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Chapter 6

Spin Quantum Jumps

This chapter is published in Spin quantum jumps in a singly charged quantum
dot (M. P. van Exter, J. Gudat, G. Nienhuis, and D. Bouwmeester, Phys. Rev.
A 80, 023812 (2009)) [129].

This chapter presents a theoretical model of the spin dynamics of a con-
fined electron spin in a quantum dot embedded in a micro pillar cavity. There
will be four levels involved in the dynamics; two ground states that correspond
to the electron spin of ±1

2 and two excited states that correspond to two trion
states with total spin ±3

2 . Under the influence of driving electromagnetic fields
(these could be the intra-cavity fields or external laser fields) there will be co-
herent (Rabi type) transitions between levels. Furthermore we have to treat
the four-level system as an open quantum system in order to include dissipa-
tive processes, such as spontaneous emission of photons or coupling to phonons,
which lead to decay of the excited states and to incoherent couplings between
the two excited states and between the two ground states. The investigation
of open quantum systems in quantum optics requires the introduction of the
Master equation for the reduced density operator of the system of interest.

The time evolution of the reduced density operator describes the ensem-
ble averaged dynamics of the system of interest and therefore leads to a smooth
evolution of all level populations and coherences involved. The simplest exam-
ple is spontaneous emission from a two-level atom which leads to exponential
decay of the excited state population into the ground state population. In or-
der to verify this dynamics we have to average over an ensemble of realizations
of this two-level system. A natural question to ask is what happens for each
individual member of the ensemble. Experimentally we measure no smooth de-
cay for a single system but we typically observe an abrupt quantum jump at a



6. Spin Quantum Jumps

largely random moment in time characterized by the emission and subsequent
detection of a photon. Niels Bohr described the notion of quantum jumps in
his early work in 1913 [130] and referred to them as a crucial step forward
in the understanding of atoms. Schrödinger completed the Bohr picture of
atoms when introducing the theory of quantum mechanics in 1926 [131]. The
Schrödinger equation allows determining the discrete energy level structure of
an atom and also the transition rates associated with the quantum jumps.

Detecting the emission of a single photon from a single atom in an effi-
cient way is technically very challenging. Therefore, the concept of quantum
jumps is often discussed in the context of a three-level system [132] by which
a ground state is coupled by one strong (ω1) and one weak (ω2) laser field to
two excited states. The strong field is often referred to as the cycling field and
provides an easily detectable photon flux at frequency ω1 provided the system
is not shelved into the other excited state. The abruptly turning on and off at
random times (often referred to as a telegraph signal) of the fluorescence at ω1

is a proof for the occurrence of quantum jumps. The aim of this chapter is to
predict the quantum jump statistics between spin states of a confined electron
in a quantum dot. Understanding the spin jump statistics requires detailed
knowledge of the various processes that influence the electron spin. Therefore
comparing theory with experiments will help us improving our understanding
of the electron spin dynamics.

The analysis of open quantum systems can quickly get rather compli-
cated if several interactions are contributing to the dynamics. In such cases
it can be very advantageous to break the dynamics down into fast and slow
motion. The fast dynamics will lead to quasi-stationary states, while the slow
dynamics will lead to transitions between those states on slow time scales.
The general principal of this separation of fast and slow variables has been
developed by Nienhuis [133]; in this chapter it will be applied to the four-level
system of interest.

Before addressing the four-level quantum dot system (Sect. 6.3), we will
briefly review some of the elementary tools of quantum open systems (Sect.6.1)
and give an introduction to the technique of separation of time scales (Sect.6.2).

6.1 Open quantum systems

We first briefly review properties of the density operator. The discussion is
followed by introducing the Liouville operator which describes the time evo-
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6.1 Open quantum systems

lution of the density matrix of a quantum mechanical system. It contains
the Hamiltonian operator which determines the time evolution of the quan-
tum state vector. The way a Hamiltonian determines the evolution of a state
vector, the Liouville operator determines the evolution of the density matrix.
By means of an example for a two-level system we explain how we will treat
dissipation of energy mathematically by using the master equation for open
quantum systems.

6.1.1 Density operator

Quantum states described by state vectors are pure states. If the available
information is not sufficient to determine the pure state vector we can describe
a subsystem of the full system by a mixed state using the density operator

ρ̂ =
∑

i

| ψi〉pi〈ψi |, (6.1)

where the sum is over an statistical ensemble with pi the probability of the
subsystem being in the i-th state of the ensemble | ψi〉. The mixed state
contains no information on possible correlations between states | ψi〉 and | ψj〉,
with i 6= j. It is of course possible to describe a pure state with a density matrix
by simply having pi = 1 for the state | ψi〉. For a complete orthonormal basis
{| ϕn〉}, where

∑
n | ϕn〉〈ϕn |= Î, of eigenstates of some observer, the density

matrix can be described by its density matrix elements with respect to this
basis

ρ̂nn′ = 〈ϕn | ρ̂ | ϕn′〉 (6.2)

=
∑

i

〈ϕn | ψi〉pi〈ψi | ϕn′〉 (6.3)

=
∑

i

pic
(i)
n c

(i)
n′ ∗ (6.4)

As a simple example consider a two-level system with an excited state
| e〉 and a ground state | g〉. Consider the state | ψ〉 = 1√

2
(| e〉 + eiφ | g〉)

with φ describing the phase relation between | e〉 and | g〉. This coherent
superposition state is a pure state. The density operator is given by

ρ̂ =| ψ〉〈ψ |= 1

2

(
| e〉〈e | + | g〉〈g | +eiφ | g〉〈e | +e−iφ | e〉〈g |

)
. (6.5)

The density matrix elements are ρ̂ee = 1
2 , ρ̂eg =

e−iφ

2 , ρ̂ge = eiφ

2 and ρ̂gg = 1
2 . A

criterion for determining whether a density matrix describes a pure or a mixed
state is

Trρ̂2 = Trρ̂ = 1, (6.6)
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6. Spin Quantum Jumps

for a pure state (as is the case for (6.5)) and Trρ̂2 < Trρ̂ = 1 for a mixed
state. Consider for example the mixed state given by

ρ̂mixed =
1

2
(| e〉〈e | + | g〉〈g |) . (6.7)

This state cannot be expressed by a state vector and has Trρ̂2mixed = 1/2.

6.1.2 Liouville operator

The coherent evolution of the density matrix is described by a unitary operator
Û :

ρ̂ =
∑

i

pi|ψi〉〈ψi| →
∑

i

piÛ |ψi〉〈ψi|Û † = Û ρ̂Û †. (6.8)

The time derivative of ρ̂(t) is given by

∂ρ̂

∂t
=
∑

i

pi

[(
∂

∂t
|ψi(t)〉

)
〈ψi(t)|+ |ψi(t)〉

(
∂

∂t
〈ψi(t)|

)]
. (6.9)

According to the Schrödinger equation for the bra state vector 〈ψi(t)| we can
write

−i~ ∂
∂t

〈ψi(t)| = 〈ψi(t)|Ĥ†. (6.10)

Therewith it follows

∂ρ̂

∂t
=

1

i~

∑

i

pi

[(
Ĥ|ψi(t)〉

)
〈ψi(t)| − |ψi(t)〉

(
〈ψi(t)|Ĥ†

)]

=
1

i~
(Ĥρ̂− ρ̂Ĥ†) =

1

i~
[Ĥ, ρ̂]. (6.11)

In the last step we assumed Ĥ = Ĥ†, in other words the Hamiltonian has real
eigenvalues. The general solution of Eq. (6.11) is given by

ρ̂(t) = e−iĤt/~ρ̂(0)eiĤt/~ (6.12)

= Û(t)ρ̂(0)Û †(t) (6.13)

which brings us back to the Unitary operator Û and the same form we intro-
duced in Eq.(6.8). Now we can express the equation of motion for ρ̂(t) with
the Liouville operator L

L =
1

i~
[Ĥ, ...] (6.14)

138



6.1 Open quantum systems

where ρ̂(t) satisfies
∂ρ̂

∂t
= Lρ̂, (6.15)

with the formal solution
ρ̂(t) = eLtρ̂(0). (6.16)

In dissipative processes part of the Hamiltonian can be non-Hermitian, i.e.
not norm preserving and Eq. (6.14) has to be augmented with additional
terms outside the commutator [Ĥ, ...] leading to the master equation for open
systems. This will be discussed in the next section.

6.1.3 Master equation

By dissipative processes we mean transitions between states that take place by
irreversible emission of energy into the surrounding environment (often in the
form of a photon or phonon). Since we typically cannot have full knowledge
of the state of the environment we loose information about the system of in-
terest (for example a two-level atom) that interacts with the environment (for
example a bath of electromagnetic modes).

There are several methods to arrive at the so-called master equation for
the reduced density matrix for the system of interest. For the generic case of
a two-level atom driven by a laser field with a detuning δ = ωlaser − ωatom

and undergoing spontaneous emission corresponding to a decay rate Γ of the
excited state population to the ground state the master equation is of the form:

dρ̂

dt
=
i

~

[
ρ̂, Ĥ0

]
− Γ

2

(
Ŝ+Ŝ−ρ̂+ ρ̂Ŝ+Ŝ− + 2Ŝ−ρ̂Ŝ+

)
, (6.17)

where Ŝ+ =| e〉〈g | and Ŝ− =| g〉〈e |.

The coherent dynamics as a result of a classical driving field E(t) =
E0 · cos(ωlasert) is included in Ĥ0 = −δŜ+Ŝ− + Ω

2 (Ŝ
+ + Ŝ−) with Ω = −dE0,

the Rabi frequency, with d the atomic dipole moment.

The incoherent dynamics as the result of dissipation is described by the
−ΓŜ−ρ̂Ŝ+ term. Written out as −Γ | g〉〈e | ρ̂ | e〉〈g | this term has the clear
interpretation of reducing the population in the excited state by going to the
ground state with a rate at time t of Γ|αe(t)|2, with |αe(t)|2 the probability to
be in the excited state at time t.
The other two terms −Γ

2 Ŝ
+Ŝ−ρ̂ and −Γ

2 ρ̂Ŝ
+Ŝ− can be interpreted as result-

ing from a non-Hermitian (i.e. non normpreserving) part of the Hamiltonian
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6. Spin Quantum Jumps

i~ΓŜ+Ŝ−

2 that acts in periods of no emission of a photon in a single quantum
trajectory [134, 135]. The terms indicate loss of the excited state population
which, after the renormalization that needed to correct for the non-Hermitian
nature of part of the Hamiltonian, automatically leads to an increase of the
ground state population. There are at least two ways to interpret this part of
the evolution. The first is that in a period dt in which no emission of a photon
is observed, we do obtain information about the system that indicates that the
system is more likely to be in the ground state at the end of period dt than
at the beginning. The second way is to investigate a full quantum electrody-
namics derivation of the interaction of the atom with the radiation field [135].
It will be clear that if a photon can be spontaneously emitted there will also
be a second order process by which a photon will be emitted and reabsorbed.
This process of radiation reaction will precisely describe the decay from ex-
cited to ground state (without permanently emitting a photon) together with
an energy shift of the excited state relative to the ground state (this energy
shift is assumed to be already accounted for in the atomic transition frequency
ωatom).
Note that one naively would think that this second order process of radiation
reaction would have a neglectable effect compared to the first order process
of emission. This is however not the case since radiation reaction brings the
atomic system back to the initial state and therefore interference takes place
between no emission (the Î) operator and radiation reaction described by H2

int.
Taking the square of the sum of amplitudes (Î + Ĥ2

int)
2 results in the same

order in change of state as resulting from (Ĥint)
2 for the emission probability

of permanent emission of a photon.)
The general form Eq.(6.17) will play a central role in formulating our four-level
mode for a singly charged quantum dot in a micropillar cavity.

6.2 Separation of time scales

As will be shown in Sect. 6.3 our single charged quantum dot system can be
modeled by a 4-level system with various optical and nonradiative interactions
between the levels. Using the mathematical method of separating slow and
fast dynamics of our multi-state system will be crucial for computing the evo-
lution of the system. Doing this we can ease the mathematical computation
and extract separate physical properties of the system. This idea is based on
earlier work of Nienhuis [133].

As introduced in Sect. 6.1.2 the statistical properties and averaged dy-
namics of our system is described by the density matrix operator ρ̂(t) and
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6.2 Separation of time scales

d

dt
ρ̂(t) = Lρ̂(t), (6.18)

where the Liouville operator L contains the coupling to the external radiative
field, the spontaneous decay and nonradiative couplings between levels. Acting
on the density matrix ρ̂ it leads to complex results making it very difficult to
derive general solutions for (6.18). Fortunately we are not interested in the
complete evolution of the density matrix ρ̂(t) but only in a few aspects of
the evolution that provides information about the outcomes of the specific
measurements performed on the system (such as detecting photon emission).
This allows for separating L into two (or more) terms

L = L0 + L1 (6.19)

leading to reduced evolution equations. The idea of this approach is to physi-
cally separate between the effects that cause a fast and a slow evolution of the
system. We take L0 to describe a much more rapid evolution as compared to
L1. This means that on a rapid time scale the system is driven to a stationary
solution by L0 when completely neglecting L1.

d

dt
ρ̂(t) = L0ρ̂(t) (6.20)

Given this stationary solution, the time derivation of the density matrix ρ̂(t)
equals zero. In other words, the stationary solution lies within the subspace of
the matrices ρ̂ that are eigenvectors of L0 with eigenvalue zero.

The role of L1 is to introduce transitions between the (quasi) stationary
solutions of (6.20). To separate the dynamics resulting from the fast and slow
dynamics we introduce the linear projector P̂ and its complement

Q̂ = 1− P̂ . (6.21)

P̂ projects any matrix ρ̂ onto the subspace of the stationary solutions explained
in (6.20). P̂ and Q̂ both obey the projector equality

P̂2 = P̂ (6.22)

Q̂2 = Q̂ (6.23)

Additionally P̂ is defined to project onto the subspace of eigenvectors of L0

with eigenvalue zero
L0P̂ = P̂L0. (6.24)
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6. Spin Quantum Jumps

Now, on the rapid time scale we assume that the evolution operator L0

drives every initial density matrix ρ̂ to its projection P̂ ρ̂. This implies that P̂
leaves invariant all eigenvectors of L0 with eigenvalue zero. Additionally we
know that all non-zero eigenvalues of L0 have a negative imaginary part, in
other words the corresponding eigenstates will decay over time. Therefore we
can write

eL0τ → P̂ ρ̂. (6.25)

for a large τ on the rapid time scale.
We can now derive a pair of coupled equations for the two projections

P̂ and Q̂ of ρ̂ from formula (6.18) and (6.19) using (6.21) and (6.24).

d

dt
P̂ ρ̂ = P̂Lρ̂ = P̂L1P̂ρ̂+ P̂L1Q̂ρ̂. (6.26)

d

dt
Q̂ρ̂ = Q̂Lρ̂ = Q̂(L0 + L1)Q̂ρ̂+ Q̂L1P̂ρ̂. (6.27)

The last expression consists of two components, a sort of damping term Q̂(L0+
L1)Q̂ρ̂ and a driving term Q̂L1P̂ρ̂. We want to find a formal solution for Q̂ρ̂(t)
(Eq. (6.27)) in order to insert this into Eq. (6.26) to find the time evolution
of P̂ ρ̂(t). In order to do so we define

X(t)=̂e−Q̂(L0+L1)Q̂tQ̂ρ̂(t). (6.28)

Time derivation leads to

d

dt
X(t) = −Q̂(L0 + L1)Q̂e−Q̂(L0+L1)Q̂tQ̂ρ̂(t) + e−Q̂(L0+L1)Q̂t dQ̂ρ̂(t)

dt
. (6.29)

This can be rewritten as

d

dt
Q̂ρ̂(t) = eQ̂(L0+L1)Q̂t dX

dt
+ Q̂(L0 + L1)Q̂ρ̂(t) (6.30)

where the first term compares to the driving term in Eq. (6.27). We can
therefore write

d

dt
X(t) = e−Q̂(L0+L1)Q̂tQ̂L1P̂ρ̂(t). (6.31)

This term can be formally integrated and together with (6.28) yields

Q̂ρ̂(t) =
∫ ∞

0
eQ̂(L0+L1)Q̂τ Q̂L1P̂ ρ̂(t− τ)dτ. (6.32)
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6.3 Spin quantum jumps in a singly charged quantum dot

Using relation (6.21) and equality (6.24) we can derive a simpler expression
for part of the exponent of (6.32)

Q̂L0Q̂ = (1− P̂)L0(1− P̂)

= L0 − P̂L0 − L0P̂ + P̂2L0 = L0 + P̂2L0

= L0 + P̂L0 = L0 (6.33)

Since our aim is to derive an expression for an approximate solution of the
time evolution of P̂ ρ̂(t) by inserting (6.32) into (6.26) we restrict ourselves
to the first-order contribution of (6.32). This allows us to neglect Q̂L1Q̂τ
compared to L0τ in the exponent. Additionally we treat the time dependance
of P̂ ρ̂(t−τ) to zeroth-order resulting in P̂ ρ̂(t) (the exponent eL0t will dominate
the τ dependance). Identity (6.32) thus simplifies to

Q̂ρ̂(t) =
∫ ∞

0
eL0τ Q̂L1P̂ ρ̂(t)dτ. (6.34)

In continuation of the discussion explaining why Eq. (6.25) is justified in this
context, we know that the integrant with the exponential eL0τ goes to zero
on the rapid time scale so that an integral converges. This leads us to the
following approximate expression for the time evolution of P̂ ρ̂(t) that is at the
same time the starting point for our analysis of the four-level system explained
in the next section:

d

dt
P̂ ρ̂(t) = P̂L1P̂ ρ̂(t) + P̂L1

∫ ∞

0
eL0τ Q̂L1P̂ ρ̂(t)dτ. (6.35)

6.3 Spin quantum jumps in a singly charged quan-

tum dot

The spin of a single charge confined to an optically active QD can serve as a
solid-state quantum bit [136–138]. The charge confinement leads to discrete
energy levels that quenches the electron spin relaxation [139] compared to re-
laxation in bulk (or quantum well) structures where there is a quasi continuum
of states. Therefore the QD confined electron spin can exhibit long spin relax-
ation times and a long lived coherence between its two ground states. Long
lifetimes in excess of ≈ 1µs are expected [140] compared to optical interac-
tions with the spin on time scales of sub 1ns. Experimental realization can
be achieved by electrically addressing a single-electron charged QD in a high-
finesse microcavity [4,5,56,67,141,142] forming a trion state by addition of an
exciton upon optical excitation [55, 94]. For quantum-information processing
with electron spins it is crucial to read out the state of a single confined spin.
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6. Spin Quantum Jumps

This has been achieved by using the optical read-out techniques based on the
Faraday [143] or the Kerr effect [144]. In both cases the read-out was very
inefficient. With a single QD in a microcavity we can theoretically change its
reflectivity up to 100% [54] by changing the spin state and therewith implement
an efficient single-qubit readout. Experimentally we have shown a change of
the cavity reflection of 50% [55]. Having control over the polarization proper-
ties of the cavity with the technique described in Chap. 4 we aim for switching
the reflectivity by more than 90%.
Based on the analysis presented in this chapter, we predict the occurrence of
sudden jumps between well defined, approximately stationary, spin states of
the QD. This prediction is a generalization of the quantum jumps that are
known to occur in three-level systems. The latter jumps were originally pro-
posed by Dehmelt [145], who described them in terms of electron shelving from
a strong optical (cycling) transition to a weakly interacting level and explained
how the statistics of the intermittent fluorescence can be used to analyze weak
transitions in single-atom spectroscopy. Cook and Kimble [146] predicted that
under continuous incoherent excitation the observed fluorescence should ran-
domly switch on and off, resulting in a random telegraph signal. First exper-
iments observing quantum jumps were performed with trapped atoms in the
1980’s by Wineland et al. [147], Bergquist et al. [148] and Kimble et al. [149].
Quantum jumps in semiconductor structures have first been observed by blink-
ing statistics in single semiconductor nanocrystal QDs by Shimizu et al. [150].
A very good review on the different theoretical approaches to describe quan-
tum jump dynamics in quantum optics is given by Plenio and Knight [151].
This section analyzes the optically driven dynamics of a singly charged self-
assembled QD modeled as a four-level system. Such four-level systems have
been used to describe a variety of phenomena like coherent population trap-
ping, electromagnetically induced transparency and lasing without inversion
(see reference [152] and references therein). The ansatz for describing the four-
level system in this chapter is to differentiate between its various dynamics
allowing to adopt the method for the separation of time scales introduced in
the previous section. This is a useful approach because of the relatively fast
spontaneous decay from the two upper excited levels to the two lower ground
levels which effectively removes most quantum-interference effects. The dy-
namics are described in terms of effective populations and jump rates.
In this section we first introduce the four-level system before we discuss the
separation of time scales discussed in Sect. 6.2. First, relatively simple ex-
pressions for the quantum jump rates due to incoherent spin flips are derived.
The section is followed by more intricate quantum jumps due to coherent spin
coupling. Finally, experimental possibilities are outlined as is a refined model.
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6.3 Spin quantum jumps in a singly charged quantum dot

6.3.1 The four-level system

Although QD are often referred to as artificial atoms there are large differences
in the electron energy level structures compared to free atoms. In particular a
QD has a natural quantization axis set by the growth direction and pancake
shape compared to the rotationally symmetric free atom. The resulting energy
separation between the heavy-hole (m = ±3

2) and the light-hole (m = ±1
2)

states allows to experimentally single out the optical transition to the heavy-
hole exciton state. Therewith a natural preference for the spin basis can be
created. The spontaneous emission from this transition is strongest in the di-
rection of the quantization axis and is circularly polarized in this direction.
Processes included in the QD model are coherent coupling between the electron
or hole spin levels due to interaction with the nuclei of the semiconductor host
material [153], spontaneous spin flips due to interaction with the phonon bath,
and coherent coupling between ground and excited states due to the driving
optical field [55]. In our model we assume a constant field-induced coupling de-
scribed by two fixed Rabi frequencies Ω+ for right-handed circularly polarized
light and Ω− for left-handed circularly polarized light. This relatively simple
and clean case with constant coupling rate is discussed and analyzed in detail.
An outline for a refined model that includes back action of the electron spin
on the nuclear spin and the intracavity field is presented in Sect. 6.5.

Figure 6.1 introduces the four-level system for a negatively charged quan-
tum dot. It shows the energy levels and the relevant coupling and decay rates
between the four states. The model defines the two ground state levels 1 and
3 with a single electron in a quantum dot. The electron can either point up
|↑〉 (state 1) or down |↓〉 (state 3). The two upper excited-state levels 2 and 4
with a charged exciton (trion) state consist of an electron pair in the singlet
state and an additional heavy hole denoted as |↑↓⇑〉 (state 2) and |↑↓⇓〉 (state
4). Electron spin neutrality for each of these states is imposed by the Pauli
principle (which forbids creation of |↑↑⇓〉 and |↓↓⇑〉).

A possible detuning δ3 ≡ ω31 ≡ ω3 − ω1 between the two ground states
1 and 3 caused by the out-of-plane component of the (nuclear) magnetic field
is also considered. This nuclear magnetic field varies slowly on a typical time
scale of micro- to milliseconds, depending on temperature, external field and
material composition [154]. Our model treats the variation of this field as
quasi-static, i.e. as if the fluctuations are frozen in time [155]. Past fluc-
tuations are experimentally integrated over time and result in an additional
decoherence. This is the pure dephasing time T ∗2 as part of the time-averaged
decoherence time T2. Other frequency splittings considered are δ2 ≡ ω21 − ω0
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Figure 6.1: Energy levels and internal dynamics for the four-level system.

and δ4 ≡ ω41 − ω0, both defined with respect to the optical frequency ω0 of
the optical pump. These splittings depend on the circular anisotropy. Linear
anisotropies, caused by mechanical strain and crystal-field effects, are described
by a coherent coupling between the spin levels. The exciton fine-structure split-
ting observed in neutral quantum dots with asymmetric shapes [156] results
from spin-orbit coupling. It is absent in singly charged quantum dots [157]
because the total electron spin in the singlet state is zero.
Now we express the populations and coherences in this four-level system by
the density matrix ρ̂(t) as conceptually introduced in the previous section. ρ̂(t)
is a 4 × 4 matrix. Its evolution is described in a rotating basis with the two
upper states rotating at a frequency ω0 with respect to the two ground states.
A crucial aspect for the analysis is the distinction between spin-conserving
transactions which occur between levels 1 ↔ 2 or 3 ↔ 4 and spin-changing
transitions that take place between levels 1 ↔ 3 or 2 ↔ 4. The model includes
ten relevant interactions of which four are coherent couplings and six are decay
transitions.

First we describe the coherent interactions which are indicated by closed
loops in Fig. 6.1. The optical field creates a coherent coupling between ground
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6.3 Spin quantum jumps in a singly charged quantum dot

and excited states of equal handedness. Right handed circularly polarized light
results in a coherent coupling of the spin-up states (1 and 2) at a frequency
Ω1↔2 ≡ Ω+ whereas left handed circularly polarized light results in a coherent
coupling of the spin-down state (3 and 4) at a frequency Ω3↔4 ≡ Ω−. A possible
in-plane (nuclear) magnetic field, or any other linear anisotropy, will induce a
coherent coupling between spin states of opposite handedness. The two ground
states are connected via a coherent coupling frequency Ω1↔3 ≡ Ωg while the
two excited states are connected via a coupling frequency Ω2↔4 ≡ Ωe. The
rates Ωg and Ωe can differ due to different g factors for electrons and holes.
A single Hamiltonian H can describe the coherent coupling frequencies and
frequency splittings:

H = −~

2




0 Ω+ Ωg 0
Ω+ 2δ2 0 Ωe

Ωg 0 2δ3 Ω−
0 Ωe Ω− 2δ4


 . (6.36)

The six incoherent interactions in our model are indicated as straight
arrows in Fig. 6.1. Spontaneous emission of photons results in population
decay from the two excited states (2 and 4) to the associated ground states (1
and 3) at rates Γ2←1 = Γ4←3 ≡ Γ0. A possible enhancement of the decay rates
with respect to the their free-space value is described by the Purcell effect and
included in our definition of Γ0 [55].

The two ground states 1 and 3 are connected via two complementary
decay processes at rates Γ1→3 = Γ3→1 ≡ Γg. The two excited states 2 and 4
are connected via similar rates Γ2→4 = Γ4→2 ≡ Γe. These incoherent spin flips
are induced by interaction with the phonon bath. All six incoherent processes
can be described by a jump evolution and are associated with quantum noise
on account of the (quantum) fluctuation-dissipation theorem.

The full 4× 4 density matrix evolves as

d

dt
ρ̂ = Lρ̂, (6.37)

where L is the Liouville superoperator which we introduced in Sect. 6.1.2. L
naturally separates into one contribution from each coupling or decay channel.
Coherent coupling between two levels i↔ j leads to a Rabi oscillation between
the populations ρ̂ii and ρ̂jj and coherence ρ̂ij (and ρ̂∗ji) between these levels.
This evolution, which would be reversible if it was the only coupling process,
is described by:

Lcoh,i↔jρ̂ =
1

i~
[Ĥi↔j, ρ̂], (6.38)
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with

Lcoh,i↔j = i
Ωij

2
(| j〉〈i | ρ̂+ | i〉〈j | ρ̂− ρ̂ | j〉〈i | −ρ̂ | i〉〈j |) (6.39)

with Ωij being the Rabi frequency.
Incoherent population decay from level j to i is an irreversible process

associated with a coupling to a large reservoir (often referred to as the bath). It
results in a one-way exponential decay that can be represented by the Liouville
operator Linc,j↔i (see Sect. 6.1.2):

Linc,j↔i =
Γj→i

2
(2 | i〉〈j | ρ̂ | j〉〈i | −ρ̂ | j〉〈j | − | j〉〈j | ρ̂), (6.40)

Γj→i being the incoherent population decay rate.

The four-level model presented here differs from other model definitions
[158]. However, the method presented applies to any of these models.

6.3.2 Separation of time scales

As introduced in Sect. 6.2 [133] we distinguish the various terms in L into large
and small terms, corresponding to a rapid and a slow evolution. The coupling
between the spin-up states 1 and 2 and the coupling between the spin-down
states 3 and 4 are generally strong compared to the coupling between the two
ground states 1 and 3 and the coupling between the two excited states 2 and
4. In Fig. 6.1 this corresponds to vertical transitions for the strong couplings
and horizontal transitions for the weak coupling. The Rabi frequencies Ωe and
Ωg are linear in the coupling matrix elements which allows to treat them as
first-order terms in a smallness parameter. However, the rates Γe and Γg are
quadratic in the coupling matrix and can therewith be treated as second order
terms. The quadratic coupling follows from Fermi’s golden rule. Given these
distinctions we can separate the Liouville operator into three terms:

L = L0 + L1 + L2 (6.41)

where L0 is the zero-order operator and contains the matrix elements δi, Γ0

and Ω±. L1 describes the first-order contributions of the Rabi frequencies Ωg

and Ωe. And L2 contains the remaining contributions Γg and Γe of second-
order contribution.

In analogy to the line of argumentation in Sect. 6.2, L0 drives the system
to a quasisteady state on a rapid time scale. This happens before the slow
terms L1 and L2 have had time to cause noticeable change. Since the operator
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6.3 Spin quantum jumps in a singly charged quantum dot

L0 does not couple the spin-up states 1 and 2 to the spin-down states 3 and
4, the parameters determining the quasisteady state are the total population
n+(t) = ρ11(t)+ ρ22(t) of the spin-up states and n−(t) = ρ33(t)+ ρ44(t) of the
spin-down states. On the long time scale, the operators L1 and L2 mix the
spin-up states and the spin-down states, so that the populations n+ and n−
can change. This causes a slow evolution of the system through the subspace
of steady states with respect to L0.
The projection operator, P̂ , onto the quasisteady states satisfies L0P̂ = P̂L0 =
0 (see Sect. 6.2). Consequently, the evolution of P̂ρ̂ occurs exclusively on the
slow time scale, determined by L1 and L2. The complementary projection
operator is Q̂ = 1− P̂ , and the Liouville Eq. (6.37) can be separated (similar
to the set of coupled Eq. (6.26) and (6.27) into:

d

dt
P̂ ρ̂ = P̂(L1 + L2)P̂ ρ̂+ P̂(L1 + L2)Q̂ρ̂. (6.42)

d

dt
Q̂ρ̂ = Q̂(L1 + L2)P̂ ρ̂+ Q̂LQ̂ρ̂. (6.43)

In order to get an equation for P̂ρ̂ alone, we eliminate Q̂ρ̂ in the same
way as presented in Eq. (6.28) to (6.35). By restricting the result to second
order, we get an expression for the time evolution of the projection P̂ ρ̂

d

dt
P̂ ρ̂ = P̂(L1 + L2)P̂ ρ̂+ P̂L1

∫ ∞

0
dτeL0τ Q̂L1P̂ ρ̂(t). (6.44)

This formula can be used to calculate the slow spin dynamics.

Application to the four-level system

To separate the dominant (fast) evolution from the weaker (and slower) com-
ponents we assume all spin-changing rates to be relatively small in comparison
with the spontaneous lifetime of the excited state, in other words:
{Γg,Γe,Ωg,Ωe} ≪ Γ0. Additional, we distinguish between the weak-pumping
limit where {Ω−,Ω+} ≪ Γ0 and the regime of moderate to strong optical ex-
citation {Ω−,Ω+} > Γ0. In the weak-pumping limit the two upper levels are
barely excited and the level dynamics is dominated by the interaction between
the two ground states. This case is analyzed in 6.3.3. The following discussions
focuses on the regime of moderate to strong optical excitation.

For moderate to strong optical fields, the cycling dynamics in the two
optical transitions will quickly exceed any spin transition rate and therefore
enable the separation of three time scales. We have explained that in this case
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the operator L0 describes the fast dynamics. As the optical transitions are
spin conserving, the total spin-up population n+ = ρ̂11 + ρ̂22 and the total
spin-down population n− = ρ̂33 + ρ̂44 are both invariant under operation of
L0. The projection operator P̂ associated with L0 thus projects the density
matrix in the two spin subspaces

P̂ ρ̂(t) = n+(t)¯̂ρ+ + n−(t)¯̂ρ−. (6.45)

The two following submatrices describe the steady-state distributions within
the spin-up and spin-down subspaces

¯̂ρ± =

(
(1− α±) c±

c∗± α±

)
, (6.46)

We get a solution for the coefficients when solving the time-dependent Schrödinger
equation in the rotating wave approximation:

α± =
Ω2
±

Γ2
0 + 2Ω2

± + (2δ±)2
, (6.47)

c± =
−2δ± − iΓ0

Γ2
0 + 2Ω2

± + (2δ±)2
, (6.48)

where α± is the the excited-state fraction and c± the (complex) coherence.
The frequency detunings are δ+ = δ2 and δ− ≡ δ4 − δ3 respectively.

Substituting the P̂ projection specified by Eq. (6.45) and (6.46) in the
general Eq. (6.44) we get a solution for the dynamics of the spin populations
n+(t) and n−(t). The result is a generic expression of the form

d

dt
n+(t) = −R+→−n+(t) +R−→+(t) = − d

dt
n(t). (6.49)

R+→− is the jump rate from the spin-up to the spin-down manifold while
R−→+ describes the reverse process. Explicit expressions for these jump rates
are calculated through substitution of L0, L1 and L2 in the appropriate ex-
pressions as explained in Sect. 6.3.3

Equation (6.49) can be interpreted in terms of two population operators
with eigenvalues n± = {0, 1} and quantum jumps between two spin manifolds.
The jumps occur naturally and are driven by the internal population dynamics
and quantum noise. Alternatively, one could stress the importance of quantum
state projection through observation [151]. In this description, the optical cy-
cling transitions within each manifold creates quantum entanglement between
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6.3 Spin quantum jumps in a singly charged quantum dot

the atomic spin state and the handedness of the optical emission, thus allowing
one to extract information on the spin state by (projective) measurements on
the optical field. This situation is similar to that found in intermittent flu-
orescence, where the optical measurement enables one to decide whether the
atomic population is located in the optically active manifold or in the dark
shelving state [145,149].

Two contributions to the jump rates

The essential ingredient in our analysis is the separation of the 4 × 4 density
matrix ρ̂ into four blocks of 2×2 elements that combine kets and bras with the
same spin combinations. The action of the superoperators L1 and L2 on these
blocks is quite different. The operator L1, associated with coherent coupling at
Rabi frequencies Ωg and Ωe, only transfers elements from the diagonal blocks
to the off-diagonal blocks of ρ̂ and vice versa. As a result of this blocklike
operation the term P̂L1P̂ρ̂ = 0 in Eq. (6.44). Operator L2, associated with
incoherent spin flips at rates Γg and Γe, mixes elements within each block and
only transfers elements between the diagonal blocks.

Furthermore, the quantum jump rates R = Rcoh + Rinc separate into a
coherent Rcoh and an incoherent Rinc contribution. Rcoh is associated with L1

while Rinc is associated with L2.
The incoherent contribution to the jump rates are easily calculated as

Rinc,+→− = (1− α+)Γg + α+Γe (6.50)

Rinc,−→+ = (1− α−)Γg + α−Γe (6.51)

They are the averages of the spin flip rates between the ground and excited
state weighted over the relative excited state populations α±. A calculation of
the coherent contributions Rcoh is more complicated and will be dealt with in
the next section.

6.3.3 Jump rate due to coherent spin coupling

General remarks

Calculating the jump rate induced by coherent spin coupling is carried out
using Mathematica. The blocklike operations of the superoperators introduced
before eases the evaluation of the complicated second term in Eq. (6.44). The
evaluation is done in three steps. Starting from the diagonal matrix P̂ρ̂ on the
right-hand site

(i) operation L1 transfers coherence to the off-diagonal blocks
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(ii) integral operation modifies the off-diagonal blocks elements

(iii) operation P̂L1 brings these elements back to the on-diagonal blocks where
they contribute to the evolution of the spin populations n+ and n−.

The integral operation (ii) is the most complicated step. It involves the
inversion of the 4×4 matrix that describes the dynamics in the 2×2 off-diagonal
block. The following special cases are discussed

(i) a frequency-degenerate system (δ2 = δ3 = δ4 = 0) under various forms of
excitation

(ii) the same system in the weak-pumping limit

(iii) a detuned system with δ3 6= 0 and δ2, δ4 ≪ Γ0

Jump rate in a frequency-degenerate system

The first case we analyze is the frequency-degenerate system where δ2 = δ3 =
δ4 = 0. Applying the three-step procedure introduced in the previous section
results in the following expression describing the coherent jump rate from the
two spin-up to the two spin-down levels

Rcoh,+→− =
2Γ5

0Ω
2
g + Γ3

0(Ω
2
+ +Ω2

−)Ω
2
g + 2Γ0Ω

2
+(Ω−Ωg +Ω+Ωe)

2

(Γ2
0 + 2Ω2

+)[2Γ
2
0(Ω

2
+ +Ω2

−) + (Ω2
+ − Ω2

−)
2]

(6.52)

with the assumption Γg,Γe ≪ Γ0. For the reverse process the jump rate
Rcoh,−→+ is described by a similar expression that only differs in its spin la-
bels, which are now swapped by the transformation + ↔ −.

Figure 6.2 shows three examples for the jump rate dependance on the
optical intensity of linearly polarized light, expressed as Ω2

+ = Ω2
− = Ω2

0. A
strong power dependance of the jump rates due to the coherent and incoherent
spin-changing processes is visible. The solid curve shows how the incoherent
jump rate Rinc changes gradually from its weak-pumping value of Γg to its
strong pumping value (Γg + Γe)/2 on account of the increased excited-state
populations. The dashed (blue) and dashed-dotted (black) curves show the
power dependence of the coherent jump rate Rcoh for two different values of
the coherent coupling frequencies Ωg = Ωe.

With linear polarized excitation Eq. (6.52) reduces to

Rcoh,+→− = Rcoh,−→+ =

(
Γ0

2Ω2
0

)(
(1 + β)Ω2

g + β2(Ωg +Ωe)
2

(1 + 2β)

)
, (6.53)
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Figure 6.2: Calculated jump rates R−→+ = R+→− as function of the optical
intensity of linearly polarized light: Ω2

+ = Ω2
− = Ω2

0. The solid curve shows
how the jump rate Rinc due to incoherent spin flips changes gradually from
its groundstate value of Γg to an average value of (Γg + Γe)/2 for saturated
excitation (parameters: Γg = 0.01, Γe = 0.05). The two dashed curves shows
the jump rate due to coherent spin coupling for Ωg = Ωe = 0.01 [dashed (blue)
curve] and Ωg = Ωe = 0.1 [dashed dotter (black) curve]. All units are nor-
malized to the spontaneous emission rate Γ0. Note the pronounced decrease in
Rcoh at larger pump rates and the divergence for Ω0 → 0. This divergence can
be removed by including other decay and coupling processes into the description
(see Fig. 6.4).
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Figure 6.3: Coherent jump rates Rcoh under circularly polarized excitation.
The jump rates due to coherent spin coupling are calculated as function of the
intensity of right-handed circularly polarized light, expressed as Ω2

+ (Ω− = 0).
The two curves show the jump rate Rcoh,+→− from the spin up to the spin-down
manifold [solid (red) curve] and the jump rate Rcoh,−→+ for the reverse jumps
[dashed (blue) curve] for Ωg = Ωe = 0.1, Γg = Γe = 0.01, and δ3 = 0. All units
are normalized to Γ0. The resulting unbalance in spin population depends on
the ratio of the two depicted jump rates Rcoh and the jump rate Rinc associated
with incoherent spin flips.

with β ≡ (Ω0/Γ0)
2 ∝ I/Isat measuring the degree of saturation. This jump

rate diverges in the weak-pumping limit and decreases to a limiting value
(Ωg +Ωe)

2/(2Γ0) for strong pumping.
Figure 6.3 shows a typical example of the power dependence of the jump

rates Rcoh under excitation with righthanded circularly polarized light (Ω− =
0). Optical excitation with circularly polarized light leads to an unbalance
between the two jump rates

Rcoh,+→− =
Γ0

1 + 2Ω2
+/Γ

2
0

[
Ω2
g

Ω2
+

+
Ω2
+Ω

2
e

Γ2
0(Γ

2
0 +Ω2

+/2)

]
, (6.54)
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Figure 6.4: Calculated jump rate R−→+ = R+→− due to coherent spin coupling
as function of the optical intensity of linearly polarized light, expressed as Ω2

+ =
Ω2
− = Ω2

0. The dashed (blue) curve is a zoom in of a similar result depicted in
Fig. 6.2 for Ωg = Ωe = 0.01. The other three curves show how the divergence
at low pump rate can be removed by inclusion of other decay processes in the
description. We have included only spin flips [solid (red) curves with either
Γg = 0.01 or δ3 = 0], and both (dotted) (pink) curve with Γg = δ3 = 0.01). All
units are normalized to Γ0.

Rcoh,−→+ =
Ω2
g

Ω2
+

Γ0. (6.55)

This visible unbalance is shown in Fig. 6.4. The graph shows curves
for an intrinsically balanced system with equal ground- and excited-state spin
dynamics at Ωg = Ωe = 0.1Γ0 and Γg = Γe = 0.01Γ0. The difference between
the two jump rates can be more pronounced in an unbalanced system. The
mentioned difference will result in optical pumping from one spin manifold to
the other and in an unbalance of the steady-state spin population (n̄+ 6= n̄−,
as determined by the balance R+→−n̄+ = R−→+n̄− with R = Rcoh +Rinc).
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Weak-pumping limit and the quantum Zeno effect

The weak-pumping limit (Ω−,Ω+ ≪ Γ0) of Eq. (6.52) simplifies to

Rcoh,+→− ≈
(

Ω2
g

Ω2
+ +Ω2

−

)
Γ0, (6.56)

when also assuming Ωe/Ωg ≪ (Ω+/Γ0)
2. This jump rate diverges at zero

pumping. The corresponding monotone decrease at increased pumping is a
manifestation of the quantum Zeno effect [159]. It shows how repeated in-
spection of a quantum state and the resulting state projection slow down the
naturally oscillatory evolution associated with coherent coupling. Repeated
inspection goes unnoticed for the incoherent spin flip process, as the exponen-
tial decay associated with this process starts off linearly, whereas the coherent
evolution starts off quadratically in time.

The divergence of the coherent spin jump in the weak-pumping limit is
caused by a similar divergence in the lifetime of the ground-state coherence
ρ̂13 under L0 evolution only. This divergence can be tentatively removed by
incorporating the ground-state spin flip process at a rate Γg into the descrip-
tion. This can be done through modification of the exponent in the integrand
of Eq. (6.44) from eL0τ to e(L0+L2)τ . This changes Eq. (6.56) to

Rcoh,+→− ≈
Ω2
g

2Γ′

g

, (6.57)

with the total decay rate of the ground-state coherence

Γ
′

g = Γg +
Ω2
+ +Ω2

−
2Γ0

(6.58)

combining the natural incoherent spin flip rate Γg with an extra pump-induced
decoherence rate Γextra =

(
Ω2
− +Ω2

+

)
/ (2Γ0). For three-level systems, a simi-

lar extension with part of the slow dynamics changes the general expressions
for the jump rate in three-level systems derived by Nienhuis [160] into the more
specific expressions discussed by Kimble et al. [149].

Jump rate at frequency detuning

Finally, we extend our four-level model to the general case by including the
frequency detunings δ2,δ3 and δ4. These detunings are easily incorporated
in the L0 and the associated steady-state distributions ρ̂+ and ρ̂− given by
Eq. (6.46) to (6.48). Substituting the modified L0 with the original L1 and
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L2 in the generic Eq. (6.44) again yields expressions for the coherent jump
rates Rcoh. The following results are for the case of limited optical detuning
where δ2, δ4 ≪ Γ0. However the full evolution of the ground-state coherence is
taken into account including the spin flip rate Γg and a possible ground-state
detuning δ3 6= 0 in the evolution exp(L0+L2)τ . The results is an extension of
Eq. (6.52) to

Rcoh,+→− = Re

(
2Γ5

0Ω
2
g + Γ3

0(Ω
2
+ +Ω2

−)Ω
2
g + 2Γ0Ω

2
+(Ω−Ωg +Ω+Ωe)

2

(Γ2
0 + 2Ω2

+)
[
2Γ2

0(Ω
2
+ +Ω2

− + 2Γ0{Γg + iδ3}) + (Ω2
+ − Ω2

−)
2
]
)
.

(6.59)
The spin flip rate Γg and the ground-state detuning δ3 have comparable

effects. Both modify the built up of ground-state coherence that is the first
step toward a coherently driven spin change. These effects are only visible at

relatively weak pumping (Ω2
+ +Ω2

− < 2Γ0

√
Γ2
g + δ23).

Fig. 6.4 shows how the divergence in the calculated jump rate is removed
both for a finite spin flip rate Γg and a finite ground-state detuning δ3. The
curves shown are based on Eq. (6.59). In case of the weak-pumping limit,
this equation predicts a limiting jump rate Rcoh,+→− ≈ Re{Γ2

g/[2(Γg + iδ3)]}.
For the frequency-degenerate system (δ3 = 0), this limit is Γ2

g/(2Γg). For the
frequency-detuned system this limiting value is lower. At a sufficiently large
frequency detuning (δ3 ≫ Γg) the jump rate becomes practically zero in the
weak-pumping limit, when none of the other interactions is strong enough to
overcome the dominant frequency splitting δ3.

6.3.4 Experimental possibilities

Quantum jumps in the spin state should be observable as jumps in any spin-
dependent observable such as the measured Faraday [143] of Kerr effect [144],
or the (polarization of the) spontaneous emission [139]. Most of these ob-
servables, however, provide only a weak measurement of the spin state. At a
typical Faraday rotation angle of less than 1mrad [143] more than 106 photons
are needed to measure the spin state with sufficient certainty, making it prac-
tically impossible to observe the predicted quantum jumps by Faraday rotation.

As mentioned before, monitoring the corresponding changes in the re-
flectivity of an encompassing optical cavity as suggested in this thesis could be
used to search for spin quantum jumps. The reflectivity of such a system could
potentially change from 0 to ∼ 100% upon a spin flip [54]. Such a measure-
ment can be very efficient. It thereby presents a strong quantum measurement
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that projects the spin system onto an eigenstate. Changes in the cavity reflec-
tivity from 0 to 50% due to the presence or absence of an optical transition
have already been observed experimentally for a single InAs quantum dot in
a high-finesse GaAs/AlGaAs cavity [55]. In Chap. 4 we demonstrated how to
fabricate and modify cavities to make them polarization degenerate, the pre-
requisite to observe reflection of up to 100%. Initial results will be presented
in Chap. 8. Potentially the results allow for an almost direct measurement
of the spin state through the simple observation of the presence or absence of
reflected photons of a specific polarization.

Different inspection technique are conceivable. They have in common
that the jump dynamics would be extracted from a statistical analysis of the
time dependence of the spin-sensitive inspection channels I+(t) and I−(t). As
for the proposed reflectivity measurement, these inspection channels are just
the reflected intensities of the two circular polarizations. Typical quantities to
measure are correlation functions such as

C±±(∆t) ≡ 〈I±(t)I±(t+∆t)〉t (6.60)

where the brackets 〈〉t denote averaging over time. These correlation func-
tions obey the same time evolution as the associated populations [151]. They
generally decay exponentially at precisely the jump rates that are to be deter-
mined [161]. The modulation contrast of these correlation functions is linked
to the criterium of strong versus weak measurements mentioned above.

6.4 Conclusion

In summary, we have described a model that analyzes the spin dynamics of
a four-level system. Using the approach of the separation of time scales be-
tween the fast spin-conserving optical transitions and slower spin-changing
transitions, the occurrence of sudden quantum jumps between spin-up and
spin-down states under optical inspection are predicted. A natural interpreta-
tion of these jumps is as follows: The optical interaction first creates quantum
entanglement between the atomic spin state and the optical polarization or
emission direction of the interacting photon. A consecutive measurement on
the photon will then project both the photon state and the spin state onto
an eigenstate of the measurement operator. In the discussion a distinction be-
tween quantum jump due to incoherent spin flips and coherent spin coupling
has been made. Derived expressions for both phenomena are presented and the
physical consequences are discussed. One example thereof is the quantum zero
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effect, where repetitive measurements and projections are predicted to reduce
the jump rate associated with coherent spin coupling.

6.5 Further extension of the model

A more complicated four-level system model could include the back action of
the electron spin on either the intracavity field or the nuclear spins. As a
result of the backaction of the spin state on the intracavity optical field, this
intracavity field will also perform jumps even if the injected field is constant.
One approach to deal with this complication is to analyze the jump dynamics
for two different but fixed states of the intracavity field, each one being asso-
ciated with a different spin state of the quantum dot. If the cavity operates
in the Purcell regime, the strong ac Stark shift will push the intracavity mode
with the matched handedness out of resonance, thereby forcing the intracavity
field to be circularly polarized in the handedness that has least interaction
with the occupied spin state. This handedness is expected to switch abruptly
(within the optical lifetime of the cavity) upon a quantum jump of the other
spin state. A second and more rigorous approach to include the back action
from the spin state on the intracavity field could be based on a rederivation of
the state-selectivity reflectivity. This is discussed in paper [54] for a two-level
system instead of a four-level one. This quantum-mechanical treatment would
be a generalization of the so-called Maxwell-Bloch equations. It should result
in an input-output formalism for the optical field operators in and outside a
filled cavity [162]. For optical cavities with extremely large finesses, such that
the cavity loss rate κ ≪ Γ0, other intriguing phenomena such as lasing of a
single quantum dot have been predicted [163]. A final extension of the model
could include the effect of dynamical nuclear spin polarization. This backac-
tion effect leads to a build up of the nuclear magnetic field felt by the electron
and causes the resonance frequencies to shift, and in certain cases lock to the
driving frequencies.
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