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Chapter 3

Second harmonic generation in
freestanding AlGaAs photonic
crystal slabs

3.1 Introduction

Ever since the introduction as materials that can inhibit spontaneous emis-
sion [5] or localize light [6], photonic crystals have been recognized as struc-
tures that are able to tailor the propagation of light [9, 10]. These photonic
crystals consist of a dielectric material arranged on a periodic lattice with a
lattice constant comparable to the wavelength of light. Nowadays, photonic
crystals find application in high Q, small mode volume cavities, in slow-light
waveguides and numerous other applications that make use of the intriguing
linear optical properties of photonic crystals. The nonlinear optics of photonic
crystals, in particular second harmonic generation (SHG) is less intensively re-
searched. Nevertheless, photonic crystals are interesting for nonlinear optics
since they may combine high field intensities with optical properties that can
be tuned by structure design.

In order to achieve highly efficient second harmonic generation in a small
volume, a material with a large effective nonlinear susceptibility χ(2)

eff must be
used and the phase-matching condition must be met [29]. The phase-matching
condition ensures that all waves generated inside the material interfere con-
structively. In most materials this condition is not fulfilled due to the material
dispersion, but phase matching can be achieved using birefringent materials.
The main obstacle in using III-V materials such as GaAs and GaP, that re-
spectively have a more than 70 and 30 times larger χ(2)

eff than that of a BBO
crystal [31,32], is the fact that GaAs and GaP are not birefringent and phase-
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

matching is not easily satisfied. Phase matching can be satisfied in a device
with periodically alternating layers of low and high index of refraction or by
periodically poling the orientation of the χ(2) material. An existing phase
mismatch can be compensated by adding or subtracting a suitable reciprocal
lattice vector G resulting in what is called quasi-phase-matching [33, 43–45].
Second harmonic generation can be further enhanced significantly by a strong
spatial confinement of both the fundamental and the SH optical fields [46],
that enhances the field intensities. Two-dimensional (2D) photonic crystal
slabs, i.e., slabs of dielectric GaAs material perforated with a lattice of holes,
are interesting in this respect.

Cowan et al. [47] show theoretically how to exploit the leaky modes of a
freestanding 2D photonic crystal slab to achieve both quasi-phase-matching
and strong spatial confinement. The authors predict an enhancement of SH
signal in reflection of more than 6 orders of magnitude.

Mondia et al. [48] investigate experimentally SHG in reflection from a 2D
square lattice of holes in GaAs supported on an Al2O3 cladding layer. The
authors use very short (150 fs) pulses and vary the angle of incidence and
the frequency of the fundamental beam. This enables them to make both the
fundamental and the SH wave resonant with the leaky modes of the structure.
In this quasi-phase-matched configuration they achieve a SH enhancement of
more than 1200 times compared to the noise level in the experiment. Torres et
al. [49] present a theoretical and experimental study of SHG in reflection from
a 1D GaN photonic crystal. They report a SH enhancement of more than 5000
times, compared to an unpatterned GaN slab, when the quasi-phase-matching
condition is satisfied.

We study in this chapter the influence of leaky modes at both the funda-
mental and SH frequency on SHG in reflection from a freestanding 2D photonic
crystal slab, i.e., a slab that is surrounded by air on both sides. In principle,
this would lead to a stronger confinement of the field and may therefore lead
to more efficient SHG compared to earlier experiments. The photonic crystal
consists of a regular 2D square array of holes drilled in ∼ 150 nm thick slab
of Al0.35Ga0.65As material. Compared to earlier experiments in literature we
use a narrow linewidth pulsed laser at 1.535 µm and tune the angle to probe
the resonant coupling of both the fundamental and SH wave to the modes
of the structure and how this affects the SH signal. We measure a SH en-
hancement of more than 4500 × compared to the signal from the photonic
crystal away from resonance, and a SH enhancement of 35000 × relative to
the second harmonic signal from the unpatterned Al0.35Ga0.65As region on the
wafer. These enhancements are significantly larger compared to enhancements
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3.2 Fabrication of photonic crystals

reported in References [48,49]. We measure our largest enhancement when the
fundamental beam is slightly off-resonance. This shows the importance of the
resonant coupling occurring at the SH frequency (quasi-phase-matching) and
hints at the fact that the enhancement may be much larger in a structure that
is doubly resonant.

3.2 Fabrication of photonic crystals

The photonic crystal samples, investigated in this chapter, consist of a free-
standing slab perforated with a two-dimensional square lattice of holes. The
starting point of the fabrication process, similar to that of Ref. [50], is the
heterostructure shown in Fig. 3.1(a), grown along the <100> lattice direction
of the GaAs crystal [51]. The purpose of the fabrication procedure is to create
a large, freestanding slab made out of Al0.35Ga0.65As perforated by a regular
array of holes. A cross-section of this structure is shown in Fig. 3.1(b). The
composition of the slab layer is chosen to render the structure optically trans-
parent at both the fundamental (1535 nm) and second harmonic wavelength
(767.5 nm).

The fabrication procedure starts with spin coating a ∼ 500 nm thick layer
of a positive-tone e-beam resist, ZEP 520A [52], on top of the heterostructure.
The two-dimensional square lattice of holes is defined in the resist using e-beam
lithography. To ensure a nonzero efficiency for second harmonic generation,
the ΓX direction of the photonic lattice is rotated relative to the crystallo-
graphic <100> direction of the underlying GaAs by an angle of ∼ 22.5◦. In
this case, the incident electric field of the fundamental is never along a crys-
tallographic axis of the GaAs wafer and the effective nonlinearity is nonzero.
Collinear second harmonic generation along one of the crystallographic direc-
tions is forbidden due to the 43̄m symmetry of the GaAs lattice.

After e-beam exposure, the exposed resist is removed by developing for
80 sec. in n-amyl acetate and rinsing for 30 sec. in 9:1 methyl isobutyl ke-
tone:isopropyl alcohol solution. The developed resist then serves as an etch
mask for transferring the pattern to the silicon nitride (SiNx) layer using
anisotropic reactive ion etching (RIE) in a CHF3/Ar plasma. In this pro-
cess a RF power of 50 W, a pressure of ∼ 6 µbar and CHF3 and Ar flow rates
of 25 sccm are used. The etch rate of the SiNx layer is ∼ 15 nm/min and the
selectivity of the process is better then 10:1. After the pattern transfer, a low
pressure RIE with an oxygen plasma is used to remove the residual e-beam
resist.

Using the silicon nitride as a mask, the hole pattern is then etched deep
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

Figure 3.1. (a) Heterostructure used for fabrication of photonic
crystal slabs. Photonic crystal slabs are made in the 150 nm thick
Al0.35Ga0.65As layer. The silicon nitride layer provides the mask for
etching the hole pattern (defined by e-beam lithography) deep into the
GaAs/AlxGa1−xAs layers. After removing the sacrificial layer a free-
standing structure is achieved. (b) Schematic cross-section of a free-
standing photonic crystal slab with lattice constant a, radius of the holes
r and thickness d.

into the GaAs/AlxGa1−xAs layers in a chlorine-based RIE etch [53]. The
flow rates of BCl3, Cl2, and N2 are set to 15, 7.5, and 10 sccm, respectively.
A pure chlorine plasma leads to isotropic etching of the GaAs. This can
be compensated by adding a sufficient amount of nitrogen to the plasma to
passivate the sidewalls during the etching process. This way, near vertical etch
profiles can be realized, ensuring straight holes in photonic crystal layer [54].
The RF power and pressure are 100W and ∼ 4.5 µbar respectively and the
selectivity of the process is better than 10:1. Afterwards, the remaining silicon
nitride mask is removed using the CHF3/Ar RIE as described earlier.

The 100 nm thick GaAs capping layer, on top of the structure, that protects
the AlGaAs layers from oxidizing, is removed in a 3:1 citric acid:H2O2 solution∗
etch for 2 minutes [55]. The GaAs layer is etched ∼ 100 times faster then the
underlying Al0.35Ga0.65As layer. In order to obtain reproducible results, any
oxide layer residing on top of the capping layer should be removed prior to the
etching process by dipping the structure in 15:1 deionized H2O:buffered oxide
etch (BHF) solution for 15 seconds. Figure 3.2 shows a structure for which
the removal of the GaAs is incomplete. The etching process is faster along
the {100} crystallographic planes resulting in a square feature around every
hole. From this image, the intentional ∼ 22.5◦ misalignment of the photonic
and the crystal lattice of GaAs is clearly visible.

After removing the sacrificial Al0.7Ga0.3As layer in a 1:4 HF (40%):H2O

∗The citric acid solution is made by mixing citric acid monohydrate with deionized water
1:1 by mass. The obtained solution is then mixed with a 31% H2O2 solution.
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3.2 Fabrication of photonic crystals

solution for 1 minute [50], critical point drying is used to remove the sample
from the liquid, resulting in a freestanding photonic crystal slab. The samples
for this chapter were fabricated using the facilities of the Kavli Nanolab Delft.

In this chapter, we investigate four freestanding photonic crystal slabs with
the same lattice constant, but with a slightly different radius-to-pitch ratio r/a
of the holes. These samples were created by writing the same pattern with e-
beam using different exposures. Figure 3.3 shows an SEM image of sample D4
that was exposed with an electron dose of 250 µC/cm2. From this image we
find that the lattice constant a = 890±2 nm. An analysis of ∼ 1000 holes shows

2 s 21(a) (b) mm

Figure 3.2. (a) and (b) SEM images of a photonic crystal sample with
partially removed GaAs capping layer. Square feature around every
hole arises from the fact that GaAs etches preferentially along the {100}
crystallographic planes. The photonic lattice is rotated with respect to
the crystal lattice of GaAs.

Figure 3.3. (a) and (b) Scanning electron micrographs showing the
top view of freestanding photonic crystal slab D4. The entire structure
covers an area of ∼ 300× 300 µm2. The radius of the holes is 160.9 nm,
and the lattice constant is 890 nm.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

that the radius of the holes is a normal distribution with an average radius of
160.9 nm and a standard deviation σ = 1.6 nm. The relevant parameters of
photonic crystals D1–D4 are summarized in Table 3.1. As can be seen from
the table, the hole size increases with electron dose. Varying the e-beam dose
is a good way to fine tune the r/a ratio of a photonic crystal [56]. Samples
D2, D3, and D4 have a similar distribution of hole sizes (equal σ) while D1
shows significantly more variation in hole size.

Table 3.1. Parameters of the photonic crystal slabs used in our exper-
iments.

Sample label dose [µC/cm2] a [nm] r [nm] Area [µm2]
D1 220 890±2 144.1±3.2 ∼ 300× 300
D2 230 -‖- 148.1±1.9 -‖-
D3 240 -‖- 154.6±2.0 -‖-
D4 250 -‖- 160.9±1.6 -‖-

3.3 Setup
The experimental setup used for both linear reflectivity and second harmonic
generation is shown schematically in Fig. 3.4(a). All the measurements are
done in a specular geometry where the angle of incidence θi is set by using a
motorized stage.

3.3.1 Linear reflectivity

Two different white light sources are used to measure the linear reflectivity.
A high power, fiber-coupled, Xenon lamp (Ocean Optics HPX-2000) is used
in the infrared part of the spectrum (λ ∼ 900–1700 nm) while a fiber-coupled
Tungsten halogen lamp (Ocean Optics HL-2000-FHSA) is used at visible and
near infrared wavelengths (λ ∼ 680–900 nm). The advantage of the Tungsten
over the Xenon lamp is that it has a flatter and more stable spectral output.
The disadvantage of the Tungsten lamp is that it has less power in the infrared
part of the spectrum. The white light coupled into a 50 µm multimode fiber
(FIB.1) is collimated by lens L1 with a focal length of 50 mm. The collimated
beam is then polarized by a Glan-Thompson polarizing beamsplitter cube
(POL.) and focused on the sample by lens L2 with a focal length of 75 mm.
Apertures AP.1 and AP.2 serve to modify the numerical apertures of both
incident and collected beams. The reflected beam is collected and collimated
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i

Figure 3.4. (a) Setup used for both linear reflectivity and second har-
monic generation. Light from an illumination source is coupled into a
fiber (FIB.1) and focused on the photonic crystal sample at an angle of
incidence θi. The reflected light is collected into a second fiber (FIB.2)
and sent to a detector. The lenses L1–L4 serve to collimate and focus the
light onto the sample. A polarizer (POL.) adjusts the polarization of the
incident light. The apertures AP.1 and AP.2 can be used to reduce the
numerical aperture of the incident and collected beams. (b) Schematic
top view of a square lattice photonic crystal slab. Relevant symmetry
directions are indicated as well as the parallel component of the wave
vector k||.

by lens L3 (focal length of 75 mm), and focused by lens L4 (focal length of
50 mm) onto a 400 µm multimode fiber (FIB.2) and then sent to a fiber-
coupled grating spectrometer.

More than one spectrometer is employed in order to cover both visible and
infrared part of the spectrum (λ ∼ 680–1700 nm). Ocean Optics USB2000
spectrometer (resolution ≈ 1.5 nm) is used for detection in the visible and
near infrared part of the spectrum (λ ∼ 680–900 nm) while Ocean Optics
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

NIR-512 spectrometer (resolution ≈ 3nm) is used for the infrared part of the
spectrum (λ ∼ 900–1700 nm).

3.3.2 Second harmonic generation

For SHG we slightly modify the setup shown in Figure 3.4(a). A Q-switched
diode-pumped solid state laser (Cobolt Tango), with Er:Yb-doped glass as gain
medium, is now used as the source of illumination. This laser has a specified
center wavelength of 1535 ± 1 nm and a narrow linewidth, < 0.04 nm. The
laser has a 5 kHz repetition rate with a typical pulse duration of ≈ 3.8 ns (full
width at half maximum). The average power of the laser is ∼ 25 mW and high
peak power pulses (∼ 1.3 kW) are generated. Light from the laser is coupled
into a 9.5 µm single-mode fiber instead of the 50 µm multimode fiber used for
linear reflectivity measurements.

The second harmonic generated in reflection is detected with either Ocean
Optics USB4000 spectrometer (resolution ≈ 1.3 nm) or an Apogee Alta U1
Peltier cooled CCD camera. The CCD camera is used to detect very low
second harmonic signals since it has much higher sensitivity compared to the
fiber-coupled spectrometers.

3.4 Linear optical characteristics
The optical modes of a two-dimensional photonic crystal slab can be classified
as truly guided modes and leaky modes (or guided resonances) [57]. Truly
guided modes are the modes guided in the slab by total internal reflection.
For these modes, all diffraction orders from the photonic crystal lattice are
confined to the guiding layer as well. As a result, these modes remain confined
to the slab and decay exponentially outside the slab. Leaky modes are the
modes guided in the slab by total internal reflection that can couple to the
environment via diffraction. In this case, at least one diffraction order from the
photonic crystal lattice can propagate in the surrounding medium. Therefore,
leaky modes can escape the slab and couple to the external radiation.

An effective way to investigate the leaky modes and their dispersion re-
lation is to measure specular reflection spectra as a function of angle of inci-
dence [58,59]. Each guided resonance will appear as a resonant feature in the
reflection spectrum on top of a slowly oscillating background [60]. Figure 3.5
shows a plot of the measured reflection for sample D4 as a function of fre-
quency on the vertical axis and the in-plane wave vector k|| on the horizontal
axis. Data are shown for s-polarized (Fig. 3.5(a)) and p-polarized (Fig. 3.5(b))
light. In the experiment the angle of incidence θi is varied from 30◦ to 70◦ in
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3.4 Linear optical characteristics

(a)

(b)

Figure 3.5. Gray scale plot of the measured reflection as a function of
frequency (vertical axis) and wave vector k|| (horizontal axis) for sample
D4. Measurements are shown for s- (a) and p-polarized (b) incident
light, and reveal the presence of several leaky modes. The gray shaded
area below the light line (solid line) is where the truly guided modes
exist.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

steps of 1◦. In order to facilitate a comparison with a dispersion relation ν(k||),
the angles of incidence are converted to the in-plane wave vectors using the
expression k|| = (2πν/c) sin θi, where θi are the angles of incidence, as shown
in Figure 3.4(a). The sample is oriented in such a way that the in-plane wave
vector, k||, is along the ΓX symmetry direction of the photonic crystal lattice.
The incident light beam is focused to a spot of ∼ 75 µm with a numerical
aperture ∼ 0.025. Several sharp resonant features can be observed in the fig-
ure indicating the dispersion of leaky modes. The gray shaded area below the
light line (ν = ck||/(2π)) is the region of the truly guided modes.

In order to understand the position of the leaky modes, we calculated the
band structure of the leaky modes using a freely available finite difference time
domain (FDTD) package∗. In the calculation, the slab has a radius of the holes
r/a = 0.18, a thickness d/a = 0.13, and a relative permittivity ε = 10. These
parameters correspond to those of sample D4. For simplicity, we assume that
the photonic crystal material is lossless and dispersionless and use a literature
value [62] of the permittivity of Al0.35Ga0.65As at a wavelength of 1500 nm. It
is well-known that below the electronic band gap, the permittivity increases
with frequency. Therefore, we expect that the calculated modes are slightly
blue-shifted for larger frequencies compared to a calculation that takes into
account dispersion. This is a relatively small effect in the frequency range
where we compare the calculated band structure with measured data.

Figure 3.6 shows the calculated band structure of leaky modes plotted on
top of the experimental reflectivity data for sample D4. We restrict ourselves
to frequencies ν below 300 THz for clarity. Calculations are shown for both
H-even (TE-like) and E-odd (TM-like) modes.

In the calculation, the 2D square lattice is positioned in the xy-plane and a
point dipole source is placed in the middle of the photonic crystal slab at z = 0.
The modes of a photonic crystal slab can be classified by their E-field, which
is either even or odd with respect to the mirror-symmetry plane at z = 0.
Even modes have the H-field in the z-direction, while odd modes have the
E-field in the z-direction. In the case of an unpatterned waveguide slab, these
modes correspond to the fundamental transverse electric (TE) and transverse
magnetic (TM) modes. Note however, that this definition of TE and TM is
relative to a plane of continuous translational symmetry, perpendicular to the
slab; e.g., the x = 0 plane. This continuous translational symmetry is broken
in a 2D photonic crystal slab and the optical modes cannot be labeled as TE
and TM modes [63]. We will refer to these modes as a TE- and TM-like mode

∗We use finite difference time domain package MEEP (MIT Electromagnetic Equation
Propagation) [61], that can be found at http://ab-initio.mit.edu/wiki/index.php/.
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3.4 Linear optical characteristics

(a)

(b)

Figure 3.6. Calculated dispersion of leaky modes plotted on top of
the experimental reflectivity data of Fig. 3.5 for s- (a) and p-polarized
(b) light. The red and blue circles correspond to H-even (TE-like) and
E-odd (TM-like) leaky modes, respectively.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

to emphasize the resemblance of these modes to those of an unpatterned slab.
As can be seen, the calculated and the experimental data are in good

agreement. From the figure we conclude that there is no coupling to TM-like
leaky modes in this frequency range while a number of TE-like leaky modes
are visible in the experimental data for both s- and p-polarized incoming light.

External radiation couples to the guided resonances of the photonic crystal
via diffraction by adding a reciprocal lattice vector G to the in-plane wave
vector k||. We define the wave vector of the incident light in the xz-plane,
with the x-axis parallel to the ΓX direction of the photonic lattice. Each
leaky mode can be labeled by the reciprocal lattice vector (Gx, Gy) involved
in the coupling of the incoming light to the leaky mode.

In order to understand the coupling of the incident light to a leaky mode
one needs to understand the symmetry of these modes in the plane of incidence.
In our case, the plane of incidence is the x = 0 plane of mirror symmetry of
the photonic crystal. The E-field of the leaky modes is either odd or even
relative to this plane. Note that this definition of odd or even is an additional
symmetry in addition to the mirror symmetry of the z = 0 plane discussed
before. The E-field of the incoming s- or p-polarized light is either odd or even
relative to the x = 0 plane. This determines the coupling of light to the slab
modes.

Let us first consider the coupling to (±1, 0) and (0, ±1) modes. At non-
normal incidence all degeneracy of these modes is lifted. The (-1, 0) and
(+1, 0) modes show strong dispersion and propagate in the direction of the
incoming wave vector. These TE-like modes are odd with respect to the x = 0
plane and couple to s-polarized light. The (0, ±1) modes propagate in and out
of plane direction, and as a consequence have a weaker dispersion. The lower
energy (0, ±1) mode is a superposition of a (0, +1) and (0, -1) mode with
odd symmetry relative to the x = 0 plane and couples to s-polarization. The
high energy (0, ±1) mode is even and couples to p-polarization [64]. This is
indeed what is observed in Fig. 3.6. In the experimental data for s-polarization
(Fig. 3.6(a)), going from low to high frequencies, we see a lower energy (0, ±1)
mode, a (-1, ±1) mode, a crossing of (1, 0) and (-2, 0) modes, and a crossing
of (1, ±1) and (-2, ±1) modes. The (-1, 0) mode is too low in frequency to be
observed in the experiment. In p-polarization (Fig. 3.6(b)), we see a higher
energy (0, ±1) mode, a (-1, ±1) mode with low Q (not resolved with MEEP
calculation∗), and a crossing of (1, ±1) and (-2, ±1) modes.

Sample D4 was designed in such a way to enable the coupling of a s-

∗To eliminate the non-resonant contribution MEEP analyzes the field after a number of
optical cycles. This excludes the contribution from modes with a low Q factor.
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3.4 Linear optical characteristics

polarized fundamental beam at frequency νF = 195.44 THz to one of the
first leaky modes. From Figure 3.6(a), it is evident that the fundamental
can resonantly couple to the structure by exciting the lower energy (0, ±1)
mode. In order to determine for which value of the in-plane wave vector k||
this is achieved we have to extract the dispersion of this leaky mode from the
experimental reflectivity data.

Figure 3.7 shows reflection spectra of sample D4 for s-polarized incident
light and various values of k||. Each reflection spectrum contains sharp res-
onant features superimposed on top of a smooth background. The asym-
metry of the (Fano) resonances is a result of an interference between a di-
rect (non-resonant) and indirect (resonant) channel, as was first described by
Fano [65, 66]. Light in the non-resonant channel is Fresnel reflected from the
slab, while light in the resonant channel couples to a leaky mode of the struc-
ture and after some time “leaks” back into the environment. Fan et al. [60]
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Figure 3.7. Experimental reflection spectra of sample D4 (blue curves)
for s-polarized incident light and different values of k||. Measured reso-
nant features corresponding to the lower energy (0, ±1) leaky mode are
well fitted with asymmetric Fano lineshapes (red curves). Black dashed
line indicates the fundamental frequency.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

have developed a general temporal coupled-mode theory of the Fano resonance
for a single-mode optical resonator coupled with multiple input/output ports.
A photonic crystal slab can be treated as a single-mode optical resonator with
two ports, one at each side of the structure. Light, can be transported from
one port to the other using both a non-resonant and a resonant channel. The
resonant channel is characterized by a frequency ν0 and a time τ . We define
the escape rate of a resonance as Γ = 1/(2πτ) and the quality factor of a reso-
nance as Q = ν0/(2Γ). For a symmetric two port system, e.g., a freestanding
photonic crystal slab in air, the reflectance R as a function of frequency ν is
given by

R =
∣∣∣∣rD + Γ −rD ∓ itD

i(ν − ν0) + Γ

∣∣∣∣2 , (3.1)

where rD and tD are the Fresnel reflection and transmission coefficients of the
slab. The subscript “D” is used to denote the direct channel. The ∓ sign is
due to exciting either even (-) or odd (+) leaky mode with respect to the plane
of mirror-symmetry going through the middle of the slab (z = 0).

For a lossless system, the asymmetric Fano lineshape given by equation (3.1)
reaches both 0% and 100%. In realistic systems, losses are present. These
losses are either due to the absorption of the slab material or scattering from
imperfections of the structure. Driessen et al. [67] have extended the coupled-
mode theory of the Fano resonance by adding an extra port to include losses
in the system. It is assumed that energy in the photonic crystal resonator
is transferred irreversibly to the loss port and is characterized by a loss rate
γ. The resonant Fano features in the experimental data, for a freestanding
photonic crystal slab in air, can be described using the following expression
for the reflectance R:

R =
∣∣∣∣rD + Γ −rD ∓ itD

i(ν − ν0) + Γ + γ

∣∣∣∣2 . (3.2)

In order to fit the measured Fano resonances corresponding to the lower
energy (0, ±1) leaky mode (Fig. 3.7), the expression (3.2) is rewritten in the
following form:

R =
∣∣∣∣c1 + c2ν −

c3 + ic4
i(ν − ν0) + γ + Γ

∣∣∣∣2 , (3.3)

where c1, c2, c3, c4, ν0 and γ+ Γ are fit parameters. Here, we assume that the
direct channel contribution to the total reflection, in the vicinity of a resonance,
can be approximated with a linear function of the frequency ν. As can be seen
from Fig. 3.7, the obtained fits show a good agreement with the experimental
data. The importance of this approach is that we can extract the dispersion
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3.4 Linear optical characteristics

(ν0 as a function of k||) and the quality factor (Q = ν0/(2(Γ + γ)) as a function
of k||) of a leaky mode directly from the experimental data. Figure 3.8 shows
the dispersion of the lower energy (0, ±1) leaky mode of sample D4 (blue dots).
The frequency of the fundamental is indicated by the red dashed line in the
figure. The green dash-dot line defines a constant angle of incidence θi = 46◦.
From this figure it is clear that the s-polarized fundamental beam couples
resonantly to a leaky mode at an angle of incidence θi = 46◦, corresponding
to k|| = 0.417×2π/a. A typical quality factor Q = ν0/(2(Γ + γ)) of this leaky
mode, as determined by the Fano model, is ∼ 175.
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Figure 3.8. Measured dispersion of the lower energy (0, ±1) leaky mode
of sample D4 (blue dots). The red dashed line indicates the position
of the fundamental frequency, and the green dash-dot line corresponds
to a constant angle of incidence θi = 46◦. Resonant coupling of the
s-polarized fundamental beam to the (0, ±1) leaky mode occurs at an
angle of incidence θi = 46◦. A simple analytical model, based on a nearly
free photon picture (see text), is used to calculate the dispersion of both
the lower and the higher energy (0, ±1) leaky mode (black curves).
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

A simple analytical model, that describes the dispersion (ν0 as a function
of k||) of the (0, ±1) leaky modes, can be derived. In a nearly free photon pic-
ture, the light line of a uniform dielectric medium with an effective refractive
index neff is folded back to the first Brillouin zone by adding an appropriate
reciprocal lattice vector. For the hypothetical case of a slab with infinitely
small holes, the (0, ±1) modes are degenerate. However, in a real photonic
crystal slab, these modes split due to a standing wave pattern generated by
the two counter-propagating (0, ±1) modes. The lower energy (0, ±1) mode
has the maximum of the electric field in a high refractive index region, while
the higher energy (0, ±1) mode has the maximum of the electric field in a
low refractive index region. The dispersion of the (0, ±1) modes can be suc-
cessfully approximated by only considering the interaction between the two
(0, ±1) modes. The frequencies ν0± of the modes are given by

ν0±(kx) = νc(kx)±∆ν(kx)/2, (3.4)

where νc is the center frequency, ∆ν is the splitting between the modes, and
kx is the component of the incoming wave vector parallel to the interface in
the ΓX direction. The center frequency νc(kx) is given by

νc = c

2πneff
·
((2π

a

)2
+ 1

2k
2
x

)1/2

, (3.5)

and the splitting ∆ν(kx) between the two modes is given by:

∆ν = ∆ν (kx = 0) ·
(
a

π

)2
·
((

π

a

)2
− k2

x

)
. (3.6)

Here ∆ν(kx = 0) is the splitting at normal incidence that we obtain from the
FDTD calculation. We find values of neff = 2.52 and ∆ν(kx = 0) = 0.029×c/a.

3.5 Nonlinear optical properties
Figure 3.9 shows the measured power of the signal at a frequency of 390.88 THz
(twice the fundamental frequency) as a function of the fundamental power
(blue dots), generated in sample D4 and measured in reflection. A typical
spectrum of the SH signal, measured with a fiber-coupled spectrometer, is
shown in the inset. In order to achieve a dynamic range of ≈ 5 orders of
magnitude, the detection scheme is changed by replacing the spectrometer
with a silicon CCD camera. To make sure that we detect only the light at
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Figure 3.9. Measured power of the signal at a frequency of 390.88 THz
as a function of the fundamental power (blue dots), generated in sample
D4, and measured in reflection. The linear fit (red line) has a slope of
2.025 and confirms the quadratic power dependence. The inset shows a
typical spectrum of the SH signal.

390.88 THz a bandpass filter with a center frequency of 391.17 THz and a full
width at half maximum of 5.41 THz is placed in front of the CCD camera.
The incident fundamental beam is clipped by an aperture and focused to a
spot of ∼ 35 µm with a numerical aperture of ∼ 0.05. The power dependence
measurement is done at a constant angle of incidence and polarization of the
incident beam. As can be seen in the figure, the generated power at twice
the fundamental frequency is proportional to the square of the fundamental
power.

Figure 3.10 shows the second harmonic power (blue dots) generated by the
s-polarized fundamental beam inside sample D4, as a function of the in-plane
wave vector k||. The in-plane wave vector k|| is parallel to the ΓX symmetry
direction of the photonic crystal lattice. The fundamental beam is clipped
by an aperture and focused to a spot of ∼ 75 µm with a numerical aperture
∼ 0.025, and the second harmonic signal is detected using a fiber-coupled
grating spectrometer. We varied the angle of incidence θi from 39◦ to 52◦
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs
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Figure 3.10. Second harmonic power (blue dots) generated by the
s-polarized fundamental beam inside sample D4, and measured in reflec-
tion as a function of the in-plane wave vector k||. Two distinct peaks in
the SH power imply that two different resonant effects occur in the SHG.
The measured SH power can be fitted with two Lorentzian-squared func-
tions (black line). The red dashed line indicates the contribution to the
SH due to a resonant coupling of the fundamental to the lower energy
(0, ±1) leaky mode. The remaining contribution is due to a resonant
coupling of the generated SH to a leaky mode of the structure.

in steps of 1◦ and converted this to the in-plane wave vectors k|| using the
expression k|| = (2πν/c) sin θi.

The measured second harmonic power for sample D4 shows two distinct
peaks, implying that there are two different resonant effects that give rise
to SH. The lower peak, occurring at k|| = k||F = 0.417×2π/a, is due to the
resonant coupling of the fundamental to the lower energy (0, ±1) leaky mode,
as can be seen in Fig. 3.8. On resonance, we expect that the largest part of the
fundamental power couples to the photonic crystal slab yielding the largest
SH power. The power at the fundamental frequency νF inside the slab is given
by

Pin slab(νF , k||) ∝
Γ(k||)2

(νF − ν0(k||))2 + (Γ(k||) + γ(k||))2 , (3.7)
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3.5 Nonlinear optical properties

where ν0, Γ and γ are the center frequency, escape and loss rates of the lower
energy (0, ±1) leaky mode respectively. Assuming that the parameters Γ and
γ are slowly varying functions of k|| for the range of in-plane wave vectors used
in the SHG experiment, expression (3.7) becomes:

Pin slab(νF , k||) ∝
1

(νF − ν0(k||))2 + (Γ + γ)2 . (3.8)

Since the center frequency ν0 can be approximated well with a linear function
of k|| for the range of in-plane wave vectors used in the SHG experiment
(Fig. 3.8), we rewrite expression (3.8) as:

Pin slab(νF , k||) ∝
1

(k||F − k||)2 +
(

∆F
2

)2 . (3.9)

Thus, the fundamental power inside the photonic crystal slab as a function of
k||, can be described with a Lorentzian function peaked at k||F with a full width
at half maximum (FWHM) ∆F . The position of the peak, k||F , is determined
by the dispersion of the leaky mode, and the width of the Lorentzian, ∆F , is
determined by the quality factor of the mode. For the second harmonic power
generated in the photonic crystal we write:

Pin slab(2νF , k||) ∝

 1

(k||F − k||)2 +
(

∆F
2

)2


2

. (3.10)

The measured SH power can be fitted with two Lorentzian-squared func-
tions of the form (3.10), as shown by the black line in Fig. 3.10. The peaks
are positioned at k||SH = 0.390×2π/a and k||F = 0.417×2π/a, and have a
width ∆SH = 0.011×2π/a and ∆F = 0.022×2π/a. The dashed red line in
Figure 3.10 shows the contribution to the SH due to the resonant coupling of
the fundamental to the lower energy (0, ±1) leaky mode at k|| = 0.417×2π/a.

The remaining contribution to the SH cannot be explained by considering
only the resonance at the fundamental frequency. The fundamental beam is
off-resonance at k|| = 0.390×2π/a (Fig. 3.8), where we measure the highest
SH signal. We suggest that there is a contribution to the SH signal due to the
resonant coupling of the generated wave at the second harmonic frequency to
one of the leaky modes of the photonic crystal slab. Unfortunately, we are
not able to identify a specific leaky mode in either the reflectivity measure-
ments or in the MEEP calculation. At higher frequencies, the band structure
becomes very complex due to the large number of bands involved and strong
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

interaction between them. In fact, a measurement of second harmonic using a
tunable laser might be a better way to characterize the leaky modes at higher
frequencies.

Figure 3.11 shows a comparison of the nonlinear optical response of samples
with slightly different radius-to-pitch ratio r/a of the holes. The SH signal is
measured in reflection as a function of the in-plane wave vector k|| for samples
D1 (pink), D2 (green), and D3 (blue dots). The curves are offset vertically by
a constant value for clarity. The experimental data for sample D4 (red dots),
as discussed earlier, are shown in the figure as well.

We observe that the second harmonic signal shifts to larger values of k||
as the ratio r/a decreases. This effect can be understood by considering a
nearly free photon picture. In this picture, a decrease in the ratio r/a results
in an increase of the effective refractive index of the slab (nslab) and shifts
the dispersion of the leaky mode (ν ∝ k||/nslab) towards lower frequencies.
As a consequence, the fundamental beam becomes resonant with the photonic
crystal at a larger value of the in-plane wave vector k||. The black arrows in the
figure indicate the values of k||, estimated from experimental linear reflectivity
data, for which the fundamental beam is exactly on resonance.

As can be seen from the figure, the signals from samples D1 and D2 are
very comparable. This is due to the fact that these samples have the same
pitch and almost equal hole size. The main difference between the samples
is that sample D1 has a larger variation in the hole size compared to other
samples (Table 3.1).

For all samples, the SH is generated over a relatively large range of k|| and
cannot be explained by considering only the coupling of the fundamental beam
to the structure. It is clear from the dispersion of the lower energy (0, ±1)
leaky mode that the fundamental beam is “far away” from being exactly on
resonance with either sample D1 or D2 in the region around k|| = 0.5×2π/a.
We believe, that resonant effects at second harmonic frequency provide an
answer. Note that for these values of k|| the leaky mode at the SH frequency
is close to the edge of the first Brillouin zone, as indicated by the black vertical
dash-dotted line in Fig. 3.11. Since the group velocity vanishes at the edge of
the Brillouin zone, coupling to such a mode could lead to a very broad feature
in the measured SH.

As a final note, we emphasize the presence of a peak in the SH signal
occurring in the second Brillouin zone. To visualize this peak, we multiply the
SH power generated in sample D4 for larger values of k||, by a factor of 10. A
weak peak occurs at k|| ≈ 0.57×2π/a due to a higher order diffraction of the
periodic lattice at the fundamental frequency. The magnitude of this peak is
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3.5 Nonlinear optical properties

much lower since the higher order diffraction event is less efficient.
The calculated enhancement of the SH signal for a similar geometry was

found to be more than 6 orders of magnitude [47]. In order to estimate the
SH enhancement for sample D4, we measured both the resonant and the non-
resonant contribution to the SH signal generated in the sample, and calculated
the ratio. The non-resonant contribution can be measured by tuning the k|| in
such a way that the waves at both the fundamental and the second harmonic
frequency cannot resonantly couple to the structure. We are limited by the
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Figure 3.11. Second harmonic power measured in reflection as a func-
tion of the in-plane wave vector k|| for samples D1 (pink), D2 (green),
D3 (blue), and D4 (red dots). The curves are offset by a constant value
for clarity. The black arrows indicate the values of k|| for which the fun-
damental beam is exactly on resonance with the given structure. The
vertical dash-dotted black line indicates the position of the edge of the
first Brillouin zone. As the ratio r/a decreases, the SH signal shifts to
the larger k||.
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3. Second harmonic generation in freestanding AlGaAs photonic crystal slabs

noise floor of the spectrometer in measuring this contribution, and estimate a
lower limit of the SH enhancement for sample D4 of 4500, which is almost 4
times larger than the maximal enhancement reported in Reference [48]. The
maximal SH signal generated in reflection from sample D4 occurs at k|| for
which the fundamental is slightly off-resonance, as can be seen in Figure 3.10.
This implies that even larger enhancements can be achieved for a structure
that enables the resonant coupling at both the fundamental and SH frequency
at the same time. Based on the fit with two Lorentzian-squared functions in
Fig. 3.10, we estimate that the signal may be further enhanced by a factor
of 10. We also compared the resonant SH generated in reflection from the
sample to the SH generated in reflection from the unpatterned Al0.35Ga0.65As
region on the wafer. A detection scheme with a very sensitive silicon CCD
camera, described earlier, is used to detect low SH signal generated from the
unpatterned region. The highest measured second harmonic signal from the
photonic crystal slab is 9225± 3× 103 cts/s. The measured second harmonic
signal from the unpatterned region is 0.26± 0.03× 103 cts/s. Therefore, the
experimental SH enhancement is 35± 4× 103 times, which is 7 times larger
than the enhancement reported in Reference [49] for 1D GaN structures.

3.6 Conclusion

Leaky modes at both the fundamental and the SH frequency play a promi-
nent role in increasing the nonlinear optical response of a photonic crystal
slab. By tuning the in-plane wave vector k|| of the incident fundamental beam
the structure can be resonantly excited, leading to large enhancements of sec-
ond harmonic. We measure an enhancement > 4500 when compared to the
photonic crystal slab off-resonance, and a factor 35000 compared to an unpat-
terned substrate.

The observation of two distinct peaks in the SH signal generated in sample
D4 can be explained with the resonant coupling at both the fundamental and
the SH frequency. In fact, the largest SH enhancement for sample D4 occurs
when the fundamental beam is slightly off-resonance, and we estimate that the
SH can be enhanced by another factor 10. To investigate the enhancement in
more detail, a better understanding of the leaky modes at the SH frequency
is needed. An interesting new route to investigate the influence of the modes
at the SH frequency on the SHG would be to design and make a photonic
crystal slab that has one of the first leaky modes at the SH frequency. In this
way, the coupling of the fundamental to the structure can be neglected and
all the features in the SH signal can be attributed to resonant effects at SH
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frequency.
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