing the efficiency of frequency conversion processes has always been an
important goal of nonlinear optics. As long as phase-matching conditions are
satisfied, a higher nonlinear conversion efficiency can be achieved by either
focusing the light or by using a material with a larger nonlinear susceptibil-
ity [29]. The phase-matching condition ensures that all the waves generated
in the material are in phase, and therefore add up constructively. For most
nonlinear media this condition is not automatically satisfied due to material
dispersion. Common ways to phase-match the nonlinear interaction are to use
temperature tuning or angle tuning of a birefringent nonlinear crystal, e.g.,
BBO, KTP, or LiNbO3. Unfortunately, this method cannot be applied to op-
tically isotropic materials with a much larger nonlinear susceptibility. This is
the case with some III-V semiconductor materials. For example, gallium ar-
senide (GaAs) has a more than 70 times larger effective second-order nonlinear
susceptibility χ(2)

eff than that of BBO but is not birefringent.
Bloembergen et al. [33] were the first to propose a structure with period-

ically alternating layers of low and high refractive index as a way to satisfy
the phase-matching condition. For this structure, an existing phase mismatch
can be compensated by adding or subtracting an appropriate reciprocal lat-
tice vector G of the photonic lattice. This is called quasi-phase-matching.
The nonlinear conversion efficiency can be further enhanced significantly by a
strong spatial confinement of the optical fields which enhances the field inten-
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

sities. This has been demonstrated by Scalora et al. [46] for the case of second
harmonic generation (SHG) from one-dimensional periodic GaAs/AlAs struc-
tures where the enhancement of the second harmonic (SH) signal is achieved
by confining both the fundamental and second harmonic optical fields.

Cowan et al. [47] showed theoretically how to use leaky modes of a free-
standing two-dimensional photonic crystal slab to achieve both quasi-phase-
matching and strong spatial confinement. Leaky modes couple incident light
from the surrounding media to a guided mode of the slab via diffraction from
the photonic lattice. Using a Green’s function formalism, the authors calcu-
lated an enhancement of SH signal in reflection of more than 6 orders of magni-
tude compared to the SH signal off-resonance. An experimental investigation
by Mondia et al. [48] resulted in an enhancement of the second harmonic signal
generated in reflection from a two-dimensional GaAs photonic crystal slab on
an Al2O3 cladding layer. The SH signal was generated by focusing a tunable
laser with short pulses (150 fs) to a 35 µm spot on the sample. By tuning the
laser frequency and the angle of incidence authors investigated the enhance-
ment of the SH signal. When both the fundamental and the second harmonic
wave are resonant with the leaky modes of the structure, an enhancement of
more than 1200 times compared to the noise floor was measured.

Torres et al. [49] present a theoretical and experimental study of the second
harmonic signal generated in reflection from a one-dimensional GaN photonic
crystal. They report an enhancement of more than 5000 times compared to an
unpatterned GaN slab when both the fundamental and the second harmonic
wave are resonant with the leaky modes of the structure. When only the fun-
damental beam is resonant with the structure, the enhancement is significantly
reduced to a factor of 350.

In this chapter we study the influence of leaky modes on the second har-
monic generation from a two-dimensional Al0.35Ga0.65As photonic crystal slab
on a transparent gel substrate. Compared to earlier experiments in litera-
ture [48, 49] a narrow linewidth pulsed laser at 1.535 µm is collimated rather
than focused on the sample and the SH signal is measured in transmission
instead in reflection. The resonant coupling of both the fundamental and SH
wave to the leaky modes of the structure is probed by tuning the angle of
incidence. In contrast to the work presented in References [48, 49] where the
condition of double resonance was achieved at oblique angles of incidence, our
structure is doubly resonant at normal incidence. At normal incidence, the sec-
ond harmonic signal is enhanced by a factor 10000 relative to the non-resonant
signal. The double resonance condition at normal incidence combined with the
high enhancement of the SH signal in transmission holds promise for collinear
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down-conversion [102,103].
Compared to earlier experiments [48,49], our experiments clearly show the

effect of the resonant coupling of the second harmonic waves to leaky modes
of the structure. By increasing the angle of incidence the fundamental beam
is tuned away from resonance, resulting in a decrease of the second harmonic
signal. However, at angles of incidence of ± 9.1◦ two local maxima are clearly
observed in the experimental second harmonic signal.

We use a coupled mode theory [60, 100] to explain the main features of
the measured second harmonic signal as a function of the angle of incidence.
Within this theory, each of the leaky modes of the photonic crystal is treated
as a resonance, and the SH signal in transmission depends on how efficiently
the fields at the fundamental and the second harmonic frequency couple in or
out of these resonances, and on the phase mismatch. Unlike numerical meth-
ods such as finite difference time domain calculations or a Green’s function
approach, our approach offers direct insight into the underlying physical mech-
anism. More importantly, our simple model uses parameters that are easily
obtained by independent measurements of the linear as well as the nonlinear
optical properties of the system instead of assuming parameters of an ideal
two-dimensional photonic crystal slab. This makes the model immediately
applicable to realistic experimental structures that have a finite size and very
likely a number of fabrication imperfections. We show that the measured sec-
ond harmonic signal cannot be explained by considering the resonant coupling
at only the fundamental frequency, and that resonant effects at the second
harmonic frequency have to be included.

6.2 Sample preparation

Photonic crystal slabs with a square lattice of holes with a hole radius of
∼ 150 nm and a lattice constant a = 820 nm were fabricated in a commercially
grown AlGaAs layer structure [51] using a combination of e-beam lithography
and reactive ion etching techniques. The samples were fabricated using the
facilities of the Kavli Nanolab Delft. The layers of the AlGaAs layer structure
are deposited on a <100> GaAs substrate and consist of a 1 µm thick Al rich
Al0.7Ga0.3As layer, a 150 nm thick Ga rich Al0.35Ga0.65As layer, and a 100 nm
thick GaAs capping layer. The composition of the slab layer is chosen to render
the structure optically transparent at both the fundamental (1535±1 nm) and
second harmonic wavelength (767.5 ± 0.5 nm). To create the hole pattern, a
150 nm silicon nitride layer is deposited on top of the structure and serves as a
mask during the final reactive ion etching step. The lattice of holes is created
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

by e-beam lithography in a ∼ 500 nm thick layer of positive tone e-beam
resist, ZEP 520A [52], and transferred into the nitride mask layer using a low
pressure reactive ion etching step in a CHF3/Ar plasma. After removal of the
e-beam resist in a low pressure O2 plasma, the hole pattern is etched deep
into the AlGaAs heterostructure in a BCl2/Cl2/N2 reactive ion etch process
at 100 W RF power, a pressure of ∼ 4.5 µbar, and flow rates of 15, 7.5, and 10
sccm respectively. The nitrogen flow in this process was optimized to create
near vertical side walls of the holes. After etching the holes, the nitride mask
is removed using the CHF3/Ar etching procedure described above.

To ensure a nonzero efficiency for second harmonic generation, the ΓX
direction of the photonic lattice is deliberately rotated relative to the crys-
tallographic <100> direction of the AlGaAs of the slab layer by an angle of
∼ 22.5◦. Therefore, the incident electric field of the fundamental is never along
a crystallographic axis of the AlGaAs and the effective nonlinearity is nonzero.
Collinear second harmonic generation along one of the crystallographic direc-
tions is forbidden due to the 43̄m symmetry of the GaAs lattice [29].

To create a freestanding membrane the residual oxide layer is first removed
by dipping the sample in 15:1 deionized H2O:buffered hydrofluoric acid (BHF)
solution for 15 sec. The sample is then placed in a 3:1 citric acid:H2O2 solution
for 120 sec to selectively remove the GaAs capping layer. The freestanding
membrane is created by etching the sacrificial Al0.7Ga0.3As layer in a concen-
trated 1:4 HF (40%):H2O solution for 60 sec followed by a rinsing step in pure
water and critical point drying. The resulting freestanding membrane covers
an area of ∼ 300×300 µm2. Finally, the membrane is transferred to a transpar-
ent gel layer [80] with a refractive index of 1.4 on a standard microscope slide,
as described in Chapter 4 of this thesis. As a result, an almost perfectly flat
membrane which allows for reflection as well as transmission measurements is
created.

6.3 Experiment

Figure 6.1 shows the setup used for both second harmonic generation and lin-
ear transmission measurements. Alternating between the two experiments is
done by flipping both mirrors (flip mirrors) either “down” for second harmonic
generation or “up” for linear transmissivity measurements. The second har-
monic is generated by a Q-switched Cobolt Tango laser which has a specified
center wavelength of 1535 ± 1 nm, and a narrow linewidth < 0.04 nm. The
laser produces pulses with a typical duration of ≈ 3.8 ns (full width at half
maximum) at a repetition rate of 5 kHz. The generated signal at second har-
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Figure 6.1. Setup used for second harmonic generation and linear trans-
mission measurements. A fiber-coupled lamp and a spectrometer are
used for linear transmission measurements, while a pulsed laser operat-
ing at 1.535 µm and a CCD camera equipped with a bandpass filter (SH
filter) are used for second harmonic measurements. The polarization of
the incident beam is set by a Glan-Thompson polarizing beamsplitter
cube, and the angle of incidence θ is controlled by placing the sample
on a motorized rotation stage. For linear transmission measurements
an aperture in the beam limits the angular spread of the incoming light
beam. Flip mirrors are used to alternate between the two measurements.
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

monic wavelength is measured in transmission by an Apogee Alta U1 Peltier
cooled CCD camera. Rather then being strongly focused, the fundamental
beam is collimated by a lens (not shown), and has a waist of ∼ 0.5 mm, and
a corresponding half-angular width of ∼ 1 mrad. A 25 nm wide bandpass
filter (Andover 766FS10-25) centered at a wavelength of 766.5 nm (sh filter)
is placed in front of the silicon CCD camera to filter out the fundamental
beam. The polarization of the incident fundamental beam is set to either s
or p using a Glan-Thompson polarizing beamsplitter cube. Furthermore, a
half-wave plate is placed before the polarizer (not shown) to adjust the power
at the fundamental wavelength that is incident on the sample. Typically, an
average power of ∼ 10 mW is used in the experiments.

Linear transmission measurements are performed for wavelengths between
650 and 1700 nm using white light from a halogen lamp coupled to a 50 µm
multimode fiber. The output of this fiber is imaged onto the sample with a 2
times magnification to create a 100 µm spot on the sample. The transmitted
light is collected into a 400 µm fiber and then sent to a fiber-coupled grating
spectrometer. Visible light is detected with a silicon CCD array spectrometer
(Ocean Optics USB2000) with a spectral resolution of ≈ 1.5 nm, while the
spectrum in the near infrared is detected with an InGaAs array spectrometer
(Ocean Optics NIR512) with a ≈ 3 nm spectral resolution. The measure-
ments are done with a very low numerical aperture of the incident beam of
NA ≈ 0.01, set by inserting an aperture in the beam path. A Glan-Thompson
polarizing beamsplitter cube in a parallel part of the beam is used to measure
the transmission of both s- and p-polarized light as a function of wavelength
and angle of incidence.

6.4 Results and discussion

The linear transmission and reflection spectra of two-dimensional photonic
crystal slabs are well-known, and show a number of asymmetric, dispersive
lineshapes [58,59] due to the coupling of the incident light to one of the leaky
modes of the photonic crystal slab via diffraction from the photonic lattice.
The coupling of a continuum of modes to a single resonant channel leads to
interference between the direct (non-resonant) and indirect (resonant) channel,
as was first described by Fano [66]. For a photonic crystal slab, the direct
channel corresponds to the Fresnel reflection of the slab, while the resonant
channel is created by diffraction of incoming light from the regular photonic
lattice into a guided mode of the structure [60].

Figure 6.2 shows a gray scale plot of the measured transmission as a func-
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6.4 Results and discussion

tion of frequency (vertical axis) and the in-plane wave vector k|| (horizontal
axis), for both s- (a) and p-polarized (b) incident light. The crystal is oriented
so that the parallel component of the wave vector k|| is along the crystallo-
graphic ΓM direction of the photonic lattice. The dark lines that are clearly
visible in the figure correspond to the minima of the Fano lineshapes of the
leaky modes. The dashed red and the dash-dot blue horizontal lines in the
figure indicate the frequencies of the fundamental and the second harmonic.

The experimental transmission spectra T (ν) = |t(ν)|2 in the wavelength
range between 1400 and 1700 nm (i.e., frequencies ν between 0.48 and 0.58 c/a)
are well described by two independent Fano resonances:

t(ν) = tD(ν) + A1Γ1
(ν − ν1) + i(Γ1 + γ1) + A2Γ2

(ν − ν2) + i(Γ2 + γ2) , (6.1)

where tD(ν) is the frequency dependent transmission through the slab given
by the Fresnel coefficients of the layered medium. We assume that this direct

(a) (b)

Figure 6.2. Gray scale plot of the measured transmission as a function
of frequency (vertical axis) and wave vector k|| (horizontal axis). Mea-
surements are shown for s- (a) and p-polarized (b) incident light with k||
along the ΓM symmetry direction of the square lattice. The dashed red
and the dash-dot blue lines indicate the frequencies of the fundamental
and the second harmonic light.
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

contribution can be approximated well by a linear function over this relatively
small frequency range. The parameters A1,2 and ν1,2 denote the amplitudes
and resonance frequencies of the two modes, while Γ1,2+γ1,2 give the linewidths
of the resonances. The radiative coupling to the mode is characterized by Γ1,2.
The loss, quantified by γ1,2 includes both higher order diffraction as well as
scattering loss due to imperfections of the structure. Accordingly, the quality
factors of the modes are given by Q1,2 = ν1,2/(2(Γ1,2 + γ1,2)) [68]. Figure 6.3
shows the frequencies ν1,2 as a function of the in-plane wave vector k|| for both
s- (blue circles) and p-polarized light (red diamonds). The frequencies display
a clear avoided crossing caused by Bragg type scattering from the periodic
array of holes. At normal incidence the leaky modes of the structure are

−0.1 0 0.1
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Figure 6.3. Dispersion relations of the lowest four leaky modes for the
in-plane wave vector k|| oriented along the ΓM direction of the square
lattice. Each mode couples to the structure via an addition of one of the
four (1,0) reciprocal lattice vectors. The measurements show two modes
for both s- (blue circles) and p-polarized light (red diamonds). The solid
blue and dashed red lines are fits to the experimental data points using a
coupled mode theory, as described in the text. The laser (fundamental)
frequency is indicated by the black dash-dot line.
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6.4 Results and discussion

resonant with the pulsed laser operating at 1535 nm (frequency 0.5342 c/a).
The avoided crossing between the leaky modes is well described by the

coupled mode theory using a 2×2 Hamiltonian matrix [85,86,104]

H =
(
E1 V
W E2

)
,

where E1 and E2 are energy eigenvalues of the uncoupled modes. For a closed
system the energy eigenvalues are real, and the matrix H is Hermitian, and the
off-diagonal elements are related by V = W ∗. The eigenvalues of the coupled
system lead to an avoided crossing with energies

E± = E1 + E2
2 ±

√
E1 − E2

2 + VW.

For an open or dissipative system, such as the leaky modes of the photonic
crystal slab considered here, the same Hamiltonian can be used to describe the
dynamics of the system. Complex-valued energies E1,2 = hν1,2 + i(Γ1,2 + γ1,2)
contain both the resonance frequency and the linewidth of the leaky photonic
modes. Keeping the restriction V = W ∗ corresponds to so-called internal
coupling since the only difference to the Hermitian coupling is that both modes
are individually coupled to the continuum. The fully non-Hermitian case with
V 6= W ∗ corresponds to external coupling, where the modes are coupled via the
continuum. An important feature of this external coupling is that it creates
a mode with a considerably increased lifetime (subradiant mode), and as a
consequence a second mode with a shorter lifetime (superradiant mode). As
can be seen from Figure 6.3, modes below the laser frequency (νlaser) become
subradiant at normal incidence and disappear from the measured transmission
spectra.

For our geometry the leaky modes are excited via diffraction using one of
the four (1, 0) reciprocal lattice vectors. For a parallel component of the wave
vector in the ΓM (1, 1) direction, the dispersion of the modes of the uncoupled
system are obtained by folding the dispersion relation of the fundamental TE
waveguide mode. The resulting dispersion relations of the uncoupled modes
ν1,2 can be expressed in dimensionless units as:

ν1,2 = ν0

√(
1±

αk||√
2

)2
+
(
αk||√

2

)2
, (6.2)

where ν0 is the center frequency at normal incidence, and α is a dimensionless
parameter that we introduced to control the slope ∂ν1,2/∂k||. The physical

99



i
i

i
i

i
i

i
i

6. Second harmonic generation in transmission from photonic crystals on a gel substrate

interpretation of this parameter is that the phase velocity (∝ ν/k) and the
group velocity (∝ ∂ν/∂k) are different.

The avoided resonance crossing in Fig. 6.3 is well described by a center
frequency of 0.5210±0.0001 and a frequency splitting of 0.0130±0.0002 for
s-polarized light, and a center frequency of 0.5250±0.0001 and a frequency
splitting of 0.0099±0.0001 for p-polarized light. The corresponding values for
α are 0.733±0.004 and 0.577±0.002 respectively. The resulting dispersion us-
ing this relatively simple model is represented by the solid lines for s-polarized
light and with dashed lines for p-polarized light in the figure. We stress that
the complete band structure of the leaky modes can be obtained by using for
instance finite difference time domain (FDTD) simulation software package
MEEP [61]. These calculations will correctly predict the dispersion of the
modes and the coupling between the s- and p-polarized modes, but do not
give physical insight. Our model gives an analytical expression for the reso-
nance frequency of the mode close to the laser (fundamental) frequency. This
expression allows to quantify the detuning ∆νF (k||) of the leaky mode relative
to the fundamental frequency. It is this detuning, in units of the linewidth of
the resonance, that controls the power that leaks into the resonant mode and
thus plays an important role in second harmonic experiments. The amplitude
of the fundamental field in the leaky mode, excited by the fundamental beam
at frequency νF , as a function of k|| is described by a Lorentzian [60]

EF (k||) ∝
g1(k||)

(ν1(k||)− νF ) + ig1(k||)

= 1
i+ ∆νF (k||)/g1(k||)

,

where ν1(k||) and g1(k||) represent the dispersion relation and the linewidth of
the leaky mode close to the fundamental frequency.

Neglecting resonances at the second harmonic frequency, the intensity of
the second harmonic signal ISH as a function of the in-plane wave vector k||
is given by

ISH(k||) = ID +

 AF

1 + ∆F (k||)2

g1(k||)2


2

. (6.3)

The first term in the sum (ID) represents the direct (non-resonant) contri-
bution, while the second term in the sum represents the resonantly enhanced
second harmonic signal with an amplitude AF .

Figure 6.4 shows the measured second harmonic signal in transmission for
various angles of incidence. The data are plotted as a function of the in-plane
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6.4 Results and discussion

wave vector k|| of the s-polarized fundamental beam (blue circles). As a re-
sult of the resonant coupling to leaky modes of the structure, four distinct
peaks are clearly observed in the logarithmic plot at k|| = 0, k|| = ± 0.085,
and k|| = −0.38× 2π/a. At normal incidence (k|| = 0), the fundamental beam
couples resonantly to the structure (see Fig. 6.3), and we measure the highest
second harmonic value of 72000 ± 2000 cts/s. This value is more than 10000 ×
larger than the measured non-resonant contribution of 6.9 ± 0.2 cts/s, deter-
mined by taking the averaged value of the measured signal in the interval
k|| ∈ [−0.28,−0.22]× 2π/a. For k|| ∼ 0.25× 2π/a the detuning of the funda-
mental beam from the leaky modes is maximum. A secondary maximum in the
SH signal at k|| = −0.38× 2π/a (θ = −45◦) with a value of around 7500 cts/s,
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Figure 6.4. Measured second harmonic (SH) intensity in transmission
as a function of the wave vector k|| of the s-polarized fundamental beam
(blue circles). The resonantly enhanced signal is more than 10000 ×
larger than the non-resonant signal (horizontal line). The solid gray and
the dashed red line are calculations taking into account the measured
linewidth and dispersion of the mode that is resonant at the fundamental
frequency. The dash-dot black line is a fit to the data using the linewidth
as the only adjustable parameter. Both models fail to explain the peaks
at k|| = ± 0.085× 2π/a, which are due to resonant leaky modes at the
second harmonic frequency. The inset zooms in on second harmonic
intensity at normal incidence (k|| = 0).

101



i
i

i
i

i
i

i
i

6. Second harmonic generation in transmission from photonic crystals on a gel substrate

is due to the resonant coupling of the fundamental beam to the (-1,-1) leaky
mode of the structure. This resonant contribution to the SH signal disappears
for the p-polarized fundamental beam (not shown), because the structure does
not support leaky modes at the fundamental frequency in that case (Fig. 4.5
of Chapter 4).

The solid gray line in Figure 6.4 is the second harmonic signal calculated
using Equation 6.3 with no adjustable parameters. We use the dispersion
relation of the s-polarized leaky mode close to the fundamental frequency as
given by Eq. 6.2, and take the measured average quality factor of the leaky
mode Q1 = 90 as a measure of the linewidth. For a fundamental frequency
νF = 0.5342 c/a this translates to a linewidth of g1 = νF /(2Q1) = 0.003 c/a.
For the amplitude of the resonant contribution we substituteAF = 268

√
cts/s,

which is the square root of the measured SH signal at normal incidence, and
for the non-resonant contribution we use the measured value of ID = 6.9 cts/s.
The calculated function has a local minimum at k|| = 0 instead of a maximum
(see the inset of Fig. 6.4), and therefore doesn’t explain the measured SH peak
at normal incidence. This artefact occurs because the dispersion relation given
by the coupled mode theory crosses the fundamental frequency twice, which
is not true for the experimental data. Using a spline fit instead of the coupled
mode theory to describe the dispersion relation of the leaky mode results in a
second harmonic intensity which has a maximum at normal incidence (dashed
red line) and matches better the measured signal. However, the model fails to
predict the correct width of the measured SH signal and does not reproduce
the peaks at k|| = ± 0.085× 2π/a.

The main peak of the SH signal can be explained by Eq. 6.3 if the linewidth
of the leaky mode close to the fundamental frequency is used as a fit parameter.
The best fit, represented by the black dash-dot line in Figure 6.4, gives a
linewidth of g1 = 0.00185 ± 0.00006 × c/a, which is a factor 1.6 smaller than
the value obtained from the linear transmission measurements.

The two peaks in the SH signal that occur at k|| = ± 0.085× 2π/a, and have
a value of ≈ 240 cts/s, cannot be explained by a relatively simple model that
only considers the leaky mode at the fundamental frequency. As the in-plane
wave vector of the incident fundamental beam is tuned away from k|| = 0 the
power of the fundamental in the slab drops, and as a consequence the second
harmonic intensity is expected to drop monotonically as well. Instead, the
generated second harmonic field in the photonic crystal slab also couples to
leaky modes of the structure. This double resonant coupling is the origin of
the reduced width of the measured second harmonic signal at normal incidence
and of the two additional peaks at k|| = ± 0.085 × 2π/a.
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6.4 Results and discussion

The incident laser beam couples to the fundamental TE mode of the pho-
tonic crystal slab waveguide. This mode has its E-field components predom-
inantly in the plane of periodicity [82], i.e., in the x- and y-directions. The
nonlinear tensor properties of the material are related to the cubic 43̄m sym-
metry of the AlGaAs crystal. For this crystal symmetry the only nonzero
tensor elements are d14 = d25 = d36 [29]. Therefore, the generated second har-
monic wave has the main E-field component in the z-direction, perpendicular
to the plane of periodicity [29], and couples most efficiently to TM waveguide
modes. The second harmonic intensity can be written in this case as:

ISH(k||) = ID +

 AF

1 + ∆F (k||)2

g1(k||)2


2

× 1
1 + ∆SH(k||)2

g3(k||)2

×L2 sin2(∆kL/2)
(∆kL/2)2 .

Here, the first term is the direct contribution from the slab, while the second
term is a product of the resonant contribution at the fundamental frequency,
the resonant contribution at the second harmonic frequency, and a term related
to the phase mismatch ∆k between the waveguide modes involved. The phase
mismatch ∆k = |2k||(νF )− k||(νSH) + G|, where k||(νF ) is the in-plane wave
vector of the fundamental beam, and k||(νSH) is the in-plane wave vector of the
wave at the second harmonic frequency νSH . The length L is the length of the
sides of our square structure. The dispersion relation and the linewidth of the
leaky mode close to the second harmonic frequency, ν3(k||) and g3(k||), define
the frequency detuning (ν3(k||) − νSH)/g3(k||) = ∆SH/g3, which determines
how efficiently the generated second harmonic couples to external radiation.
To understand the measured second harmonic signal, it is important to identify
the leaky mode to which the second harmonic wave couples.

To find out which TM leaky modes can be excited at the second har-
monic frequency, we use the nearly free photon picture introduced by Sakoda
et al. [82]. In this picture, the photonic crystal slab is approximated with a
dielectric slab with an effective dielectric permittivity that takes into account
the effect of holes and different polarizations. The dispersion of the leaky
modes of the photonic crystal slab is obtained by folding the dispersion of
the waveguide modes of the dielectric slab back to the first Brillouin zone by
adding an appropriate reciprocal lattice vector. Figure 6.5 shows the disper-
sion relation of relevant fundamental TE and fundamental TM leaky modes
plotted over the measured transmission spectra for s-polarized light (from
Fig. 6.2(a)). Figure 6.6 shows the dispersion relation of relevant fundamental

103



i
i

i
i

i
i

i
i

6. Second harmonic generation in transmission from photonic crystals on a gel substrate

TE and fundamental TM leaky modes plotted over the measured transmission
spectra for p-polarized light (from Fig. 6.2(b)). The dispersion of the TE
leaky modes (dash-dot lines) is obtained by folding the dispersion of the funda-
mental TE waveguide mode of the slab with an effective dielectric permittivity
εTE = 0.89 × ε, where ε is the dielectric permittivity of Al0.35Ga0.65As [62].
Similarly, by folding the dispersion of the fundamental TM waveguide mode
of a slab with an effective dielectric permittivity εTM = 0.95× ε the dispersion
of TM leaky modes (dashed lines) is obtained. Each leaky mode is denoted
with a reciprocal lattice vector (Gx, Gy) used for folding of the guided modes
back into the first Brillouin zone. For clarity, only the relevant leaky modes at
the fundamental and at the second harmonic frequency are shown. The nearly
free photon approximation doesn’t take into account the interaction between
the leaky modes, and as a consequence it cannot describe the frequency split-
ting between the modes of the photonic crystal slab. As can be seen, good
agreement between the nearly free photon picture and measured spectra is
obtained away from the crossings.

The horizontal purple lines in Figures 6.5 and 6.6 indicate the fundamental
and second harmonic frequencies. The s-polarized fundamental wave couples
to a mode of the family of (1,0) TE modes. The figures show that the generated
SH signal could couple to one or more modes of the family of (2,1) TM modes
at normal incidence. We stress that the leaky modes due to TM waveguide
modes are generally less visible in transmission spectra than resonances due to
TE modes. Therefore, we need to resort to the nearly free photon picture in
order to resolve these modes. In the nearly free photon picture, the family of
(2,1) TM modes is 8-fold degenerate at normal incidence, and it is impossible
to say with certainty to which modes the second harmonic radiation is most
likely to couple to. For nonzero angles of incidence, the dispersions of the
(-2,-1) and (1,-2) modes are resonant with the second harmonic frequency.
Therefore, we speculate that the generated second harmonic wave couples
to one of these modes at angles of incidence of θ = ± 9.1◦, indicated by the
dotted lines in Figures 6.5 and 6.6. Since the measured second harmonic signal
is elliptically polarized, we conclude that the second harmonic wave couples
to both s- and p-polarized leaky modes of the structure.

Unfortunately, it is not possible to resolve the dispersion relations and the
linewidths for the modes at the second harmonic frequency from the measured
transmission spectra. The main reason for this is that there are other reso-
nances due to TE modes around the second harmonic frequency. All these
modes interact, and as a consequence the transmission spectra do not consist
of isolated and easily recognizable Fano lineshapes superimposed on top of the
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6.4 Results and discussion

Figure 6.5. Dispersion relation of leaky TE (dash-dot lines) and TM
(dashed lines) modes in the nearly free photon picture, plotted on top of
the measured transmission data for s-polarized light (from Fig. 6.2(a)).
The dispersion relations are obtained by folding the dispersions of the
fundamental TE and TM waveguide modes of a dielectric slab on a
gel back to the first Brillouin zone. The fundamental and second har-
monic frequencies, νF = 0.5342 c/a and νSH = 1.0684 c/a, are indicated
by horizontal purple lines. The dotted lines indicate constant angles of
incidence θ = ± 9.1◦.
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6. Second harmonic generation in transmission from photonic crystals on a gel substrate

Figure 6.6. Dispersion relation of leaky TE (dash-dot lines) and TM
(dashed lines) modes in the nearly free photon picture, plotted on top of
the measured transmission data for p-polarized light (from Fig. 6.2(b)).
The dispersion relations are obtained by folding the dispersions of the
fundamental TE and TM waveguide modes of a dielectric slab on a
gel back to the first Brillouin zone. The fundamental and second har-
monic frequencies, νF = 0.5342 c/a and νSH = 1.0684 c/a, are indicated
by horizontal purple lines. The dotted lines indicate constant angles of
incidence θ = ± 9.1◦.

106



i
i

i
i

i
i

i
i

6.5 Conclusions

Fabry-Perot background.
In principle, the generated second harmonic field can couple to TE leaky

modes as well. Unlike TE modes of an ideal, infinitely long photonic crystal,
TE leaky modes of the photonic crystal slab can have a small component of
the E-field perpendicular to the plane of the slab [63], related to the absence
of the continuous translational symmetry in the direction perpendicular to the
plane of periodicity. This small component of the fundamental electric field
perpendicular to the plane of periodicity can give rise to a second harmonic
field with an electric field component in the plane of periodicity which can
efficiently couple to TE leaky modes. We estimate that this effect is much
smaller compared to the contribution to the SH signal due to resonant coupling
of the second harmonic waves to TM leaky modes.

6.5 Conclusions
We investigate the influence of leaky modes on the second harmonic signal gen-
erated in transmission from a two-dimensional Al0.35Ga0.65As photonic crystal
slab on a gel substrate. By tuning the angle of incidence of the fundamental
beam we probe the resonant coupling of the fundamental and the second har-
monic wave to leaky modes of the structure. At normal incidence, both the
fundamental and the second harmonic wave resonantly couple to the struc-
ture, and we measure a second harmonic enhancement of more than 10000 ×
compared to the measured non-resonant contribution. This is more than eight
times larger than the experimental enhancement measured in reflection by
Mondia et al. [48]. Two additional maxima can be clearly seen in the mea-
sured second harmonic for angles of incidence of ± 9.1◦. We explain this effect
by a resonant coupling of the second harmonic wave to leaky modes of the
photonic crystal slab. Compared to experimental results reported in Refer-
ences [48, 49], our measurements convincingly show the influence of resonant
effects at second harmonic frequency.

Using a relatively simple coupled mode theory rather than full numerical
calculations we analyze the effects of resonant coupling of waves at the funda-
mental and the second harmonic frequency to leaky modes of the structure on
the second harmonic generation. This coupled mode approach offers valuable
physical insight and is applicable to less-than-perfect structures. This makes
it a very useful tool for future analysis and design of both linear and nonlinear
optical properties of photonic crystal slabs.
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