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Chapter 4

Microcavity Tuning

This chapter is based on three publications:
Tuning micropillar cavity birefringence by laser induced surface defects

(C. Bonato, D. Ding, J. Gudat, S. Thon, H. Kim, P.M. Petroff, M. P. van
Exter, and D. Bouwmeester, Appl. Phys. Lett. 95, 251104 (2009)) [71],

Permanent tuning of quantum dot transitions to degenerate microcavity
resonances (J. Gudat, C. Bonato, E. van Nieuwenburg, S. Thon, H. Kim, P.
M. Petroff, M. P. van Exter, and D. Bouwmeester, Appl. Phys. Lett. 98,
121111 (2011)) [72] and

Strain tuning of quantum dot optical transitions via laser-induced sur-
face defects resonances (C. Bonato, E. van Nieuwenburg, J. Gudat, S. Thon,
H. Kim, M. P. van Exter, and D. Bouwmeester, Phys. Rev. B, 84, 075306
(2011)) [73].

In our hybrid scheme for quantum information processing the photon’s
polarization degree of freedom encodes the qubit. This qubit must become
entangled with an electron-spin qubit through the interaction via a cavity.
Consequently the interaction must work for any polarization/spin state.
This translates into the following requirements:

1. The fundamental cavity mode of the microcavity needs to be polarization-
degenerate.

2. The frequency of the two level system transition (a single quantum dot
with a ground state and an excited trion state) and the polarization-
degenerate fundamental cavity mode must be in resonance.

Fabrication of the oxide-apertured micropillar structures with embedded
QDs is a difficult and complex process. Currently, it is impossible to obtain the
properties deterministically in the fabrication process. Even if in the unlikely



4. Microcavity Tuning

case of fulfilling both requirements, fine-tuning of the properties can yield in-
creased performance. In this chapter we will address important details on the
sample design and fabrication and the possibilities to reduce the polarization
splitting of the fundamental mode before applying tailoring methods. We first
demonstrate how we can tune the cavity mode frequency. The second tuning
method describes the possibility to shift the QD optical transition. A theoret-
ical model is developed that explains the experimental results qualitatively.

4.1 Introduction

Different methods for permanently or reversibly tuning cavity structures have
been developed. The motivation of these methods is to enhance the spon-
taneous emission of a light source embedded in the cavity, described by the
Purcell factor (see Chap. 1 Sect. 1.5.6). Self-assembled QDs in microcavities
are grown epitaxially where the lattice mismatch (see Chap. 1 Sect. 1.3.2)
leads to an inherent build up of elastic strain energy. The formation of the
strained islands, during which process the elastic strain energy minimizes, and
the following capping with a larger bandgap material is non-deterministic.
Consequently, the optical properties determined by the composition, the size,
and the local strain of the QD can only be controlled to a certain degree.
Particularily, we have control over the wavelength range of several nanometer
that the QD will emit at. However, precise matching of the optical transition
frequency of the QD with the cavity mode resonance frequency is crucial [41].

Matching of the frequencies can be achieved by tuning either the cav-
ity, the QD, or both. For photonic crystal cavities several techniques have
been developed shifting the cavity resonance. These are wet chemical digital
etching [74], photodarkening of a thin chalcogenide glass layer [75] or a pho-
tochromic thin film [76] deposited on top of the device, atomic force microscope
nano-oxidation of the cavity surface [77], infiltration of liquids [78, 79] or ab-
sorption of xenon [80]. In comparison to micropillar cavities where the cavities
are covered by layers of DBR mirrors, the cavities are directly accessible in
photonic crystals. Therefore it needs other tuning techniques.

One possibility is to shift the QD transition in frequency. Embedding the
QD in a diode structure allows to shift the frequency via the quantum confined
Stark effect [81, 82](see Chap. 1 Sect. 1.3.4). This technique is limited by a
tuning range of hundreds of µeV. QD optical transition shifts in the order
of 1meV can also be achieved by temperature tuning the micropillar [39, 83].
Here, the cavity mode also shifts with the temperature (5µeV/K) but less than
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4.2 Oxide-apertured micropillar design and properties

the QD (40µeV/K) transition [5]. The disadvantage of temperature tuning is
the reduced signal emitted by the QDs with increasing temperature.

A blueshift of the QD transition can be obtained through local annealing
of the QD composition [84]. The induced heat caused by a focused laser beam
can control the intermix of the indium atoms of the QD with the gallium atoms
of the surrounding material.

A focused laser is also used in our technique. But instead of annealing
the QD, we create small defects on the sample surface near the micropillar
cavity region, distant enough to preserve the optical quality of the cavity.
The creation of strain can alter the optical properties of the QD and the
cavity as has been investigated utilizing piezoelectric actuators or mechani-
cal tips [85–88]. This fact can be exploited to change the birefringence of
the cavity in a controlled way such that the fundamental mode of the cavity
becomes polarization-degenerate. In addition, we developed a technique to
fine-tune the optical properties of self-assembled QDs by strain perturbation
also given by laser-induced surface defects. The advantages of our approach is
the permanent tuning of the sample properties.

4.2 Oxide-apertured micropillar design and proper-

ties

In the previous chapter we focused on explaining the mode profile that the
oxide-apertured micropillar exhibit. We pointed out the importance of the
oxide-aperture structure for understanding the modes. This chapter empha-
sizes different design considerations to achieve polarization-degeneracy and the
possibility to electrically address the QDs.

Figure 4.1 shows a sketch of the micropillar scheme. The micropillars
are grown by molecular-beam epitaxy on a GaAs [100] substrate. The bottom
distributed Bragg reflector (DBR) mirror consists of 32 pairs of the alternat-
ing layers of GaAs (68.4nm) and Al0.9Ga0.1As (79.8nm) corresponding to a
one-quarter optical thickness, with a total thickness of 4.8µm each. The active
cavity layer is λ-thick with two layers of GaAs (2 · 135.4nm) that embed the
InGaAs/GaAs QDS in the center. The QDs are self-assembled as described by
the Stranski-Krastanow forming InGaAs islands. The density of the QDs can
be controlled though the positions of the islands form randomly. (For an active
way of positioning the QDs see the next chapter.) The islands are partially
covered with GaAs and annealed before completely capped with GaAs causing
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Figure 4.1: Sketch of the micropillar structure.

a blue-shift of the QD’s emission wavelength [89]. The oxide aperture layer
on top of the active region has a thickness of 3/4λ. The layer is composite of
pure AlAs and sandwiched between Al0.89Ga0.11As and Al0.75Ga0.25As. The
top DBR has 23 pairs of the same alternating layers as the bottom DBR which
leads to a thickness of 3.5µm. Trenches are etched through the sample ap-
proximately 4.3µm deep so that they reach the active region. The micropillar
structures are typically 30µm in diameter and are very robust. They include
electrical gates [56] for controlled electron charging of the QD and fine tuning
of the frequency via the Stark effect.

The micropillar cavities exhibit materials that have an anisotropic char-
acteristic. This anisotropy causes birefringence meaning polarization depen-
dance of the light passing through the material. The oxidation front forming
the oxide aperture has a large influence on the birefringence. That is partially
caused by the different anisotropic growth-rate of the oxide and the asymme-
tries in the shape and position of the trenches [64, 65].

Before applying any tuning techniques, we aim to fabricate microcavities
with their fundamental mode splitting being as small as possible. For this
purpose various geometries of the trench design were explored leading to a
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4.3 Tuning micropillar cavity birefringence by laser induced surface defects

A DCB

Figure 4.2: SEM top view of various geometries for cavities with a different
trench design. The design have in common that their inner lateral cavity area
has a diameter of 20µm.

polarization splitting as small as 50GHz [56], see Fig. 4.2. Additionally, the
density of QDs has to be very low, so that we can address and identify single
QD transitions.

From the different geometries shown in Fig. 4.2 we only worked with
samples with three or four trenches shaped as in Fig. 4.2(a). Optimized initial
splittings for these cavities are achieved by varying the relative position of the
trenches of one cavity. One trench is relatively positioned toward or outward
the center along the crystal axis of the substrate by a few hundred nanometers
up to a few microns. In this way, fabrication allows to get cavities with their
fundamental mode splitting being smaller than 0.03nm in wavelength (corre-
sponding to 10GHz). Only then, during the active tuning in the second step
which is described in detail in the next section section, the tuning-range of a
few Angstroms is enough to achieve polarization degeneracy.

4.3 Tuning micropillar cavity birefringence by laser

induced surface defects

In the following we describe how to permanently modify the birefringence of
the cavity in a controlled way allowing to shift the two polarization modes al-
most independently. The tuning mechanism is so accurate that a polarization-
degenerate cavity can be achieved. We define polarization-degeneracy when
the fundamental mode splitting of the cavity is less than 0.2nm. This matches
the spectral emission bandwidth of our QDs.

In order to permanently change the birefringence of the cavity we create
permanent surface defects near the cavity by focusing a strong laser beam on
the sample. This results in local melting of the material creating a hole with
some material accumulated around the edge of the hole. As a consequence of
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4. Microcavity Tuning

the hole the strain in the structure is affected which itself changes the bire-
fringence. The magnitude of the induced stress varies with the laser power
applied and its exposure time. The orientation of the effect is determined by
the position of the burned hole in respect to the cavity center and the trenches.

Originally, the technique described was developed to tune the polar-
ization properties of vertical-cavity surface-emitting lasers (VCSEL) [90, 91].
Compared to the other techniques like temperature tuning [5] or Stark shift
tuning [92] our method has a permanent effect.

4.3.1 Experimental procedure

In the first step, we pre-select cavities with a reasonable small polarization
splitting of the fundamental mode (< 20GHz). For creating surface defects
we utilize a Ti-sapphire laser approximately applying 250mW power tuned to
770nm in order to have sufficient absorption by the semiconductor material.
The laser is tightly focused on the sample by a high numerical aperture (NA)
aspheric lens L1 (focal length f0 = 4.02mm, NA= 0.6). Precise positioning
on the sample is achieved by imaging the sample surface through an optical
system consisting of the focusing lens L1 and a second lens L2 with a focal
length f = 150mm onto a charge-coupled device (CCD) camera placed in
the focal plane of the L2. (See Chap. 2 for more details.) Through visual
inspection we determined the power and the time needed to sufficiently induce
surface defects. Typically the resulting holes are 3− 5µm wide with a varying
depth of 30nm to 2µm. See Fig. 4.3 for an atomic force microscopy (AFM)
image of a typical hole. The hole has a depth of 2.28µm and an approximate
diameter of 3µm. The laser induced impact has been between 30s to 1min.
The results and the data provided were carried out at room temperature. At
lower temperatures i.e. at 4K the power has to be increased to achieve similar
effects on the surface. At 4K we utilized a laser with 500mW at 532nm.

Choosing the right position to burn a hole is the crucial step to iteratively
get to a point where the splitting of the fundamental mode is reasonable small.
Based on initial tests on different cavities and ideas originally developed to
tailor the polarization properties of vertical-cavity surface-emitting lasers [90,
91], locations are determined on the basis of the expected angular and 1/r
dependence of the induced strain. r is the distance from the cavity center and
is always chosen large enough to be a few microns away from the center of the
micropillar cavity in order not to reduce the optical quality of the cavity.
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Figure 4.3: AFM image of a typical hole. The hole has a depth of 2.28µm and
an approximate diameter of 3µm.

4.3.2 Data analysis

The fundamental transverse cavity mode exhibits a very good spatial Gaus-
sian shape (see previous Chap. 3). The mode divides into two orthogonally-
polarized submodes (M [00]

A and M [00]
B ). In order to analyze the changes in the

splitting of the fundamental mode we pump the semiconductor material above
the bandgap with a Ti-Sapphire beam of a few mW. The cavity-shaped photo-
luminescence is recorded on a spectrometer with a resolution of 5.5GHz/pixel
on the attached CCD array. The polarization dependence of the whole spec-
trum and in particular the fundamental mode is characterized by placing an
analyzer consisting of a fixed linear polarizer and a rotating half-wave plate
in front of the spectrometer. This assures the polarization state in the spec-
trometer to be constant and so that the measurements are not affected by the
polarization dependent response of the grating.

The spectral splitting of the fundamental mode can be very small, less
than 1GHz. But even when being a few GHz the two orthogonal fundamental
modes M [00]

A and M [00]
B are overlapping on the spectrometer and their different

peaks cannot be observed directly. But because the modes are orthogonally
polarized a polarizer in the collection path allows to maximize the signal for
each mode separately. When the signal from M

[00]
A is optimized at an angle θA

at frequency νA, mode M [00]
B is best observed at frequency νB at θB+π/2. The

shift between the two peaks is periodical with rotation of the polarizer. An
important analysis tool is additional Lorentzian fitting of the peak (see Fig.
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Figure 4.4: Initial splitting of the fundamental mode and Lorentzian fitting for
the left (a) and the right (b) peak.

4.4). The highly increased resolution allows to determine splitting of less than
0.1GHz. Figure 4.5(a) illustrates the periodic behavior of the fundamental
mode frequency when rotating the polarization analyzer. For the curve with
the dotted line the central frequency separation of the two modes is ∆ν =
13.7±0.3GHz with a FWHM of 30.1±0.4GHz for a single polarization mode.

Successive burning does not necessarily always lead to a decrease in
splitting. But with initial tests on other cavities on the same sample, holes
are burned at locations with an expected angular and 1/r dependence of
the induced strain. Figure 4.5(a) shows how the splitting reduces to ∆ν =
2.0± 0.2GHz after four holes were burned on the same cavity. The holes were
induced in the order as seen in Fig. 4.5(b). The first hole was positioned close
to the cavity center which caused a reduction of the splitting from 13.7±0.3GHz
to 6.1±0.7GHz. As the second hole did not reduce the splitting much further,
two more holes were burned much closer to the center of the cavity, namely
along the edge of the eastern trench. All holes were burned for one minute.

For establishing a better understanding of the frequency shift we ana-
lyzed many more cavities burning a couple of hundreds of holes trying different
sequences of positions. These tests were all carried out at room temperature
as there was no need to observe the effects on the QDs (apart from making
sure the burning does not destroy the active emitters) yet. Figure 4.6 is an
example for a set of trials illustrating the positions of the holes burned chrono-
logically numbered from 1 to 24. The two resulting polarization peaks λA and
λB are plotted in Fig. 4.7 for each position on the horizontal and vertical axes.
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Figure 4.5: (a) Periodic oscillations of the peak center as a function of the
analyzer angle. The dotted curve shows the results for no holes burned yet.
Unaltered, the splitting is ∆ν = 13.7± 0.3GHz. After four holes induced holes
(b) the splitting (solid line) is reduced to ∆ν = 2.0 ± 0.2GHz. The holes were
all burned for one minute. The closer the hole is located to the center of the
cavity the larger were the changes in the splitting.

95



4. Microcavity Tuning

S

W E

N

1 2
4

5-6

7-8

9

13

14

15

16

1920

21

23

24

10 mm

Figure 4.6: Sequence of 24 hot spots burned. Optical microscope image of a
micropillar cavity with hot spots burned on the structure in the regions between
the trenches. The numbers refer to the chronological order in which the holes
were burned.

The first eight holes were burned between the southern and the western trench
moving from the outside closer to the center of the cavity to be continued with
six more holes on the other side moving from the center outwards between the
northern and the eastern trench. This line goes along with the [001] crystal
lattice orientation.

At the beginning λB and λA shift relatively little before the smallest
splitting of ∆ν = 3.2± 0.4GHz is measured after hole five (compare the spec-
trum of both overlapping modes in the inset of Fig. 4.7). Getting closer to the
center, the frequency shifts are much larger with λA increasing more than λB.
After hole 14 the splitting has increased to ∆ν = 108 ± 1GHz. Orthogonal
positioning of the hole shifts the frequency λB much faster than λA.

The tests on this cavity demonstrate that it is possible to almost in-
dependently tune the frequency of each polarization mode by more than a
100GHz by wisely choosing the position relatively to the center of the cavity.
The orientation with respect to the crystal lattice is a measure for which mode
is preferably tuned. The distance from the center of the cavity is a measure
for the strength of the effect. The closer the hole is burned the more do the
frequencies shift.

Before elaborating on the theoretical model described in the next section,
it is useful to explain the effect of holes burned with a simple model, based
on the tensorial relationship between stress, strain and the optical properties
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Figure 4.7: Frequency shift of each submode when positioning the holes as
illustrated in Fig. 4.6. The small insets show extreme splittings in the total
spectrum. The splitting reduced to ∆ν = 3.2 ± 0.4GHz after five holes. After
14 holes the splitting is ∆ν = 108 ± 1GHz.
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4. Microcavity Tuning

of the material. Essentially, the anisotropic component of the stress changes
the splitting and the isotropic component affects the absolute frequencies of
the two submodes. In particular, we find that for N holes burned along the x
direction:

n
(N)
B = n0 +

(
n
(N)
A − n0

)(
−Π2

Π1

)
, (4.1)

which corresponds to a straight line with slope ρ1 = −Π2/Π1. Π1 and Π2 are
quantities which depend on the tensorial elastic (Cij) and and elasto-optic (ρij)
coefficients of the material (Π1 = p11C11 − p12C12 and Π2 = p11C12 − p12C11).
For the holes burned along the y direction we find a similar linear relationship
with inverted slope ρ2 = −Π1/Π2. Figure 4.7 shows how well this simple model
fits the data. The slope for the fitted line is 4.0±0.5. Literature values for the
bulk GaAs and AlAs thermal and elasto-optic properties [93] give a slope of
around 1.5. However, we do not expect these values to be perfectly compatible
since our model does not take into account the bimorphic structure formed by
the oxidized AlAs layer and by the DBR mirrors.

So far we presented results for measurements performed at room temper-
ature. Cavity resonance frequency and polarization splitting for holes burned
at 4K show values significantly different from the room-temperature ones. Im-
mediate hole-burning on the same structure at low-temperature, the burning
laser power had to be increased to 500mW (532 nm). Polarization degeneracy
could be achieved as well as frequency tuning, albeit with a different slope
ρ2 = 1.2± 0.5. The stability of the effects was tested by warming up and cool-
ing down the device a few times. A difference of the order of 10% was found
for the first cooldown after burning (consistent with the results in [91]), while
the deviation in the splitting is within 1− 2GHz for successive cool-downs.

4.3.3 Summary and outlook

We introduced a technique to permanently tune the polarization and spec-
tral properties of optical micropillar cavities. By laser-burning a small defect
on the sample surface near the cavity, we can induce a controllable amount
of birefringence in the structure. By adjusting the position of the defect, we
control the central wavelength of each of the two polarization submodes of
the fundamental cavity mode. This technique enables the implementation of
polarization-degenerate semiconductor micropillars for quantum information
processing and it may find applications for fine tuning of other kinds of semi-
conductor microcavities whose optical properties are influenced by material
strain, such as photonic crystal defect cavities and microdisk cavities. So far,
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4.4 Permanent tuning of quantum dot transitions

we have not shown how this method affects the emission of the QDs. This is
the topic of the next section.

4.4 Permanent tuning of quantum dot transitions to

degenerate microcavity resonances

The second requirement for implementation of quantum information schemes is
spectral resonance between a polarization-degenerate micropillar cavity mode
and an embedded QD transition. The method demonstrated in this section
serves as the coarse-tuning technique to meet the requirement. Fine-tuning and
selection of different charged states [94] is provided by the quantum confined
Stark effect [81], applying a voltage to the PIN-diode structure that embeds
the QDs (see Sect. 4.2). The combination of both the coarse and fine-tuning
technique has many advantages. Different charged states can be addressed
and it is possible to switch between these. The energy shifts can be tuned very
precisely with a range up to a few hundred µeV. The coarse tuning method
is based on the controlled manipulation of the isotropic and anisotropic ten-
sile strain effected by laser-induced surface defects. The method is ideal for
scalable purposes as the defects are permanent and no further external tuning
equipment for further experiments is required.

4.4.1 Experimental procedure

Because of the non-deterministic character of the fabrication process, potential
cavity candidates for further tuning are identified. For that purpose voltage-
resolved photoluminescence scans (see Fig. 4.9 for a non-polarization resolved
cavity scan) for each cavity are taken, providing information about spectral
positions of QDs and the splitting of the fundamental mode. Promising candi-
dates have single QDs spectrally close to the fundamental mode of the cavity
which exhibit already a small splitting. Initial spectral overlap of the QD tran-
sition and the fundamental mode is not required. The spatial position of the
QD with respect to the center of the cavity is of high importance. (An elabo-
rate analysis of this fact is discussed in Chap. 8 on page 173.) Therefore we
choose cavities that already exhibit a reasonable high count rate (compared to
other cavities investigated) when the QD tunes into resonance with the funda-
mental mode.

Once a promising cavity QD system has been selected, the actual tuning
technique can be applied. For that purpose we induce surface defects by a laser
beam in the same way as in the previous section. Because we operate at 4K in
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Figure 4.8: (a) Frequency splitting of the two orthogonally-polarized submodes
of the fundamental cavity mode as a function of the burned holes. (b) Chrono-
logical order of holes burned.

order to observe luminescence of the QD, we apply approximately 100mW/µm2

at λ = 532nm tightly focusing the laser on the surface for 30s. For these mea-
surements a high-NA aspheric lens L1 (focal length f0 = 4.2mm, NA= 0.6)
is mounted in the He-flow cryostat. The material is locally melted and evap-
orated, leaving a hole which is approximately 2µm wide and at least 2µm deep.

In the following we will describe the overall tuning technique by means of
one single cavity (with three trenches). In a first step we reduce the fundamen-
tal cavity mode to polarization-degeneracy following the procedures described
in the previous section. The built-in strain can be compensated by applying
anisotropic strain, through holes burned at proper positions. The direction of
the original built-in strain is however unknown, so one must use a trial-and-
error procedure, illustrated in Fig. 4.8(a). We first start burning a hole at a
random orientation, for example along the direction labeled in the figure as x1.
If the splitting gets larger, we move to the orthogonal direction. If the splitting
decreases, we keep burning holes until the splitting stops decreasing. In the
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4.4 Permanent tuning of quantum dot transitions

example shown in Fig. 4.8(b), the first hole reduces ∆E from 140 ± 4µeV to
54 ± 1µeV, but a second one slightly increases it. This is an indication that
all the strain along that particular direction was compensated. We repeat the
same procedure on a reference system rotated by 45 degrees with respect to
coordinate plane [x1, y1]. In the example, we start burning the third hole along
y2, which increases the splitting to ∆E = 82.6 ± 0.4µeV. Therefore we switch
to the orthogonal direction x2. Burning holes along this direction reduces ∆E
to around 15µeV. The procedure can be further iterated along directions in
between x1 and x2 and generally leads to splittings smaller than the mode
linewidth (in our system about 50µeV), which is the requirement for quantum
information experiments. It is important to note, that no appreciable change
in the cavity quality factor was observed.

So far we only concentrated on tuning the fundamental mode to polarization-
degeneracy. However, the strain affects the optical transitions of the QDs as
well. For the same cavity analyzed in Fig. 4.8, Fig. 4.9 shows the voltage-
resolved photoluminescence at the initial state before any holes are induced.
The sample is non-resonantly pumped with a 1µmW/µm2 laser beam at 785nm
above the GaAs bandgap. The photoluminescence is spectrally resolved with
a spectrometer (resolution 0.016nm/pixel). The non-degenerate cavity’s fun-
damental mode splitting (140µeV) is clearly visible as different horizontal lines
around 943.1nm. QD transitions shifting in frequency due to the Stark effect
and tuning into the different modes can be tracked by the curved lines. Though
there are more than three QDs visible, we only marked three clearly visible
QDs. QD3 is around 0.5meV detuned to the blue-side of the cavity mode.

The summary of the effects of the 12 holes burned is shown in some of the
voltage-resolved photoluminescence plots in Fig. 4.10 and Fig. 4.11. Burning 6
holes reduces the splitting to about 15µeV and QD3 is about 0.1meV detuned.
Applying isotropic strain, by burning pair of holes along orthogonal direction,
the dot can be brought into resonance with the cavity mode, without destroying
the mode degeneracy (see plot for 11 holes in Fig. 4.11).

The difference in the way the cavity mode and the dot transition are
affected by hole-burning can be exploited to tune a QD transition into res-
onance with a polarization-degenerate cavity. In Fig. 4.10 one can see that,
while burning the first six holes, needed to reduce the splitting ∆E, the optical
transitions of the dots redshift, so that the transitions labeled as QD1 and QD2,
originally resonant with the non-degenerate fundamental cavity mode, tune out
of resonance. After burning six holes we have a polarization-degenerate cav-
ity mode, with a QD transition (labeled QD3) about 100µeV detuned on the
blue-side. Now the challenge is to shift this transition into resonance, without
perturbing the cavity mode degeneracy. This can be done by applying isotropic
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Figure 4.9: Voltage-resolved photoluminescence plot before inducing any holes.
The scan is non-polarization resolved and non-normalized. The curved lines
are characteristic for QDs. The horizontal lines are the cavity modes.

strain: we can burn sets of two holes at orthogonal directions, for example one
along x2 and the other along y2, at the same distance from the center. This
leaves the splitting ∆E unaltered while redshifting the dot transition. The re-
sults are shown in Fig. 4.11(c) and Fig. 4.11(d) corresponding to the eleventh
and twelfth hole burned. The dot is finally on resonance and the fundamental
cavity mode splitting is 13± 1µeV.

For a better understanding of how the QD shift spectrally after a new
hole is burned, we kept track of its frequency shift by recording voltage-scans.
In general, the resulting shifts to higher wavelengths was studied in many
nominally identical cavities and show the behavior as presented for one cavity
in Fig. 4.12(a). The effect of laser-induced defects is almost always a redshift
of the optical transition, independent of the actual position of the hole. This
fact has been observed by other groups as well [95–97] and suggests that by
burning holes we effectively apply tensile strain to the structure.

As we usually have a couple of QDs active in the same cavity, it is inter-
esting to measure all their relative shifts in energy after a new hole is burned.
Figure 4.12(b) presents the tracking of energies for four QD optical transitions
with respect to their original energies when six holes are burned at the same
distance from the cavity center but at different positions. Independently of the
angle along which the hole is burned, the QD emission always redshifts.

In our measurements we found the shift of the QD transition to be much
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Figure 4.10: Hole burning applying anisotropic strain. The result is a reduction
of the fundamental mode splitting.
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Figure 4.11: Hole burning applying isotropic strain. The QD transition red-
shifts till it is in resonance with the fundamental mode of the polarization-
degenerate cavity.
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Figure 4.12: (a) Voltage-resolved shifts for different holes burned for one QD.
With almost every new hole induced, the QD emission redshifts (increasing
wavelength). (b) Tracking the energy for four different QD optical transitions
for six holes burned. The energies are plotted with respect to their original
energy. The holes are burned at the same distance from the cavity center (see
inset). All transitions always redshift (decreasing ∆EQD) independently of the
orientation of the hole position with respect to the cavity and the crystal axes.
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Figure 4.13: Energy shifts for a QD optical transition and the optical cavity
mode for six different QDs. The dotted (red) line is a linear fit. The inset
shows a histogram of the ratios between the shift of the QD and the shift of the
cavity mode. On average the QD frequency shifts around 5 times more than
the cavity resonance.

larger than the corresponding shift of the cavity mode. Figure 4.13 provides
a quantitative analysis of this phenomenon. It shows the energy shifts for a
QD optical transition and the optical cavity mode for six different QDs. The
dotted (red) line is a linear fit. The inset shows a histogram of the ratios
between the shift of the QD and the shift of the cavity mode. On average the
QD frequency shifts around 5 times more than the cavity resonance.

4.4.2 Summary

We demonstrated a tuning technique for micropillar cavities with embedded
QDs, which allows us to obtain polarization-degenerate micropillars with a QD
transition on resonance. Our technique is a crucial prerequisite for the imple-
mentation of scalable quantum information systems involving photon polar-
ization and the spin of a single carrier trapped in the dot. We showed that
the QD optical transition redshifts, independently of the actual position of the
hole. The QD frequency shift is about five times larger than the shift of the
cavity fundamental mode.
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4.5 Theoretical model

A model that describes the effect of introducing strain through local heating
in the vicinity of the device is proposed by van Doorn et al. [98] for VC-
SEL structures. The approach is to calculate the thermal expansion due to a
point heat source in a bulk material. With the relation of the temperature of
the point heat source and the elastic properties of a hole burned at position
(x0, y0, 0), the stress component σij at position (x, y, z) can be calculated as
follows (xi = x, y, z): [98]

σij = γ
A0

r

[
δij −

(xi − x
(0)
i )(xj − x

(0)
j )

r2

]
, (4.2)

with x − x0 = r cos θ cosϕ, y − y0 = r sin θ cosϕ and z − z0 = r sinϕ. γ
describes the elastic composition of the material with Cij being different elastic
constants:

γ =
(C11 − C12)(C11 + 2C12)

C11
(4.3)

A0 is a phenomenological coefficient, of dimension length, which depends on the
laser power and on the thermal expansion coefficient and thermal conductivity
of the material. For compressive stress A0 is positive and negative for tensile
stress. The factor 1/r attributes a decreasing effect from the hole.

We have experienced that a certain laser power and burning time is
needed to obtain a permanent and irreversible effect, parameters that also
depend on the cooling temperature of the sample and the quality of the focus.
In this approach we assume that the stress caused by laser-induced defects has
the same form for reversible and permanent defects as described in Eq.(4.2).
The stress induced causes strain (tensor εkl) in the crystal lattice, that can be
described by elastic compliance tensor with components sijkl:

εij = sijklσkl. (4.4)

For a GaAs crystal with a 43̄m trigonal crystal, a matrix representation is:

S =




S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44



, (4.5)
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where the coefficients Sij are related to the elastic constants Cij as:

S11 =
C11+C12

(C11−C12)(C11+2C12)
,

S12 =
−C12

(C11−C12)(C11+2C12)
,

S44 =
1

C44
.

(4.6)

Because the holes are induced far away enough from the center of the
cavity, the angle ϕ describing the depth of the dot position in the z-direction
with respect to the hole is very small and we assume cosϕ ≃ 1. The strain
tensor components become:

εxx ≃ [1− η1 cos
2 θ]A0

r ,

εyy ≃ [1− η1 sin
2 θ]A0

r ,

εzz ≃ A0
r ,

εxy ≃ −η2 sin θ cos θA0
r ,

(4.7)

where η1 = (1+2C12/C11) and η2 = (C11−C12)(C11+2C12/(C11C44)). Strain
components εyz and εxz are very small as they are proportional to sinϕ.

4.5.1 Effect on cavity modes

In Sect. 4.3 we analyzed the frequency change of the cavity mode caused by
laser-induced surface defects. The stress generated by the defects (tensor σij)
creates strain in the semiconductor material (tensor εij), via the elastic com-
pliance tensor Sijkl. The strain modifies the optical properties of the material
through the elasto-optic tensor pijkl. The change in the dielectric imperme-
ability tensor Bij induced by a hole, for a 43̄m cubic crystal, is:

δB =

[
δBxx δBxy

δBxy δByy

]
, (4.8)

with
δBxx = c0[Π1σxx −Π2σyy],
δByy = c0[−Π2σxx +Π1σyy],
δBxy = p44

C44
σxy

(4.9)

where c−10 = (C11 − C12)(C11 + 2C12), Π1 = p11C11 − p12C12, and Π2 =
p11C12 − p12C11. Since Bi = 1/n2i , in the case of the small perturbation,

∆ni
n

∼ −n2∆Bi

2
. (4.10)

For a cavity with length L material refractive index n, the m-th resonant
mode wavelength is given by λm = 2nL/m. The refractive indices n1 and
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Table 4.1: Material parameters used in the model [93, 99]
GaAs InAs

Elastic constants (1010N/m2) C11 11.879 8.329
C12 5.376 4.526
C44 5.94 3.964

Elasto-optic constants p11 -0.165 -0.040
p12 -0.140 -0.035
p44 -0.072 -0.010

Luttinger parameters γ1 6.8 20.4
γ2 1.9 8.3
γ3 2.73 9.1

Pikus-Bir potentials (eV) ac -7.17 -5.08
av 1.16 1.00
b -1.7 -1.8
d -4.55 -3.6

n2 of the two submodes can be obtained separately from the eigenvalues B1

and B2 of the dielectric impermeability tensor B. A spatially uniform change
∆n in refractive index results in a change in wavelength of the resonant mode
∆λm = λm(∆n/n). In order to estimate the isostropic shift of the cavity
modes, we take the center of mass of the shift of the two resonance wavelenghts
∆λ̄ = ∆λ1 +∆λ2. This quantity is proportional to the sum of the eigenvalues
of δB, and does not depend on its off-diagonal elements:

∆λ̄ = λm
n2

2
(δBxx + δByy) (4.11)

= λm
n2

2
(p11 + p12)

(
1− C12

C11

)(
A0

r

)
. (4.12)

An important result is the independence of this quantity from the angle θ
along which the hole is positioned. It therefore allows to compare the effect of
different holes on the cavity modes.

With the elastic and elasto-optic coefficients provided in Tab. 4.1 the
total wavelength shift is (with n ∼ 3.5 for GaAs):

∆λ[nm] ∼ 1100
A0

r
. (4.13)

For tensile strain the wavelength redhifts (A0 is positive) and for compressive
strain it blueshifts (A0 is negative). Our measurements showed prederentially
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a redshift when the cavity is far from polarization degeneracy. Therefore we
assume that tensile strain is applied to the material. Experimentally we have
little control on the parameter A0 and therefore need to compare it with a
similar expression for the QD transition shift.

4.5.2 Effect on QD optical transitions

In Chap. 1 Sect. 1.3.3 we described the band structure of III-V semiconductors
in the k · p approximation. The valence band consists of a doubly degenerate
band with angular momentum j = 1/2 (spin-orbit split-off band) and two dou-
bly degenerate bands with total angular momentum j = 3/2. In the following
we neglect the spin-orbit split-off bands which for typical semiconductors are
several hundred meV separated from the four j = 3/2 bands. These bands
contain the light holes (LH) with larger band curvature (mj = ±1/2) and the
heavy holes (HH) with smaller band curvature (mj = ±3/2). The j = 3/2
bands can be described by a 4× 4 Luttinger-Kohn Hamiltonian [99], which in
the basis {|mz = 3

2〉, |mz = 1
2〉, |mz = −1

2〉, |mz = −3
2〉} writes as:

HLK =




Pk +Qk −Sk Rk 0
−S∗k Pk −Qk 0 Rk

R∗k 0 Pk −Qk Sk
0 R∗k S∗k Pk +Qk


 . (4.14)

For no strain the coefficients are:

Pk =
(

~2

2m0

)
γ1(k

2
x + k2y + k2z),

Qk =
(

~2

2m0

)
γ2(k

2
x + k2y − 2k2z ),

Rk =
(

~
2

2m0

)√
3[−γ2(k2x − k2y) + 2iγ3kxky],

Sk =
(

~2

2m0

)
2
√
3γ3(kx − iky)kz ,

(4.15)

where γ1,γ2 and γ3 are the Luttinger parameters and m0 the free electron
mass. In case of applied strain the system can be described by the Pikus-Bir
Hamiltonian which has the same form as the Luttinger-Kohn Hamiltonian but
with modified coefficients: P = Pk + Pε, Q = Qk + Qε, R = Rk + Rε, and
S = Sk + Sε, with

Pε = −av(εxx + εyy + εzz),
Qε = −(b/2)(εxx + εyy − 2εzz),

Rε = (
√
3b/2)(εxx − εyy)− idεxy,

Sε = d(εxz − iεyz).

(4.16)

ac,av,b and d are the Pikus-Bir deformation potentials.
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Although accurate theoretical models have been developed to study
the complex effect of strain on the energy levels of semiconductor structures
[100–103] we elaborate a simplified model two-valence-band model. It should
provide a phenomenological understanding of the energy shift of the QD optical
transition of use for the experimentalist.

Two-valence-bands model

At the their Γ-point (k = 0) the HH and LH valence subbands are degenerate
for bulk III-V semiconductors. In low-dimensional structures, such as in self-
assembled QDs, this degeneracy is lifted and results in an energy splitting of
a few tens of meV. In the following we will neglect this fact and only consider
the conduction band and the HH valence band trying to get a qualitative
explanation of the results for the band edge (k = 0).

In the effective mass and envelope function approximation [99], the wave
function of a single particle in a QD can be described by the product of a
Bloch function uk(r) with the periodicity of the atomic lattice, and an envelope
function f(r), which describes the amplitude modulation of the wave function
that is imposed by the confinement potential:

ψ(r) = f(r)uk(r). (4.17)

The effective masses for the electrons are m∗e,t = m∗e,z = m0/γe, and for the
heavy holes m∗h,t = m0/(γ1 + γ2) and m∗h,z = m0/(γ1 − 2γ2), where m0 is the
free-electron mass.

If we assume the QDs to be smaller than the corresponding bulk exciton
radius (∼ 35nm for InAs, ∼ 15nm for GaAs), the strong-confinement approx-
imation applies. Hence, we treat electrons and holes as independent particles
with their energy primarily determined by the confinement potential, and ne-
glect or treat the electron-hole Coulomb potential as a perturbation [104–106].

Consider a QD spherically symmetric in the x, y−plane with width 2Lt

and depth 2Lz along the growth axis z. The resulting potential is schematically
shown in Fig. 4.14. At low temperatures the energy gap is Eg = 1.52eV for

GaAs and Eg = 0.42eV for InAs. Taking the valence-band offset to be V (o)
h =

0.25eV [99] leaves V (o)
c = 0.87eV for the conduction-band offset. Neglecting

the Coulomb interaction as mentioned, the exciton energy is

E0 = E(0)
g (InAs)+ E(o)

v + E(o)
c , (4.18)

with E
(o)
v and E

(o)
c being the ground-state energies for the potential wells of

the conduction and valence wells.
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Figure 4.14: Schematic band structure approximation for a QD at the band
edge (k = 0).

A simple analytical solution can be obtained approximating the potential
well with a three-dimensional parabolic potential [106]:

Vi(r) =
1

2
ci,t(x

2 + y2) +
1

2
ci,zz

2, i = e, h. (4.19)

Approximating the square finite well with the parabola yields the coefficients
ci,j :

1

2
ci,jL

2
j =

Vi
2
, (4.20)

resulting in ci,j = Vi/L
2
j and Ωi,j = (1/Lj)

√
Vi/m

∗
ij . While index i spans

the conduction and valence bands (i = e, h), j identifies either the transverse
coordinate in the xy−plane (j = t) or along the growth direction (j = z). m∗ij
is the effective mass for the electron (i = e) or the hole (i = h) in the InAs
potential well along the j direction. The ground-state energy for the parabolic
potential well is

E
(0)
i =

~

2
(Ωx +Ωy +Ωz), (4.21)

which gives

E
(o)
c = ~

2

√
Ve

m0

(
2
Lt

+ 1
Lz

)√
γe,

E
(o)
v = ~

2

√
Ve

m0

(
2
Lt

√
γ1 + γ2 +

1
Lz

√
γ1 − 2γ2

)
.

(4.22)

112



4.5 Theoretical model

The parabolic approximation is excellent for the potential well in the
xy−plane [107,108]. Along the z−axis, the potential well is more abrupt and
the approximation not so accurate but sufficient for our qualitative under-
standing.

If the laser induces strain in the material, the band edges are modified
as Ec = E

(o)
c +∆e and Ev = E

(o)
v +∆h, with

∆e = acεH ,

∆h = avεH + b
2εB

(4.23)

With the expression for the strain tensor components derived in Eq.(4.7),
for the hydrostatic strain component εH we get

εH = εxx + εyy + εzz = 2

(
A0

r

)(
1− C12

C11

)
, (4.24)

and for the biaxial component (assuming ϕ ≈ 0)

εB = εxx + εyy − 2εzz = −
(
A0

r

)(
1 + 2C12

C11

)
. (4.25)

This yields

∆e = 2ac

(
1− C12

C11

) (
A0
r

)
,

∆h =
[
2av

(
1− C12

C11

)
− b

2

(
1 + 2C12

C11

)] (
A0
r

)
.

(4.26)

It is interesting to note that the strain components affecting the con-
duction band and the heavy-hole valence band are independent of the relative
angle θ. This agrees with the redshift measured for several QD optical transi-
tions at different angles θ but with the same distance from the cavity center,
see Fig. 4.12(b).

The perturbation in the band energies for the conduction and valence
bands for GaAs and InAs has two consequences. First, the bandgap energy of
InAs is modified as

Eg(InAs) = E(0)
g (InAs) +∆Eg, (4.27)

with

∆Eg = ∆e(InAs) −∆h(InAs) = (ac − av)εH − b

2
εB . (4.28)

Second, the depth of the potential wells is modified, due to the relative shift
between GaAs and InAs band edges, giving a perturbation on the ground-state
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energies of the potential wells (respectively ∆Ec and ∆Ev). The confining
potential for the electron is modified to

Ve = V (o)
e + δe

(
A0

r

)
, (4.29)

with

δe

(
A0

r

)
= ∆e(GaAs) −∆e(InAs). (4.30)

For the holes we get

Vh = V
(o)
h + δh

(
A0

r

)
, (4.31)

with

δh

(
A0

r

)
= ∆h(GaAs) −∆h(InAs). (4.32)

Substituting the new expression for the confining potential in the ground-
state energies in Eq.(4.22) and applying a first-order Taylor expansion (the
perturbation due to a hole burned is very small), yields

∆Ei = ξiδi

(
A0

r

)
, i = c, v. (4.33)

The δi depend on the elastic properties of the materials, namely the elastic
constants and the deformation potential. The ξi depend on the band structure:

ξc =
~

2

(
1
Lz

+ 2
Lt

)√
γe

moV
(o)
e

,

ξv = ~

2

(
1
Lz

√
γ1 − 2γ2 +

2
Lt

√
γ1 + γ2

)√
1

moV
(o)
h

.

(4.34)

Let us consider an example with typical QD parameters as used in our
samples. A QD with a thickness of 3nm and a width of 12nm (Lz = 1.5nm
and Lt = 6nm), we get ξe ∼ 1.224 and ξh ∼ 1.031. Using the values given in
Tab.4.1, we get ∆e(InAs) ∼ −4.638eV(A0/r) and ∆h(InAs) ∼ 2.791eV(A0/r).
In the case of compressive strain, this yields an increase for the bandgap energy
of InAs because Eg[InAs] = E

(0)
g [InAs] + 7.43eV(A0/r). For tensile strain the

energy decreases by the same amount. The shift in the GaAs conduction
band is ∆e(GaAs) ∼ −6.546eV(A0/r), so that the change in depth of the
potential well is δe(A0/r) = −1.91eV(A0/r). In the same way, the shift for
the valence band is ∆h(GaAs) ∼ −2.678eV(A0/r), with a change in the depth
of the corresponding potential well of δh(A0/r) = 0.113eV(A0/r). For both,
conduction and valence band, the depth of the potential well is increased by
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compressive strain and reduced by tensile strain. The effect is much stronger
for the conduction band than for the valence band.

If we want to quantify the redshift of the QD optical transition due to
applied tensile strain, we have to take both the change in InAs energy gap and
in the pontential well depth into account. A redshift due to hole-burning by
an amount of ∆E ∼ −9.78eV(A0/r) results in the following wavelength shift:

∆λ[nm] ∼ 7800
A0

r
. (4.35)

In our measurements, a typical redshift due one induced hole is about 100µeV.
This implicates that the value for (A0/r) is in the order of 10−5, which in turn
corresponds to a shift of the InAs bandgap of around 75µeV. The change in
the conduction-band confinement potential is around δe(A0/r) ∼ −20µeV and
for the valence-band confinement well δh(A0/r) ∼ −1µeV.

Comparison of the cavity and the QD effects

Comparing the relative magnitude η of the effects for the QD transition and
the cavity mode, with Eq.(4.35) and Eq.(4.13) we get:

η =
∆λQD

∆λcav
∼ 6. (4.36)

Experimentally we measured η to be in average around 5 (see Fig. 4.13). From
Eq.(4.33) we know that η depends on the elastic properties of the material and
on Lz and Lt. However, the dependency on the latter parameters is weak. For
emission energies ranging between 1 and 1.5eV and QD sizes with a thickness
of 2 to 4nm (Lz = 1 to 2nm) and a width of 8 to 16nm (Lt = 4 to 8nm) η is
bound between 5.5 and 7.

4.6 Conclusion and discussion

Tuning micropillar cavity modes and the optical transitions of embedded QDs
by laser-induced surface defects allows to obtain a polarization-degenerate fun-
damental mode to be in resonance with the QD optical transition. Advantages
over other techniques are the precise control inducing permanent changes. We
can tune QD optical transitions in micropillars that are not directly accessible
from the surface leaving the quality of the QD intact. There is no need to alter
the experimental setup for further measurements once the cavities have been
tuned.
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4. Microcavity Tuning

Because of the agreement of the qualitative predictions by the theoret-
ical model with the experimental results, we believe that the holes burned
induce tensile strain on the QDs. This could be explained assuming removal of
material which releases some compressive strain that pre-exists due to lattice-
mismatch in the QD. Such tensile strain affects the band-structure both of
the InAs QD material and of the bulk surrounding GaAs, reducing the InAs
energy gap and the width of the confining potential well.

A question that comes to mind is about the resistance of the samples
towards the induced heat. We have tested the hole burning technique with
much higher powers (up to 800mW at 4K) and for much longer times (up to
3 minutes) than required and have seen the temperature sensor at the sample
holder increase up to 12K. These tests never resulted in a clear degeneration
of the samples. However, one important sample degraded almost instantly
between one and the other cooldown. In the past other samples have also been
significantly changed after a thermal cycle. This seems to indicate that the
hole burning method is less damaging than thermal cycling from 4K to room
temperature.
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