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Chapter 1  

General Introduction 

T.T.H. Dao 

Crop plants are major sources of natural products used as pharmaceuticals, 

agrochemicals, flavors, fragrances, food, and pesticides [Balandrin and Klocke, 1988]. 

An in-depth understanding of the plant's metabolism is helpful for the improvement of 

their growth and yield [Carrari et al., 2003]. As we know, green plants produce simple 

sugars by combining CO2 and H2O with energy from the sun by photosynthesis. Plants 

use sugars to make primary compounds such as starch, pectin, cellulose, fat, amino 

acids, proteins and nucleic acids for nutrition and construction of the plant structure. 

They also produce compounds which seem to have no explicit use for the plants and 

these are usually termed secondary metabolites. Secondary metabolites are defined as 

compounds that play a role in the interaction of the cell/organism with its environment 

to ensure the survival of the organism in its ecosystem [Verpoorte, 2000]. There are 

many secondary metabolites present in plants and they are classed in groups such as 

alkaloids, terpenoids, flavonoids, essential oils, phenolics and others.  

Metabolic engineering of plants promises to create new opportunities in agriculture, 

environmental applications, production of chemicals, and even medicine. Metabolic 

engineering is referred to as the directed improvement of cellular properties through the 

modification of specific biochemical reactions or the introduction of new ones, with the 

use of recombinant DNA technology [Stephanopoulos, 1999]. It is generally referred to 

as “the targeted and purposeful alteration of metabolic pathways found in an organism 

in order to better understand and utilize cellular pathways for chemical transformation, 

energy transduction, and supramolecular assembly” [Lessard, 1996]. Plant 

biotechnology and transgenic plants are based on the latest technologies and current 

research on the engineering, synthesis, utilization, and control of primary and secondary 

plant metabolism. In terms of DNA techniques, several approaches have been used for 
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the modification of the host cell to achieve the desired goal. These include: inhibiting 

gene expression or inhibiting encoded enzyme itself to eliminate a competitive pathway 

or a toxic product; amplification of a gene or group of genes to improve the synthesis of 

existing products [Shimada et al., 1998; Cameron et al., 1998] the expression of a 

heterologous enzyme(s) to extend the substrate range [Panke et al., 1998], to produce 

novel products [Stassi et al., 1998], to provide pathways for the degradation of toxic 

compounds [Keasling et al., 1998; Xu et al., 1996], or to design a more environmentally 

resistant plant [Smirnoff, 1998]. 

Among the secondary metabolite groups in plants, flavonoids are the most common 

group of polyphenolic plant secondary metabolites. In plants, flavonoids play an 

important role in biological processes. Besides their function as pigments in flowers and 

fruits to attract pollinators and seed dispersers, flavonoids are involved in UV-

scavenging, fertility and disease resistance [Winkel, 2001]. Since flavonoids are present 

in a wide range of fruits and vegetables, flavonoids form an integral part of the human 

diet. Currently there is broad interest in the effects of dietary polyphenols on human 

health. In addition to the potent antioxidant activity of many of these compounds in 

vitro, an inverse correlation between the intake of certain polyphenols and the risk of 

cardiovascular diseases, cancer and other age related diseases has been observed in 

epidemiological studies [Harborne et al., 2000]. Enhancing flavonoid biosynthesis in 

chosen crops may provide new raw materials that have the potential to be used in food 

designed for specific benefits to human health.   

Characterization of flavonoid biosynthesis at the genetic level has been done in 

Arabidopsis, maize, snapdragon, parsley and petunia [Christie et al., 1996; Feldbrügge 

et al., 1997; Wade et al., 2001; Koes et al.,1989; Junghans et al.,1993]. Since 

Arabidopsis thaliana was the first plant to have its entire nuclear genome sequenced, it 

has become the most important model system for plant biology. Arabidopsis is 

particularly useful in the characterization of the flavonoid biosynthetic pathway due to 

the relative simplicity of the genetics for the pathway’s enzymes and with exception of 

flavonol synthase, all the major enzymes of the flavonoid biosynthesis pathway in 

Arabidopsis are encoded by single-copy genes [Winkel, 2001]. In all plants, the 

precursor of the first flavonoid molecule is naringenin chalcone. Naringenin chalcone is 

synthesized by the first enzyme of the flavonoid biosynthesis, chalcone synthase (CHS). 
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Modifications by specific suites of downstream enzymes this intermediate goes into a 

variety of end products.  

Many analytical methods e.g. gas chromatography (GC)/mass spectrometry (MS), high-

performance liquid chromatography (HPLC)/MS, capillary electrophoresis (CE)/MS, 

and nuclear magnetic resonance spectroscopy (NMR) have been used for identification 

of metabolites in crude plant extracts. There is no single technique that allows a 

comprehensive detection of all metabolites but in principle 1H-NMR can detect any 

metabolite containing hydrogen. Thus the 1H-NMR spectra of biological fluids or tissue 

extracts are a rich source of qualitative and quantitative information on the compounds 

present, covering compounds of all chemical classes. NMR is therefore considered as an 

important technique that can contribute to metabolic profiling of an organism.  

Furthermore, integration of metabolomic data with other -omic data is performed to 

identify the gene/protein functions and eventually leading to metabolic and cellular 

simulation in silico. For this purpose, data processing and analysis methods have to be 

applied. For example multivariate data analysis such as principal component analysis 

(PCA) and hierarchical cluster analysis (HCA) are carried out for data mining and can 

be used for identification of biomarkers for the response of the plants to certain forms of 

stress, comparison of plants for identifying resistance related compounds, 

chemotaxonomy and for quality control of food and botanicals. 

Many studies related to CHS or using CHS mutant plants have been published [Mol et 

al., 1983; Saslowsky et al., 2001; Le Gall et al., 2005] but so far most studies are 

restricted to the molecular level and information on metabolic changes is still lacking. 

Introduction of CHS in Arabidopsis thaliana would be the way to study the effect of 

overexpression of this gene on the metabolome of the plants and the flavonoid 

biosynthesis pathway. 

Aim of thesis 

The aim of the present study was to investigate the effect of chalcone synthase (CHS) 

overexpresion in Arabidopsis thaliana on primary and secondary metabolism. 
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Outline of the thesis 

This thesis starts with a review of the function of CHS in plants and especially in plant 

resistance (Chapter 2). Chapter 3 deals with the work on Agrobacterium-mediated 

transformation of heterologous chalcone synthase in Arabidopsis thaliana Col. 0. The 

effect of overexpression of CHS on the transcriptional level is discribed in this chapter. 

The activity of the CHS enzyme in the transgenic plants is reported in Chapter 4. In 

Chapter 5 metabolic profiling of Arabidopsis thaliana using nuclear magnetic 

resonance spectroscopy (NMR) is described. In this chapter the primary and secondary 

metabolites of Arabidopsis thaliana Col. 0 which can be detected by NMR are reported. 

Chapter 6 reports the metabolic profiling of CHS transgenic Arabidopsis. Metabolomic 

changes upon UV-A/blue light treatment of Arabidopsis thaliana were investigated 

(Chapter 7). Chapter 8 deals with the study of the effect of the non-pesticide chemical, 

Benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) on the Arabidopsis 

metabolome. Finally, the general summary and discussion of thesis are given in 

Chapter 9. 
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Chapter 2  

Chalcone synthase and its funtions in plant 
resistance 

T.T.H. Dao1, 2, H.J.M. Linthorst 3 and R. Verpoorte1 

1Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, The 
Netherlands 

 2Traditional Pharmacy Department, Hanoi Pharmacy University, Hanoi, Vietnam 
3 Section Plant Cell Physiology, Institute of Biology, Leiden University, The Netherlands 

Abstract 

Chalcone synthase (CHS, EC 2.3.1.74) is a key enzyme of the flavonoid/isoflavonoid 

biosynthesis pathway. Besides being part of the plant developmental program the CHS 

gene expression is induced in plants under stress conditions such as UV light, bacterial 

or fungal infection.  CHS expression causes accumulation of flavonoid and isoflavonoid 

phytoalexins and is involved in the salicylic acid defense pathway. This review will 

discuss CHS and its function in plant resistance.  

Keywords: Chalcone synthase, flavonoids, plant resistance. 
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2.1. Introduction 

During their life cycle, plants respond actively to stress by producing phytoalexins and 

other stress metabolites. Such stress can result from injuries caused by the attack of 

insects and microbes or by mechanical wounding, and can induce many distinctive 

biochemical changes. These include the production of protective compounds either at 

the site of injury, or systemically in distant unwounded tissues [Kuhn, 1988; Bowles, 

1990; Ryan, 1990]. In plants, phenylalanine is derived from the precursor chorismate 

and leads to the flavonoid, phenylpropanoid and stilbenoid biosynthesis pathways. All 

are interesting in connection with plant defense but in this review we will focus on the 

flavonoid biosynthesis pathway and its key enzyme chalcone synthase (CHS). 

CHS is a member of the plant polyketide synthase superfamily, which also includes 

stilbene synthase (STS), acridone synthase, pyrone synthase, bibenzyl synthase, and p-

coumaroyltriacetic acid synthase [Sanchez et al., 2008]. Chalcone synthases, the most 

well known representatives of this family, provide the starting materials for a diverse set 

of metabolites (flavonoids) which have different and important roles in flowering plants, 

such as providing floral pigments, antibiotics, UV protectants and insect repellents 

[Hahlbrock and Scheel, 1989]. Flavonoids also have benefits for human health, as they 

exhibit amongst others cancer chemopreventive [Jang et al., 1997], antimitotic 

[Edwards et al., 1990], estrogenic [Gehm et al., 1997] antimalarial [Li et al., 1995] 

antioxidant [Jang et al., 1997] and antiasthmatic [Zwaagstra et al., 1997] activities.  

Flavonoids are synthesized via the phenylpropanoid and polyketide pathway, which 

starts with the condensation of one molecule of CoA-ester of cinnamic acid or 

derivatives such as coumaric or ferulic acid, and three molecules of malonyl-CoA, 

yielding a naringenin chalcone as major product. This reaction is carried out by the 

enzyme chalcone synthase (CHS). The chalcone is isomerised to a flavanone by the 

enzyme chalcone flavanone isomerase (CHI). From these central intermediates, the 

pathway diverges into several branches, each resulting in a different class of flavonoids. 

Flavanone 3-hydroxylase (F3H) catalyzes the stereospecific 3ß-hydroxylation of (2S)-

flavanones to dihydroflavonols. For the biosynthesis of anthocyanins, dihydroflavonol 

reductase (DFR) catalyzes the reduction of dihydroflavonols to flavan-3,4-diols 

(leucoanthocyanins), which are converted to anthocyanidins by anthocyanidin synthase 

(ANS). The formation of glucosides is catalyzed by UDP glucose-flavonoid 3-O-
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glucosyl transferase (UFGT), which stabilizes the anthocyanidins by 3-O-glucosylation 

[Harborne and Grayer, 1994; Bohm, 1998]. An overview of the flavonoid pathway is 

presented in Fig. 2.1. Flavonoids play an important role in plant defense, and CHS as 

the gatekeeper of flavonoid biosynthesis plays an important role in regulating the 

pathway. In fact CHS gene expression is influenced by many stress and environmental 

factors such as UV, wounding or pathogen attack [Dixon and Paiva 1995; Gläßgen et 

al., 1998; Ito et al., 1997].  

In this review we will evaluate the present understanding about CHS and its regulation 

in plant resistance. 
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Figure 2.1.  Flavonoid biosynthetic pathway 

ANS, anthocyanidin synthase; AS, aureusidin synthase; C4H, cinnamate-4-hydroxylase; CHR, 
chalcone reductase; DFR, dihydroflavonol 4-reductase; DMID, 7,2′-dihydroxy, 4′-
methoxyisoflavanol dehydratase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′ hydroxylase; 
F3′5′H, flavonoid 3′5′ hydroxylase; FS1/FS2, flavone synthase; I2′H, isoflavone 2′-hydroxylase; 
IFR, isoflavone reductase; IFS, isoflavone synthase; IOMT, isoflavone O-methyltransferase; 
LCR, leucoanthocyanidin reductase; LDOX, leucoanthocyanidin dioxygenase; OMT, O-
methyltransferase; PAL, phenylalanine ammonia-lyase; RT, rhamnosyl transferase; UFGT, UDP 
flavonoid glucosyl transferase; VR, vestitone reductase; STS, stilbene synthase; FLS, flavanol 
synthase.[Winkel, 1999; KEGG pathways] 
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2.2. Chalcone synthase 

2.2.1. Structure of chalcone synthase 
The chalcone synthase (CHS) enzyme - known as a type III polyketide synthase enzyme 

(PKS) is structurally and mechanistically the simplest PKS [Schröder et al., 1997; 

Sanchez et al., 2008]. These enzymes function as homodimeric iterative PKS (monomer 

size of 42–45 kDa) with two independent active sites that catalyze a series of 

decarboxylation, condensation, and cyclization reactions [Tropf et al., 1995]. The three 

dimensional structure of alfalfa CHS2 was studied intensively by Ferrer et al., (1999). 

X-ray crystallography revealed that each alfalfa CHS2 monomer consists of two 

structural domains. The conserved architecture of the upper domain maintains the three- 

dimensional structure of the catalytic residues of the enzyme (Cys164, His303, and 

Asn336) was defined as the catalytic machinery of CHS. The lower domain of CHS has 

a large active site providing space for the tetraketide required for chalcone formation 

(i.e., naringenin and resveratrol) from one p-coumaroyl-CoA and three malonyl-CoA 

[Jez et al., 2001a,b]. Cys164 serves as the nucleophile for polyketide formation and is 

not essential for malonyl-CoA decarboxylation. His303 plays a role in chalcone 

formation and malonyl-CoA decarboxylation, as histidine is able to abstract a proton 

from Cys164 to form the reactive thiolate necessary for initiation of the polyketide 

elongation. Asn336 works as the second component of the decarboxylation machinery. 

Phe215 was proposed to interact with acyl-CoA substrates through van der Waals 

interactions.  

The crystal structure further revealed three interconnected cavities that intersect with the 

four catalytic residues and form the active site architecture of the CHS: a CoA-binding 

tunnel, a coumaroyl-binding pocket and a cyclisation pocket. This division of the active 

site into discrete pockets provides a structural basis for the ability of the CHSs to 

orchestrate the multiple reactions of chalcone synthesis. 

2.2.2. Mechanism of chalcone synthase 

Production of chalcone requires the condensation of one molecule of p-coumaroyl-CoA 

and three malonyl-CoA molecules which is catalyzed by CHS. It starts with the transfer 

of a coumaroyl moiety from a p-coumaroyl-CoA starter molecule to an active site 
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cysteine (Cys164) [Lanz et al., 1991]. Next, a series of condensation reactions of three 

acetate units derived from three malonyl-CoA molecules, each proceeding through an 

acetyl-CoA carbanion derived from malonyl-CoA decarboxylation, extends the 

polyketide intermediate. Following generation of the thioester-linked tetraketide, a 

regiospecific intramolecular Claisen condensation forms a new ring system to yield 

chalcone. In plants, chalcone isomerase (CHI) will convert the chalcone to (2S)-5,7,4’-

trihydroxyflavanone (naringenin); however, spontaneous ring closure in vitro results in 

mixed enantiomers of naringenin [Hahlbrock et al., 1970; Jez et al., 2000]. In vivo  

chalcone can convert to narigenin without need of CHI. Four amino acids (Cys164, 

Phe215, His303, and Asn336) situated at the intersection of the CoA-binding tunnel and 

the active site cavity play an essential and distinct role during malonyl-CoA 

decarboxylation and chalcone formation. The general reaction mechanism of CHS is 

presented in Figure 2.2. 

 

Figure 2.2. Reaction Mechanism of Chalcone Synthase (CHS)  

In CHS, three amino acids play key roles in the catalytic functions of type III PKS: Cys164:  

active site, covalent binding site of starter residues and intermediates, His303 and 

Asn336: stabilization/activation of both starter (e.g. 4-coumarate) and extender units (malonyl-

/acetyl-residues) [Ferrer et al., 1999, Bomati et al., 2005, modified by Schröder 2008].  
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Several other cyclization reactions are possible besides the one yielding a chalcone. In 

addition to the starter molecule p-coumaroyl-CoA, in vivo alfalfa CHS accepts other 

CoA-linked thioesters as alternate starter molecules to generate corresponding 

chalcones, tetraketide lactone, and triketide lactone products (Figure 2.3). The 

substrates can be feruloyl-CoA, hexanoyl-CoA, phenylacetyl-CoA, benzoyl-CoA, 

butyryl-CoA, isobutyryl-CoA and isovaleryl-CoA. With the starter substrates p-

coumaroyl-CoA and malonyl-CoA, CHS catalyzes an intramolecular Claisen 

condensation yielding the chalcone naringenin. Alfalfa CHS2 and parsley CHS 

[Hrazdina, 1976], accept feruloyl-CoA as a starter molecule and produce the tetraketide 

lactone (2b) and methylpyrone as the major products with the triketide lactone (2c) 

generated as a minor product. With hexanoyl-CoA, alfalfa CHS2 yields the tetraketide 

lactone (3b) as the major product, triketide lactone (3c) and methylpyrone are minor 

products [Jez et al., 2001a]. Parsley CHS accepts butyryl-CoA and hexanoyl-CoA as 

substrates in vitro, which yield, respectively, the chalcone analogues, 

phlorobutyrophenone (5b) and phlorocaprophenone (4b) at pH 6.5 [Schuez et al., 1983]. 

Medicago sativa CHS2 accepts phenylacetyl-CoA as a starter molecule yielding a 

phlorobenzyl ketone (4a), the chalcone-like product, accounts for less than 10% and 

others like tetraketide lactone (4b), triketide lactone (4c), and methylpyrone comprise 

the other products. The overall product distribution with phenylacetyl-CoA is similar to 

Scutellaria baicalensis CHS [Morita et al., 2000]. With benzoyl-CoA as the starter 

molecule, alfalfa CHS2 generates phlorobenzophenone (5a) and methylpyrone as the 

major product, and tetraketide lactone (5b) and triketide lactone (5c) as minor products 

[Jez et al., 2001a]. The recombinant hop CHS1 expressed in E. coli showed activity 

with isobutyryl-CoA and isovaleryl-CoA substrates, which produced as main products 

phloroisobutyrylphenone (6b) and phloroisovalerophenone (7b) [Zuurbier  et al., 1998; 

Novák et al., 2006].  
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Table 2.1. Steady-State Kinetic Constants of Medicago sativa CHS2 with different starter 

substrates [Jez et al., 2001a; Novak et al., 2006] 

 kcat (min-1) Km (µM) 
p-coumaroyl-CoA 5.14 ± 0.30 6.1 ± 1.3 
Malonyl-CoA 4.58 ± 0.24 4.7 ± 1.1 
feruloyl-CoA 1.04 ± 0.17 5.2 ± 0.9 
Hexanoyl-CoA 2.52 ± 0.22 4.1 ± 1.2 
phenylacetyl-CoA 2.17 ± 0.35 5.1 ± 0.7 
benzoyl-CoA 1.73 ± 0.21 2.2 ± 0.2 
Isobutyryl-CoA - 14.9 ± 0.2 
Isovaleryl-CoA - 8.0 ± 0.2 
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Figure 2.3. Alternate starter molecules and their predicted reaction products catalyzed by CHS  

The steady-state kinetic parameters of Medicago sativa CHS2 for p-coumaroyl-CoA, 

malonyl-CoA, feruloyl-CoA, hexanoyl-CoA, phenylacetyl-CoA and benzoyl-CoA have 

been determined, these are presented in Table 2.1 [Jez et al., 2001a; Novak et al., 2006] 
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2.3. Control of CHS activity 

In plants, CHS is activated by a wide range of environmental and developmental 

stimuli. Theoretically, there are many ways to regulate CHS activity in vivo, from 

metabolic control to the control of initiation of transcription of the CHS gene [Martin, 

1993]. 

2.3.1. Metabolic control 
There are many studies showing that CHS is inhibited noncompetitively by flavonoid 

pathway products like naringenin, chalcone naringenin and the other end products of 

CoA esters. For example, the parsley CHS is 50% inhibited by 100 µM naringenin and 

10 µM CoA esters [Hinderer and Seitz, 1985; Kreuzaler and Hahlbrock, 1975], the 

flavonoids luteolin and apigenin are inhibitory to rye CHS in vitro [Peters et al., 1988], 

whereas in carrot, among the range of flavonoids tested, only naringenin and chalcone 

narigenin can inhibit CHS at 100 µM [Hinderer and Seitz, 1985]. It seems that 

flavonoids accumulate in the cytosol to a level that blocks CHS activity to avoid toxic 

levels for the plant [Whitehead and Dixon, 1983], though there is no direct evidence that 

this inhibition happens in vivo.   

2.3.2. Control of CHS turnover 
In plants, CHS may always be present in the cells but is only activated under certain 

specific conditions. Studies on parsley cell cultures showed that the induction of CHS 

activity by UV light was the result of de novo synthesis and active enzyme subsequently 

decayed with a half-life of 6h, whereas inactive enzyme decayed more slowly with a 

half-life of 18h [Schröder and Schäfer, 1980]. Inactive CHS could be detected by CHS 

antibodies and the size of the protein was not changed. In another study about 

accumulation of CHS during UV induction, Chappell and Hahlbrock (1984) concluded 

that the accumulation of flavonoid end products is presumably determined by activity of 

the rate-limiting step(s) in flavonoid biosynthesis and may not precisely reflect the 

dynamics of CHS activity in vivo. 
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1.3.3. Control of CHS through trans-gene 

The activity of CHS can be controlled by antisense or sense genes. The studies on 

expression of antisense genes in Petunia [e.g. Van der Krol et al., 1988; Van der Meer 

et al., 1993], tobacco [Wang et al., 2006], Gerbera hybrida [Elomaa et al., 1996] and 

Arabidopsis [Le Gall et al., 2005] have shown that the presence of antisense CHS could 

inhibit the expression of the endogenous CHS in plants. In flowers of antisense CHS 

transgenic Petunia, the antisense construct was able to inhibit expression of the 

endogenous CHS genes to varying degrees, which is observed phenotypically as an 

inhibition of anthocyanin production to give completely acyanic or patterned flowers. In 

the cyanic sectors and flowers, transcripts of the endogenous CHS genes were under the 

detection limit, but the antisense transcripts were also barely detectable [Van der Krol, 

1990b]. The antisense effect most likely involves homologous pairing between the 

transcripts of endogenous CHS genes and transcripts of the introduced antisense CHS 

gene to form double stranded RNA that is very rapidly degraded, thus inhibiting CHS 

transcript accumulation and hence CHS activity. 

Introducing a heterologous CHS gene in sense orientation can inhibit CHS activity in 

transgenic plants. This phenomenon is called co-suppression since it involves the 

reduction of transcriptional level of both endogenous and introduced genes in tissues 

where the endogenous gene is normally expressed [Napoli et al., 1990; Jorgensen 

1995]. This is known as gene silencing in which the transgene triggered not only its own 

silencing but also the endogenous chalcone synthase gene [Hammond et al., 2001]. But 

on the other hand the introduced CHS gene may be expressed to high levels in tissue 

where the endogenous CHS genes are not expressed, such as in leaves of Petunia [Van 

der Krol et al., 1990a]. Some studies have shown that co-suppression correlates with 

DNA methylation of the silenced sequences, presumably leading to a blockade at the 

transcriptional level or/and failure of transcript to accumulate in the cytoplasm resulting 

in a lack of enzyme activity [Ingelbrecht et al., 1994, Furner et al., 1998; Amedeo et al., 

2000]. Nowadays, the molecular mechanism of co-suppression of gene expression is 

thought to be related to the RNAi mechanism [Hannon, 2002] 

 

 



Chapter 2   

17 

2.4. Control of CHS gene expression 

In Arabidopsis, parsley, and snapdragon only a single copy of the CHS gene has been 

found. In most angiosperms CHS has been shown to be encoded by a multigene family, 

such as in petunia (violet 30) [Koes et al., 1987], morning glories (Ipomoea) [Durbin et 

al., 2000], Gerbera [Helariutta et al., 1996], leguminous plants [Ryder et al., 1987; 

Wingender et al., 1989; Ito et al., 1997], and Cannabis sativa [Sanchez et al., 2008]. 

2.4.1. Regulation of CHS gene expression 
Many studies have shown that the CHS gene is constitutively expressed in flowers, but 

also its expression can be induced by light/UV light and in response to phytopathogens, 

elecitors or wounding in different parts of the plant, resulting in enhanced production of 

flavonoids [Koes et al., 1987; Ryder et al., 1984; Bell et al., 1986; Ryder et al., 1987; 

Burbulis et al., 1996]. CHS expression is also regulated by the circadian clock [Thain et 

al., 2002].  

The level of CHS gene expression is reflected by the level of the CHS transcripts in 

plant cells. In order for transcription to take place, the RNA polymerase II must attach 

to specific DNA sequences in the CHS promoter in the vicinity of the TATA box and 

must be activated by specific DNA-binding proteins (transcription factors) binding to 

response elements further upstream in the promoter. The CHS promoter was studied 

extensively in Phaseolus vulgaris, Antirrhinum, Arabidopsis, and parsley [Dixon et al., 

1994; Faktor et al., 1997a, b; Feinbaum et al., 1991; Lipphardt et al., 1988].  

The CHS promoter contains the nucleotide sequence CACGTG regulatory motif known 

as G-box, which has been found to be important in the response to light/UV light 

[Kaulen et al., 1986; Staiger et al., 1989; Dixon et al., 1994; Schulz et al., 1989]. 

Besides the G-box there are other domains in the CHS promoter involved in the light 

activation of CHS transcription. Those domains have been identified in the parsley CHS 

promoter as Box I, Box II, Box III, Box IV or three copies of H-box (CCTACC) in the 

Phaseolus vulgaris CHS15 promoter. These boxes play a role as core promoter together 

with the G-box and all are required for light inducibility [Lawton et al., 1990; 

Weisshaar et al., 1991; Block et al., 1990].   

The environmental and developmental control of CHS transcription has been 

investigated for the CHS15 bean gene (Figure 2.4) [Dixon et al., 1994; Harrison et al. 
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1991]. The sequence elements required for transcriptional activation of the CHS15 gene 

in response to fungal elicitors and glutathione are contained in a 130 bp region of the 

promoter [Dron et al., 1988; Choudary et al., 1990; Harrison et al., 1991]. This region 

contains a G-box and H-box III. There is a silencer element located between positions -

326 and -173 of the CHS15 promoter [Dron et al., 1988]. No trans-acting factors were 

found that could bind to cis elements in this region but the region reduced expression of 

CHS [Harrison et al. 1991]. An enhancer element was found in the Antirrhinum CHS 

promoter. It is located in the region between -564 and -647 and increased CHS gene 

expression in roots, stems, leaves, and seeds but not in petal tissue [Fritze et al., 1991].  

The Petunia CHSA promoter was studied by van der Meer et al. (1990, 1993) to 

understand the role of the promoter in tissue-specific CHS expression. The studies 

showed that the promoter sequence between +1 and -67 confers flower specific CHS 

gene expression. Another study on the Antirrhinum CHS promoter has shown that the 

sequences between +1 and -39 allow CHS expression in root and stems, whereas 

sequences between -39 and -197 are required for expression in petals and seeds [Fritze 

et al., 1991]. 

The regulators of CHS in plants are controlled by some specific loci. In maize, there are 

four loci, cl, r, vp, and clf, involved in the regulation of CHS expression [Dooner, 1983]. 

Multiple regulatory loci for CHS expression have also been described for the petunia 

regulatory mutant Red Star. The phenotype of this mutant of red and white sectors in the 

flower petals is thought to depend on at least four regulatory genes, all of which regulate 

CHS expression in trans [Mol et al., 1983]. In the CHS gene family of Phaseolus 

vulgaris, the regulation is via the a and a2 loci though they regulate different CHS 

members in different ways. The CHS genes might have different combinations of cis 

elements that determine their response to the products of these regulatory loci. The 

expression of CHSl in flower tissue has an absolute requirement for the products of both 

the a and a2 loci, whereas, in root tissue, the products of these loci are not required. It is 

possible that the CHSl gene interacts with one or more factors present in roots, which 

are absent in flowers, that can substitute for the products of the a and a2 loci. CHS3 

expression in flower tissue is more complicated: it requires the product of the a2 locus, 

but has a lower level of expression in a mutants compared with wild type. This suggests 

that CHS3 interacts with both the a2 and a locus products, but, unlike the CHSl gene, it 
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may also interact with other products, allowing transcription at a low level in a mutants. 

CHS2 is expressed in roots but not in petal tissue, suggesting that it may not be able to 

interact with the products of a and a2 loci in petal tissue [Harker et al., 1990].  
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Figure 2.4. Bean CHS15 promoter and regulators 

SBF: silencer binding factor, H: H-Box (CCTACC), G: G-Box (CACGTG), a/a2 regulation loci 

1.4.2. Transcription factors involved in of CHS gene expression 
Trans-acting factors of bean CHS15 that bind to two short sequences centered on the G-

box and H-box also make major contributions to the in vivo transcription of the 

promoter [Arias et al., 1993, Yu et al., 1993]. Trans activation required both a MYB-

binding site and a G-box like element [Sablowski et al., 1994]. MYB305, one of the 

MYB-like proteins that have been implicated in the transcriptional control of tissue-

specific CHS gene expression, is also recognized by a cis element of the light-regulatory 

unit 1 (LRUI) of CHS in parsley [Feldbrügge et al., 1997]. G-box/H-box binding factor 

1(G/HBF-1), a basic leucine zipper (bZIP) protein, that binds to both the G-box and the 

adjacent H-box in the proximal region of the CHS15 bean promoter, is rapidly 

phosphorylated in elicited soybean cells, this happen also to the CHS15, CHS7, and 

CHS1 promoter [Dröge et al., 1997; Yoshida et al., 2008]. Protein and mRNA levels of 

G/HBF-l do not change during the induction of CHS genes following pathogen attack 

[Yoshida et al., 2008] but CHS gene expression is strongly stimulated following 

phosphorylation responding to fungal elicitor treatment in vitro [Dröge et al., 1997]. 
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2.5. CHS localization and dynamics 

The CHS protein in buckwheat (Fagopyrum esculentum) hypocotyls is located in the 

cytosol and associates with the cytoplasmic face of the rough endoplasmic reticulum 

(rER), but not with nuclei, plastids, mitochondria, Golgi, or tonoplasts [Hrazdina, 1992]. 

Saslowsky et al., [2001] examined the subcellular location of CHS and CHI in 

Arabidopsis roots. High levels of both enzymes were found in the epidermal and cortex 

cells of the elongation zone and the root tip, consistent with the accumulation of 

flavonoid endproducts at these sites. Co-localization of CHS and CHI was observed at 

the endoplasmic reticulum and tonoplast in these cells. 

However, there is evidence that flavonoids located in the nucleus may be synthesized in 

situ [Saslowsky et al., 2001]. Several recent reports describe the accumulation of 

flavonoids in the nucleus in such diverse species as Arabidopsis thaliana, Brassica 

napus, Flaveria chloraefolia, Picea abies, Tsuga Canadensis, and Taxus baccata 

[Hutzler et al., 1998; Kuras et al., 1999; Buer et al., 2004; Grandmaison et al., 1996; 

Feucht et al., 2004; Peer et al., 2001]. For the enzymes of the flavonoid pathway, 

several mechanisms may be involved. In the cytoplasm, flavonoid enzyme complexes 

are believed to assemble at the ER and in electron dense particles through the 

association of operationally-soluble enzymes such as CHS and CHI with the membrane-

bound P450 hydroxylase, flavonoid 3’-hydroxylase [Saslowsky et al., 2001; Hrazdina et 

al., 1985]. CHS possesses sequences resembling a classic nuclear localization signal 

(NLS). This signal is located on the surface, on the opposite side of the protein from the 

dimerization interface and could function to direct CHS, and perhaps associated 

enzymes into the nucleus. The localization of end products such as flavonol sulfate 

esters and flavan-3-ols to the nucleus suggests that additional flavonoid enzymes are 

also present in the nucleus [Grandmaison et al., 1996; Feucht et al., 2004].  

There is an immuno gold-labeling study in grape berry showing that CHS was localized 

in rough endoplasmic reticulum (ER) and cytoplasm of the skin cells, while few gold 

particles were found on the cell wall. Besides, two novel sites of CHS were observed 

within cells of developing grape berry, one is in the plastids which remain unchanged 

throughout all stages of berry development. At the ripening stage of grape berry, CHS is 

present in the vacuole and in the vacuole membrane (tonoplast) [Tian et al., 2008]. It is 
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suggested that in grape berries, the synthesis of flavonoids in the ripening stage may 

occur in the vacuole. 

2.6. CHS activity in plant resistance 

In nature plants are exposed to a variety of biotic and abiotic stresses. Viruses, bacteria, 

fungi, nematodes and other pests attacking plants are biotic stresses, while light, 

temperature, wounding, drought, etc. are abiotic stresses. During stress conditions a 

plant is expressing a number of genes as part of its defense. Among these genes, CHS is 

quite commonly induced in different plant species under different forms of stress like 

UV, wounding, herbivory and microbial pathogens resulting in the production of 

compounds that have e.g. antimicrobial activity (phytoalexins), insecticidal activity, and 

antioxidant activity or quench UV light directly or indirectly. The current knowledge 

about regulation of CHS in plant pathogen resistance is presented in Table 2.2. 

2.6.1. Phytoalexins  
Phytoalexins are antimicrobial metabolites produced by plants in response to microbial 

attack (or biotic and abiotic elicitors) [Dixon et al., 1986]. Phytoalexins come from 

many different metabolite classes such as flavonoids, stilbenoids, sesquiterpenoids, 

steroids and alkaloids. CHS can help the plant to produce more flavonoids, 

isoflavonoid-type phytoalexins and other related metabolites to protect it against stress. 

Accumulation of flavonoids and isoflavonoids in response to pathogen attack is seen in 

many plant species, and their importance as antimicrobial phytoalexins is well 

established [Matthews et al., 1989; Van Etten et al., 1976]. Flavonoid phytoalexins have 

been described in legumes, cereals, sorghum, rice, Cephalocereus senilis, Beta vulgaris 

[Hipskind et al., 1990; Kodama et al., 1992; Pare et al., 1992; Johnson et al., 1976]. 

Some isoflavonoids were increased in Lupin luteus after infection with Fusarium 

oxysporum such as genistein, wighteone and luteon [Morkunas et al., 2005]. The 

isoflavones, daidzein, genistein and glycitein, in soybean were strongly increased after 

infection by Sclerotinia sclerotiorum [Wegulo et al., 2005]. Stilbenes are known as the 

phytoalexins in peanut [Ingham, 1976] and grapes [Langcake and Pryce, 1977a, b]. 

There is also evidence that stilbene synthase (STS) has developed from CHS several 

times in the evolution [Tropf et al., 1994]. 
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2.6.2. Phytoanticipins  

Van Etten et al., [1995] defined phytoanticipins as low molecular weight, antimicrobial 

compounds that are constitutively expressed in plants without the need for infection 

with fungal pathogens or are produced after infection solely from preexisting 

constituents. The distinction between phytoalexins and phytoanticipins is not always 

clear as some compounds may be phytoalexins in one species and phytoanticipins in 

another species. Phytoanticipins also are classed into several chemical groups such as 

flavonoids, terpenoids, steroids, glucosinolates, and alkaloids.  

The flavonoid epicatechin plays an important role as phytoanticipin in avocado fruits 

[Guetsky et al., 2005,] and antimicrobial isoflavones desmodianones A, B and C have 

been isolated from Desmodium canum [Monache et al., 1996]. Anthocyanins as 

products of the flavonoid metabolism are, for example responsible for the red to purple 

and blue colors of many fruits, vegetables, flowers, and cereal grains. In plants they 

serve as attractants for pollination and seed dispersal, give constitutive protection 

against the harmful effects of UV irradiation, and as phytoanticipins provide antiviral 

and antimicrobial activities in plants [Wrolstad, 2000]. Genotypes of Ipomoea purpurea 

with nonfunctional copies of chalcone synthase (CHS) received greater herbivore 

damage and twice the intensity of infection by the fungal pathogen Rhizoctonia solani 

than the wild type [Zufall and Rausher, 2001]. 

2.6.3. Light protection 

Phenolic compounds like flavonoids strongly absorb UV light and thus are able to 

protect plants from DNA damage caused by UV. Anthocyanins belong to a class of 

flavonoids that accumulate in leaves and stems as plant sunscreen in response to light 

intensity [Leyva et al., 1995]. Expression of CHS genes is known to be regulated by 

light through a photoreceptor-mediated mechanism [Koes et al., 1989]. In several cases, 

it was found that the photoregulated production of flavonoids is at least in part due to 

the transcriptional induction of CHS [Chappell and Hahlbock, 1984; Feinbaum and 

Ausubel, 1988; van Tunen et al., 1988; Taylor and Briggs, 1990). Examination of CHS 

expression in parsley cell culture suggested that a UV-B light receptor, a blue light 

receptor and phytochrome may all play a role in light-induced CHS expression [Bruns et 

al., 1986; Ohl et al., 1989). 
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High intensity light and UV-A were found to regulate expression of chimeric chalcone 

synthase genes in transgenic Arabidopsis thaliana plants [Feinbaum et al., 1991]. High-

intensity light treatment of A. thaliana plants for 24 h caused a 50-fold increase in CHS 

enzyme activity and an accumulation of visibly detectable levels of anthocyanin 

pigments in the vegetative structures of these plants [Feinbaum et al., 1988]. The 

expression of CHS genes was increased with time during a 24 h exposure to UV-A on 

swollen hypocotyls of the red turnip ‘Tsuda’ and induced anthocyanin accumulation 

[Zhou et al., 2007]. The flavonoids accumulate in epidermal cells of the leaves and it is 

specifically in these cells that CHS gene expression is induced by light stimuli 

[Schmelzer et al., 1988]. However, in mustard the expression of two CHS genes is 

induced coordinately in seedlings grown in a dark environment for 36-42 hours, though 

this induction is enhanced by supplying red or far red light [Ehmann et al., 1991]. 

2.6.4. Auxin and jasmonic acid signaling  
In plant increase of CHS activity causes a high accumulation flavonoid level that inhibit 

polar auxin transport [Jacobs and Rubery, 1988; Faulkner and Rubery, 1992; Brown et 

al., 2001]. Inhibitors of auxin transport could increase the resistance of tomato plants to 

Fusarium oxysporum [Davis et al., 1954]. Also other research showed that CHS is 

expressed in the nodule primordium and later primarily in uninfected cells of the nodule 

apex in Rhizobium infected legumes. This may explain the induction of nodule on 

infected legume roots, higher accumulation of flavonoids blocks auxin transport, 

causing a local accumulation of auxin, a growth hormone, which caused the induction 

of nodule growth and development [Estabrook and Sengupta, 1991; Yang et al., 1992].  

Jasmonic acid and its esters, such as methyl jasmonate (MeJA) are a group of plant 

hormones having a signaling role in insect and disease resistance [Xu et al., 1994]. They 

could activate CHS in soybean and parsley cell cultures [Creelman et al., 1992] and 

Picea glauca [Richard et al., 2000]. It is thought that volatile jasmonates are released 

from wounded tissue; thus elicitating plants to activate CHS which cause a production 

of phytoalexins in advance to resist an infection. 
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2.7. Conclusion 

CHS is known as the key entry enzyme commited to the production of the polyketide 

phenylpropanoids in plants. The product of CHS activity, naringenin, is the starter of a 

large variety of secondary metabolites such as flavonoids, isoflavonoids, anthocyanins, 

and phloroglucinols. These multi-functional compounds serve diverse functions in 

different plant species, e.g. as pigments, phytoalexins, UV protectants, signal molecules 

in plant-microbe interactions, antioxidants, and pollinator attractants or feeding 

deterrents. In other words these unique plant compounds play a major role in the 

interaction of plants with their environment. Besides that, many flavonoids are active 

principles of medicinal plants and exhibit pharmacological effects [De Bruyne et al., 

1999; Kong et al., 2003: Marles et al., 2003; Yilmaz and Toledo, 2004].  

With the advent of reverse-genetic tools and molecular cloning, one may develop CHS 

transgenic plants and eventually thus open new avenues to better understand the 

flavonoid biosynthesis pathways and their functions in plant resistance. Eventually this 

may lead to breeding or engineering of plants with an improved resistance or better 

consumer quality, e.g. healthier food. 
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Chapter 3  

Agrobacterium -mediated transformation of 
Arabidopsis thaliana with Cannabis sativa cDNA 

encoding chalcone synthase  

T.T.H. Dao1, 2, H.J.M. Linthorst 3 and R. Verpoorte1 

1 Section Metabolomics, Institute of Biology, Leiden University, Leiden, The Netherlands 
2 Traditional Pharmacy Department, Hanoi Pharmacy University, Hanoi, Vietnam 

3 Section Plant Cell Physiology, Institute of Biology, Leiden University, Leiden, The Netherlands 

Abstract 

The cDNA encoding chalcone synthase from Cannabis sativa was introduced into 

Arabidopsis thaliana Col. 0 via Agrobacterium tumefaciens-mediated transformation. 

This method involved the use of floral dip with disarmed Agrobacterium strain 

LBA4404 containing a plasmid in which the T-DNA region carries the CaMV 35S 

promoter driven CHS gene, as well as hptII encoding hygromycin phosphotransferase 

and the gene encoding the GFP protein. Twenty one transgenic Arabidopsis lines (ACS 

1 - 21) were collected and six of them were subjected to molecular analysis. The results 

indicate that the exogenous gene was successfully integrated into the genome and 

expressed in Arabidopsis thaliana plants. All of the six transgenic lines contained multi 

copies of the CHS gene. 

Key words: Arabidopsis thaliana, Agrobacterium tumefaciens, chalcone synthase, 

transformation. 
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3.1. Introduction 

Chalcone synthases are a family of polyketide synthase enzymes (CHS) catalyzing the 

first reaction in the flavonoid pathway yielding chalcones, a class of organic compounds 

found mainly in plants as natural defense compounds and as biosynthetic intermediates. 

In plant, these compounds serve as antibacterial, antifungal and antitumor and anti-

inflammatory activities. Chalcones are also intermediates in the biosynthesis of 

flavonoids, which are substances widespread in plants, with a wide array of biological 

activities.  

Expression of the CHS gene has been well studied in a number of plant species. The 

expression can be quite differently regulated. E.g., in early developmental stages this 

enzyme is present in leaf tissue [Knogge et al., 1986], while in adult Petunia plants 

CHS is limited to floral tissue [Koes et al., 1986; Koes et al., 1989]. Environmental 

stress, such as UV light, phytopathogens and elicitors, or wounding may lead to an 

induction of CHS gene expression [Koes et al., 1989; Winkel, 2002]. CHS genes are 

involved in the biosynthesis of a number of different plant metabolites such as 

flavonoids, anthocyanins, isoflavonoids and prenylated phenolics. These compounds 

play important roles in the interaction of plants with the environment. Different 

substituted cinnamic acid derivatives are the pool from which the enzyme CHS taps the 

intermediates for the above-mentioned compounds. Moreover cinnamic acid deverivates 

are precusors for lignin, lignans, coumarins, chlorogenic acids and other esters of 

cinnamic acid. CHS is encoded by a gene family of between 4–8 members in many 

legume species, such as Phaseolus vulgaris [Ryder et al., 1987], Glycine max 

[Estabrook et al., 1991; Wingender et al., 1989], Medicago sativa [Dalkin et al., 1990, 

Junghans et al., 1993], and Pisum sativum [An et al., 1993; Harker et al., 1990], 

whereas Arabidopsis thaliana contains only one CHS gene in its genome [Feinbaum et 

al., 1988]. Arabidopsis thaliana has one of the smallest genomes among plants, and its 

genome is completely sequenced. Because of its rapid life cycle it is an important model 

plant for studying the function of genes. Because of those reasons, Arabidopsis thaliana 

was chosen as model to study CHS gene expression in the plant. The Agrobacterium-

mediated transformation of Arabidopsis using the “floral dip” method is a routine 

protocol [Clough and Bent, 1998]. This method involves simply dipping a flower into a 
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solution containing Agrobacterium tumefaciens bearing the DNA of interest, thus 

avoiding the need for tissue culture or plant regeneration.  

So far, most studies of CHS in plants considered only molecular aspects of gene 

expression, only few studies have been done on the effects of CHS on the plant 

metabolome and plant physiology [Koes et al., 1989; Winkel, 2002, Le Gall et al., 

2005; reviewed in Chapter 2]. Previously, we cloned a polyketide synthase (~1.2Kb) 

from Cannabis sativa young leaves. By expression of the cDNA encoding CHS in 

Escherichia coli the gene product was shown to have CHS activity [Raharjo et al., 

2004]. In the present study, we investigated the effect of the overexpressed CHS on the 

biosynthesis pathways in A. thaliana plants.   

3.2. Materials and Methods 

3.2.1. Plant materials  

Arabidopsis thaliana ecotype Col-0 seeds were obtained from the section Plant Cell 

Physiology (IBL, Leiden Universiy, The Netherlands) and were used throughout the 

study. Seeds were sown on a mixture of vermiculite, peat moss, and perlite 2:1:1 (by 

vol.). The pots were placed at 4°C for 4 days in the dark and transferred to a growth 

chamber at 21°C and long day conditions (16/8 h light/dark cycle). When the primary 

inflorescence reached 5 to 10 cm, plants were clipped to favor the growth of multiple 

secondary bolts. 

For the molecular experiments, the samples (leaves of transgenic and non-transgenic 

plants) were collected, frozen immediately into liquid nitrogen and kept at -80oC. 

3.2.2. Transformation vectors 

A. 
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B.  

 

 

 

 

 

Figure 3.1. A. Subcloning vector pMOG843, B. Transformation vector pCAMBIA 1302-sGFP. 

chs cDNA transgene was subcloned in pMOG843 in position between HindIII and KpnI 

restriction site then CHS containing the  PotPI and 35S promoter was constructed in the 

polylinker site of pCAMBIA1302-sGFP  

3.2.3 Vector construction and plant transformation 

To generate chs overexpression constructs, the coding region of chs cDNA [Raharjo et 

al. 2004] was obtained by PCR using primers containing restriction sites KpnI and 

HindIII, respectively, and was ligated into the pGEM-T easy vector (Promega). The 

vector was then digested using a KpnI/HindIII double digestion, and the resulting DNA 

was subcloned into the pMOG843B (Fig. 3.1A) behind the 35S promoter. Subsequently, 

the XbaI/EcoRI digested 35S:CHS:PotPI terminator fragment was cloned into the 

pCAMBIA1302-sGFP (Fig. 3.1B) and transformed into Agrobacterium LBA4404. 

Plasmid vector pCAMBIA1302-sGFP also contains hptII encoding hygromycin 

phosphotransferase and a gene encoding the GFP protein, which permits easy detection 

of transformed plantlets. All DNA manipulations were according to standard procedures 

[Sambrook et al., 1989], and the chs coding region and the junction sequences were 

confirmed by DNA sequencing.  

The PCR conditions were following: one µl chs plasmid DNA was used as template for 

PCR using CHSR and CHSF primers (Table 3.1), PCR was performed with a Perkin 

Elmer DNA Thermal Cycler 480 with the following parameters: 30 sec at 95OC, 1 min 

at 50OC, 1 min at 72OC, 30 cycles. The final step was an extension at 72OC for 10 min. 
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Transformation of Arabidopsis was according to the floral dip method [Clough and 

Bent, 1998] using Agrobacterium tumefaciens LBA4404 with minor modifications. 

Transgenic plants were selected on half MS medium containing 25mg/l hygromycin. 

Fluorescence of GFP protein in transgenic Arabidopsis was visualized by using an 

inverted Axiovert Zeiss 100 M microscope (Zeiss, Jena, Germany). After further 

selection of transgenic lines with a 3:1 segregation ratio, T3 or T4 homozygous lines 

were used for the phenotypic investigation. 

3.2.4. Extraction of DNA 
Approximately 100 mg of leaf tissue from transgenic and non-transgenic plants was 

ground to a fine powder under liquid nitrogen. DNA was isolated by using a DNAeasy 

Plant Mini kit (Qiagen Inc., Valencia, CA) according to the manufacturer’s instructions. 

Each DNA sample was dissolved in 50 µL sterile ddH2O, and 2 µL of DNA solution 

was used for each real-time PCR. DNA was quantified by spectrophotometric 

measurements. 

3.2.5. Extraction of RNA and RT-PCR 
Total RNA was extracted from the frozen samples by using the Plant RNeasy extraction 

kit (Qiagen, The Netherlands). To remove residual genomic DNA, the RNA was treated 

with an RNase-free DNaseI according to the manufacturer's instructions (Qiagen). The 

concentration of RNA was measured by spectrophotometer, and 5 µg of total RNA was 

separated on 1.2% formaldehyde agarose gel to check the concentration and to monitor 

integrity. RT-PCR was employed to detect the expression of chs in the transgenic 

Arabidopsis plants. A 500 ng sample of total RNA was used in the RT-PCR reaction. 

3.2.6. Northern blot analysis 
Total RNA (30 µg) was used for each experiment. Denatured RNA was subjected to 

electrophoresis through a 1.2% agarose/formaldehyde gel in MOPS buffer [Sambrook et 

al., 1989] and then transferred onto a nylon membrane as described by Sambrook et al.. 

The RNA-labelled probes were synthesized using digested pCAMBIA-CHS, T7 (or T3) 

polymerase (Gibco-BRL) and 32P UTP using the Riboprobe Gemini II core system kit 

(Promega). 
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RNA quantification was achieved by ethidium bromide staining. This experiment was 

repeated with different RNA extracts with the same RNA quantity and similar patterns 

were obtained for each analysis. 

3.2.7. Quantitative real-time PCR and calculation methods 
Quantitative real-time PCR was performed on a Chromo4 Real-Time PCR Detector 

system (Bio-Rad laboratories). Samples were amplified in a 50 µl reaction containing 

1× SYBR Green Master Mix (Eurogentec, Maastricht, The Netherlands) and 300 nM of 

each primer. The thermal profile consisted of 1 cycle at 95°C for 5 min followed by 40 

cycles at 95°C for 0.5 min, at 58°C for 0.5 min and 72°C for 1 min.  

Changes in gene expression and copy number of the transgene as a relative fold 

difference between transgenic samples and control ones were calculated using the 

comparative Ct (2-∆∆Ct) method [Livak et al. 2001; Winer et al. 1999; Ingham et al., 

2001; Schmittgen et al., 2000]. Actin3 gene was used as a reference gene for 

normalization.  To exclude the DNA genomic contamination in the total RNA samples, 

the intron actin was used as a reference matrix. 

Final copy number was calculated according to the following equation. 

Copy number = 2-ΔΔCt where, ΔΔCt = ΔCt (unknown sample) – ΔCt (reference). 

In the copy number of transgenes experiment, the reference Ct is the Ct of 4-

Hydroxyphenylpyruvate Dioxygenase gene (4HPPD) from Arabidopsis, because it has 

only a single copy in the Arabidopsis genome [Garcia et al., 1999]. 

The PCR primer sets for real-time PCR are shown in Table 3.1. 

Table 3.1. PCR primer sets                                                                                                                                                    

Primer name Sequence 
CHSR                                                     5’ CGCGGATCCGGTACCGTGGAGGAATTTC 3’ 
CHSF 5’ CGCGGATCCCTAAATAGCCACACTGTGAAGG 3’ 
qCHSR 5’ CTATTGGTGATCCTGAAGTAGTAATCC 3’ 
qCHSF 5’ ACCGTGGAGGAATTTCGCAAGG 3’ 
4HPPDR 5’ TCATCCCACTAAATGTTTGGCTTC 3’ 
4HPPDF 5’ GTGTCTATCGTTAGCTTCTACAGC 3’ 
ACTINR 5’ CAGCGATACATGAGAACATAGTGG 3’ 
ACTINF 5’ CCTCATGCCATCCTCCTGCT 3’ 
ACTINF-uni 5’ AGTGGTCGTACAACCGGTATTGT 3’ 
ACTINR-7 5’ GAGGAAGAGCATACCCCTCGTA 3’ 
ACTINF-7 5’ GTTGTACATGTGTAAGACTACTGATCATG 3’ 
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3.2.8. Reagents 
Oligonucleotide primers were purchased from Isogen Benelux (IJsselstein, The 

Netherlands). Nucleoside triphosphates were purchased from Roche Molecular 

Biochemicals (Indianapolis, IN, USA). Invitrogen (Breda, The Netherlands) provided 

restriction endonucleases. All PCR and ligation reagents were purchased from Promega 

(Leiden, The Netherlands). Miniprep, plant genomic extraction, RT-PCR, and PCR 

product purification kits were purchased from Qiagen (Venlo, The Netherlands). 

Bacterial and plant growth media components were all purchased from Gibco-BRL 

(Breda, The Netherlands), Sigma-Aldrich (Zwijndrecht, The Netherlands). 

3.3. Results and discussions 

3.3.1. Transformation 

The binary vector suitable for A. tumefaciens-mediated transformation was prepared 

with full-length Cannabis sativa chs-cDNA [Raharjo, 2004]. This binary vector named 

chs-pCAMBIA contains the chs coding region under the control of the constitutive 

CaMV-35S promoter. The construct also contains the hygromycin phosphotransferase 

(HPT) gene and the green fluorescent protein (GFP) reporter gene. Arabidopsis flowers 

were inoculated with a suspension of hypovirulent A. tumefaciens when numerous 

immature floral buds and only a few siliques were present. This method is simple and a 

high rate of transformed plants can be obtained.  The transformation was successful and 

twenty one transgenic Arabidopsis lines were established and named ACS1- ACS21. 

Amongst these six transgenic lines (ACS1, ACS2, ACS3, ACS14, ACS20, and ACS21) 

were selected randomly for further molecular analysis. 

3.3.2. Transgene expression experiments 
ACSs were selected in half MS containing Hygromycin (25 mg/ml). Expression of GFP 

protein in ACSs can be detected in 5 days old seedlings (Figure 3.2). Figure 3.2A 

shows an ACS plantlet with high expression of GFP protein; GFP protein is present in 

all plant tissues. Figure 3.2B shows a plantlet with low expression of GFP, in which the 

GFP protein is only visible in the trichomes. 
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A.     B. 

 

 

 

 

 

 

Figure 3.2. A. Transformed Arabidopsis with high GFP expression, B. Transformed Arabidopsis 

with low GFP expression  

Common genetic transformation methods such as Agrobacterium–mediated 

transformation frequently result in multiple transgene copies at the same or different 

integration sites [Kohli et al., 1998; Srivastava et al., 1999, De Neve et al., 1997; De 

Buck et al., 1999; Tzfira et al., 2006]. In transformed plants, the first step to be done is 

to estimate how many copies of the transgene have been integrated in the plant genome 

because this may influence the level of transgene expression and the ease of stabilizing 

expression in following generations. This can be measured by Southern blot analysis, 

but in this study we used Real-time PCR to estimate the gene copy number in our 

transgenic plants. This method has shown to be a reliable tool for such analyses [Li et 

al., 2004, Yuan et al., 2007, Mitrecic et al., 2005].  

 In the real-time PCR assay, DNA samples from a CHS transgenic plant were serially 

diluted 2-fold to obtain a standard curve. Standard curves for the endogenous Actin3 

gene the CHS transgene and reference gene (4HPPD) were produced by using Opticon 

Monitor Continuous Flourescence Detector software (Figure 3.3). The correlation (R) 

between Ct value and logDNA concentration was 0.99 for the Actin gene, CHS transgene 

and reference gene. The DNA concentration was linear with respect to gene copy 

number. The results confirm the linear relationship between Ct value and logDNA 

concentrations, thus making the Ct value a reliable way to quantify DNA amount to 
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estimate gene copy number as both genes amplify with approximately equal efficiencies 

and  always constant regardless of DNA concentration. 

Table 3.2.  Estimated CHS copy number from real-time PCR 

 
All transgenic plant lines showed multicopies of the transgene. Multiple transgene 

copies may cause a higher expression of mRNA or even cause transgene silencing 

[Flavell, 1994; Iyer et al., 2000; Vaucheret et al., 1998] so we used northern blot 

analysis to detect the expression level of the cannabis CHS transgene in all six 

transgenic plant lines. The results showed that the steady-state level of GFP-mRNA was 

slightly induced in ACS1, 3 and 20 and strongly induced in ACS2, 14 and 21 but 

unfortunately we were not able to detect chs mRNA on the northern blots (results not 

shown). Apparently, the steady-state levels of chs-mRNA expression are low in the 

transgenic Arabidopsis lines. Therefore, we used RT-PCR and real-time PCR to detect 

and quantify levels of chs-mRNA expression in transgenic Arabidopsis. 

The RT-PCR result is presented in Figure 3.4. It shows that chs-mRNA is present in all 

ACS lines (Figure 3.4A) and no genomic DNA contamination was detected in RNA 

samples (Figure 3.4B). Thus only expression of the gene is measured. The chs-mRNA 

expression levels were quantified and can be seen in Figures 3.5. The expression levels 

are very low in transgenic line 2 whereas transgenic line 1 and lines 20 have high 

expression levels (Figures 3.5). 

 

 

Transgenic line Estimated Copy Number by Real-Time PCR 

ACS 1 7-8 

ACS 2 5 

ACS 14 3-4 

ACS 20 7 

ACS 21 5 
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Figure 3.3. Efficiency of duplex real-time PCR for detection and quantitation of Actin and CHS 

DNA from a transgenic plant or a nontransgenic plant was diluted serially 2-folds. 
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Figure 3.4. A.  Qualitative analysis of CHS  gene expression by RT-PCR, B. Analysis of genomic 

DNA contamination in mRNA samples by PCR 

 
Figure 3.5. chs-mRNA expression levels optimized by Real-time PCR  

3.4. Conclusions 

Among 21 CHS transgenic Arabidopsis lines, 6 lines (ACS 1, ACS 2, ACS 3, ACS 14, 

ACS 20, and ACS 21) were analysed for their transcriptional and genomic levels. We 

found that chs-mRNA was expressed in all 6 transgenic lines and all contain 

multicopies of CHS. The metabolic changes due to the transformation will be studied in 

these lines. 
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Chapter 4  

Chalcone synthase protein expression in CHS 
transgenic Arabidopsis 

T.T.H. Dao1, 2, H.K. Kim1, H.J.M. Linthorst 3 and R. Verpoorte1 

1 Section Metabolomics, Institute of Biology, Leiden University, Leiden, The Netherlands 
2 Traditional Pharmacy Department, Hanoi Pharmacy University, Hanoi, Vietnam 

3 Section Plant Cell Physiology, Institute of Biology, Leiden University, Leiden, The Netherlands 
 

Abstract   

Chalcone synthase is the enzyme responsible for the production of chalcones, which are 

precusors for a large range of flavonoids and related compounds. In order to confirm the 

expression of CHS in the CHS transgenic Arabidopsis, five transformants were checked 

by immunoblot assay and two of them were examined by an enzyme activity assay. 

Western blot analysis showed that CHS was expressed in all transformants. High 

performance liquid chromatography analysis showed that the activity level of 

endogenous CHS in Arabidopsis wild type (WT) line was less than that of the 

transgenic Arabidopsis ACS 20 line, whereas CHS activity of transgenic line ACS 2 

was similar to the WT line.  

 Key words: chalcone synthase, Arabidopsis, protein assay, HPLC, naringenin. 
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4.1. Introduction 

In plants, chalcone synthase is expressed under stress condition such as pathogen attack, 

UV light or during early development stages [Dixon et al., 1995, Estabrook et al., 

1991]. Chalcone synthase (EC 2.3.1.74), known as a type III polyketide synthase (PKS), 

is the key enzyme in the flavonoid biosynthesis and catalyses the reaction of one 

molecule of p-coumaroyl-CoA and three molecules of malonyl-CoA to yield 4,2’,4’,6’-

tetrahydroxychalcone (naringenin chalcone) the precursor for a large number of 

flavonoids [Weisshaar, 1998]. Naringenin chalcone is converted to naringenin by 

chalcone isomerase but can also be converted non–enzymetically to narigenin 

[Hahlbrock et al., 1979; Mol et al., 1985; Sankawa et al., 1997; Schröder et al., 1997]  

A major goal of plant biotechnology is the production of genetically engineered crops 

that express natural or foreign functional proteins at high levels. A previously cloned 

Cannabis CHS gene (~ 45kDa) was overexpressed in E coli, and showed a chalcone 

synthase activity [Raharjo et al., 2004]. In previous work (Chapter 3) six chs 

transgenic lines of Arabidopsis were collected for molecular analysis and chs-mRNA 

were shown to express. However, an analysis on protein expression and activity level is 

still needed. We want to evaluate whether the heterologous CHS protein expressed in 

plants also acts as a typical CHS.  

In this study we tested CHS expression in CHS transgenic A. thaliana (ACS). To 

confirm the presence of the heterologous CHS protein immunobloting was applied. To 

determine the activity of the protein in transgenic plants a funtional assay was used. 

This assay was performed by measuring the conversion of the precusors (malonyl-CoA 

and p-coumaroyl-CoA) into naringenin in the protein extract. The final product 

(naringenin) was measured by HPLC [Zuurbier et al., 1993]. 
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Figure 4.1. Reaction catalyzed  by chalcone synthase (CHS) 
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4.2. Materials and methods 

4.2.1. Plant material 

Arabidopsis thaliana ecotype Columbia (Col.0) is the genetic background for all wild 

type and 6 transgenic ACS lines used. Seeds were surface sterilized by incubation for 1 

min in 70% ethanol, 15 min in 2.5% sodium hypochlorite and rinsed with sterile water 

five times. Surface sterilized seeds were grown on plates containing half MS medium 

with 0.6% agar and supplemented with 20 mg/L hygromycin for selection of transgenic 

plants. Following stratification in 3 days at 4oC and in dark environment, seeds were 

germinated at 23oC and long day condition (16/8 h light/dark cycle) in a growth 

chamber. All the tissues were collected from five days old seedlings. Immediately after 

harvesting the material was frozen in liquid nitrogen and kept at −80 °C until used. 

4.2.2. Chemicals 
Tetramethylethylenediamine (TEMED), K2HPO4, sucrose, ascorbic acid, PMSF, CaCl2, 

EDTA, SDS, polyvinylpolypyrrolidone (PVP), NaCl, (NH4)2SO4, (HOCH2)3CNH2 

(Tris), ammonium persulfate (APS), malonyl-CoA were purchased from Sigma-Aldrich 

(Zwijndrecht, The Netherlands). Naringenin and p-Coumaryl-CoA were purchased from 

TransMIT (GmbH, Marburg, Germany).   

4.2.3. Protein extraction 
Enzyme was extracted as reported by Zuurbier et al., [1995] with a slight modification. 

All steps were carried out at 0–4 °C. Frozen plant material (10 g) was ground using a 

pestle and mortar in the presence of 10% PVP (w/w). The frozen powder was mixed 

with extraction buffer (0.5 M K-Pi of pH 8, 0.4 M sucrose, 1 mM CaCl2, 0.1% BSA 

(w/v), 0.2 M ascorbic acid, 50 mM EDTA, 50 mM cysteine, 10% DOWEX 1WX2 100 

mesh, 10 µM leupeptin, 0.2 mM PMSF). After thawing, the homogenate was filtered 

using a Miracloth filter (Calbiochem, La Jolla, CA, USA) then centrifuged at 

14 000 rpm for 20 min. The protein was then precipitated using a range from 30 to 70% 

(NH4)2SO4. The 70% (NH4)2SO4 pellet was collected and dissolved in 2.5 ml PD10 

buffer (0.1 M K–Pi pH 6.8, 1.4 mM 2-mercaptoethanol, 40 mM ascorbic acid and 5% 

(w/v) trehalose, flushed with N2 gas before use) and then desalted in the same buffer 

with the use of a PD10 column (Amersham Pharmacia Biotech, Uppsala, Sweden) 
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according to the manufacturer’s instructions. The protein concentration was determined 

by the method of Peterson, [1977]. The protein sample was then frozen in liquid 

nitrogen and stored at −80 °C until used. 

4.2.4. SDS-PAGE and Western blot  
About 5 µg of protein extract was loaded on mini gels. The separation and stacking gel 

composition is as follows: Separating gel solution (30 ml) contains 16 ml of 28% 

acrylamide solution, 4.5 ml of 3 M Tris pH 8.9, 3 ml of 1% SDS, 6.45 ml of distilled 

water, 100 µl of 10% APS, and 30µl of TEMED. Stacking gel solution (5 ml) contains 

0.9% acrylamide (28%), 2 ml of 0.5 M Tris-Cl pH 6.7, 0.5 ml of 1% SDS, 0.6 ml of 

distilled water, 40 µl of 10% APS, and 10 µl of TEMED. Electrophoresis was carried 

out at 100 V in running buffer (0.025 M Tris base, pH 8.3, 192 mM glycine, and 0.1% 

SDS). Samples were then transferred to a nylon membrane (0.2 micron Biotrans, ICN, 

Irvine, CA, USA) at 100 V for 30 minutes. Protein transfer was confirmed by Ponceau 

S staining. Upon destaining the blot, it was blocked with Blotto (5% nonfat dry milk in 

TTBS; 0.3 M NaCl, 20 mM Tris base, pH 7.4, 0.5 ml 100% Tween-20) for 1 hour at 

room temperature. Monoclonal CHS (aC-20) antibody (Santa Cruz Biotechnology, Inc. 

CA, USA) was diluted 1:200 in 3% bovine serum albumin and incubated with the blot 

for 1 hr at 37oC. The blot was then washed for five minutes with three times changes of 

TTBS. Donkey anti-goat antibody conjugated to horseradish peroxidase was diluted 

1:3000 in Blotto and incubated with the blot for 1 hr at room temperature. TTBS was 

again used to wash the blot three times, five minutes each. The blot was then placed in 

substrate for 10 minutes at room temperature.  

4.2.5. Enzyme assay 
One hundred µg protein extract (approximately 100 µl) was added to 25 µl malonyl-

CoA 0.8 mM (20 nmol) and 25 µl p- Coumaroyl-CoA 0.4 mM (10 nmol). The mixture 

was then made up to 500 µl by adding assay buffer (0.5 M K–Pi of pH 6.8, 2.8 mM 2-

mercaptoethanol and 2% BSA (w/v) were mixed. Incubation took place at 30 °C for 

1 hr. At the end of the incubation period the mixture was extracted two times using 

800 µl EtOAc by mixing using a vortex followed by centrifugation for 2 min. The 

EtOAc layer was then transferred to a new tube and evaporated using N2 gas. The 
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residue was redissolved in 100 µl of HPLC mobile phase and then injected to the HPLC 

system. 

4.2.6. HPLC analysis 
The HPLC system consisted of a Waters 712 pump, a Waters 600E system controler, a 

Waters 717plus autosampler and Waters 991 photo diode array detector (Waters Corp. 

Milford, MA, USA). The column was a Hypersil C18 240×4.6 mm separation column 

(Phenomenex, Torrance, CA, USA). The solvent system consisted of solvent A: H2O 

containing 0.01% H3PO4 and solvent B: CH3OH containing 0.01% H3PO4. The gradient 

profile was as follows: an isocratic step of 50% B for 1 min, then a linear gradient from 

50%–100% of B for 10 min, followed by an isocratic step at 100% of B for 10 min. 

After this gradient, the eluent was returned to 50% of B for 5 min and was finally kept 

for 10 min before injection of the next sample. The flow rate was 0.8 ml/min. The 

chromatogram was monitored at 290 nm. 

4.3. Results and discussion 

4.3.1. Immunoblot assay 

The immunolblot assay was performed to confirm the expression of CHS in CHS 

transgenic and control plants. Protein was purified from five ACS lines and wild type 

Arabidopsis and analysed first by SDS-PAGE gel (Figure 4.2A). The result showed 

that a protein of ca. 45 kDa accumulated more in transgenic plants. This size is the same 

as the size of heterogolous CHS. By using an antibody against CHS (Arabidopsis) in 

western blot analysis we confirmed that the band was CHS (Figure 4.2B). 
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A.           B. 

 

 

 

 

 

 

 

Figure 4.2. SDS PAGE (A) of and western blot (B) analysis of wild type (WT) and CHS 

transgenic plants (ACS) 

The western blot showed that a wild type CHS band (~43kDa) appeared in the WT 

Arabidopsis lane with a molecular weight a bit lower than the CHS bands of ACS lanes 

(~45kDa) (Figure 4.2B). Also that band did not appear in all CHS transgenic plant 

lines. Generally, CHS is not expressed except under some circumstances such as in the 

development period or under environmental stress [Chapter 2]. In this experiment we 

used young seedlings for protein extraction so apparently the endogenous CHS 

Arabidopsis was expressed. That explains the appearance of a specific CHS Arabidopsis 

band (~43kDa) in WT lane. The endogenous CHS was not expressed in CHS transgenic 

lines because the induction of heterogolous CHS might inhibit endogenous CHS by co-

suppression, or the high level of CHS in transgenic plants might inhibit endogenous 

CHS expression. This was also observed in CHS transgenic Petunia [Van der Krol et 

al., 1990a]  

4.3.2. Chalcone synthase activity assay 
The positive result of the western blot confirmed the expression of CHS in the 

transgenic plant but an enzyme activity study is necessary to confirm activity. p-

coumaroyl-CoA and malonyl-CoA were used as substrates for the protein extract to test 

the activity. Naringenin was expected as final product in case CHS activity is present.  
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A method was developed for measuring naringenin by HPLC. A C18 column and the 

mobile phase (CH3OH-H2O 0.01% phosphoric acid) with the gradient 30%-100% 

CH3OH in 40 minutes was found to be suitable. In the HPLC system used, naringenin 

eluted at a retention time of 24.9 min as a relatively sharp peak with the maximum 

absorbance wavelength of naringenin at 290 nm. The HPLC elution profiles of the 

chalcone synthase assay using a protein extract from ACS 2, and ACS 20 five days old 

seedlings and WT are shown in Fig. 4.3. A peak appeared with the same retention time 

as naringenin reference compound and their UV spectra are the same. High activity was 

found in ACS 20 (Figure 4.3C) whereas CHS activity of transgenic line ACS 2 is 

similar to wild type. This result is in accordance with the results in Chapter 3 where we 

showed that the mRNA expression level of ACS2 is much lower than ACS20 (~12 

fold). To learn more about the channeling of substrates related to the flavonoids, a 

metabolomic study was made (Chapter 6) 
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Figure 4.3. HPLC chromatograms of the EtOAc extract from the chalcone synthase activity assay 

with WT Arabidopsis (A), CHS transgenic Arabidopsis ACS2 (B) and ACS20 (C) protein 

extracts  
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Abstract 

Identification of Arabidopsis thaliana Col.0 metabolites by use of NMR spectroscopy is 

described in this chapter. Among the different extraction solvent tested, MeOD was the 

best solvent to extract phenolic compounds from Arabidopsis. By column 

chromatography using Sephadex LH-20 and prep HPLC, several flavonoids were 

isolated from the methanol extract of Arabidopsis, and their structures were identified 

by LC-MS and NMR spectroscopy as kaempferol 3-O-glucopyranoside-7-O-

rhamnopyranoside, kaempferol 3-O-rhamnosyl (1–2) glucoside-7-O- 

rhamnopyranoside, kaempferol 3,7-O- dirhamnopyranoside and quercetine 3-O-

rhamnopyranoside. Twenty four major metabolites of Arabidopsis thaliana Col.0 

including amino acids, organic acids, sugars, phenylpropanoids, and flavonoids were 

identified and their NMR cheracteristics are also summerized in this study.  

Keywords: NMR, metabolites, phenolics, flavonoids, extraction method, Arabidopsis 

thaliana 
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5.1. Introduction 

Arabidopsis thaliana has become an extremely popular model system for studying plant 

biology. The biosynthesis of plant secondary metabolites represents a complex cellular 

network involving the transcription, translation and post-translational modification of 

many gene products. Analysis of whole plant metabolomes is a difficult task due to the 

huge number and great diversity of primary and secondary metabolites present in plant 

tissues [Dixon and Strack, 2003; Sumner et al., 2003; Stobiecki and Kachlicki, 2005]. A 

good profiling method should be simple and detect as many of the metabolites as 

possible in a single extract of the material. In addition, the method should be 

reproducible to archive the data for future datamining. 

The chromatography and spectroscopic technologies as HPLC-UV, GC/MS, LC/MS 

and NMR employed in plant metabolomics have been extensively reviewed [Fan, 1996; 

Fiehn et al., 2000; Wagner et al., 2003]. NMR is a tool to analyze the metabolome with 

a lot of advantages. Sample preparation for NMR measurement is usually simple and 

rapid, measurement times are short and readily automated and advanced data analysis 

methods are available. The 1D and 2D-NMR spectra of complex mixtures may provide 

sufficient information for the structures of unknown components to be elucidated, either 

from the NMR spectrum of the mixture itself, or after some purification. Another 

advantage of NMR is the linearity of quantitative responses on increasing metabolite 

concentrations, irrespective of the chemical compound class. Large signals in NMR can 

directly be interpreted as high level concentrations, whereas in MS, quantitative 

responses strongly rely on the ionization potential of each metabolite. Therefore, 

quantitation in MS is limited to relative abundances of a given metabolite between 

samples, or requires calibration curves if absolute comparison of different metabolites is 

needed. NMR either generates a metabolite profile, in which the NMR signals are 

assigned to specific metabolites, or a metabolite fingerprint, in which the analysis is 

based on the distribution of intensity in the NMR spectrum rather than the assignment of 

the signals [Krishnan et al., 2005]. However, NMR has some limitations such as low 

sensitivity in comparison with MS. But new technology in NMR equipment such as 

higher-field spectrometers and use of cryogenically cooled probes improved the NMR 

sensitivity many folds. 
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Large numbers of metabolites of Arabidopsis have been identified. Understanding a 

significant part of Arabidopsis biology requires methods allowing the sensitive 

detection and quantification as well as the identification of secondary metabolites. 

Applying such techniques to various genetic backgrounds and to different 

environmental and developmental conditions then would help elucidate the function of 

such compounds and of the genes involved in their biosynthesis. Metabolic profiling of 

Arabidopsis and other plants have been developed in recent years. Most commonly used 

are gas chromatographies (GC)-mass spectrometry (MS)-based approaches. Several 

hundred of metabolites can be robustly and reliably detected but most of them are 

primary metabolites such as sugars, amino acids, organic acids [Roessner et al., 2000; 

Fiehn et al., 2000; Wagner et al., 2003]. Beisdes that, liquid chromatography (LC)-MS 

based metabolomic has been used for profiling of metabolites [Roessner et al., 2000]. 

Every analytical procedure is necessarily limited as to what type of compounds can be 

separated and detected. GC-MS is predominantly applied to very polar or unpolar 

substances though requiring derivatization to obtain volatile derivatives, whereas the 

main application of LC-MS is more related to compounds of medium polarity. About 

300 metabolites were detected in A. thaliana leaf extracts and about half of them were 

identified by using GC-MS [Fiehn et al., 2000], LC-MS and NMR [Hendrawati et al., 

2006; Le Gall et al., 2005; Von Roepenack et al., 2004 ].  

Phenolic compounds are ubiquitous constituents of higher plants found in a wide range 

of commonly consumed plant foods such as fruits, vegetables, cereals and legumes, and 

in beverages of plant origin, such as wine, tea and coffee [Cheynier, 2005; Manach et 

al., 2004]. These compounds are secondary metabolites of plants that are generally 

involved in defense against ultraviolet radiation or often attack by pathogens. They 

constitute an important class of plant secondary metabolites and are mostly present as 

glycosidic conjugates. The major flavonoid compounds in A. thaliana are the 

kaempferol glycosides flavonols [Rohde et al., 2004; Veit and Pauli, 1999], but 

quercetin glycosides can also accumulate after exposure to UV radiation [Graham, 

1998]. Another group of flavonoids present in A. thaliana are the anthocyanins, the 

major red, purple and blue pigments of plants best known from flowers and fruits. The 

major anthocyanin in A. thaliana has a cyanidin core with four attached sugars [Bloor 

and Abrahams, 2002]. Some flavonoids from green tissues of A. thaliana have been 
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fully structurally characterized with various physicochemical methods. Kaempferol 3-

O-β-[β-D-glucosyl(1–6)D-glucoside]-7-O-α-L-rhamnoside, kaempferol 3-O-β-D-

glucoside-7-O-α-L-rhamnoside, kaempferol 3-O-α-L-rhamnoside]-7-O-α-L-

rhamnoside, kaempferol 3-O-β-[α-L-rhamnosyl (1–2)D-glucoside]-7-O-α-L-rhamnoside 

were identified [Veit and Pauli, 1999; Bloor and Abrahams, 2002]. Most studies on 

flavonoid characterization have been done by analytical procedures using the isolated 

flavonoids. In further experiments in this thesis a profiling of metabolites in crude 

extract will be applied so an identification of Arabidopsis flavonoids in plant crude 

extracts needs to be developed. So far the flavonoids of Arabidopsis are not available 

commercially so isolation and identification of flavonoids in Arabidopsis thaliana Col. 

0 were done in this study in order to have reference compounds for further analysis. 

Profiling applications of NMR in plant tissues have usually focused on the identification 

of particular metabolites, and so the extraction techniques need to be considered for 

optimal extraction recovery of the compounds of interest. The aim of this study is the 

application of NMR to identify Arabidopsis thaliana Col. 0 metabolites, focusing on 

phenolic compounds in plant crude extracts because we studied the effect of CHS 

expression, a key enzyme in flavonoid biosynthesis pathway (Chapter 2), on the 

Arabidopsis metabolome. Thus a suitable extraction method for this purpose was 

developed in this study. 

5.2. Methods and Materials 

5.2.1. Plant materials and extraction for flavonoid isolation 
Arabidopsis thaliana above ground parts were used as a plant material for extraction. 

500 ml of CH3OH was added to 256 mg of dried and ground leaves and ultrasonicated 

for 30 minutes and then vacuum filtered. The procedure was repeated for 3 times and all 

the supernatants were pooled and dried using a rotary evaporator. The dried extract was 

redissolved in 100 ml of deionized water and partitioned with different solvents like n-

hexane, chloroform, and n-butanol. All the fractions were separately dried by rotary 

evaporator and stored at 4 °C until further use. 
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5.2.3. Sample Fractionation 

The n-butanol extract (1.2 g) was selected for fractionation as high flavonoids content 

was expected in this fraction. Sephadex column LH-20 (145 cm length x 16 mm 

diameter) was used for sample fractionation with 100% CH3OH as a mobile phase. 

Total 84 fractions were collected of 5 ml each. TLC indexing was performed for every 

fourth fraction and observed under 254 nm and 366 nm. The solvent system for TLC 

indexing was composed of ethyl acetate, formic acid, acetic acid, and water, in the ratio 

of 100:11:11:27 (v/v). The fractions that showed a similar pattern under UV were 

pooled and seven combined fractions (from A to G) were obtained. Fraction A 

contained fractions from 1-19, B from 20-30, C from 31-34, D from 35-38, E from 39-

48, F from 49-71, and G from 72-84. 1H-NMR analyses were performed for all the 

pooled fractions and on the basis of flavanoids signals, fraction C, D, E, and F were 

selected for further purification by HPLC. Sixty sub-fractions (C1-4, D1-4, E1-4, and 

F1-4) were collected and analysed with H-NMR. The results show that flavonoids are 

mainly in sub-fraction F2 and F4. F4 sub-fraction contained more than one flavonoid so 

we applied one more HPLC step to fractionate F4 and four fractions (F4.1, 4.2, 4.3, 4.4) 

were collected each mainly containing a single compound.     

5.2.4. HPLC analysis 
The selected fractions were further separated using an Agilent 1100 series HPLC 

(Agilent, Waldbronn, Germany) equipped with a UV detector operating at 254 nm. A 

semi-preparative reversed phase column  (Phenomenex Luna 5µ C18; 250 x 10 mm, 5µ) 

was used for separations, with a solvent gradient of 0.1 % formic acid with water and 

0.1 % formic acid with CH3OH. The gradient starts from H2O-CH3OH in the ration of 

60:40 for the first 30 minutes, then shifted towards 20:80 for two minutes. After this the 

columm was reequilibrated again for the next analysis by ruinning the initited solvent 

60:40 for eight minutes. Total time for each run is fourty minutes with the flow rate of 2 

ml/min.  

5.2.2. Plant materials and extraction of crude extract for NMR measurements 
Plants were ground in liquid nitrogen and pooled before subjected to freeze-drying. 

Twenty-five milligrams of freeze-dried material were transferred to a micro-centrifuge 
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tube before adding 600 µl of CH3OH-d4. The mixture was vortexed for 2 minutes and 

sonicated for 20 minutes, followed by centrifugation at 13,000 rpm for 5 minutes at 

room temperature. Five hundred microliters of the supernatant were then transferred 

into 2ml micro-centrifuge tubes and were added two hundred fifty microliters of 

KH2PO4 buffer, pH 6.0, containing 0.1% trimethyl silyl propionic acid sodium salt 

(w/v). The mixture was left for 30 minutes in 4oC and followed by centrifugation at 

6000 rpm for 5 minutes at room temperature. Seven hundred microliters of the 

supernatant were then transferred into 5 mm NMR tubes for analysis.  

5.2.5. NMR measurements 
The dried sub-fractions were redissolved in 1.0 ml of 50% CH3OH-d4 in D2O (KH2PO4 

buffer, pH 6.0) containing 0.05% TMSP (trimethyl silyl propionic acid sodium salt, 

w/v) and then 800 µl of the supernatant was transferred to a 5 mm NMR tube. 1H-NMR 

and 2D J-resolved spectra were recorded at 25 °C on a 500 MHz Bruker DMX-500 

spectrometer (Bruker, Karlsruhe, Germany) operating at a proton NMR frequency of 

500.13 MHz. CH3OH-d4 was used as the internal lock. Each 1H-NMR spectrum 

consisted of 128 scans requiring 10 min and 26 s acquisition time with the following 

parameters: 0.16 Hz/point, pulse width (PW) = 30° (11.3 µs), and relaxation delay (RD) 

= 1.5 s. A pre-saturation sequence was used to suppress the residual H2O signal with 

low power selective irradiation at the H2O frequency during the recycle delay. FIDs 

were Fourier transformed with LB = 0.3 Hz. The resulting spectra were manually 

phased and baseline corrected, and calibrated to TSP at 0.0 ppm, using XWIN NMR 

(version 3.5, Bruker). 2D J-resolved NMR spectra were acquired using 8 scans per 128 

increments for F1 and 8 k for F2 using spectral widths of 5000 Hz in F2 (chemical shift 

axis) and 66 Hz in F1 (spin–spin coupling constant axis). A 1.5 s relaxation delay was 

employed, giving a total acquisition time of 56 min. Datasets were zero-filled to 512 

points in F1 and both dimensions were multiplied by sine-bell functions (SSB = 0) prior 

to double complex FT. J-Resolved spectra tilted by 45°, was symmetrized about F1, and 

then calibrated, using XWIN NMR (version 3.5, Bruker). 1H–1Hcorrelated spectroscopy 

(COSY) and heteronuclear multiple bonds coherence (HMBC) spectra were recorded on 

a 600 MHz Bruker DMX-600 spectrometer (Bruker). The COSY spectra were acquired 

with 1.0 s relaxation delay, 6361 Hz spectral width in both dimensions. Window 
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function for COSY spectra was sine-bell (SSB = 0). The HSQC spectra were obtained 

with 1.0 s relaxation delay, 6361 Hz spectral width in F2 and 27,164 Hz in F1. Qsine 

(SSB = 2.0) was used for the window function of the HSQC. The HMBC spectra were 

recorded with the same parameters as the HSQC spectrum except for 30,183 Hz of 

spectral width in F2. The optimized coupling constants for HSQC and HMBC were 145 

Hz and 8 Hz, respectively. 

5.3. Results and discussions 

5.3.1. Optimization of extraction method  

The aim of this thesis is to study the effect of overexpression of CHS, a key enzyme of 

the flavonoid biosynthesis pathway, on the metabolism in Arabidopsis. As this enzyme 

will result in the production of flavonoids and related compounds, the focus is on the 

phenolic compounds. This includes also the compounds from earlier part of the 

phenylpropanoid pathway which might be affected because of competitive for the same 

precusors. Thus an efficient extraction method with good yield and reproducibility 

which provides reliable metabolic profiling data on phenolic compounds by using NMR 

spectroscopy was investigated. Due to the large differences of metabolites e.g. in 

molecular weight and polarity, in general CH3OH-H2O is usually used as extraction 

solvent for metabolic profiling because it is medium polar, and it penetrates cell walls 

and membranes quite effectively. In order to optimize the extraction for metabolic 

profiling, different ratios of water were mixed with CH3OH, from 0 % to 100 % 

following the gradient 0%, 25%, 50%, 75%, 100%. The solvent CH3OH/H2O ratio of 

1/1(v/v) give both signals of primary and secondary metabolites in the 1H-NMR spectra, 

whereas the solvent 100% CH3OH preferably extracts the secondary metabolites, such 

as phenolic compounds. Multivariable data analysis of the various extracts (data not 

shown) only revealed a clear difference between wild type and CHS transgenic plants 

with the 100% CH3OH extracts. Therefore CH3OH-d4 was chosen as extraction solvent. 

As CH3OH-d4 also extracts chlorophyll, D2O was added (30% in total volume) to the 

primary crude CH3OH-d4 extract to precipitate chlorophyll before NMR analysis. The 

final supernatant was analyzed directly by NMR.  
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5.3.2. Isolation and characterization of Arabidopsis thaliana Col. 0 flavonoids 

The flavonoid glycosides of Arabidopsis thaliana Col. 0 were isolated and structure 

elucidated by use of HPLC, NMR and LC/MS.  

The NMR spectrum of the F2 sub-fraction shows two signals at δ 6.84 (d, J=2.0 Hz) δ 

6.82 (d, J=2.0 Hz). Those are H-6, H-8 characteristic signals of a flavonoid glycoside.  

Another two signals at δ 6.99 (d, J=8.8 Hz) δ 8.11 (d, J=9 Hz) are charactistic signals of 

H-3’& 5’, H-2’ & 6’ in kaempferol. The signals at δ 5.56 (d, J=1.5 Hz) and δ 1.25 (d, 

J=6.2 Hz) are characteristic signals of 7-O-rhamnose and the signals at δ 5.77 (d, J=7.8 

Hz) and δ 0.95 (d, J=6.2 Hz) were identified as signals of a futher 3-O- (rhamnosyl (1–

2) glucoside) [Kerhoas et al., 2006]. This compound was assigned as kaempferol 3-O- 

[rhamnosyl (1–2) glucoside]-7-O -rhamnopyranoside which also fit with its [M–H]− 

signal on LC-ESI-MS is m/z 739.  

The F4.1 fraction also showed the characteristic signals of a keampferol derivative at δ 

6.52 (H-6, d, J=2.0 Hz) δ 6.82 (H-8, d, J=2.0 Hz) δ 7.0 (H-3’& 5’, d, J=8.8 Hz) δ 8.09 

(H-2’ & 6’, d, J=9 Hz). The signals at δ 5.56 (d, J=1.6 Hz) and δ 1.25 (d, J=6.2 Hz) are 

characteristic signals of 7-O-rhamnose and the signals at δ 5.77 (d, J=7.8 Hz) and δ 5.33 

(d, J=7.7 Hz) were identified as signals of a 3-O- glucoside [Kerhoas et al., 2006].  [M–

H]− signal in LC-ESI-MS of F4.1 showed a m/z 577 which was confirmed that F4.1  is 

kaempferol (3-O-glucopyranoside-7-O-rhamnopyranoside) [Kerhoas et al., 2006]. 

The NMR signals of the F4.3 fraction at δ 6.43 (H-6, d, J=2.0 Hz) δ 6.81 (H-8, d, J=2.0 

Hz) δ 7.83 (H-2’& 6’, d, J=9.0 Hz) δ 7.04 (H-3’&5’, d, J=9.0 Hz) are in accordance 

with a kaempferol glycoside moiety. The signals at δ 5.56 (d, J=1.6 Hz) and δ 1.25 (d, 

J=6.2 Hz) are characteristic signals of a 7-O-rhamnose and the signals at δ 0.94 (d, 

J=6.0 Hz) were identified as signals of 3-O-rhamnoside [Kerhoas et al., 2006]. 

Therefore F4.3 were assigned as kaempferol (3,7-O-dirhamnopyranoside) and fits with 

m/z 593 [Kerhoas et al., 2006].  

The NMR spectrum of the F4.4 fraction shows typical the quercetin derivative NMR 

signals at δ 7.72 (H-6, d, J=2.0 Hz) δ 6.97 (H-8, d, J=2.0 Hz) δ 6.89 (H-5’, d, J=8.0 Hz) 

δ 7.27 (H-6’, dd, J=8.0, 2.0 Hz) δ 7.32 (H-2’, d, J=2.1 Hz). The sugar attached to 

quercetin was identified as rhamnose with the NMR signal at δ 0.94 (d, J=6.0 Hz). This 

compound also was confirmed as quercetin 3-O-rhamnopyranoside (Fig. 5.1) with a 

[M–H]− signal is m/z  477. 
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Based on the above mentioned information we could thus identify three kaempferol 

glycosides and one quercetin glycoside in Arabidopsis thaliana Col.0 leaves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Kaempferol 3-O-glucopyranoside-7-O-rhamnopyranoside.  
(2) Kaempferol 3-O-rhamnosyl (1–2) glucoside-7-O- rhamnopyranoside. 
(3) Kaempferol 3,7-O- dirhamnopyranoside.  
(4) Quercetine 3-O-rhamnopyranoside.  
(5) Phenylpropanoids:  R1 = OCH3, R2 = OH, hydroxyferuloyl malate 
    R1 = OH, R2 = H, caffeoyl malate 
    R1 = H, R2 = H, coumaroyl malate 
     R1 = OCH3, R2 = OCH3, sinapoyl malate 
(6) Synapoyl glucose 

Figure 5.1. Chemical structures of flavonoids and phenylpropanoids in A. thaliana Col.0 

5.3.3. NMR analysis of Arabidopsis in methanol crude extract 

Metabolic profiling of Arabidopsis CH3OH-d4 crude extracts by using NMR 600MHz 

will be applied in the next experiments (Chapter 6, 7, 8). Identification of compounds 

is based on NMR spectra as described in this chapter.   
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Figure 5.2 shows the 1H-NMR spectrum of the Arabidopsis Col.0. The combined 

information gathered from 1H-NMR, COSY, J-resolved and HMBC spectra and the use 

of a library of 1H-NMR spectra of reference compounds allowed an almost complete 

assignment. Sugars, organic acids and amino acids signals are present in the high field 

region of the NMR spectra, between 0.5 to 6.0 ppm (Figure 5.2 b). In the amino acid 

region (δ 0.8–δ 4.0) the main identified signals were alanine δ 1.48 (H-3, d, J=7.0 Hz), 

glutamic acid δ 2.07 (H-2, m) δ 2.41 (H-3, m), glutamine δ 2.12 (H-2, m) δ 2.48 (H-3, 

m) , leucine δ 0.96 (H-5, d, J=8.0 Hz), threonine δ 1.32 (H-5, d, J=6.6 Hz), valine δ 1.03 

(H-5, d, J=7.8 Hz), aspartic acid δ 2.67 (m) and asparagine δ 2.8 (m). The organic acid 

regions of the NMR spectrum only show signals of formic acid δ 8.5 (s) and malic acid 

δ 4.32 (H-2, dd, J=4.0 Hz, 11 Hz) because the other organic acids have very poor 

solubility in CH3OH. Hence only formic acid and malic acid can be detected in the 

CH3OH extract. The signals of the terminal CH3 of choline was identified at δ 3.23 (s). 

For sugars, the anomeric proton of β-glucose at δ 4.57 (H-1, d, J=8.0 Hz), α-glucose at δ 

5.18 (H-1, d, J=3.7 Hz), sucrose at δ 5.4 (H-1, d, J=4.0 Hz), rhamnose at δ 5.62 (H-1, d, 

J=8.0 Hz), and fructose at δ 4.17 (H-1, d, J=9.0 Hz) were assigned.  

Signals of four flavonoids present in the low field region (6.8-8.2 ppm) have been 

analyzed (see above), Quercetine derivatives are present as minor compounds in the 

crude extract but difficult to detect in the NMR spectrum. Moreover, in the aromatic 

region, the presence of five major doublets with the same coupling constants (d, J=16.0 

Hz) in the range of δ 6.31–δ 6.50 indicate the presence of the trans olefinic protons H-8’ 

of phenylpropanoids (Figure 5.3) [Liang et al., 2006]. This also was confirmed by the 

correlation of H-8′ of the phenylpropanoids with the H-7′ (d, J=16.0 Hz) protons at δ 

7.54–δ 7.59 in the COSY spectrum (Figure 5.4). Five trans-phenylpropanoids were 

elucidated by two dimensional NMR. Those are trans-caffeoyl malate (H-8’, δ 6.32; H-

7’, δ 7.66), trans-5-hydroxyferuloyl malate (H-8’, δ 6.34; H-7’, δ 7.66), trans-

coumaroyl malate (H-8’, δ 6.37, H-7’, δ 7.66), sinapoyl malate (H-2 & 6, δ 6.99 s; H-8, 

δ 6.48 d, J=16 Hz; H-7 δ 7.66 d, J=16 Hz), and sinapoyl glucose (H-2 & 6, δ 6.97 s; H-8 

δ 6.49 d, J=16 Hz; H-7 δ 7.77 d, J=16 Hz) [Liang et al., 2006] (Figure 5.3). The cis-

form of those phenylpropanoids are present only at very low concentration in crude 

extract so we could not identify them. 
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The 1H chemical shifts (δ) and coupling constants (Hz) of the indentified Arabidopsis 

thaliana Col.0 metabolites are presented in Table 5.1. 
Table 5.1. 1H chemical shifts (δ) and coupling constants (Hz) of Arabidopsis thaliana Col. 0 

metabolites identified by references and using 1D and 2D NMR spectra (CH3OH-d4–KH2PO4 in 

D2O, pH 6.0) 

Compounds Chemical shifts (ppm) and coupling constants (Hz) 
Amino/organic acids  
Threonine δ 1.32 (H-5, d, J=6.6 Hz) 
Alanine δ 1.48 (H-3, d, J= 7.0 Hz) 
Glutamine  δ 2.12 (H-2, m) δ 2.48 (H-3, m)   
Glutamic acid δ 2.07 (H-2, m) δ 2.41 (H-3, m) 
Valine δ 1.03 (H-5, d, J=7.8 Hz)  
Leucine δ 0.96 (H-5, d, J=8.0 Hz)  
Asparagine  δ 2.8 (m), 2.97(m) 
Aspartic acid   δ 2.67 (m) 
Malic acid  δ 4.32 (H2, dd, J=4.0 Hz, 11 Hz) δ 2.80 (H3, dd, J=8.8 Hz, 

16.0 Hz) δ 2.96 (H2, dd, J=3.6 Hz, 16.0 Hz) 
Formic acid  δ 8.5 (s) 
Sugars  
β-glucose δ 4.57 (H-1, d, J=8.0 Hz) 
α-glucose δ 5.18 (H-1, d, J=3.7 Hz) 
Rhamnose δ 5.62 (H-1, d, J=8.0 Hz)  
Fuctose  δ 4.17 (H-1, d, J=9.0 Hz) 
Sucrose δ 5.40 (H-1, d, J=4.0 Hz)  
Phenylpropanoids/Flavonoids  
Kaempferol 3-O-
glucopyranoside-7-
rhamnopyranoside 

δ 6.52 (H-6, d, J=2.0 Hz) δ 6.82 (H-8, d, J=2.0 Hz) δ 7.0 (H-
3’& 5’, d, J=8.8 Hz) δ 8.09 (H-2’ & 6’, d, J=9 Hz) 

Kaempferol 3,7-O- 
dirhamnopyranoside 

δ 6.43 (H-6, d, J=2.0 Hz) δ 6.81 (H-8, d, J=2.0 Hz) δ 
7.83(H-2’& 6’, d, J=9.0 Hz) δ 7.04 (H-5’, d, J=9.0 Hz) 

Kaempferol 3-O -rhamnosyl (1–
2) glucoside-7-O- 
rhamnopyranoside 

δ 6.84 (H-6, d, J=2.0 Hz) δ 6.82 (H-8, d, J=2.0 Hz) δ 6.99 
(H-3’& 5’, d, J=8.8 Hz) δ 8.11 (H-2’ & 6’, d, J=9 Hz) 

Quercetine 3-O-rhamnoside δ 7.72 (H-6, d, J=2.0 Hz) δ 6.97 (H-8, d, J=2.0 Hz) δ 6.89 
(H-5’, d, J=8.0 Hz) δ 7.27 (H-6’, dd, J=8.0, 2.0 Hz) δ 7.32 
(H-2’, d, J=2.1 Hz) 

trans-5-hydroxyferuoyl malate δ 6.34 (H-8’, d 16 Hz) δ 7.54 (H-7’, d, J=16 Hz) 
trans-feruoyl malate δ 6.42 (H-8’, d 16 Hz) δ 7.66 (H-7’, d, J=16 Hz)  
trans-caffeoyl malate δ 6.32 (H-8’, d 16 Hz) δ 7.55 (H-7’, d, J=16 Hz) 
trans-coumaroyl malate δ 6.37 (H-8’, d 16 Hz) δ 7.59 (H-7’, d, J=16 Hz) 
trans-sinapoyl malate δ 6.99 (H-2 & 6, s) δ 6.48 (H-8, d, J=16 Hz) δ 7.66 (H-7, d, 

J=16 Hz) 
trans-sinapoyl glucoside δ 6.97(H-2 & 6, s), δ 6.49 (H-8,d, J=16 Hz), δ 7.77(H-7, d, 

J=16 Hz)  
Other compounds  
Choline δ 3.23 (s) 
Inositol δ 4.1 (H-2, dd, J=2.0 Hz, 13Hz) δ 3.62(H-4 and 6, dd, J=8.8 

Hz, 16.2 Hz)  δ 3.46 (H-1 and 3, dd, J=6.5 Hz, 13.9 Hz)  
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Figure 5.2. 1H-NMR spectra of A. thaliana Col. 0 (a), extended high field region 0.0-5.5 ppm (b), 

extended low field region 5.6-8.2 ppm (c). 1. Leucine., 2. Valine, 3. Threonine, 4. Alanine, 5. 

Glutamine, 6. Asparagine, 7. Malic acid, 8. Choline, 9. β-glucose, 10. α-glucose, 11. Sucrose, 12. 

Rhamnose, 13. Phenylpropanoids (trans-feruoyl malate, trans-caffeoyl malate, trans-coumaroyl 

malate, trans-5-hydroxyferuoyl malate) 14. trans-sinapoyl malate, 15. trans-sinapoyl glucose, 16. 

Kaempferol 3-O-glucopyranoside-7-rhamnopyranoside, 17. Kaempferol 3-O-rhamnosyl (1–2) 

glucoside-7-O- rhamnopyranoside, 18. Kaempferol 3,7-O- dirhamnopyranoside, 19. Quercetin 

derivatives, 20. Formic acid. 
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Figure 5.3. 2D NMR J-resolved spectra of A. thaliana Col. 0 in aromatic region from 6.2 – 8.2 

ppm. 1. trans-caffeoyl malate, 2 trans-5-hydroxyferuloyl malate., 3. trans-coumaroyl malate, 4. 

trans-feruloyl malate, 5. trans-sinapoyl malate,,6. trans-sinapoyl glucose, 7. Quercetin 

derivatives., 8. Kaempferol 3,7-O- dirhamnopyranoside, 9. Kaempferol 3-O-rhamnosyl (1–2) 

glucoside-7-O- rhamnopyranoside, 10. Kaempferol 3-O-glucopyranoside-7-rhamnopyranoside. 
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Figure 5.4. 2D NMR Cosy spectra of A. thaliana Col. 0 in aromatic region from 5.7 – 8.2 ppm. 1. 

trans-caffeoyl malate, 2 trans-5-hydroxyferuloyl malate., 3. trans-coumaroyl malate, 4. trans-

feruloyl malate, 5. trans-sinapoyl malate,,6. trans-sinapoyl glucose, 7. Quercetin derivatives., 8. 

Kaempferol 3,7-O- dirhamnopyranoside, 9. Kaempferol 3-O-rhamnosyl (1–2) glucoside-7-O- 

rhamnopyranoside, 10. Kaempferol 3-O-glucopyranoside-7-rhamnopyranoside. 

5.4. Conclusion 

Three keampferol glycosides and one quercetin glycoside were isolated and identified in 

this study. Twenty six metabolites of A. thaliana Col.0 in methanol crude extract were 

identified and listed Table 5.1. These results are now used as reference for next studies.  
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Chapter 6  

Metabolic profiling of Arabidopsis thaliana 
transformed with a heterologous chs cDNA from 

Cannabis sativa  

T.T.H. Dao1, 2, H.K. Kim1, H.J.M. Linthorst 3, Y. H. Choi1 and R. Verpoorte1 

1 Section Metabolomics, Institute of Biology, Leiden University, Leiden, The Netherlands 
2 Traditional Pharmacy Department, Hanoi Pharmacy University, Hanoi, Vietnam 

3 Section Plant Cell Physiology, Institute of Biology, Leiden University, Leiden, The Netherlands 

Abstract 

Nuclear Magnetic Resonance (NMR) and Multivariate Data Analysis (PDA) are 

important analytical tools for macroscopic profiling of metabolomes. This study 

describes the use of this approach to measure the metabolome of transgenic Arabidopsis 

thaliana plants with a high expression level of a heterologous chalcone synthase gene. 

Five transgenic Arabidopsis lines were analyzed in this study. The Partial least square-

Discriminant Analysis (PLS-DA) showed a very good separation between the transgenic 

plants and controls. This analysis indicated that the level of sugars, flavonoids and 

phenylpropanoids are higher in the CHS transgenic plants than in control plants. These 

results show that chalcone synthase overexpression affects both plant secondary 

metabolism and primary metabolism.  

Keywords: chalcone synthase, flavonoids, phenylpropanoids, Arabidopsis, NMR, 

multivariate data analysis.  
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6.1. Introduction 

We can look at what genes are being expressed, and what proteins are present, but what 

are the end products in the form of cellular functions? Metabolomics attempts to answer 

this question. Linking functional metabolomic information to mRNA and protein 

expression data makes it possible to visualize the functional genomic repertoire of an 

organism. Metabolomics is becoming a widely used technology to evaluate global 

metabolite levels. In the context of functional genomics, the non-targeted profiling of 

metabolites in biological samples is now regarded as a viable counterpart to protein and 

transcript profiling technologies.  

Metabolomics is the study of all the metabolites of a biological sample. Several 

analytical tools such as gas chromatography (GC), liquid chromatography (LC), mass 

spectrometry (MS) and nuclear magnetic resonance (NMR) have been used to profile 

the metabolome. None of these is able to give a comprehensive view of the complete 

metabolome. Issues as dynamic range, polarity, volatility, and stability are in fact 

limiting factors in obtaining a complete picture of all metabolites. A combination of the 

various methods should be used to have the most comprehensive view on the 

metabolome. However, with each single analytical method a wealth of information 

about the metabolome of an organism can already be obtained under certain conditions.  

Nuclear magnetic resonance spectroscopy (NMR) has been considered as a powerful 

platform in metabolomics because of its ease of sample preparation, short time of 

analysis and as the only method that allows direct absolute quantitation of all 

metabolites. Also with 1H-NMR analysis we can detect and do structure elucidation of 

various metabolites in the sample. However, most metabolites have many signals in 

their 1H-NMR spectra, thus overlapping may cause a problem in identifying individual 

metabolites. 2D NMR or chromatographic separation can be used to overcome this 

problem.  

Transgenic or mutant plants in combination with metabolomics provide an excellent 

means to look at changes in metabolic networks through the specific perturbation of a 

gene of interest. Plant extracts are very complex in composition and, if many samples 

are examined, it is difficult to make a meaningful comparison of large numbers of 

spectra or chromatograms ‘by eye.’ Thus multivariate statistical methods can be 
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extremely useful, as they are able to compress data into a more easily managable form, 

allowing the visualiation of the relation between samples. 

In this study we used NMR spectroscopy and multivariate data analysis to monitor 

metabolome changes in transgenic CHS overexpressing Arabidopsis thaliana Col 0. 

Various metabolites were detected and their NMR signals were assigned. Finally, the 

differences between metabolites levels in transgenic plants and controls were 

determined. 

The first committed step in the biosynthesis of flavonoids is catalysed by the enzyme 

chalcone synthase (CHS), resulting in a yellow coloured chalcone. In the majority of 

plants chalcones are not end-products, but intermediates in the pathway proceeding with 

several further enzymatic steps to other classes of flavonoids, such as flavanones, 

dihydroflavonols and finally to the anthocyanins, the major water-soluble pigments in 

flowers and fruits. Other flavonoid classes (i.e. isoflavones, aurones, flavones, pro-

anthocyanidins (PA) and flavonols) represent side branches of the flavonoid pathway 

and are derived from intermediates in the anthocyanin formation. Little is known about 

the effect of CHS in the total plant metabolomic network, e.g. leading to lignan- and 

phenylpropanoid derivatives. 

Prior to the present study, we transformed a chs-cDNA gene from Cannabis sativa into 

A. thaliana. The introduction of the first gene in the flavonoid biosynthesis pathway 

may alter directly or indirectly the level of other metabolites present in A. thaliana. This 

study aimed at the identification of metabolomic pathways that are affected by the 

overexpression of the CHS gene in this plant. 1H-NMR based metabolomics coupled 

with multivariate data analysis was applied to distinguish between control and CHS 

transgenic A. thaliana plants (ACS). 

6.2. Materials and methods 

6.2.1. Growth of plant materials 

Arabidopsis thaliana ecotype Columbia (Col.0) seeds were obtained from the section 

Plant Cell Physiology (IBL, Leiden Universiy, The Netherlands) and 5 transgenic ACS 

lines (ACS 1, 2, 14, 20, 21) were generated as described in Chapter 3.  Seeds were 

surface sterilized by incubation for 1 min in 70% ethanol, 15 min in 2.5% sodium 

hypochlorite and rinsed with sterile water five times. Surface sterilized seeds were 
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grown on a plate containing half MS medium with 0.6% agar supplemented with 20 

mg/L hygromycin for selection of transgenic plants. After keeping 3 days at 4oC in the 

dark, the seeds were germinated at 23oC under long day condition (16/8 h light/dark 

cycle) in a growth chamber. All the plant tissues were harvested when the seedlings are 

10-days old. Immediately after harvesting, the material was frozen in liquid nitrogen 

and kept at −80o C until used. 

6.2.2. Solvents and chemicals 
D2O (99%) and CH3OH-d4 (99.8%) were obtained from Cambridge Isotope 

Laboratories Inc (Miami, FL, USA). NaOD was purchased from Cortec (Paris, France). 

Potassium dihydrogen phosphate and trimethylsilane propionic acid sodium salt (TSP) 

were purchased from Merck (Darmstadt, Germany). As buffering agent 1.232 g 

KH2PO4 and 10 mg TSP (internal standard) were added to 100 g D2O. Finally, the pH of 

the solution was adjusted to 6.0 using 1 M NaOD.  

6.2.3. Extraction of plant materials  

Plants were ground in liquid nitrogen and pooled before subjected to freeze-drying. 

Twenty-five milligrams of freeze-dried material were transferred to a micro-centrifuge 

tube before adding 600 µl of CH3OH-d4. The mixture was vortexed for 2 min and 

sonicated for 20 min, followed by centrifugation at 13,000 rpm for 5 min at room 

temperature. Five hundred microliters of the supernatant were then transferred into 2 ml 

micro-centrifuge tubes and 250 microliters of KH2PO4 buffer, pH 6.0, containing 0.1% 

trimethyl silyl propionic acid sodium salt (w/v) were added. The mixture was left for 30 

min in 4oC and followed by centrifugation at 6000 rpm for 5 min at room temperature. 

Seven hundred microliters of the supernatant were then transferred into 5 mm NMR 

tubes for analysis.  

6.2.4. NMR measurement  

1H-NMR, 2D J-resolved, 1H-1H correlated spectroscopy (COSY), and heteronuclear 

multiple bonds coherence (HMBC) spectra were recorded at 25 ºC on a 600 MHz 

Bruker AV 600 spectrometer equipped with cryo-probe operating at a proton NMR 

frequency of 600.13 MHz. CH3OH-d4 was used as the internal lock. Each 1H-NMR 
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spectrum consisted of 128 scans requiring 10 min acquisition time with the following 

parameters: 0.25 Hz/point, pulse width (PW) = 30o (10.8 µsec), and relaxation delay 

(RD) = 1.5 sec. A presaturation sequence was used to suppress the residual H2O signal 

with low power selective irradiation at the H2O frequency during the recycle delay. 

FIDs were Fourier transformed with LB = 0.3 Hz and the spectra were zerofilled to 32 

K points. The resulting spectra were manually phased and baseline corrected, and 

calibrated to TSP at 0.0 ppm, using Topspin (version 2.1, Bruker). 

6.2.5. Data analysis 
The spectral intensities were reduced to integrated regions of an equal width of 0.04 

ppm (buckets or bins) corresponding to the region of  0.3 -  10.0. The regions of  

4.8- 4.9 and  3.28- 3.40 were excluded from the analysis because of the residual 

signal of water and CH3OH. Principal Compnent Analysis (PCA), Partial least square-

Discriminant Analysis (PLS-DA) and Hierarchical Clustering Analysis (HCA) were 

performed with the SIMCA-P software (v. 12.0, Umetrics, Umeå, Sweden).  

6.3. Results and discussion 

Seedlings of Arabidopsis Col. 0 wild type (WT), transgenic plants with empty vector 

(E) and 5 CHS transgenic plant lines (ACS1, 2, 14, 20, 21) were subjected to 

metabolomic analysis by 1H-NMR and 2D-NMR spectroscopy. For the assignments of 

metabolites in the 1H-NMR spectra is referred to Chapter 5. 1H-NMR spectra of ACS 

2, ACS 20 and WT are shown in Figure 6.1. In the aromatic area, three kaempferol 

glycosides, quercetin rhamnose, 4 malate conjugated cinamic acid derivatives 

(hydroxyferulic, caffeic, coumaric, and sinapoyl), sinapoyl glucoside and formic acid 

were found. Visually in 1H-NMR spectra we can see that all the identified phenolic 

compounds are significantly higher in ACS 20 compared to ACS 2 which has the same 

level of phenolic compounds as WT. This is in accordance with the results reported in 

Chapter 4 showing that ACS 2 has similar CHS activity as WT. 
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Figure 6.1. Aromatic regional 1H-NMR spectra of Arabidopsis Col.0 (WT) and CHS transgenic 

Arabidopsis (ACS2, ACS20). 1. Keampferol glycosides (Kaempferol 3,7-O- dirhamnopyranoside, 

Kaempferol 3-O-rhamnosyl (1–2) glucoside-7-O- rhamnopyranoside, Kaempferol 3-O-

glucopyranoside-7-rhamnopyranoside), 2. trans-phenylpropanoids (caffeoyl malate, coumaroyl 

malate, hydroxyferuoyl malate), 3. trans-synapoyl, 4. Quercetin derevative, 5. Formic acid. 

In order to distinguish the samples based on the 1H-NMR spectra, multivariate data 

analysis was applied. Firstly, principal component analysis (PCA) was used to reduce 

the data set from the 1H-NMR spectra to fewer components enabling to group samples 

or to do pattern recognition. To remove the biological variation of the samples of CHS 

transgenic plants and non CHS transgenic plants, a supervised multivariate data 

analysis, termed Partial Least Square-Discriminant Analysis (PLS-DA), was employed. 

After the PLS-DA analysis, Hierachical Clustering Analysis (HCA) based on PLS-DA 

was performed. The results show that E samples are very close to WT and all the 

samples of transgenic line ACS 2 and two samples of transgenic line ACS 21 are 

separated from other transgenic lines (Figure 6.2). This result fits with the genetic data 

of the transgenic plants which are reported in Chapter 3. The transgenic ACS 2 and 

ACS 21 have 5 copies of the CHS transgene. Since the E group shows similar 

metabolites profiles as WT group, it was not further studied.  
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Figure 6.2. Hierarchical Clustering Analysis (HCA) based on PLS-DA of transgenic and control 

Arabidopsis plants. E: transgenic Arabidopsis with empty vector, WT: wild type A. thaliana 

Col.0; ACS 1….ACS 21: CHS transgenic Arabidopsis plants 

-25

-20

-15

-10

-5

0

5

10

15

20

25

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t[2
]

t[1]

ACS 1
ACS 2
ACS 14
ACS 20
ACS 21
WT

ACS 1
ACS 1

ACS 1

ACS 1

ACS 1

ACS 2
ACS 2

ACS 2
ACS 2

ACS 14
ACS 14

ACS 14

ACS 14

ACS 14

ACS 20

ACS 20

ACS 20

ACS 20

ACS 20

ACS 21

ACS 21

ACS 21

ACS 21

ACS 21

WT

WT
WT

WT

WT

SIMCA-P+ 12 - 2008-12-10 14:50:15 (UTC+1) 

Transgenic

Wide type

-25

-20

-15

-10

-5

0

5

10

15

20

25

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t[2
]

t[1]

ACS 1
ACS 2
ACS 14
ACS 20
ACS 21
WT

ACS 1
ACS 1

ACS 1

ACS 1

ACS 1

ACS 2
ACS 2

ACS 2
ACS 2

ACS 14
ACS 14

ACS 14

ACS 14

ACS 14

ACS 20

ACS 20

ACS 20

ACS 20

ACS 20

ACS 21

ACS 21

ACS 21

ACS 21

ACS 21

WT

WT
WT

WT

WT

SIMCA-P+ 12 - 2008-12-10 14:50:15 (UTC+1) 

Transgenic

Wide type

 
Figure 6.3. The PLS-DA score scatter plot of CHS transgenic (ACS 1-21) and wild type (WT) 
Arabidopsis Col. 0 plants. 
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Figure 6.4. The PLS-DA loading scatter plot of transgenic (ACS 1-21) and wild type (WT) 
Arabidopsis Col. 0 

When PLS-DA was applied, all the transgenic lines and WT plants could be clearly 

observed as separate clusters in the PLS-DA score scatter plot in PC 2 (Figure 6.3). 

Most of the transgenic plants are located on the negative side of the PLS PC 2 axis 

while all WT plants are on the positive side. To find out which metabolites contribute to 

the discrimination between the transgenic plants, a PLS-DA loading scatter plot (w*c) 

was analysed as shown in Figure 6.4. Positive values of w*c[1] are seen for the variable 

associated with WT plants whereas negative values are associated with transgenic 

plants. Examination of the loading plot shows that the metabolites strongly contributing 

to  the separation of the WT plants were amino acids such as threonine (δ 1.32), alanine 

(δ 1.48), leucine (δ 0.96), asparagine (δ 2.8 and 2.97) and glutamine (δ 2.12 and 2.48). 

For the transgenic plants, the responsible loading plots correspond to the signals of 

sugars (α-glucose δ 5.18, β-glucose δ 4.58, rhamnose δ 5.62, sucrose δ 5.4 ), flavonoids 

(kaempferol 3-O-glucopyranoside 7-O-rhamnopyranoside δ 8.09, kaempferol 3,7-O- 

dirhamnopyranoside δ 7.83, kaempferol 3-O-[rhamnosyl (1–2) D-glucoside]-7-O-

rhamnopyranoside δ 8.11, quercetine moiety δ 7.72 ), phenylpropanoids (trans-sinapoyl 

malate δ 6.48 and 7.66, trans-sinapoyl glucose δ 6.49 and 7.77, trans-5-hydroxyferuoyl 

malate, trans-caffeoyl malate, trans-coumaroyl malate δ 6.32 - 6.37 and 7.54 - 7.59). 
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These results indicate that sugars, flavonoids and phenylpropanoids are accumulated at 

higher levels in the transgenic plants than in WT plants, which contain higher levels of 

amino acid and nicotinamide analogues. It suggests that the presence of the 

heterogonous CHS gene in the transgenic plants influences the flavonoid pathway 

directly and indirectly, resulting in upregulation of sugar and phenylpropanoid 

metabolism. A simplified biosynthetic network including the compounds discussed in 

this chapter is shown in Figure 6.4. The phenylpropanoid pathways and secondary 

metabolic pathways are presented in Figure 6.5 and Figure 6.6. Our results showed that 

the heterologous CHS gene may influence the expression of other genes so a micro 

array analysis could help to obtain a more complete picture of the effect of expression 

the CHS transgene on plant metabolism. 

In plants, sugars have dual functions as nutrition and as important signal molecules 

[Rolland et al., 2002]. There are several studies indicating that sugars upregulate the 

flavonoid and anthocyanin biosynthesis pathway strongly. The CHS gene derived from 

petunia (Petunia hybrida) petals expressed in transgenic Arabidopsis leaves was 

induced by sugars and Arabidopsis grown on a sucrose containing medium showed high 

levels of anthocyanins [Tsukaya et al., 1991; Ohto et al., 2001]. Here we also found a 

correlation between high expression of CHS and sugars, though now the effect seems 

inversed, the CHS expression causing increase of sugars.  

The increase of flavonoid and phenylpropanoid levels in the transgenic plants suggests 

that CHS transgenic plants could be a way to achieve crop plants with a higher level of 

these phenolic compounds. They play an important role in plant development and a 

plant’s interaction with the environment [Rasmussen and Dixon, 1999]. It is reported 

that flavonoids have antimicrobial activity, and can protect plants from herbivory. Their 

function as UV protectant in plants is well-known. Moreover important medicinal and 

nutritional values are described for flavonoids such as antioxidant activity, anti-

inflammatory activity and anti-tumor activity [Harborne and William, 2000; Dixon, 

2000] 

A comparision of metabolites in wild type Arabidopsis and 5 CHS transgenic plants 
(ACS 1, 2, 14, 20, 21) based on the loading scatter plot are presented in Table 6.1. 
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Table 6.1. The metabolites in wild type Arabidopsis and transgenics 

Compounds WT ACS1 ACS2 ACS14 ACS20 ACS21 
Amino/organic acids       
Threonine + – – – – – 
Alanine + – – – – – 
Glutamine + – – – – – 
Valine + – – – – – 
Leucine + – – – – – 
Asparagine + – – – – – 
Formic acid  – + + + + + 
Sugars       
β-glucose – + + + + + 
α-glucose – + + + + + 
Rhamnose – + + + + + 
Fuctose  – + + + + + 
Sucrose – + + + + + 
Phenylpropanoids/Flavonoids       
Kaemferol 3-O-
glucopyranoside-7-
rhamnopyranoside 

– + + + + + + + 

Kaemferol 3,7-O- 
dirhamnopyranoside 

– + + + + + + + 

kaempferol 3-O- rhamnosyl 
(1–2) D-glucoside]-7-O- 
rhamnoside 

– + + + + + + + 

Quercetine direvatives – + + + + + + + 
trans-5-hydroxyferuoyl malate – + + + + + 
trans-caffeoyl malate – ++ + + ++ + 
trans-coumaroyl malate – ++ + + ++ + 
trans-sinapoyl glucoside – + + + + + + + 
trans-sinapoyl malate – + + + + + + + 
Other compounds       
Choline + – – – – – 
Nicotinamide analogue + – – – – – 
Inositol – + + + + + 
Note: – : lower, + : higher, ++: much higher 
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6.4. Conclusion 

This study shows that a specific extraction method focusing on phenolic compounds 

such as flavonoids and phenylpropanoids and using NMR-based metabolomics coupled 

with multivariate data analysis is able to visualize metabolome changes in CHS 

transgenic plants. This analytical method allows identification of a broad range of 

primary and secondary metabolites in crude samples without any purification steps. The 

introduction of the heterogonous CHS gene in A. thaliana has influence on the whole 

plant metabolism, and not only on the pathway where the transgenic protein ic 

expressed. The results also show a potential future for CHS transgenic plants, as 

modifying the flavonoid biosynthesis pathway could improve nutritional or medicinal 

value of a plant. 
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Chapter 7  

1H-NMR analysis of metabolic changes in 
Arabidopsis thaliana and CHS transgenic plants 

upon treatment with UV-A/blue light  

T.T.H. Dao1, 2, H.K. Kim1, H.J.M. Linthorst 3, Y. H. Choi1 and R. Verpoorte1 

1 Section Metabolomics, Institute of Biology, Leiden University, Leiden, The Netherlands 
2 Traditional Pharmacy Department, Hanoi Pharmacy University, Hanoi, Vietnam 

3 Section Plant Cell Physiology, Institute of Biology, Leiden University, Leiden, The Netherlands 

Abstracts 

The metabolic response of Arabidopsis thaliana Col. 0 and CHS transgenic plants upon 

treatment with UV-A/blue light were investigated using high resolution 1H-NMR 

spectroscopy combined with multivariate data analysis. The investigation of the score 

and loading plots of partial least square (PLS) and partial least square-discriminant 

analysis (PLS-DA) showed a high accumulation of flavonoids, phenylpropanoids, 

glucose, fructose, rhamnose, and organic acids in A. thaliana Col. 0 whereas no 

significant change was obtained in CHS transgenic plants after treatments with UV-

A/blue light. The control transgenic plants in fact had already similar levels of 

flavonoids and phenylpropanoids as the UV-A/blue light treated wild type Arabidopsis. 

Keywords: UV-A/blue light, chalcone synthase, flavonoid, phenylpropanoid, 

Arabidopsis, metabolome.  
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7.1. Introduction 

Plants detect and respond to a wide range of endogenous and environmental signals that 

control their metabolism and development. The synthesis of secondary metabolites in 

response to stresses has been implicated as a major defense response of higher plants 

[Bell, 1981]. UV radiation from the sun induces various responses in higher plants. 

While the greatest portion of UV-B (280–320 nm) is absorbed by the ozone layer, UV-A 

(320–400 nm) penetrates the atmosphere to reach the earth surface. DNA is especially 

sensitive to UV-B, resulting in the formation of pyrimidine dimers [Taylor et al., 1997; 

Frohnmeyer and Staiger, 2003]. Low UV-B stimulates distinct other responses in plants, 

such as the accumulation of UV-absorbing pigments and expression of stress response-

related genes [Hahlbrock and Scheel, 1989; Mackerness et al., 2001; Brosché and Strid, 

2003; Frohnmeyer and Staiger, 2003]. UV and blue light regulate the expression of 

various plant genes. In several species, UV-B, UV-A, and blue light stimulate the 

transcription of genes encoding the key phenylpropanoid and flavonoid biosynthesis 

enzymes like phenylalanine ammonia–lyase (PAL) and chalcone synthase (CHS) 

[Fuglevand et al., 1996, Chappell and Hahlbrock 1984; Kubasek et al., 1992; Jenkins 

1997; Schäfer et al., 1997]. That causes an induction of flavonoid accumulation such as 

kaempferol derivatives and sinapoyls in Arabidopsis [Hahlbrock 1981; Beggs et al., 

1985; Li et al., 1993; Lois, 1994]. UV-B and UV-A/blue light act through separate but 

synergistic pathways in inducing CHS expression in Arabidopsis [Fuglevand et al., 

1996]. UV-B, UV-A and blue light each stimulate CHS expression up to about 10-fold 

in mature Arabidopsis leaf tissue  and the combination of light treatments give even a 

much larger increase [Fuglevand et al., 1996]. 

Plants are thought to produce natural sunscreens, which selectively absorb photons in 

the UV-B and UV-A range, and flavonoid pigments are generally regarded as UV-

absorbing agents. The accumulation of UV-absorbing compounds (including flavonoids 

such as flavones, isoflavonoids and anthocyanins) in the vacuoles of the epidermal layer 

provide selective attenuation of UV-B radiation [Hrazdina et al., 1982, Schmelzer et al., 

1988, Tevini et al., 1991, Strid and Porra, 1992]. UV light induces anthocyanins in for 

example, the swollen hypocotyls of turnip, apple fruit, Gros Colman’ grapes (Vitis 

vinifera L.), petals of Rosa hybrida, Arabidopsis [Zhou et al., 2007; Arakawa, 1988; 
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Kataoka et al., 2003; Nakamura et al., 1980], and camalexin in Arabidopsis [Mert et al., 

2003].  

There are 3 UV/blue light photoreceptors in Arabidopsis identified: cryptochromes 1 

and 2 (cry1 and cry2), and the phototropism photoreceptor phototropin (nph1) [Lin, 

2000]. Plant nph1 is tightly associated with the plasma membrane [Reymond et al., 

1992] and cry1 and cry2 are nuclear proteins. Cry1 is present largely in the cytosol of 

light-grown plants and mediates the UV-A/blue light induction of several genes 

involved in flavonoid biosynthesis and anthocyanin accumulation in Arabidopsis [Kuhn 

et al., 1984, Kreuzaler et al., 1983]. Cry2 has a minor role in this response and it is 

constitutively imported to the nucleus regardless of light treatment [Wade et al., 2001; 

Ahmad et al., 1998, Lin et al., 2003]. The blue-light increases the cytoplasmic calcium 

concentration strongly [Baum et al., 1999]. UV-B and UV-A /blue light induction of 

CHS expression involves calcium and these responses are inhibited by the calcium 

channel blockers nifedipine and ruthenium red [Christie and Jenkins, 1996; Frohnmeyer 

et al., 1997].  Calcium flux of the cytosol involves Ca2+–ATPases activity and some 

Ca2+–ATPases are activated by calmodulin [Bush, 1995; Askerlund and Sommarin, 

1996] and may cause a calmodulin-stimulated Ca2+–ATPase which is involved in UV-B 

signal transduction [Long and Jenkins, 1998]. A scheme of the affects of UV-blue light 

in plant cells is shown in Figure 7.1. 

CHS
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nph1
Ca2+

internal store

Cry1
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genome CHS
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UV-A/blue light

UV-B

Ca2+-ATPases

Nucleus

Cry2

mRNA-chsCa2+
Phenylpropanoids

genome

 

Figure 7.1. Model showing effect of UV/blue light on Arabidopsis cell and CHS expression. PM: 

Plasma membrane, X: UVB receptor (unknown)  
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So far flavonoid production has been regarded as the only major metabolic response of 

plants to UV-A/blue light irradiation. But flavonoids are part of the metabolic network 

and changes in this part of the network may affect the overall metabolic network in a 

cell. This study will use NMR-based metabolomics with multivariate data analysis to 

examine the whole of metabolic changes in Arabidopsis after UV-A/blue light stress. 

This allows the study of the total of metabolic networks in more detail and to 

understand more about the relationship between individual genes and metabolic 

processes. 

7.2. Materials and methods  

7.2.1. Plant materials and growth conditions 

Arabidopsis thaliana ecotype Columbia (Col.0) is the genetic background and 6 

transgenic ACS lines were used. Seeds were surface sterilized by submersion for 1 min 

in 70% ethanol, 15 min in 2.5% sodium hypochlorite followed by five rinses with sterile 

water. Surface sterilized seeds were grown on plates containing half MS medium with 

0.6% agar and supplemented with 20 mg/L hygromycin for selection of transgenic 

plants. After 3 days at 4oC in the dark the seeds were germinated at 23oC and long day 

condition (16/8 h light/dark cycle) in a growth chamber. Plants were routinely grown in 

a long day growth conditions under white light for 14 days before transfer to different 

light qualities. Plants were separated in two sets. One set as control was kept growing 

under white light. The other set was transferred to a UV-A/blue light chamber. Samples 

were collected after 6 hours, 24 hours and 48 hours after UV-A/blue light irradiation. 

Immediately after harvesting the material was frozen in liquid nitrogen and kept at 

−80 °C until used. 

7.2.2. Light sources 

Illumination was performed in controlled environment rooms at 23oC. White light was 

provided by warm-white fluorescent tubes (Osram, Munich. Germany). UV-A light was 

provided by F35WIBI-26 blacklight-blue fluorescent tubes (GTE Sylvania, Shipley, 

UK), which emit light between 350 and 400 nm with a λmax at 370 nm. Blue light was 

provided by 40W TI2 blue fluorescent tubes (GTE Sylvania) with λmax at 430 nm, 
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covered with a UV226 filter (Lee Filters, Andover, UK) to remove wavelengths <400 

nm 

7.2.3. Extraction of plant materials  
Plants were ground in liquid nitrogen and pooled before subjected to freeze-drying. 

Twenty-five milligrams of freeze-dried material were transferred to a micro-centrifuge 

tube before adding 600 µl of CH3OH-d4. The mixture was vortexed for 2 minutes and 

sonicated for 20 min, followed by centrifugation at 13,000 rpm for 5 minutes at room 

temperature. Five hundred microliters of the supernatant were then transferred into 2 ml 

micro-centrifuge tubes and 250 µl of KH2PO4 buffer, pH 6.0, containing 0.1% trimethyl 

silyl propionic acid sodium salt (w/v) were added. The mixture was left for 30 minutes 

in 4oC, and then centrifuged at 6000 rpm for 5 minutes at room temperature. Seven 

hundred µl of the supernatant were then transferred into 5 mm NMR tubes for analysis.  

7.2.4. Solvents and chemicals 
D2O (99%) and CH3OH-d4 (99.8%) were obtained from Cambridge Isotope 

Laboratories Inc (Miami, FL, USA). NaOD was purchased from Cortec (Paris, France). 

Potassium dihydrogen phosphate and trimethylsilane propionic acid sodium salt (TSP) 

were purchased from Merck (Darmstadt, Germany). KH2PO4 was added to D2O as a 

buffering agent. The pH of the D2O was adjusted to 6.0 using a 1 M-NaOD solution. 

7.2.5. NMR spectra measurement 
1H-NMR, 2D J-resolved spectra were recorded at 25 oC on a 500 MHz Bruker DMX-

500 spectrometer (Bruker, Karlsruhe, Germany). 1H-1H-correlated spectroscopy 

(COSY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple 

bonds coherence (HMBC) spectra were recorded on a 600 MHz Bruker DMX-600 

spectrometer (Bruker, Kalsruhe, Germany). All the NMR parameters were the same to 

those of our previous reports (Jahangir et al., 2008; Abdel-Farid et al., 2007). 

7.2.6. Data analysis 
Spectral intensities of 1H-NMR spectra were scaled to total intensity and reduced to 

integrated regions of equal width (0.04) corresponding to the region of  0.4-  10.0. 

The regions of  4.8- 4.9 and  3.28- 3.40 were excluded from the analysis because of 
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the residual signal of water and CH3OH. Principal component analysis (PCA) and 

partial least square regression analysis (PLS) were performed with the SIMCA-P 

software (v. 11.0, Umetrics, Umeå, Sweden). 

7.3. Results  

In order to exclude the separation in analysis due to the effect of the transgene and only 

observe the effect of UV-A/blue light, the sample data set was split into two groups: 

wild type and transgenic Arabidopsis. The results are presented below.  

7.3.1. Metabolomic profiling of UV-A/blue light treated Arabidopsis thaliana Col. 0 

by NMR spectroscopy 

To reveal the change of metabolites after a UV-A/blue light treatment in A. thaliana 

Col. 0 the multivariate analysis partial least square (PLS) method was applied, that 

method can apply a time point (6, 24, 48 hrs) variable in the data analysis. Thus we can 

see the metabolite changes based on UV-A/blue light treatment as well as due to 

growth. A clear separation was obtained in the PLS score plot (Figure 7.2). There is no 

metabolomic change after 6 hrs of UV-A/blue light treatment, most differentiation was 

observed after 24 hrs UV-A/blue light treatment. However, during the developmental 

period the plant metabolome always changes and thus also affects the results of UV-

A/blue light treated plants. To solve this problem the supervised method PLS-DA was 

applied. For PLS-DA, the data were divided into two classes: controls and UV-A/blue 

light treated plants. The score plot (Figure 7.3) of PLS-DA shows a distinct separation 

between the UV-A/blue light treated plants and controls. Most separation was displayed 

in component 1 (PC 1). The UV-A/blue light treated group (2) stays on the negative side 

of PLS-DA PC 1, whereas the control group is on the positive side. To interprete which 

metabolites correspond to each group in the PLS-DA diagram the loading plot was 

investigated. The loading plot of PC 1 (Figure 7.4) clearly shows that 

phenylpropanoids, flavonoids, glucose, fructose and organic acids are a higher in the 

UV-A/blue light treated group (Figure 7.4 A, B, C) and non-treated group has higher 

amount of sucrose and amino acids (Figure 7.4 A, B).  
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Figure 7.2. PLS score scater plot of UV-A/blue light treated Arabidopsis in 6 hr (WU6), 24 hr 

(WU24), 48 hr (WU48) and controls (WN6, WN24, WN48). 
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Figure 7.3. PLS-DA score scatter plot of UV-A/blue light treated Arabidopsis Col.0 in 6 hr 

(WU4), 24 hr (WU24), 48 hr (WU48) and controls (WN6, WN24, WN48) 
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Figure 7.4. PLS-DA loadings column plot of UV-A/blue light treated Arabidopsis Col.0 and 
controls  
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7.3.2. Metabolic profiling of UV-A/blue light treated CHS transgenic Arabidopsis 

thaliana Col. 0 by NMR spectroscopy 

The 1H-NMR data of UV-A/blue light treated CHS transgenic Arabidopsis were 

analyzed in the same way as the control group but no clear separation was obtained 

between UV-A/blue light treated and none UV-A/blue light treated plants in the PLS 

score plot (Figure 7.5). So a supervised method PLS-DA was applied to see the effect 

of UV light on the metabolome of transgenic ACS plants. The PLS-DA score plot 

(Figure 7.6) shows only minor separation between UV-A/blue light treated ACS and 

control ACS in both PC1 and PC2. In order to identify the corresponding metabolites 

responsible for the separation we used a PLS-DA loadings Bi plot which resulted in 

Figure 7.7. Figure 7.7 do show that there are only few metabolites which correspond to 

separation but those are unknown signals and none of the main identified metabolites 

contributes to seperation. It means there are no significant metabolome changes in ACS 

plants after the UV-A/blue light treatments. 

In order to see the effect of CHS expression on the metabolome of UV-A/blue light 

treated Arabidopsis plants, PCA was applied to analyze only the CHS transgenic 

Arabidopsis and wild type plants at 24h UV-A/blue light treatment. That time point 

showed the biggest change of Arabidopsis metabolites under UV-A/blue light stress 

(Figure 7.2). The results of PCA analyse are presented in Figure 7.8 which shows that 

the UV-A/blue light treated groups are very close to the non-treated UV-A/blue light 

groups in CHS transgenic Arabidopsis whereas the UV-A/blue light treated groups is 

very far from non-treated UV-A/blue light groups in wild type Arabidopsis. Also the 

UV-A/blue light treated groups of wild type Arabidopsis are very close to transgenic 

plants. This result means that UV-A/blue light did not have a clear effect on the CHS 

transgenic Arabidopsis in contrast it has a big effect on wild type Arabidopsis in which 

the metabolites of UV-A/blue light treated wild type plants became similar to CHS 

transgenic Arabidopsis. 
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Figure 7.6. PLS-DA loading scatter plot of UV-A/blue light treated CHS transgenic Arabidopsis 

line ACS 20 (U20), ACS 2 (UB) and controls (N20, NB) 
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Figure 7.7. The PLS-DA loadings Bi plot of UV-A/blue light treated CHS transgenic Arabidopsis 

(ACS 20 and ACS 2) and controls 
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Figure 7.8. The PCA loading scatter plot of UV-A/blue light treated CHS transgenic Arabidopsis 

ACS 20 (U20), ACS 2 (U2), wild type (UW) and controls (N20, N2, NW). 
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7.4. Discussion 

This study shows that UV-A/blue light strongly influences the metabolome of A. 

thaliana Col. 0 wild type while the metabolome of transgenic ACS does not show any 

specific change under UV-A/blue light treatment. The samples of 6 hr UV-A/blue light 

treatment showed no metabolic changes. At that time point a response at gene level may 

have been accomplished which causes the metabolic changes observed at 24 hr after the 

start of the treatment. That could explain that the biggest separation was obtained 

between control and UV-A/blue light treated group at 24 hr (Figure 7.1). The light 

treated group shows accumulation of flavonoids, phenylpropanoids, simple sugars such 

as glucose, fructose and rhamnose and a decrease of sucrose and amino acids. 

Flavonoids, phenylpropanoids and simple sugars can absorb UV-A/blue light. Several 

studies have shown that flavonoid production is induced by UV-A/blue light and occurs 

in the leave epidermal layers [Buchholz et al., 1995, Jenkins et al., 2001]. Those 

compounds play a role as sun filter for the plants to avoid DNA damage caused by UV-

A/blue light. The decrease of sucrose and amino acids in UV-A/blue light treated plants 

might be due to the major metabolic changes needed from cell homeostasis to cell stress 

metabolism. The simple sugars are needed for energy and precursors or the biosynthesis 

of flavonoids and phenylpropanoids. Amino acids are possibly required for the de-novo 

biosynthesis of enzymes and as precursors.  

We did not see any specific effect of UV-A/blue light on the transgenic ACS 

metabolome. There was no specific change of the metabolome observed for UV-A/blue 

light treated transgenic plants, if compared with transgenic controls and UV-A/blue 

light treated wild type (Figure 7.8). The ACS transgenic plants have high accumulation 

of flavonoids and phenylpropanoids itself (Chapter 6) so it might be enough to protect 

the plant from UV light. Very high levels of flavonoids and phenylpropanoids can be 

toxic for the plant and consequently there will be a limit in the level of metabolites that 

plants can produce without causing cell death. In the transgenic plants probably the limit 

of flavonoid and phenylpropanoid production is already achieved, not allowing any 

further increase of the biosynthesis, whereas in the wild type cells induction is possible. 

At what level the phenylpropanoid biosynthesis is regulated cannot be concluded from 

our results, but it might be at the level of CHS. At least our results support that the 
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phenylpropanoid and flavonoid biosynthetic pathways are the major metabolic 

pathways involved in the response to UV-A/blue light stress.  
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Chapter 8  

Effect of benzothiadiazole on the metabolome of 
Arabidopsis thaliana  

T.T.H. Dao1, 2, R. Chacon Puig1, H.K. Kim1, C. Erkelens3, A.W.M. Lefeber3, 
H.J.M. Linthorst4, Y.H. Choi1, R.Verpoorte1 

1Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, The 
Netherlands 

2Traditional Pharmacy Department, Hanoi Pharmacy University, Vietnam  
3Division of NMR, Leiden Institute of Chemistry, Leiden University, The Netherlands 

4Division of Plant Cell Physiology, Institute of Biology, Leiden University, The Netherlands 

Plant Physiology and Biochemistry, Volume 47, Issue 2, February 2009, Pages 146-152. 

Abstract 

Benzothiadiazole (BTH) is a functional analogue of the plant endogenous hormone-like 

compound, salicylic acid (SA), which is required for the induction of plant defense 

genes leading to systemic acquired resistance (SAR). Previous molecular and genetic 

studies have suggested that BTH itself might potentiate SAR resulting in the induction 

of several pathogenesis-related (PR) genes. However, the changes in the metabolome, 

which occur as a result of BTH-treatment, remain unclear. In this study, metabolic 

alterations in BTH-treated Arabidopsis thaliana were investigated using nuclear 

magnetic resonance (NMR) spectroscopy followed by multivariate data analyses such as 

principal component analysis (PCA) and partial least square - discriminant analysis 

(PLS-DA). Both PCA and PLS-DA show that increase of glucose, glutamine, inositol, 

malic acid, sucrose, and threonine as well as BTH and its degraded metabolites 

contribute to the clear discrimination of the metabolome of BTH-treated Arabidopsis 

from control plants. However, the levels of phenolic metabolites which have generally 

been observed to be induced by other signaling molecules were significantly reduced in 

BTH-treated Arabidopsis. In addition to these changes due to BTH-treatment, it was 
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also found that the ethanol used as a solvent in this treatment may per se act as an 

inducer of the accumulation of a flavonoid.  

Keywords: Arabidopsis thaliana, Benzothiadiazole, Metabolomics, Nuclear magnetic 

resonance spectroscopy, Systemic acquired resistance, Principal component analysis, 

Partial least square - discriminant analysis 
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8.1. Introduction 

Plants interact constantly with the environment, e.g. other organisms, soil, climate, 

water conditions, or exogenous chemicals. When challenged, plants can switch on their 

defense mechanism in general, as a response to many stimuli, or specifically, 

responding to a certain stimulus. Among the plant defense mechanisms, systemic 

acquired resistance (SAR) is a whole-plant resistance response that follows an earlier 

local exposure to a pathogen. Fungal, bacterial, or viral pathogenic infections induce 

SAR, involving different biochemical pathways that produce salicylic acid (SA) among 

others, transduction signals of pathogenesis-related (PR) proteins, and/or phytoalexins 

[Bol et al., 1990; Dixon, 1986; Felton et al., 1999; Kombrink et al., 1997; , Métraux et 

al., 1990]. SAR can also be induced by exposing the plant to virulent, nonpathogenic 

microbes, or to chemicals such as SA, 2,6-dichloro-isonicotinic acid (INA) or 

benzo(1,2,3)thiadiazole-7-carbothioic acid-S- methyl ester (BTH) [Kuć, 1982; Ryals et 

al., 1996; Sticher et al., 1997].  

The phenomenon of pathogen-induced SAR has been recognized as a plant response to 

pathogen infection for almost 100 years and has therefore been extensively studied in 

many plants at a genetic and proteomic level [Ryals et al., 1996]. SAR is associated 

with the induction of gene expression of defensive factors such as PR proteins, and this 

activation requires the production of endogenous SA [Métraux et al., 1990]. Several PR 

proteins including PR-1, PR-2 (β-1,3-glucanases), PR-3 (chitinases), PR-4, and PR-5 

(osmotin) were found positively correlated with the onset of SAR although with an 

expression level of marker genes for SAR that varied between different species 

[Kessmann et al., 1994;, Vleeshouwers et al., 2000]. In Arabidopsis thaliana, the 

mRNAs for PR-1, PR-2, and PR-5 accumulated in a coordinated manner in tissues that 

became resistant after pathogen infection [Uknes et al., 1993]. Most PR proteins were 

found to accumulate in the extracellular space or in the vacuole. The extracellular PR 

proteins are thought to be directly in contact with the pathogen penetrating the tissue 

and vacuole PR proteins are probably involved in the following defense reaction after 

decompartmentalization [Sticher et al., 1997]. Different roles have been attributed to PR 

proteins, such as antimicrobial or antifungal activities in vitro activities [Liu et al, 1994; 

Mauch et al., 1988] or the capacity of releasing elicitors [Kurosaki et al, 1986]. 

However, the exact role of PR proteins in SAR still remains unclear.  
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Benzo(1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester (BTH, Fig. 1) is a potent 

SAR activator which provides protection in natural conditions against a broad spectrum 

of diseases affecting a variety of crops [Friedrich et al., 1996; Görlach et al., 1996;  

Lawton et al., 1996]. Although BTH is a strong SAR inducer which causes the 

expression of the same set of SAR genes as those induced by SA, it does not require 

accumulation of SA but may act downstream of SA [Friedrich et al., 1996; Görlach et 

al., 1996;, Kuć 1982]. BTH induces SAR in tobacco [Friedrich et al., 1996], wheat 

[Görlach et al., 1996] and in Arabidopsis [Lawton et al., 1996]. In the latter, BTH was 

found to directly activate PR-1 and to prime the plants for potential phenylalanine 

ammonia-lyase (PAL) expression in response to the infection by phytopathogenic 

Pseudomonas syringae p.v. tomato (Pst) [Lawton et al., 1996]. It is also an excellent 

elicitor for the SA-activated defensive pathways in cotton, inducing remarkable levels 

of activity of PR proteins both locally and systemically [Inbar et al., 2001]. At the 

metabolome level, BTH proved unable to induce any specific metabolites itself, even 

though there was a significant induction of PR genes and proteins [Katz et al., 1998]. A 

remarkable change at this level was detected only after elicitation [Katz et al., 1998], 

implying that BTH can only potentiate plants following elicitation or infection by 

induction of PR protein genes. In contrast with these findings, interesting results were 

recently reported about the metabolic variation of grapevine following BTH-treatment 

[Iriti et al., 2004]. In this case, total polyphenols such as stilbenoids, flavonoids, 

anthocyanidins, and proanthocyanidins increased notably in the plants after BTH-

treatment. This report awakened our interest in studying possible metabolomic changes 

in BTH-treated Arabidopsis since there is very scarce information on this aspect as 

compared to the knowledge of transcriptomic and proteomic levels of BTH-treated 

plants.  

Changes at a transcriptomic and proteomic level should necessarily be reflected in the 

metabolome, since metabolites are the final amplified product of gene and protein 

expression. In recent years, metabolomics studies have received increasing attention, as 

a means of acquiring a better insight into the complete biological process, combining 

this information with that obtained through genomics, transcriptomics and proteomics 

[Hirai et al., 2004; Kolbe et al., 2006; Oksman and Saito, 2005]. Technological 

advances in analytical chemistry and instrumentation have accelerated the development 
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of diverse tools for metabolomics, particularly the information technology and 

mathematics needed to deal with the handling of large datasets, which have played a 

major role in developing the full potential of these analytical methods. Among these, it 

is generally accepted that NMR is the optimal tool for macroscopic metabolomics [Choi 

et al., 2006; Verpoorte et al., 2007]. This is especially the case when 1H-NMR 

spectroscopy is applied to metabolomics since a diverse group of metabolites including 

amino acids, carbohydrates, lipids, phenolics, and terpenoids can be detected 

simultaneously [Choi et al., 2004; Hendrawati et al., 2006; Liang et al., 2006]. It is also 

an easier and more robust method for acquiring quantitative raw data when compared to 

other methods. These positive features of NMR have led many researchers to use NMR 

as the first choice of plant metabolomics. 

In this study NMR spectroscopy and multivariate data analysis including principal 

component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) 

were applied to the analysis of metabolic changes in Arabidopsis thaliana treated by the 

SAR inducing chemical, BTH. Based on the results, the induction or suppression of 

diverse metabolites following BTH treatment in Arabidopsis as compared to control 

plants was investigated. The information thus obtained is expected not only to provide 

knowledge on metabolic characteristics but also to advance the understanding of the 

molecular basis of systemic acquired resistance in plants.  

8.2. Methods 

8.2.1. Reagents 
Analytical grade CH3OH and CHCl3 were purchased from Merck Biosolve Ltd. 

(Valkenswaard, The Netherlands). CH3OH-d4 and D2O (99.0%) were obtained from 

Cambridge Isotope Laboratories Inc (Miami, FL, USA) and NaOD was purchased from 

Cortec (Paris, France). Potassium dihydrogen phosphate (KH2PO4) and trimethylsilane 

propionic acid sodium salt (TMSP) were bought from Merck (Darmstadt, Germany). 

Benzo(1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester (BTH) was obtained form 

Novartis (Basel, Switzerland). 

8.2.2. Growing Arabidopsis 
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Seeds of Arabidopsis thaliana ecotype Col-0 were generously donated by Dr. J. 

Memelink (Institute of Biology, Leiden University, Leiden, The Netherlands). Seeds 

were sown in soil and kept at 4 °C for 4 days. The Arabidopsis plants were grown under 

identical long-day controlled environment conditions in trays, 25 °C, and 16 h light/8 h 

dark. Four groups of Arabidopsis were prepared including BTH (in 80% EtOH)-treated, 

80% EtOH-treated, and two control groups without any treatment which were grown in 

different locations under the same growing conditions. Four replicates were used for 

each time point of the groups. BTH or EtOH treatment was performed after 6 weeks 

growth.  

8.2.3. BTH treatment 
Treatments were carried out following the method of Lawton et al. with a BTH 

concentration of 300 µmol in 80% EtOH per plant [Lawton et al., 1996]. Two groups of 

control Arabidopsis plants were prepared: one group was untreated and another was 

treated with the same amount of 80% EtOH as BTH treated ones. Plants were harvested 

at 4, 24, 48 and 96 h after treatment and frozen in liquid nitrogen. The whole aerial parts 

were homogenized and stored at - 80 °C until used. 

8.2.4. RNA analysis 
Total RNA was isolated using RNeasy plant mini kit (Qiagen, Hilden, Germany). The 

purified RNA was treated with DNase I using a DNA-free kit (Ambion, Austin, TX, 

USA) and the purity of RNA integrity was confirmed by running on a 1.5% (w/v) 

agarose gel. Total RNA (2 µg) was reverse transcribed in a 20 µl reaction using an 

oligo(dT)18 primer and SuperScript™ II reverse transcriptase (Invitrogen, Breda, The 

Netherlands) according to the manufacturer's instructions. The cDNA was diluted 20 

times and 1 µl was used as template for a real-time PCR experiment. The primers used 

to amplify PR-1 were 5’-GTAGGTGCTCTTGTTCTTCCC-3’ and  

5’-CACATAATTCCCACGAGGATC- 3’. The primers used to amplify actin1 were 5’-

ATGAAGCTCAATCCAAACGA-3’ and 5’-CAGAGTCGAGCACAATACCG-3’. 

Real-time PCR was performed on ABI Prism 7700 Sequence Detection system (Applied 

Biosystems, Foster City, CA, USA). Samples were amplified in a 50 µl reaction 

containing 1×SYBR Green Master Mix (Eurogentec, Maastricht, The Netherlands) and 
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300 nM of each primer. The thermal profile consisted of 1 cycle at 95 °C for 3.5 min 

followed by 40 cycles at 95 °C for 0.5 min and at 60 °C for 1 min. Changes in gene 

expression as a relative fold difference between BTH treated samples and control ones 

were calculated using the comparative Ct (2-∆∆Ct) method [Schmittgen et al., 2000; 

Winer et al., 1999]. Actin1 was used as a reference gene to normalize for differences of 

the total RNA amount.  

8.2.5. Extraction and fractionation of plant material 
For the analysis of polar metabolites, plant material was pulverized in liquid nitrogen 

using a mortar and pestle and freeze dried. An aliquot of dried material (50 mg) was 

transferred to a microtube and 1.5 ml of 50% CH3OH-d4 in D2O (KH2PO4 buffer, pH 

6.0) containing 0.05% Trimethylsilane propionic acid sodium salt (TMSP, w/v) was 

added. The mixture was vortexed at room temperature for 1 min, sonicated for 20 min 

and centrifuged at 13,000 rpm at room temperature for 5 min. A volume of 800 µl of the 

supernatant was transferred to a 5 mm-NMR tube. 

In the case of non-polar metabolite extraction, 20 mg of plant material, were submitted 

to the same method as that described for polar metabolites extraction and extracted with 

4 ml of CHCl3-CH3OH (1:1, v/v) followed by vortexing for 30 seconds and sonication 

for 1 min. The sample was then centrifuged at 3,000 rpm for 20 min. The extracts were 

placed in a 25 ml-round bottom evaporation flask and dried in a rotary vacuum 

evaporator. The dried fractions were redissolved in 800 µl of CH3OH-d4.  

8.2.6. NMR spectra measurements 
1H-NMR and J-resolved spectra were recorded at 25 oC on a 400 MHz Bruker AV-400 

spectrometer. Each 1H-NMR spectrum consisted of 256 scans requiring 17.3 min 

acquisition time with the following parameters: 0.15 Hz/point, pulse width (PW) = 45o 

(3.3 µ sec), and relaxation delay (RD) = 2.0 sec and acquisition time (AQ) =2.0 sec. A 

presaturation sequence was used to suppress the residual water signal with low power 

selective irradiation at the water frequency during the recycle delay. FIDs were Fourier 

transformed with LB = 0.3 Hz and the spectra were zero-filled to 32 K points. The 

resulting spectra were manually phased and baseline corrected, and calibrated to TSP at 

0.0 ppm, all using XWIN NMR (version 3.5, Bruker). Two dimensional presaturated J-
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resolved 1H-NMR spectra were acquired using 16 scans per 64 increments that were 

collected into 16 K data points, using spectral widths of 5208 Hz in F2 (chemical shift 

axis) and 50 Hz in F1 (spin-spin coupling constant axis). A 1.0 sec relaxation delay and 

1.6 sec for acquisition time was employed, giving a total acquisition time of 55.39 min. 

Datasets were zero-filled to 512 points in F1 and both dimensions were multiplied by 

sine functions prior to double complex FT. 1H-1H-correlated spectroscopy (COSY) 

spectra were acquired with 1.0 sec relaxation delay, 4194 Hz spectral width in both 

dimensions. The heteronuclear multiple quantum coherence (HMQC) spectra were 

obtained with 1.4 sec relaxation delay, 4401 Hz spectral width in F2 and 20124 Hz in 

F1. The heteronuclear multiple bond correlation (HMBC) spectra were recorded with 

1.4 sec for relaxation delay, 4251 Hz for F2 axis, 20124 for F1 axis. Qsine function was 

used both for HMQC and HMBC (SSB=2.0)  

8.2.7. Multivariate data analysis 
The 1H-NMR spectra were automatically reduced to ASCII files using AMIX (v. 3.8, 

Bruker Biospin). Spectral intensities were scaled to total intensity and reduced to 

integrated regions of equal width (δ 0.04) corresponding to the region of δ 0.30 – δ 8.48.  

The regions of δ 4.70 - δ 4.90 and δ 3.28 - δ 3.34 in 50% CH3OH-d4 in D2O (KH2PO4 

buffer, pH 6.0) and δ 4.90 - δ 5.28 and δ 3.24 - δ 3.34 in CH3OH-d4 were excluded from 

the analysis because of the residual signal of solvent and water. Principal component 

analysis (PCA) and partial least square - discriminant analysis (PLS-DA) were 

performed with the SIMCA-P software (v. 11.0, Umetrics, Umeå, Sweden). For scaling 

method Pareto and unit variance method were used for PCA and PLS-DA, respectively.  

8.3. Results and Discussion 

8.3.1. PR-1 expression in BTH-treated Arabidopsis 

Prior to metabolic analysis the expression of the PR-1 gene was confirmed by qPCR 

since it is a specific marker of SAR in Arabidopsis [Ryals et al., 1996]. The 

accumulation of the PR-1 gene in BTH treated samples was observed 4 h after treatment 

and increased after 24 h and 48 h, but decreased after 96 h. The ethanol used to dissolve 

BTH seemed to act as an inducer itself since in EtOH treated samples; the expression of 

PR-1 was also detected 4 h after treatment. However, after 24 h the level of PR-1 
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expression was similar again to that of the control plants (non treated plants, data not 

shown). 

8.3.2. Principal component analysis of 1H-NMR spectra of control, ethanol and BTH-

treated Arabidopsis 

No single extraction method makes it possible to isolate a complete metabolome, i.e. the 

whole profile of metabolites, owing to its huge diversity in terms of chemical properties. 

To overcome this problem, two different extraction solvents were used: CH3OH-H2O 

for polar, hydrophilic metabolites and CHCl3-CH3OH for the less polar ones. This last 

extract showed no discriminating metabolites between control, EtOH and BTH-treated 

Arabidopsis.  

A previous 1H-NMR metabolomic study of Arabidopsis, carried out on a CH3OH-water 

extract showed a great amount of amino acids, carbohydrates, organic acids, and 

phenolics that were clearly detected in a single spectrum [Hendrawati et al, 2006]. 

Aside from these constitutive plant metabolites, one more point had to be considered in 

this study. When a non-volatile chemical is introduced into a plant, residues of the 

compound itself or eventually its degradation products will also be included in the 

analysis. The suitability of a selected analytical method for metabolomics is dependent 

on whether or not those exogenous chemicals will interfere. A typical 1H-NMR 

spectrum of BTH-treated Arabidopsis in a mixture of CH3OH-d4 and KH2PO4 buffer 

(pH 6.0) (1:1) is shown in Figure 8.1. 1H-NMR will allow the detection of very diverse 

compounds, without magnifying a certain group of metabolites. Thus, amino acids, 

carbohydrates, flavonoids, nitrogen-containing metabolites, and phenylpropanoids are 

observed. A limitation of one dimensional (1D)-NMR spectroscopy is the congestion of 

signals. It was solved using diverse two dimensional (2D)-NMR techniques. In 

particular, 2D-J-resolved spectra greatly facilitated the analysis of the phenolic region 

(Figure 8.3). For treated plants, as expected, the signals of residual BTH at δ 8.97 (H-6, 

d, 9.2 Hz), δ 8.60 (H-4, d, 7.2 Hz), and δ 7.95 (H-5, t, 8.0 Hz) were observed in the 

spectra (Figure 8.1A). Adjacent to these signals, similar types of resonances at δ 8.74, δ 

8.28 and δ 7.84 were detected and identified as those of a product of hydrolysis of BTH 

(Figure 8.2). All known Arabidopsis metabolites were elucidated based on the chemical 

shifts and coupling constants observed which were confirmed by diverse 2D-NMR such  
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Figure 8.1. 1H-NMR spectrum of Arabidopsis thaliana treated with BTH in 50% CH3OH-d4 in 

D2O (KH2PO4 buffer, pH 6.0) in the range of  6.1 –  9.2 (A),  4.4 –  6.1 (B),  2.2 –  4.4 (C), 

 0.5 –  2.3 (D). 1; BTH, 2; hydrolyzed BTH, 3; formic acid, 4; adenosine, 5; adenine, 6; 

kaempferol glycosides, 7; sinapoyl malate, 8; quercetin-3-O-glycosides, 9; feruloyl malate, 10; 

fumaric acid, 11; cytosine, 12; sucrose, 13; α glucose, 14; malic acid, 15; inositol, 16; choline, 17; 

GABA, 18; asparagine, 19; diethylamine, 20; succinic acid, 21; glutamine, 22; proline, 23; 

alanine, 24; threonine, 25; valine 
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as J-resolved, correlated spectroscopy (COSY), heteronuclear single quantum coherence 

(HSQC), and heteronuclear multiple bond correlation (HMBC) spectra, and published 

data in our previous study [Hendrawati et al., 2006].  

 
Figure 8.2. Chemical structures of BTH and its hydrolyzed metabolite. 
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Figure 8.3. Two dimensional J-resolved spectrum of Arabidopsis thaliana treated with BTH in 

CH3OH-d4 in D2O (KH2PO4 buffer, pH 6.0) in the range of δ 6.1 – δ 9.2). 1; BTH, 2; hydrolyzed 

BTH, 3; formic acid, 4; adenosine, 5; adenine, 6; kaempferol glycosides, 7; sinapoyl malate, 8; 

quercetin-3-O-glycosides, 9; feruloyl malate, 10; fumaric acid. 
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For a first overview of the metabolomic changes in BTH treated-Arabidopsis, principal 

component analysis (PCA) was applied to the 1H-NMR data. Of the many multivariate 

data analysis method used in metabolomics, PCA is the most popular unsupervised 

grouping method for the reduction of the original data dimensions since the grouping or 

separation can be achieved simply based on maximum variation of samples without any 

biased information. In order to evaluate intact metabolic change, all the 1H-NMR 

signals of BTH and its hydrolyzed metabolite were excluded for PCA.  

Figure 8.4 shows the score plot of PCA based on 1H-NMR spectra of the control 

sample, and 80% EtOH-treated and BTH-treated Arabidopsis (4, 24, 48 and 96 h after 

treatment). Three groups of control Arabidopsis plants were compared with BTH-

treated ones. BTH treatment was carried out using a solution of BTH in 80% EtOH. It 

was therefore necessary to submit plants to a treatment with this solvent (as a control) in 

order to evaluate its activity. For non-treated controls, two batches of Arabidopsis were 

grown in different locations but under the same conditions, in order to assess possible 

biological variations. Metabolism is quite dynamic, being easily affected by many 

factors. Even under seemingly controlled conditions, level of metabolites might be 

affected by unpredictable external factors. However, while no separation was observed 

in the PCA score plot of the two control groups which had been grown in different 

locations (Figure 8.4), EtOH treated plants were slightly different from the two control 

groups. In accordance with reported PCR results, there is a possibility that the addition 

of EtOH may cause a weak induction of PR genes, which can result in a metabolic 

change. However, the EtOH-treated Arabidopsis are also separated from BTH-treated 

ones. As shown in Fig. 4, the BTH-treated plants are undoubtedly differentiated from 

others, especially 24 h after treatment. In general, change in metabolomic expression 

resulting from changes in the level of gene and protein levels can be expected to occur 

later. In fact most expression of genes related to BTH effect such as PR-1, PR-2, and 

PR-3 can be shown within 24 h [Wendehenne et al., 1998] and metabolic alteration was 

clearly first detected after 24 h. 

The signals responsible for the difference of BTH-treated Arabidopsis could be 

identified using the loading plot. The cluster of BTH-treated plants 24 h after treatment 

compared to the untreated controls or EtOH-treated samples, shows lower principal 

component (PC) 2 in the score plot of PCA. Using the loading plot, alanine, glucose, 
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glutamine, malic acid, and threonine were found positively related to the lower PC2 

whereas aspartic acid, flavonoid glycosides, phenylpropanoids, and succinate were 

higher in the controls.  

8.2.3. Partial least square-discriminant analysis of 1H-NMR spectra of control, 

ethanol and BTH-treated Arabidopsis 

While PCA is an excellent tool for data reduction and grouping multivariate data, it has 

limitations, which have to be considered. The separation by PCA is obtained only from 

maximum variations between samples as unsupervised multivariate data analysis is 

used. However, when information on some classification is available, it may be useful 

to apply a type of discriminant analysis, i.e. a supervised method in which grouping can 

be obtained by maximum covariance (e.g. metabolic difference corelated to 

classification). In this study, partial least square-discriminant analysis (PLS-DA) was 

employed using two classes; class 1 for control and EtOH-treated and class 2 for BTH-

treated Arabidopsis plants. One of the advantages derived from the use of PLS-DA is 

that it concentrates on the effect of the selected factor (e.g. BTH or ETOH treatment) by 

reducing the influence of uninteresting factors such as the developmental stages of the 

plant.  

The result obtained applying PLS-DA can be observed in Figure 8.5. Comparing this to 

the result of the PCA score plot (Figure 8.4), it is clear that a better separation   between 

control (non-treated and EtOH-treated) and BTH-treated Arabidopsis plants is achieved. 

The separation in the score plot of PLS-DA could be obtained from the covariance 

between metabolites and treatments, disregarding the change due to developmental 

stages from 4 – 96 h or EtOH effect in which the metabolome were found to be greatly 

changed. According to PCA, the level of primary metabolites including alanine, 

glucose, glutamine, inositol, malic acid, sucrose, and threonine in BTH-treated samples 

were highly increased in a similar way. In previous studies, plants treated with signaling 

molecules such as analogues of jasmonic or salicylic acid, revealed a great variation in 

phenolics, which are known to play a role in plant defense [Görlach et al., 1996; 

Kurosaki et al., 1986; , Liang et al., 2006]. However, BTH-treated plants exhibited a 

decrease of phenolics which could be explained considering that BTH may cause an 

accumulation of lignin by enhancing polar auxin transport [Besseau et al., 2007; Katz et 
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al., 1998]. Additionally, numerous previous studies proved that BTH itself does not 

change metabolism but primes plant defense by activation of some specific genes, e.g. 

genes encoding peroxidases [Katz et al., 1998] or by the formation of protective layers 

at the sites of attack [Benhamou and Belanger, 1998]. Resistance in terms of increased 

biosynthesis levels of defense compounds can be activated only by further elicitation 

after BTH treatment. For instance, phenylalanine ammonia-lyase (PAL), involved in the 

biosynthesis of many phenolics, did not increase in BTH-treated cultured parsley 

(Petroselinum crispum L.) but further elicitation greatly increased the mRNA level of 

PAL activity and coumarin secretion [Katz et al., 1998].  

In previous studies, trace amount of EtOH was found to alter the activity of certain 

enzymes [Li et al., 2004]. For example, the activities of peroxidases and 

superoxidedismutase in cucumber roots highly increase by the addition of EtOH [Li et 

al., 2004]. In the case Ilex paraguariensis cell suspension culture EtOH is glycosylated. 

However, the effect of EtOH on plant metabolims is still unclear. In our qPCR 

experiment, ethanol treated Arabidopsis expressed PR-1 at 4 h after treatment. Also, the 

metabolic change in EtOH-treated Arabidopsis was detected in the PCA score plot 

(Figure 8.4). In order to investigate the effect of EtOH on the metabolome of 

Arabidopsis, PLS-DA using two classes such as control and EtOH-treated samples was 

performed (Figure 8.6). When Arabidopsis was treated with 80% EtOH, a kaempferol 

glycoside as well as alanine, GABA, glucose, proline, and threonine, were unexpectedly 

induced. Two flavonoids, kaempferol- 3-O-D-glucopyranoside-7-O-L-

rhamnopyranoside and kaempferol -3,7-O-L-dirhamnopyranoside, are the two major 

flavonoids reported in Arabidopsis [Hendrawati et al., 2006]. Interestingly, only 

kaempferol 3-O-D-glucopyranoside-7-O-L-rhamnopyranoside was affected by the 

EtOH-treatment. However, this flavonoid was not found as a discriminating metabolite 

in BTH-treated plants although BTH was used in EtOH solution. It might be because 

BTH attenuate the effects of ethanol on the accumulation of the flavonoid in BTH-

treated plants. 
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Figure 8.4. Fig. 4. Score plot of principal component analysis (PC1 vs PC2) at each time point 

after BTH or EtOH treatment based on 1H- NMR spectra of the Arabidopsis thaliana (O; control 

1, +; control 2, ∆; 80% EtOH-treated, ▲; BTH-treated). The eclipse represents Hotelling’s T2 

with 95% confidence in score plots. Numberings on the plot are the number of hours after 

treatment. 
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Figure 8.5. Score (A) and loading (B) plot of PLS-DA using two classes (class 1; non-treated and 

EtOH-treated, class 2; BTH-treated Arabidopsis thaliana). O; control 1, +; control 2, ∆; 80% 

EtOH-treated, ▲; BTH-treated. The eclipse represents Hotelling’s T2 with 95% confidence in 

score plots. Numberings on the plot are the number of hours after treatment.  
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Figure 8.6. Score (A) and loading (B) plot of PLS-DA using two classes (class 1; non-treated 

class 2; EtOH-treated Arabidopsis thaliana). O; control 1, +; control 2, ∆; 80% EtOH-treated. The 

eclipse represents Hotelling’s T2 with 95% confidence in score plots. Numberings on the plot are 

the number of hours after treatment.  
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8.4. Conclusions 

The treatment of Arabidopsis thaliana with BTH induces PR-1 gene expression 

followed by an increase in the levels of metabolites such as glucose, glutamine, inositol, 

malic acid, sucrose, and threonine. This metabolic differentiation was clearly detectable 

using a combination of NMR spectroscopy and a supervised multivariate data analysis, 

PLS-DA.  However, unlike the changes observed in the levels of primary metabolites, 

the levels of phenolic metabolites, which are generally induced by other signaling 

molecules like jasmonic acid or salicylic acid, did not vary. These results are consistent 

with the previous finding that BTH itself may prime SAR, which is then triggered by 

subsequent elicitation or infection. Apart from the changes resulting from BTH-

treatment, it was found that the EtOH used to dissolve BTH in this study could, per se, 

act as an inducer of some metabolites. In particular, the levels of kaempferol- 3-O-D-

glucopyranoside-7-O-L-rhamnopyranoside were affected by EtOH-treatment.  



 

104 

Chapter 9  

Summary and general discussion 

Plants metabolites are synthesized from intermediates of primary metabolism via often 

complex biosynthetic pathways. Flavonoids are a most interesting group of metabolite. 

They have an important function in the plant defense as well as in the nutritional value 

of the plant. Also they have a wide variety of pharmacological activities. 

The biosynthesis of flavonoids is initiated by an enzymatic step catalysed by chalcone 

synthase (CHS) resulting in naringenin chalcone, the first intermediate of the flavonoid 

biosynthesis pathway. The pathway proceeds with several enzymatic steps to produce 

various classes of flavonoids, such as flavanones, dihydroflavonols, isoflavones and 

anthocyanins. Those compounds have been shown to function as e.g. flower pigments, 

UV protectants, phytoalexins, insect and herbivore protectants, allelochemicals, 

initiators of symbiotic interactions, regulators of auxin transport, and stimulators of 

pollen germination [Dixon and Paiva, 1995]. 

Down-regulation or over-expression of structural flavonoid genes in transgenic plants 

have shown to be useful tools to elucidate the function of flavonoid pathway genes. The 

aim of this thesis was overexpression of CHS in Arabidopsis thaliana and with that 

model to study the effect of the heterologous CHS in the plant. An overview about 

CHS, especially in pathogen resistance, is presented in Chapter 2. It shows clearly that 

CHS play a key role in the flavonoid biosynthesis pathway as well as in plant resistance.  

The cDNA encoding chalcone synthase from Cannabis sativa was introduced into 

Arabidopsis thaliana Col. 0 via Agrobacterium tumefaciens-mediated transformation 

and twenty one transgenic Arabidopsis line (ACS 1 - 21) were obtained. Six of them 

were analyzed by RT-PCR and quantitative real-time PCR which indicated that the 

exogenous gene was successfully integrated into the genome and expressed in 

Arabidopsis thaliana plants. All six transgenic lines contain multi copy numbers of CHS 

gene (Chapter 3). 
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Immunoblot and enzyme activity assay were used (Chapter 4) to confirm the 

expression of CHS in the transgenic Arabidopsis plants. Five transformants were 

checked and it was found that CHS was expressed in all transformants. The activity 

level of endogenous Arabidopsis CHS in WT line was less than that of the transgenic 

Arabidopsis ACS 20 line, whereas CHS activity of transgenic line ACS 2 was similar to 

the WT line.  

Arabidopsis thaliana Col.0 metabolites were investigated by use of NMR spectroscopy 

(Chapter 5). Methanol-d4 was found as the best solvent for direct extraction for NMR 

analysis of phenolic compounds in Arabidopsis. Four flavonoids, kaempferol 3-O-

glucopyranoside-7-O-rhamnopyranoside, kaempferol 3-O-rhamnosyl (1–2) glucoside-7-

O-rhamnopyranoside, kaempferol 3,7-O-dirhamnopyranoside and quercetine 3-O-

rhamnopyranoside were isolated and identified using reference compounds. Another 

twenty metabolites of Arabidopsis thaliana Col. 0 including amino acids, organic acids, 

sugars, phenylpropanoids, and flavonoids were identified as well in this study.  

Changes of metabolome in transgenic Arabidopsis are presented in Chapter 6. By use 

of Nuclear Magnetic Resonance (NMR) and Multivariate Data Analysis the changes 

between the transgenic plants and controls are seen clearly in the PLS-DA plots. This 

analysis indicated that the level of sugars, flavonoids and phenylpropanoid compounds 

are higher in the CHS transgenic plants than control plants, which means that chalcone 

synthase overexpression affects plant secondary metabolism as well as primary 

metabolism.  

Chalcone synthase is strongly stimulated by UV-A/blue light in plants [Chappell and 

Hahlbrock, 1984; Frohnmeyer et al., 1992]. The metabolome of Arabidopsis thaliana 

Col. 0 and CHS transgenic plants changes upon treatment with UV-A/blue light 

(Chapter 7). The investigation showed a high accumulation of flavonoids, 

phenylpropanoids, glucose, fructose, rhamnose, and organic acids in A. thaliana Col. 0 

wild type whereas no significant change was observed in CHS transgenic plants after 

treatments with UV-A/blue light and the metabolites of UV-A/blue light treated 

Arabidopsis thaliana Col. 0 were similar to CHS transgenic Arabidopsis. That means 

CHS play a major role in UV-A/blue light stress. 

Chapter 8 describes the study of the metabolic alterations in BTH-treated Arabidopsis 

thaliana plants (above ground parts). PCA and PLS-DA show that glucose, glutamine, 



Summary and general discussion 

106 

inositol, malic acid, sucrose, and threonine as well as BTH and its degradation products 

contribute to the clear discrimination of the metabolome of BTH-treated Arabidopsis 

from control plants. However, there was no significant increase of phenolic metabolites 

observed, which are generally induced by other signaling molecules. In addition to these 

changes due to BTH-treatment, it was also found that the EtOH used as a solvent in this 

treatment may itself act as an inducer of the accumulation of flavonoids and 

phenylpropanoids.  

Over-expression of heterogolous genes involved in flavonoid biosynthesis pathway can 

be used in metabolic engineering strategies to overcome rate-limiting enzymatic steps in 

the pathway. In this way, the flux through already existing pathways of the host plant 

can be increased, which in case of CHS may lead to enhanced levels of specific 

flavonoids or even new flavonoids. This approach has been used to increase the 

flavonoid content of tomato fruit, in order to improve the food quality of this important 

crop [Verhoeyen et al., 2002]. 

Metabolomics aims at measuring all the metabolites in a cell or biological system and is 

now one of the core functional genomics tool. It provides a direct link between genome 

and phenome because metabolites are products of gene expression and components of 

the phenotype. Metabolomics provides an overview of the metabolic status and global 

biochemical events associated with a cellular or biological system. Metabolomics not 

only has direct relevance to fundamental biological studies, but also to areas such as 

genetic or infectious diseases, cancer biology, nutrition, plant metabolism, crop quality 

traits, microbial physiology, environmental biology, biotechnology, drug discovery, 

diagnostics, molecular markers and many more applied areas. Metabolome analysis 

involves separation, identification and quantitation of as many metabolites as possible 

from a cell or tissue system. 

Conclusions 
This study has shown that it is possible to introduce the heterologous CHS gene in 

Arabidopsis thaliana and common multicopies of transgenes containing plants were 

obtained. By analysis of the change in metabolome of CHS transgenic plants, high 

expression transgenic lines can be identified by markers such as flavonoids and 

phenylpropanoids (this thesis). From the results it is also clear that UV-A/blue light 



Chapter 9 

107 

stress does not further increase the levels of these marker compounds in CHS transgenic 

Arabidopsis plants, whereas in wild type plants such a treatment results in increased 

levels of these compounds, in fact similar to that in the transgenic plants. Apparently 

there are certain physiological limitations in the accumulation of certain products. 

After studying the link of genome to metabolome the conclusion is thus that we even 

have to go one step further to the phenome, in which things like energy, transport and 

storage, and in fact the logistics of biosynthetic pathways need to be considered. 
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Samenvatting en algemene discussie 

In planten worden metabolieten vaak gemaakt via complexe biosyntheseroutes van 

stoffen uit het primaire metabolisme. Flavonoïden zijn een zeer interessante groep van 

metabolieten. Zij hebben een belangrijke functie bij de afweer van planten en zijn voor 

ons ook belangrijk voor de voedingswaarde van de plant. Daarnaast hebben ze een grote 

variatie aan farmacologische activiteiten. 

De biosynthese van flavonoïden begint altijd met een enzymatische stap gekatalyseerd 

door het enzym chalconsynthase (CHS) wat resulteert in de chalcon naringenine, de 

eerste intermediair van de flavonoïd biosyntheseroute. De biosyntheseroute gaat 

vervolgens verder via meerdere enzymatische stappen waarbij de verschillende klassen 

van flavonoïden, zoals dihydro flavonolen, isoflavonen en anthocyanen worden 

gevormd. Deze stoffen hebben in de plant verschillende functies zoals 

bloemkleurpigment, UV-bescherming, fytoalexine, bescherming tegen insecten en 

herbivoren, allelochemicaliën, initiatoren van symbiotische interacties, regulatoren van 

het auxine transport en stimulatoren van de kieming van pollen [Dixon en Paiva, 1995]. 

Het remmen of het stimuleren van de genexpressie van structurele genen welke 

betrokken zijn bij de flavonoïd biosynthese in transgene planten iseen geschikte 

methode gebleken voor het onderzoek naar de functie van genen uit de flavonoïd 

biosyntheseroute. Het doel van dit promotieonderzoek was de overexpressie van CHS in 

Arabidopsis thaliana en om met dit model het effect van deze heterologe CHS in de 

plant te bestuderen. Een overzicht over CHS, met name in resistentie tegen pathogenen 

wordt gepresenteerd in hoofdstuk 2. Hieruit blijkt duidelijk dat CHS een sleutelrol 

speelt in de flavonoïd biosyntheseroute en in de resistentie van planten. 

Het cDNA dat het chalconsynthase van Cannabis sativa codeert werd met behulp van 

Agrobacterium tumefaciens in A. thaliana Col. 0 geïntroduceerd. Dit resulteerde in 

eenentwintig transgene Arabidopsis lijnen (ACS 1-21). Zes van deze lijnen zijn met 

behulp van RT-PCR en kwantitatieve real time PCR geanalyseerd en hieruit kon 

worden geconcludeerd dat het exogene gen succesvol in het genoom was geïntegreerd 

en in A. thaliana planten tot expressie werd gebracht. Alle zes de transgene lijnen 
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bevatten meerdere copiën van het CHS gen (hoofdstuk 3). Immunoblotten en enzym 

assays (hoofdstuk 4) zijn gebruikt om de expressie van CHS in de transgene 

Arabidopsis planten te bevestigen en om de enzymactiviteit te bepalen. Er zijn vijf 

transformanten per lijn onderzocht en dit toonde aan dat CHS in alle transgene planten 

tot expressie kwam. De enzymactiviteit van het endogene CHS van Arabidopsis in 

wildtype planten was lager dan dat van de transgene lijn ACS 20, terwijl de CHS 

activiteit van lijn ACS 2 vergelijkbaar was aan die van het wildtype.  

De metabolieten van Arabidopsis thaliana Col. 0 werden onderzocht met behulp van 

NMR spectroscopie (hoofdstuk 5). Voor de NMR analyse van fenolische verbindingen  

was MeOD het meest geschikte oplosmiddel voor de directe extractie uit Arabidopsis. 

Vier flavonoïden, kaempferol 3-O-glucopyranoside-7-O-rhamnopyranoside, kaempferol 

3-O-rhamnosyl (1,2) glucoside-7-O-rhamnopyranoside, kaempferol 3,7-O-

dirhamnopyranoside en quercetine 3-O-rhamnopyranoside werden geïsoleerd en 

geïdentificeerd met behulp van referentie stoffen. Daarnaast zijn er bij dit onderzoek 

ongeveer twintig metabolieten uit A. thaliana geïdentificeerd, waaronder aminozuren, 

organische zuren, suikers, fenylpropanoïden en flavonoïden. 

De veranderingen in het metaboloom van de transgene Arabidopsis planten zijn 

beschreven in hoofdstuk 6. Na het gebruik van Nucleaire Magnetische Resonantie 

(NMR) in combinatie met Multivariate Data Analyse werden de verschillen tussen de 

transgene planten en de controle planten in de PLS-DA grafieken duidelijk zichtbaar. 

Deze analyse toonde aan dat de gehaltes van suikers, flavonoïden en fenylpropanoïden 

in de CHS transgene planten ten opzichte van de controle planten hoger zijn. Dit 

betekent dat de overexpressie van chalconsynthase zowel het primaire als het secundaire 

metabolisme beïnvloed. 

Chalconsynthase wordt in planten sterk gestimuleerd door UV-A/blauw licht [Chappell 

en Hahlbrock, 1984; Frohnmeyer et al., 1992]. Het metaboloom van A. thaliana Col. 0 

en van CHS transgene planten verandert door behandeling van de planten met UV-

A/blauw licht (hoofdstuk 7). Het onderzoek toonde na behandeling met UV-A/blauw 

licht in de A. thaliana Col. 0 een hoge accumulatie aan van flavonoïden, 

fenylpropanoïden, glucose, fructose, rhamnose, en organische zuren terwijl er geen 

significante verschillen werden waargenomen in de CHS transgene planten na 

behandeling met UV-A/blauw licht. De metabolieten van UV-A/blauw licht behandelde 



Samenvatting en algemene discussie 

110 

A. thaliana Col. 0 waren vergelijkbaar aan de CHS transgene Arabidopsis. Dit geeft aan 

dat CHS een belangrijke rol speelt in UV-A/blauw licht stress. 

In hoofdstuk 8 wordt het onderzoek beschreven naar de metabole veranderingen in 

BTH-behandelde A. thaliana planten (bovengrondse delen). De Principale 

Componenten Analyse en PLS-DA toonde aan dat glucose, glutamine, inositol, 

malonzuur, sucrose en threonine maar daarnaast ook BTH en zijn afbraakproducten, 

bijdragen aan het duidelijke verschil tussen het metaboloom van BTH behandelde 

Arabidopsis planten en controle Arabidopsis planten. Desondanks werd er geen 

significante toename aan fenolische metabolieten waargenomen welke doorgaans wel 

worden geïnduceerd door andere signaalstoffen. Naast de veranderingen veroorzaakt 

door de BTH-behandeling, werd duidelijk dat EtOH wat gebruikt werd als een 

oplosmiddel bij deze behandeling zelf ook de accumulatie van flavonoïden en 

fenylpropanoïden kan stimuleren. 

Overexpressie van heterologe genen welke betrokken zijn bij de 

flavonoïdbiosyntheseroute kunnen worden gebruikt bij “metabolic engineering 

strategies” om snelheidsbeperkende enzymstappen te verhelpen. Op deze manier kan 

de flux door reeds bestaande biosyntheseroutes van de plant worden vergroot, wat in het 

geval van CHS kan resulteren in hogere gehaltes aan specifieke flavonoïden of zelfs 

nieuwe flavonoïden. Deze manier van aanpak is gebruikt bij het verhogen van het 

flavonoïd gehalte van tomaten om op deze manier de voedselkwaliteit van dit 

belangrijke gewas te verhogen [Verhoeyen et al., 2002]. 

Metabolomics heeft als doel om alle metabolieten in een cel of biologisch systeem te 

meten en is nu een van de belangrijkste “functional genomics” instrumenten. Het 

verschaft een directe link tussen genoom en fenoom omdat metabolieten de producten 

zijn van genexpressie en componenten van het fenotype. Metabolomics verschaft een 

overzicht van de metabole status en de globale biochemische gebeurtenissen welke 

worden geassocieerd met een cellulair of biologisch systeem. Metabolomics is niet 

alleen direct relevant voor fundamenteel biologische studies, maar ook voor gebieden 

als genetische of infectie ziektes, biologie van kanker, voeding, het metabolisme van 

planten, behandelingen voor de kwaliteit van een gewas, microbiële fysiologie, milieu 

biologie, biotechnologie, ontdekking van geneesmiddelen, diagnostiek, moleculaire 

markers en op nog veel meer toegepaste gebieden. Metaboloomanalyse omvat de 
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scheiding, identificatie en kwantificatie van zoveel mogelijk metabolieten als mogelijk 

van een cel of een weefsel. 

Conclusies 
Dit onderzoek heeft aangetoond dat het mogelijk is om een heteroloog CHS gen in 

Arabidopsis thaliana te introduceren en dat er daarbij normale planten werden 

verkregen waarbij er meerdere copiën van het transgen aanwezig waren. Bij het 

analyseren van de metabole veranderingen in de CHS transgene planten kunnen 

transgene lijnen met een hoog expressie niveau geïdentificeerd worden met behulp van 

markers zoals flavonoïden en fenylpropanoïden (dit proefschrift). Van de verkregen 

resultaten is duidelijk dat UV-A/blauw licht stress de gehaltes aan deze marker in CHS 

transgene Arabidopsis planten niet verder verhoogt, terwijl in wildtype planten 

eenzelfde behandeling wel resulteert in hogere gehaltes aan deze stoffen, vergelijkbaar 

aan het gehalte van de CHS transgene planten. Waarschijnlijk zijn er bepaalde 

fysiologische limitaties in de accumulatie van bepaalde producten. 

Na het bestuderen van de stap van genoom naar metaboloom moeten we concluderen 

dat we zelfs nog een stap verder moeten gaan, namelijk naar het fenoom, waar ook 

zaken als energie, transport en opslag, en in feite de logistiek van de biosyntheseroutes 

moeten worden betrokken. 
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