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Chapter 5

Interpretation of Fano lineshape
reversal in the reflectivity spectra of
photonic crystal slabs

5.1 Introduction
Asymmetric Fano lineshapes [66,88] are a characteristic feature of (quantum)
interference between two interfering paths and have been identified in many
physical systems. These systems include, but are not limited to, neutron scat-
tering [89], conductance of quantum dots [90,91], optical transmission through
metal hole arrays [85, 92], scattering spectra of microwave cavities [93] and
photonic crystal structures [58, 59, 94]. Recently, it has been suggested that
the details of the Fano lineshape, in particular a complex valued q parame-
ter, contains information on the decoherence and dephasing of the underlying
quantum system [93, 95]. Similarly, reversal of the Fano lineshape asymme-
try has been linked to the ability to tune the interaction, and thus also the
coherence, between the two channels [90,96].

Photonic crystal slabs, i.e., dielectric slabs perforated with a regular lattice
of holes, show distinct Fano resonances in their reflection and transmission
spectra. These photonic crystal slabs support optical modes for a combination
of frequency ω and in-plane wave vector k||, which are above the light line
defined by ω = ck||, with c the speed of light in vacuum. These modes are
either propagating (Fabry-Perot) modes of the slab, or leaky modes that couple
incident light from the surrounding media to a guided mode of the slab via

This chapter is based on Lj. Babić and M. J. A. de Dood, Interpretation of Fano
lineshape reversal in the reflectivity spectra of photonic crystal slabs, Opt. Express 18,
26569–26582 (2010).
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diffraction, picking up an additional crystal momentum equal to a reciprocal
lattice vector. The interference of this resonant mode with the propagating
Fabry-Perot mode leads to Fano resonances [57]. Typically, these resonant
features in reflection spectra are used to find the dispersion relation of the
leaky modes [58,59,94].

In most experimental studies the asymmetry parameter of the dispersive
lineshape is considered to be constant and is regarded as a fit parameter.
This asymmetry parameter, often denoted as q, can be interpreted as the
amplitude of the resonant contribution relative to the background. The sign
of q controls the asymmetry of the lineshape [66, 97]. In this picture, the
asymmetry can only be reversed when the direct reflectivity reaches zero for
which the lineshape becomes Lorentzian. The interference leading to the Fano
lineshape in the reflectivity spectra of photonic crystal slabs can be tuned
either via tuning the parameters of the structure, or via tuning the angle of
incidence. Calculations at normal incidence for symmetric photonic crystal
structures [98] confirm that this situation can be realized by tuning the ratio
d/a of slab thickness over lattice constant. This shifts the resonance frequency
of a leaky mode over a zero in the direct reflection of the slab and reverses
the asymmetry. Experimentally this reversal has recently been demonstrated
in reflection spectra of p-polarized light from a photonic crystal waveguide via
angle tuning [67,99]. When the angle of incidence is tuned through Brewster’s
angle, the amplitude of the direct reflection reaches zero and the asymmetry is
reversed. The symmetry of the system ensures that the reflectivity reaches a
true zero and the amplitude reflection coefficient for the electric field changes
sign, corresponding to a π phase shift. It is this phase shift that is responsible
for the reversal of the asymmetry.

In this chapter we show that experimental reflectivity spectra for an asym-
metric slab structure also show Fano lineshapes that reverse their asymmetry.
This is surprising as these asymmetric structures generally do not give a true
zero in the amplitude reflection coefficient; the interference leading to zeros
in the reflectivity (Fabry-Perot modes) is not complete and the asymmetric
structure does not have a Brewster’s angle where the reflectivity for p-polarized
light goes through zero. In order to describe the reversal of the asymmetry
a complex q parameter is needed in a system that obeys both time reversal
symmetry and energy conservation. We stress that the origin of the complex
q in our work is not due to dephasing or decoherence as reported in litera-
ture [93, 95], but due to the asymmetry of the system. While dephasing and
decoherence always result in a complex q parameter, the inverse statement is
not true.
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5.2 Experiment

Photonic crystal slabs with a square lattice of holes with a hole radius of
∼ 150 nm and a lattice constant a = 820 nm were fabricated in a commercially
grown AlGaAs layer structure [51] using a combination of e-beam lithography
and reactive ion etching techniques. The samples were fabricated using the
facilities of the Kavli Nanolab Delft. The layers of the AlGaAs layer structure
are deposited on a 〈100〉 GaAs substrate and consist of a 1 µm thick Al rich
Al0.7Ga0.3As layer, a 150 nm thick Ga rich Al0.35Ga0.65As layer, and a 100 nm
thick GaAs capping layer. To create the hole pattern, a 150 nm silicon nitride
layer is deposited on top of the structure and serves as a mask during the final
reactive ion etching step. The lattice of holes is created by e-beam lithography
in a ∼ 500 nm thick layer of positive tone e-beam resist, ZEP 520A [52], and
transferred into the nitride mask layer using a low pressure reactive ion etching
step in a CHF3/Ar plasma. After removal of the e-beam resist in a low pressure
O2 plasma, the hole pattern is etched deep into the AlGaAs heterostructure
in a BCl2/Cl2/N2 reactive ion etch process at 100 W RF power, a pressure of
∼ 4.5 µbar, and flow rates of 15, 7.5, and 10 sccm respectively. The nitrogen
flow in this process was optimized to create near vertical side walls of the
holes. After etching the holes, the nitride mask is removed using the CHF3/Ar
etching procedure described above.

To create a freestanding membrane the residual oxide layer is first removed
by dipping the sample in 15:1 deionized H2O:buffered hydrofluoric acid (BHF)
solution for 15 sec. The sample is then placed in a 3:1 citric acid:H2O2 solution
for 120 sec to selectively remove the GaAs capping layer. The freestanding
membrane is created by etching the sacrificial Al0.7Ga0.3As layer in a concen-
trated 1:4 HF (40%):H2O solution for 60 sec followed by a rinsing step in pure
water and critical point drying. The resulting freestanding membrane covers
an area of ∼ 300× 300 µm2 and is used to measure specular reflectivity spec-
tra at oblique angles of incidence. Afterwards, the membrane is transferred to
a transparent gel layer [80], with a refractive index of 1.4 on a standard micro-
scope slide to create a membrane without the highly reflective GaAs substrate
and the reflectivity measurement is repeated.

The specular reflectivity measurements are done for wavelengths between
900 and 1700 nm using white light from a lamp coupled to a 50 µm multi-
mode fiber. The output of this fiber is imaged onto the sample with a 1.5
times magnification to create a 75 µm spot on the sample. The reflected
light is collected into a 400 µm fiber and then sent to a fiber-coupled grating
spectrometer with an InGaAs array (Ocean Optics NIR512) with a ≈ 3 nm
spectral resolution. Apertures in the beam limit the numerical aperture of the
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input beam to NA ∼ 0.025. A Glan-Thompson polarizing beamsplitter cube
is placed in a parallel part of the beam and is used to measure both the s- and
p-polarized reflectivity as a function of wavelength and angle of incidence.

5.3 Results

The experimentally measured reflection spectra for the symmetric slab struc-
ture are shown in Fig. 5.1. The figure shows the measurements (symbols)
and calculations based on a complete scattering matrix method (solid gray
lines), for angles of incidence of 60◦ (left), 70◦ (middle), and 80◦ (right).
The frequency ω and the wave vector k|| are plotted in dimensionless units
ωa/(2πc) and k||a/(2π), respectively. The incident beam is p-polarized with
the parallel wave vector k|| oriented along the ΓX symmetry direction of the
photonic lattice. The numerical calculations assume an ideal two-dimensional
photonic crystal slab with air on both sides. The calculations use the tabulated
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Figure 5.1. Measured (blue symbols) and calculated (solid gray
lines) reflection spectra for different angles of incidence for a sym-
metric (freestanding) slab, showing the asymmetry reversal of the
p-polarized (-1,±1) mode at Brewster’s angle. The dashed red lines
are fits to the data using the Fano model described in the text.
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value for the refractive index of the Al0.35Ga0.65As at a wavelength of 1.5 µm;
n2 = 3.1975 [62]. The thickness of the slab and the value of r/a are identical
to those of the experimental structure. The calculations are performed for a
structure with a lattice constant a = 820 nm, a radius of holes r = 160 nm,
and a thickness of the slab d = 122 nm.

As can be seen in the figure, the calculations give good qualitative agree-
ment with the data. Both the measured and the calculated reflectivity spectra
are well described by the Fano lineshape. The dashed red lines in Fig. 5.1 show
a fit using a Fano model, with the reflectivity R(ω) given by

R(ω) =
∣∣∣∣rD exp(−i∆ξ) + rRΓ0

i(ω − ω0) + Γ0

∣∣∣∣2 . (5.1)

The first term represents the direct contribution with an amplitude rD, while
the second term represents the resonant contribution with an amplitude rR.
The resonance is characterized by a frequency ω0, and a linewidth Γ0. The
phase ∆ξ represents the phase difference between the resonant and the non-
resonant contribution at the resonance frequency and controls the asymmetry
of the resonance. We assume that the amplitude of the slowly varying non-
resonant contribution as a function of frequency ω, rD(ω), can be approxi-
mated well with

rD(ω) =
∣∣∣r0 + r1ω + r2ω

2
∣∣∣ , (5.2)

where r0, r1 and r2 are fit parameters.
The asymmetry of the Fano lineshape in Fig. 5.1 of the p-polarized (-1,±1)

mode is reversed by tuning the angle of incidence, creating a nearly symmetric
lineshape at an angle of incidence of 70◦. Based on the asymmetry of the
lineshape in reflectivity measurements for every 5◦ (not shown) we estimate
that the asymmetry reversal occurs at an angle of incidence of 71 ± 1◦. This
corresponds to a Brewster’s angle θB for a uniform dielectric slab in air with
an effective refractive index of tan(θB) equal to neff = 2.9± 0.2. We expect
this value to be comparable to the effective refractive index estimated from the
direct (non-resonant) reflectivity of the slab at the resonance frequency. This
contribution is modeled by the Fresnel reflection coefficients of the dielectric
slab with an effective refractive index that represents the average effect of
the holes. Since this background is close to zero for all frequencies for angles
of incidence close to Brewster’s angle we analyze calculated spectra over a
broad frequency range for angles of incidence of 60◦ and 80◦. From these fits,
we obtain values of the effective refractive index of 3.02 and 2.89, consistent
with the effective refractive index found from analyzing the asymmetry of the
resonant contribution.
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Table 5.1 summarizes the resonance frequency, the linewidth and the phase
difference, as obtained from the Fano model for both the measured and calcu-
lated reflection spectra in Fig. 5.1. The table shows the excellent agreement
between the measured and calculated spectra for the resonance frequency (ω0)
and the corresponding linewidth (Γ0). The phase difference ∆ξ changes sign
as the resonant Fano lineshape changes the asymmetry. The relatively large
error bars for ∆ξ are representative for the variation in the fitted value of ∆ξ
for different choices of the background (direct) contribution; e.g., by setting
both r1 and r2 equal to zero in Eq. 5.2. Close to Brewster’s angle for the
symmetric slab, the background (direct) contribution reaches zero amplitude
and the phase difference ∆ξ becomes undefined. The comparison between the
experimental and calculated spectra presented above confirms the picture that
the asymmetry reversal occurs around the true zero in the direct reflectivity
at Brewster’s angle.

After reflection measurements, the symmetric, freestanding, photonic crys-
tal membrane was transferred to a transparent gel substrate by sticking the
membrane to the gel and peeling of the GaAs substrate, as described in Chap-
ter 4 of this thesis. The gel is optically transparent and has a refractive index
ngel = 1.4. Figure 5.2 shows measured (symbols) and calculated (solid gray
lines) reflection spectra for an asymmetric slab for angles of incidence of 75◦
(left), 78◦ (middle), and 83◦ (right).

The experimental data in the figure clearly show that the asymmetry re-
versal of the Fano lineshape of the p-polarized (-1,±1) mode also occurs in
the asymmetric case when there is no Brewster’s angle. In this case, the
asymmetry reversal is observed at a significantly larger angle of incidence of
78 ± 1◦, compared to the symmetric structure. The parameters of the fitted
Fano lineshapes are summarized in Table 5.1.

5.4 Discussion

A detailed inspection of the calculated spectra for the asymmetric structure
(not shown) reveals that the amplitude of the direct reflectivity is low, but does
not reach zero. This implies that a simple change of the sign of the amplitude
reflection coefficient in the direct channel cannot be responsible for the reversal
of the Fano lineshape. In order to convincingly show that a true zero in the
direct reflectivity is not a necessary condition for the asymmetry reversal of
a Fano lineshape we performed additional calculations on a structure with
a much larger lattice constant. The parameters of this structure are tuned
to give a minimum in the direct reflectivity that is very different from zero.
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Table 5.1. Fitted values of the Fano resonances: the center frequency,
the linewidth, and the phase difference between the resonant and the di-
rect contribution in the reflectivity. Results are given for both measured
and calculated spectra, for various angles of incidence for a symmetric
slab (top) and an asymmetric slab on a substrate (bottom).

angle (◦) ω0 (2πc/a) Γ0 (2πc/a) ∆ξ (rad)

Symmetric
60 0.640 ± 0.005 0.009 ± 0.001 −2.19 ± 0.10

Experiment 70 0.636 ± 0.005 0.015 ± 0.002 −0.58 ± 0.15
80 0.635 ± 0.005 0.015 ± 0.002 1.90 ± 0.08

60 0.639 ± 0.001 0.014 ± 0.001 −1.28 ± 0.02
Calculation 70 0.638 ± 0.001 0.014 ± 0.001 —

80 0.635 ± 0.001 0.012 ± 0.001 1.68 ± 0.07

Asymmetric
75 0.611 ± 0.005 0.009 ± 0.001 −0.60 ± 0.06

Experiment 78 0.611 ± 0.005 0.009 ± 0.001 −0.13 ± 0.15
83 0.610 ± 0.005 0.008 ± 0.001 0.51 ± 0.24

75 0.620 ± 0.001 0.014 ± 0.001 −0.72 ± 0.24
Calculation 78 0.620 ± 0.001 0.014 ± 0.001 −0.06 ± 0.37

83 0.618 ± 0.001 0.015 ± 0.001 1.26 ± 0.05

The calculations are performed for both a symmetric (air-slab-air) and an
asymmetric (air-slab-gel) structure and are summarized in section 5.4.3.

The remainder of this chapter is structured as follows: we will first in-
troduce a general scattering matrix formalism for asymmetric structures and
apply this to the specific case of a photonic crystal slab on a substrate with
only two inputs and two outputs. This results in analytical expressions for the
reflected amplitude and the asymmetry parameter q of the Fano resonance.
We then apply this truncated scattering matrix method to interpret our ex-
perimental data and compare the results to those obtained using a complete
scattering matrix.
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Figure 5.2. Measured (blue symbols) and calculated (solid gray lines)
reflection spectra for different angles of incidence for an asymmetric (on
gel) slab, showing the asymmetry flip of the p-polarized (-1,±1) mode.
The dashed red lines are fits to the data using the Fano model described
in the text.

5.4.1 Scattering matrix formalism

We introduce a scattering matrix formalism to describe the resonant coupling
of incident radiation to a planar photonic crystal slab. Compared to earlier
work [60], which deals with symmetric structures, our formalism deals with
both symmetric and asymmetric photonic crystal waveguide structures. We
will apply this formalism to the particular case of a planar photonic crystal slab
on a substrate to gain physical insight in the origin of the asymmetry reversal
of the dispersive (Fano) lineshape. We will give results for oblique angles
of incidence for both symmetric (air-slab-air) and asymmetric (air-slab-gel)
structures, and discuss the conditions for asymmetry reversal of the dispersive
(Fano) lineshape in detail.

We consider an optical system with m inputs and m outputs that can
be described by temporal coupled-mode theory featuring a m×m scattering
matrix [60]. For the specific case of a photonic crystal slab the inputs and
outputs of the system are defined by a plane wave incident on the slab that
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5.4 Discussion

is either transmitted, reflected or diffracted. The plane waves can couple to
a guided mode in the photonic crystal membrane, thereby transforming the
guided modes into leaky modes. This occurs whenever a photonic band in the
band structure of a photonic crystal slab is above the light line. The resulting
transmission and reflection spectra of a photonic crystal membrane contains
several peaks, each with a dispersive (Fano) lineshape characteristic for the
resonant coupling [58,59,94].

The input of the optical system is described by a column vector b+ that
contains the amplitudes of the modes at the input. A similar vector b− con-
tains the amplitudes of the modes at the output. For a planar multilayer
structure the amplitudes bi in a medium with refractive index ni are related
to the E-field in the i-th layer by [100]

b±,i =
√

1
2
kiz
k0
E±,i, (5.3)

where k0 = 2π/λ is the wave number and kiz is the component of the wave
vector perpendicular to the interface: kiz = ni cos θik0. To avoid confusion
with the E-field, we will refer to these amplitudes as b-field amplitudes. This
b-field amplitude is normalized in such a way that the square of the ampli-
tude relates directly to the power flux, defined by the Poynting vector, in
the z-direction normal to the interface. The scattering matrix S relates the
amplitudes of input and output modes via

b− = Sb+.

For a lossless system that does not break time-reversal symmetry the scat-
tering matrix S needs to be unitary and symmetric [60]:

SS† = I, Sij = Sji.

To describe the coupling to leaky modes we will characterize each mode
at a specific in-plane wave vector k‖ by a center frequency ωp and a linewidth
Γp. The linewidth Γp is related to the coupling strength between the incoming
light and the leaky mode. The total scattering matrix of a layered structure
with N independent resonances can be written as

S = C +
N∑
p=1

dp ⊗ dp
i(ω − ωp) + Γp

. (5.4)

Here dp is a vector containing the coupling constants of each mode to the res-
onator, ωp are the resonance frequencies, Γp denotes the resonance linewidth,
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and C is a unitary and symmetric scattering matrix. Linear optical structures
impose both time-reversal symmetry and energy conservation constraints on
the system and require that the matrix elements of C, Γp, and the coupling
constants dp are not independent [60].

5.4.2 Example: 2-port asymmetric slab

For a system with 2 inputs and 2 outputs the relation between C, Γ, and
d can be made explicit and insight can be gained by studying this case in
more detail. Therefore, we will restrict ourselves to the simplest asymmetric
photonic crystal structures where no higher order diffraction occurs. In that
case the system has only two inputs and two outputs and the scattering matrix
reduces to a 2×2 matrix. The inputs and outputs of this system correspond to
the reflected and transmitted modes. Compared to the earlier work reported
in Ref. [60] we do retain the essential asymmetry induced by the substrate.
The photonic crystal slab has an effective refractive index equal to n2 and is
sandwiched between a substrate with a refractive index n3 and a superstrate
with a refractive index n1.

The expressions for the asymmetric structure are identical to those of the
symmetric structure if we refer to the amplitude reflection and transmission
coefficients r′ and t′ of the b-field as defined by Eq. 5.3. The complete scat-
tering matrix is given by

S =
(
r′ t′

t′ r′

)
+

Γ0
i(ω − ω0) + Γ0

(
−(r′ ± t′) ∓(r′ ± t′)
∓(r′ ± t′) −(r′ ± t′)

)
, (5.5)

where the ± sign corresponds to a situation where the E-field on both sides of
the slab oscillates in phase or out of phase. For a symmetric slab this defines
the modes as either even or odd relative to the symmetry plane in the middle
of the slab [63]. The coefficients r′ and t′ are related to the more commonly
used Fresnel coefficients r and t of the slab via r′ = r and t′ = t

√
k3z/k1z for

both s- and p-polarized light [100].
The reflected intensity of the slab given by R(ω) = |S11(ω)|2 can be written

in a form that is identical to the original result of Fano [66]:

R(ε) = |S11(ε)|2 = |r′|2 |q + ε|2

1 + ε2
. (5.6)

Here ε is the normalized detuning in units of the linewidth ε = (ω − ω0)/Γ0,
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and the asymmetry parameter q is given by

q = ±i t
′

r′
. (5.7)

A similar expression can be derived for the transmission with an asymmetry
parameter q̃ = −q−1. For a symmetric slab q reduces to a real-valued pa-
rameter since the Fresnel transmission coefficient has a π phase difference with
the reflection coefficient. This is no longer true for the more general case of
an asymmetric slab for which the phase difference between t′ and r′ varies as
a function of angle of incidence and the resulting q parameter is complex.

Figure 5.3 shows the calculated phase difference between the direct and the
resonant contribution in the reflection of p-polarized light for the fundamental
TE mode supported by a waveguide layer with an effective refractive index neff
equal to 3.16 representative of the AlGaAs material used in the experiment.

For this calculation we used the matrix element S11 in Eq. 5.5 at the
resonance frequency and we used complex Fresnel coefficients r and t defined
as

r = r12 + r23 exp[i2k2zd]
1− r21r23 exp[i2k2zd] exp[−i2k1zd]

t = t23t12 exp[i(2k2z − k1z − k3z)d/2]
1− r21r23 exp[i2k2zd] .

Here the coefficients rij and tij refer to the Fresnel coefficients of a single inter-
face between layer i and j. The figure shows the phase difference as a function
of angle of incidence and dimensionless quantity neffd/λ. Figure 5.3 (a) shows
the phase difference for a symmetric structure with air on both sides, while
Fig. 5.3 (b) shows the phase difference for the same slab with the air on one
side replaced by a transparent gel with refractive index n3 = 1.4. This figure
clearly shows large, abrupt jumps in the phase difference for both symmetric
and asymmetric slab structures. The phase jumps in the symmetric case are
easily understood as points where the direct reflectivity reaches zero. This
occurs at Brewster’s angle (vertical dashed line in (a)) and whenever the re-
flectivity becomes zero due to interference in the film (horizontal solid lines).
This Fabry-Perot condition is satisfied whenever the optical path length of
the film defined as neffd cos θ is equal to mλ/2, with m integer. This situation
changes for the asymmetric structure (b). The Fabry-Perot condition produces
a minimum in the reflectivity, but the reflectivity does not reach zero. As can
be seen in the figure, for angles smaller than arctan(n3/n1) the phase jumps
at the minimum in the reflectivity. To understand the phase jump for larger
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Figure 5.3. Calculated phase difference between the direct and the res-
onant contribution for a slab with an effective refractive index of 3.16,
representative for AlGaAs used in the experiment. The plot shows the
phase difference as a function of angle of incidence and dimensionless
quantity neffd/λ for a symmetric membrane structure (a) and an asym-
metric structure on a gel substrate with n3 = 1.4 (b). The solid and
dashed lines are explained in the text. The corresponding asymmetry
parameter q of the Fano resonance as a function of angle of incidence is
shown for the symmetric (c) and asymmetric structure (d) for a value
of neffd/λ = 0.3. The solid line refers to the real part of q, while the
dash-dot line shows the imaginary part of q for the asymmetric structure.
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angles of incidence we write the reflectivity of the asymmetric slab as [101]:

R = |r|2 = r12
2 + r23

2 + 2r12r23 cos 2β
1 + r122r232 + 2r12r23 cos 2β ,

with β = k2zd.
From this expression it is clear that the minima and maxima in the reflec-

tivity are found by the condition

cos 2β = ±1.

These conditions are indicated by the solid and dashed horizontal lines in the
figure. The reflectivity of the asymmetric slab can only become zero for a
specific combination of frequency and angle of incidence. The frequency at
which the reflectivity becomes zero is given by the above condition, while the
angle is defined by the additional condition that

r12 = ±r23.

This leads to two angles, indicated by the dashed vertical lines in Fig. 5.3 (b).
The smallest of the two angles is independent of the refractive index of the layer
n2 and is equal to Brewster’s angle arctan(n3/n1) between the superstrate and
substrate [101]. The second angle depends on the refractive index of the slab,
superstrate, and substrate material. For a slab with d/a < 0.5 this angle
is always larger than Brewster’s angle between the superstrate and the slab
material. From the figure, it can be seen that the phase difference jumps for
angles close to this larger angle for dimensionless quantities neffd/λ that are
not close to m/2, with m being integer. The value of the refractive index of
the substrate plays an important role in determining the two angles and also
controls the apparent repulsion between the phase jumps due to the Fabry-
Perot effect and due to angle tuning.

The angle from the simple truncated scattering matrix model is consistent
with the experimental results presented in Section 5.3. For a structure with
an effective refractive index of 2.9± 0.2 on a substrate with a refractive index
of 1.4, the minimum in the direct reflectivity (see the vertical dashed line in
Fig. 5.3) occurs at an angle of 78.1 ± 1.5◦. This number compares well with
the experimental value of 78± 1◦. Figures 5.3 (c) and (d) show the calculated
asymmetry parameter q as a function of angle for a value of neffd/λ = 0.3.
This value corresponds to the experimentally measured frequency of the Fano
resonance of the symmetric structure at Brewster’s angle. The real part of q
is represented by the solid blue line, while the complex part of q is shown by
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the red dash-dot line. For the symmetric structure the q is real-valued, while
the q parameter for the asymmetric structure in Fig. 5.3 (d) is clearly complex
with a non-trivial phase that depends on the angle of incidence.

5.4.3 Asymmetry reversal with nonzero background

In this section we present numerical data calculated by a complete scattering
matrix method that show that the asymmetry of a Fano resonance can be
reversed if the direct reflectivity does not reach zero. The parameters of the
photonic crystal structure in the calculation are tuned to give a minimum in
direct reflectivity that is very different from zero to more clearly illustrate
the point. We consider a two-dimensional photonic crystal slab with a lattice
constant a = 2 µm and use the same radius of holes r = 160 nm and slab
thickness d = 122 nm as in the experimental structure. The refractive index
of the slab material is taken to be nslab = 3.157, equal to the infrared refractive
index of Al0.35Ga0.65As at a wavelength of 2.5 µm [62].

Figures 5.4 and 5.5 summarize the calculated reflection spectra and corre-
sponding phase difference ∆ξ for the symmetric structure. These data should
be compared to the data in Figures 5.6 and 5.7 obtained for the asymmetric
structure.

The calculated reflection spectra in Figure 5.4 show the Fano lineshape
reversal for the symmetric structure. Spectra are shown for angles of incidence
from 68◦ to 76◦ in steps of 2◦ (solid lines) and are offset vertically by 0.8 for
clarity. The horizontal dash-dot lines indicate the zero reflectance for each
angle of incidence. The dashed lines show the fitted Fano lineshapes to data.
As can be seen, the asymmetry of the Fano lineshape is reversed by tuning
the angle of incidence. At Brewster’s angle (θ = 72◦), the direct reflectivity
reaches zero, and the Fano lineshape reduces to the symmetric Lorentzian
lineshape of the resonant contribution.

The solid line in Fig. 5.5 shows the phase difference ∆ξ between the reso-
nant and the non-resonant contribution, for the p-polarized (-1,±1) mode over
a large range of angles. This phase difference is obtained at the resonance fre-
quency, by fitting the Fano model of Eq. 5.1 to the calculated reflection spec-
tra. The phase difference ∆ξ influences the interference between the direct
and resonant reflectivity and controls the asymmetry of the Fano lineshape.
Whenever this phase difference is an integer multiple of π radians, the asym-
metry reversal of the Fano lineshape occurs. As can be seen in Figure 5.5, the
phase difference goes through zero for an angle of incidence of 72◦. This angle
is exactly equal to Brewster’s angle for the symmetric structure and the direct
reflectivity is zero (see Fig. 5.4).
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Figure 5.4. Calculated reflection spectra for a symmetric structure
(solid lines), for angles of incidence from 68◦ to 76◦ in steps of 2◦, ver-
tically offset by 0.8 for clarity, showing the asymmetry reversal of the
p-polarized (-1,±1) mode. The calculations are performed for a struc-
ture with a lattice constant a = 2 µm, a radius of holes r = 160 nm,
and a slab thickness d = 122 nm. Note that the zero in the amplitude
reflection coefficient is indicated by the dash-dot lines, for each reflec-
tivity spectrum. The dashed lines show the fit of the Fano model to the
calculated data.

Figure 5.5 shows a small, abrupt change, in the phase difference, for an
angle of incidence of ≈ 12◦, as indicated by the vertical arrow. The origin of
this phase change is an extra diffraction order of the leaky mode into the sur-
rounding air. These diffraction orders occur whenever the length of the wave
vector in air is larger or equal than the parallel component of the wave vector
of the waveguide mode modulo a reciprocal lattice vector G. In dimensionless
units this diffraction condition is given by

|ks| = nsω0 > |k|| + G|, (5.8)

where ks is the wave vector in the substrate/superstrate and k|| is the parallel
component of the incident wave vector, ω0 is the dimensionless frequency of
the resonance and ns is the refractive index of the substrate/superstrate. The
inset of Fig. 5.5 shows the dispersion ω0(θ) of the p-polarized (-1,±1) leaky
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Figure 5.5. Calculated phase difference between the resonant and the
non-resonant contribution, as a function of the angle of incidence, for a
symmetric structure (solid line). The phase difference is obtained for the
p-polarized (-1,±1) mode at the resonance frequency, by fitting a Fano
model to the calculated reflection spectra. The asymmetry reversal of
the Fano lineshape (∆ξ = 0) occurs at Brewster’s angle. The dashed line
represents the phase difference calculated using a coupled-mode theory
with only two modes, as described in the text. The inset shows the
calculated dispersion relation of the leaky mode (solid line), and the
folded light line in air (dashed line).

mode (solid line) obtained from the calculated spectra together with the folded
light line in air (dashed line)∗. The crossing of these lines corresponds to the
condition for diffraction in air, which occurs for angles larger than 12◦.

How does the phase difference between the resonant and the non-resonant
contribution compare to the phase difference calculated with the relatively
simple coupled-mode theory of only two modes as presented in Section 5.4.2?
To answer this question, we ignore the effect of higher diffraction orders and

∗To convert in-plane wave vectors k|| to angles of incidence θ for a mode with a dispersion
ω(k||) in a medium with a refractive index n, we use the expression θ = arcsin(k||/(nω)),
with ω and k|| expressed in dimensionless units ωa/(2πc) and k||a/(2π), respectively.
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use the truncated 2×2 matrix to describe the system. The direct reflectivity
of our slab can be well described by the reflectivity of a uniform slab with a
frequency dependent effective refractive index n2, which takes into account the
extra dispersion due to the presence of the holes [57]. We fitted the Fano model
to the calculated p-polarized reflection spectrum for an angle of incidence of
10◦. For this angle there are no diffraction orders in air for the relevant (-1,±1)
mode. The calculated reflection spectrum consists of sharp resonant features
going from zero to unity superimposed on a slowly oscillatory background.
The direct reflectivity is well described by an effective refractive index

n2 = 3.118− 0.014ω + 0.029ω2, (5.9)

with ω expressed in dimensionless units ωa/(2πc). Since the p-polarized
(-1,±1) mode shows a flat dispersion (see inset of Fig. 5.5), the resonance
frequency does not change significantly with k||. Therefore, we assume that
Equation 5.9 can be used for other angles of incidence as well. The dashed
line in Fig. 5.5 shows the calculated phase difference using Eq. 5.5 and the
known dispersion of the resonant mode. As can be seen, the agreement be-
tween the solid and the dashed line is excellent for angles below 12◦. For angles
larger than 12◦ there is a small deviation as the truncated two-port system
fails to describe the diffraction orders in air. Apparently, the influence of the
diffraction orders on the phase difference at Brewster’s angle is small, and the
truncated scattering matrix accurately captures the physical process related
to the reversal of the Fano lineshape.

To emphasize that in the asymmetric case the direct reflectivity does not
reach zero while the asymmetry of the Fano lineshape is reversed, Figure 5.6
shows the calculated reflection spectra (solid lines), for angles of incidence from
72◦ to 80◦ in steps of 2◦. The spectra are offset vertically by 0.2 for clarity,
with the horizontal dash-dot lines indicating zero reflectance. It is clear from
the figure that the asymmetry reversal occurs between 76◦ and 78◦, but that
the direct reflectivity does not reach zero for the entire angle range from 72◦
to 80◦.

The corresponding phase difference ∆ξ between the direct and the resonant
contribution is shown by the solid line in Fig. 5.7. The parameters of the
structure are identical to those of the symmetric structure of Fig. 5.5, with
the only difference that the air on one side has been replaced by a dielectric
with a refractive index of 1.4. As can be seen, the phase difference goes through
zero for an angle of incidence of 77.2◦, which is larger than Brewster’s angle
for the symmetric structure. Similar to the symmetric structure we observe
abrupt changes in the phase difference due to higher order diffraction in the
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Figure 5.6. Calculated reflection spectra for an asymmetric structure
(solid lines), for angles of incidence from 72◦ to 80◦ in steps of 2◦, ver-
tically offset by 0.2 for clarity, showing the asymmetry reversal of the
p-polarized (-1,±1) mode. Note that the zero in the amplitude reflec-
tion coefficient is indicated by the dash-dot lines, for each reflectivity
spectrum. Dashed lines show the fit of the Fano model to the calculated
data.

air and in the substrate, as indicated by the vertical arrows. The inset shows
the dispersion relation of the leaky mode (solid line) together with folded
light lines in air (dashed line) and in the substrate (dash-dot lines). From
the crossings of these lines with the dispersion of the leaky mode we conclude
that there are four higher diffraction orders. The diffraction order into the
substrate that uses the (-1,0) reciprocal lattice vector is present for all angles
of incidence.

The dashed line in Figure 5.7 shows the calculated phase difference using
coupled-mode theory of Section 5.4.2 truncated to only two modes. In the
calculation we use the same effective refractive index for the slab as a function
of frequency (Eq. 5.9) as obtained for the symmetric slab, since the increase
in the effective refractive index caused by the gel substrate is small. As can
be seen, the truncated coupled-mode theory reproduces the main features in
the phase difference. We note a slight difference in the angle where the Fano
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Figure 5.7. Calculated phase difference between the resonant and the
non-resonant contribution, as a function of the angle of incidence, for
an asymmetric structure (solid line). The phase difference is obtained
for the p-polarized (-1,±1) mode at the resonance frequency, by fitting
a Fano model to the calculated reflection spectra. The asymmetry re-
versal of the Fano lineshape (∆ξ = 0) occurs beyond Brewster’s angle
for the symmetric structure. The dashed line represents the phase dif-
ference calculated using a coupled-mode theory with only two modes, as
described in the text. The inset shows the calculated dispersion rela-
tion of the leaky mode (solid line), and the folded light lines in both air
(dashed line) and gel (dash-dot lines).

lineshape reversal occurs between the truncated model and the full calculation.
This difference can be attributed to the presence of higher order diffraction.
For a lossless system, the amplitude of the resonance should be equal to 1, when
there is no higher order diffraction. Due to the higher order diffraction, the
amplitude of the resonance in Fig. 5.6 is significantly reduced. Nevertheless,
we believe that the truncated model accurately describes the physical process
underlying the reversal of the Fano lineshape.
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5.5 Conclusions
The measured reflectivity spectra for p-polarized light for a photonic crystal
slab on a gel substrate, show several Fano lineshapes on top of a slowly varying
background. The asymmetry of the Fano lineshape can be reversed by tuning
the angle of incidence. For symmetric slabs, with air on both sides, the angle
at which the asymmetry reverses is equal to Brewster’s angle, and the direct
contribution reaches zero. For asymmetric slabs this is no longer true: the
reversal is observed for an angle of incidence beyond Brewster’s angle, and the
direct reflectivity no longer reaches zero. A truncated two-port coupled-mode
theory can be applied to both the symmetric and the asymmetric structures,
which reveals the underlying mechanism of the asymmetry reversal. For asym-
metric photonic crystal slabs with d/a < 0.5, the reversal of the asymmetry
occurs for angles larger then Brewster’s angle. We show that the resonances
in reflection spectra of a lossless photonic crystal waveguide should be de-
scribed by a complex q parameter in the Fano model. Only for a symmetric
structure the q parameter, which gives the ratio between the resonant and the
direct contribution, can be taken as real. The reversal of the asymmetry oc-
curs whenever the phase difference between the resonant and the non-resonant
contribution is an integer multiple of π, which does not necessarily coincide
with a minimum in the direct reflectivity.
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