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Chapter 3

Optical Modes in

Oxide-Apertured Micropillars

This chapter is based on the submitted paper Optical modes in oxide-apertured
micropillars (J. Gudat, C. Bonato, K. de Vries, D. Ding, H. Kim, S. M. Thon,
P. M. Petroff, M. P. van Exter, D. Bouwmeester).

The central system for the research presented in this thesis is the oxide-
apertured micropillar cavity with embedded self-assembled quantum dots, as
illustrated in Fig. 3.1. The quantum dots confine the spin of either an electron
or hole which is the elementary qubit of the system. In this architecture the
single qubit and two-qubit operations are designed through optical interactions
via micropillar cavity modes coupled to external modes. In order to make
this process possible and scalable we need to understand and control both
the quantum dot confined spin dynamics and the optical properties of the
micropillar cavities in great detail. In Chap. 6 we give an overview of the rather
complex dynamics of spins in quantum dots, and in this chapter we analyze
the optical properties of micropillar cavities and their coupling to external
modes. We show, using Gaussian beam calculations, that we can efficiently
couple to the fundamental mode of a cavity which exhibits almost perfect
Gaussian optical modes. Despite being mostly interested in the fundamental
mode, a propagation model, which assumes cylindrical quadratic refractive
index variation from the center of the cavity and yields Hermite-Gaussian
solutions, is developed to explain the frequencies of the transverse modes. We
show how well the experiments match the model for the lower order modes
and present corrections to this model that allow to match higher order modes
with better accuracy.
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Figure 3.1: Micropillar cavity scheme. The active layer carrying the quantum
dots is sandwiched between top and bottom DBR mirrors. The wedged oxidation
layer reaches almost to the center of the cavity and provides confinement of light
in the z-direction. The QDs are located in the middle of the active layer below
the oxidation layer.

3.1 Introduction

The role of the micropillar cavities in our quantum information schemes is to
enhance the optical interaction between a single embedded QD and an external
optical mode. The cavity concentrates the light in the region of the quantum
dot and if the coupling of light to the dipole moment of the quantum dot
is strong enough it will influence the spontaneous emission properties of the
quantum dot through the Purcell spontaneous emission enhancement factor
P . As explained in Sect. 1.4, in order to implement efficient single-photon
sources [56] and dipole-induced reflection [26] staying below the strong coupling
regime it is desirable to have a significant Purcell factor. Since the Purcell
factor is described by [53]

FP =
3

4π2

(
λ

n

)3 Q

V
(3.1)

the cavity optical mode volume V needs to be reduced as much as possible,
while keeping a high quality factor Q.

There are several types of cavities with the possibility to implement QDs
as active emitters, for example photonic crystal membrane cavities [40,41], mi-
crotoroidal cavities [57] and micropillars [5]. Although micropillar cavities do
not allow for the smallest possible mode volume, because the cavity optical field
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3.2 Oxide-apertured micropillars design and fabrication

extends into the Bragg mirror structure (leading to effective mode volumes typ-
ically of 4 to 8 cubic wavelengths instead of approximate 1 for photonic crystal
membrane cavities), and their Q factors are currently limited to 150.000 [42]
(significantly lower than the close to 1, 000.000 Q-factors for certain Silicon
based photonic membrane cavities and toroidal cavities), they do allow for in-
tegration of QDs and electrical gates that can control the electron charging of
the QD and have the ability to mode match to external optical modes. These
features outweigh the limitations in Q and V when considering implementation
of scalable hybrid quantum information protocols [55] as described in Chap.
7.
Optical mode patterns in microcavities have been of interest for a long time in
particular in oxide confined VCSEL structures [58–62]. We will describe the
optical properties of the micropillar structure by the spectral and spatial prop-
erties of the electromagnetic modes. The typical modes for optical resonators
with confocal mirrors and modeled in the paraxial beam approximation are the
(Hermite) Gaussian modes. Such modes are mathematically very convenient
to use. We will start our analysis by assuming that the oxidation taper will
to first order be represented by a quadratically decreasing (radially from the
center) refractive index, resulting in a Gaussian beam decomposition. We do
not expect to have cylindrical symmetry around the optical axis due to the
tensorial nature of the effective refractive index as a result of strain, crystal
axis and asymmetry in the oxidation front. To first order we will simplify those
complex effects by introducing an elliptical refractive index with the high and
low refractive index along two orthogonal axis in the plane of the oxidation
taper (perpendicular to optical axis). By comparing this first-order model with
experimental data we obtain remarkable good agreement.

3.2 Oxide-apertured micropillars design and fabrica-

tion

Our micropillars are grown by molecular beam epitaxy on a GaAs [100] sub-
strate with a 0.1µm buffer layer. Two distributed Bragg reflector (DBR) mir-
rors consisting of alternating layers of GaAs and Al0.9Ga0.1As with a one-
quarter optical thickness (32 pairs for the bottom DBR and 23 pairs for the
top DBR), embed the aperture layer and the active layer with embedded In-
GaAs/GaAs self-assembled QDs. The DBR structure provides confinement of
the light in the direction perpendicular to the active layer (the z-direction).
Figure 3.2 presents details on the different layers. The alternating layers of
Al0.9Ga0.1As and GaAs have a thickness of 79.8 and 68.4nm. In the growth
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3. Optical Modes in Oxide-Apertured Micropillars

direction, from bottom to top, the lower DBR stack is followed by a λ/4-thick
Al0.9Ga0.1As layer. The active region with one optical wavelength thickness
embeds the self-assembled InGaAs/GaAs QDs (30Åthickness) in its center.
The GaAs layer below and above the QDs are 135.4nm in thickness. The
oxide aperture layer consists of graded-to-pure AlAs (100Å) sandwiched by a
Al0.75Ga0.25As below and a Al0.8Ga0.2As followed by a Al0.75Ga0.25As layer on
top, resulting in a total thickness of three quarters optical wavelength. The
aperture layer interfaces with a GaAs layer before the top DBR stack. This
ensures that the thickness of the inner cavity length is multiples of λ/2 such
that the mode distribution has anti-nodes at the first GaAs interfaces of the
DBR stacks and is subject to a phase shift, which is the requirement for a
cavity. Figure 3.3 illustrates the mode distribution of the cavity.

The QDs in the center of the active region are positioned to be at the
maximum of the optical mode in the z-direction. This ensures optimal coupling
efficiency between the QD excitons and the optical field. On the other hand the
oxidation taper is located at a field node to reduce scattering and absorption
losses due to the aperture. The cavity between the DBR mirrors causes a
maximum in the optical density of states at the Bragg frequency (see the
theoretical reflectivity spectrum in Fig. 3.4(a)). Multiple reflections from the
repeating Bragg layers produce a standing wave for the normal incidence at
the Bragg frequency, the resonance, and cause an electric field profile in the
cavity as plotted in Fig. 3.4(b).

Different from conventional micropillar cavity structures [63] our cavities
have trenches (Fig. 3.5 and Fig. 3.6) which are etched through the top DBR
onto the bottom DBR and therewith define an oxidation front. Placed in
an oxidation furnace, wet lateral oxidation converts the AlAs into AlxOy and
therewith defines an oxidation front starting from the trenches leaving a small
un-oxidized area in the center (see Fig. 3.7(b) for an SEM cross section image
of a typical micropillar with fewer DBR mirrors). The oxidation is a rather
slow process (depending on the parameter settings this process usually takes
between 20 to 50 minutes) and can be calibrated to stop before it reaches
the center of the cavity. Figure 3.7(a) schematically shows the oxidation layer
in detail. An active area with an approximately circular central region of
about 2 to 3µm in diameter (described by parameter din) stays untouched.
The difference in effective refractive index is designed to be ∆neff = 0.08
between the fully oxidized and the un-oxidized region. This provides an optical
confinement effect in the x, y-plane [43, 44]. Ltaper is the taper length of the
oxide aperture (see Fig. 3.7(a)) and depends on the thickness and composition
of the surrounding AlGaAs. It is designed to be approximately 1.5µm long
after a 10µm oxidation. The effective mode Volume Veff of the cavity directly
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Figure 3.2: Micropillar cavity layer details. The micropillar cavity consists
of an active region with the embedded QDs at its center and an oxide aperture
layer that are both sandwiched between distributed Bragg reflector mirrors. The
active region is designed to be one λ optical wavelength thickness consisting of
a 3nm thick QD layer centered between 135.4nm GaAs layers. On top of the
active area is the oxide aperture. It is a thin 100Å thick AlAs layer that is
surrounded by different compositions of AlGaAs. The designed optical thickness
is 3/4λ. The oxide aperture interfaces with a λ/4-thick GaAs layer.
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Figure 3.3: Mode distribution and effective cavity length in the micropillar cav-
ity. GaAs has a higher refractive index than Al0.9Ga0.1As and Al0.75Ga0.25As.
Therefore the lambda sized active region has a field maximum in the center
where the QDs are positioned. Field maxima occur at the two interfaces with
first Al0.9Ga0.1As layer of the Bragg mirrors corresponding to l = 2. (see Sec.
3.3). Illustrated are the parts that contribute to the effective cavity length Leff .
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Figure 3.4: Theoretical Bragg resonance and electric field profile conditions
in the micropillars (courtesy of N.G. Stoltz). (a) Reflectivity spectrum for
the oxide apertured microcavity with a resonance at the Bragg condition. (b)
Normalized electric field profile in the microcavity for the Bragg wavelength
at the normal incidence. The inset shows an enlargement of the cavity and
aperture region. The λ-thick active region with the field maximum at the center
at the position of the QDs is visible. The aperture is positioned at a node.
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25 µm

etched
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Figure 3.5: Top view of a micropillar cavity image with four trenches. A circle
in the center illustrates the position of the optical cavity.

depends on the lateral mode radius. The quality factor Q is mostly determined
by the optical scattering loss. Therefore control over the three parameters
∆neff , din and taper is crucial for optimizing the cavity in order to enhance
the Purcell factor that is proportional to Q

Veff

One important parameter for further discussion in this chapter is the
effective mode Volume Veff . In order to calculate it, we need to know the
effective cavity length Leff in the z-direction. The parts that contribute to
Leff are illustrated in Fig 3.3. Lpenbot and Lpentop are the penetration lengths
of the modes in the bottom and the top DBR mirrors, Lcav and Laperture

correspond to the height of the cavity and the aperture layer with the taper:

Leff = Lpenbot + Lcav + Laperture + Lpentop. (3.2)

Lcav and Laperture are known from the design. Lpenbot and Lpentop are deter-
mined by

Lpen =
λ

4∆n
rdbr (3.3)

where rdbr is the total mirror reflectivity. rdbr is a function of the number of
mirror periods (p) in a DBR mirror (rdbr = 1−(n1/n2)2p

1+(n1/n2)2p
) and for our case is

greater than 99%. Our cavities are designed to have a Leff of 1.39µm.
To summarize, the oxide-aperture overcomes the limitations due to side-

wall scattering loss typical in semiconductor etched micropillars [24] and avoids
intrinsic scattering losses because of the designed null electric field value at the
position of the oxide aperture (see Fig. 3.4(b)). At the same time, the aper-
ture reduces the mode volume V in the lateral direction while maintaining high
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3.2 Oxide-apertured micropillars design and fabrication

(a) (b)

Figure 3.6: (a) SEM image of a cavity with three trenches from a bird’s eye
view. The diameter of the cavity center is 32.3µm. (b) SEM zoomed image
of the cavity and one trench. The height of the trench is approximately 5µm.
Courtesy of T.A. Truong, UC Santa Barbara.
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Figure 3.7: (a) Oxide aperture layer scheme with resulting effective refractive
index profile. (b) SEM cross section image of a typical micropillar (with fewer
DBR mirrors than used in the experiments). The oxide aperture in the middle
has a linear profile in particular towards the center of the cavity where it stops
before reaching the center and forms a very sharp edge. Courtesy of N.G.
Stoltz.
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3. Optical Modes in Oxide-Apertured Micropillars

Q values. Additionally it is compatible with the implementation of electrical
gates [56] for controlled electron charging of the QD and fine tuning of the fre-
quency via the Stark effect. The cavity width after oxidation is approximately
2 − 4µm compared to a smaller height of around 1µm. The oxide aperture is
not perfectly circular, due to the anisotropic growth-rate of the oxide and the
asymmetries in the shape and position of the trenches [64, 65]. Much effort is
spent on optimizing the formation of the oxide-aperture [64, 65]. There have
been various trials with different dimensions and shapes of the trenches to op-
timize the cavities properties including electrical gates [24, 56]. The samples
investigated in this chapter partly had QDs embedded in their active region.
However, for the understanding of the mode patterns analyzed in the following,
the QDs were not addressed electrically.

3.3 Theoretical model of the optical modes

In order to describe the optical modes we first model the oxidation taper as an
isotropic material with a quadratic refractive index profile (radially decreasing
from the center) in the oxide aperture plane which we define as the x and y
plane at the bottom center of the cavity. In the perpendicular z-direction the
cavity with height h has a constant refractive index. The fundamental mode
exhibits a Gaussian shape normal to the propagation direction, the z-direction.
The approach is to solve the wave equation using an effective index model in
the x, y-plane to describe the change of the refractive index n(x, y) resulting
from the oxidation taper [66, p. 640]

∇2E(r) + k20n
2(x, y)E(r) = 0 (3.4)

where the refractive index varies with the radial distance (rx, ry) from the
center

n2(x, y) = n20

(
1− x2

r2x
− y2

r2y

)
, (3.5)

with n0 the refractive index of GaAs. With other words, this expresses a
constant refractive index in the z-direction and a quadratically decreasing index
in the x, y-plane induced by the oxide aperture. Non-perfect symmetry is
expressed by different radii rx and ry.
The vector wave equation becomes

∇2E(r) + k2
(
1− x2

r2x
− y2

r2y

)
E(r) = 0 (3.6)

with k = k0n0, where k0 is the wave number in GaAs.

60



3.3 Theoretical model of the optical modes

For the scalar part we assume solutions of the form

E(r) = ψ[nm](x, y) cos(βlz) (3.7)

where z = 0 is defined at one of the interfaces of the cavity region with the
Bragg mirror. The factor

βl =
lπ

h
(3.8)

indicates that E(z) vanishes at the Bragg mirrors that are separated by an
effective height h. The mode number of the z-component is indicated by l =
1, 2, .... Since the QDs are grown in the middle of the cavity region we would
like to have a field maximum at that position. Since the cavity region (GaAs)
has a higher refractive index than AlGaAs of the first DBR layer there has to
be field maxima at the interfaces. This makes a cavity of length λ the shortest
cavity of interest for this project (see Fig. 3.3). This corresponds to l = 2.
If we write ψ(x, y) = f(x)g(y) the wave equation (3.6) can be expressed as

1

f

∂2f

∂x2
+

1

g

∂2g

∂y2
− β2l + k2

(
1− x2

r2x
− y2

r2y

)
= 0. (3.9)

This equation can be split into a x- and a y-dependent part

1

f

d2f

dx2
+ k2 − β2l −

k2x2

r2x
= C (3.10)

1

g

d2g

dy2
− k2y2

r2y
= −C (3.11)

with C being a constant. We first consider Eq. (3.11). By introducing

ξ = αyy and αy ≡
(
k

ry

) 1
2

, (3.12)

it follows for Eq. (3.11)

d2g

dξ2
+

(
C

α2
y

− ξ2
)
g = 0. (3.13)

This equation can be solved comparing it to the Schrödinger equation for a
harmonic oscillator [66]. For C/α2

y we get

C

α2
y

= 2m+ 1, (3.14)
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3. Optical Modes in Oxide-Apertured Micropillars

where m = 0, 1, 2, ... . The corresponding eigenfunctions are

gm(ξ) = Hm(ξ)e−ξ
2/2 (3.15)

with Hm(ξ) being the familiar Hermite polynomial of order m.
Defining

ζ = αxy and αx ≡
(
k

rx

)1/2

(3.16)

Eq. (3.10) becomes

d2f

dζ2
+

(
k2 − β2l − C

α2
s

− ξ2
)
f = 0 (3.17)

which gives

k2 − β2l − C

α2
x

= 2n+ 1 (3.18)

with the corresponding eigenfunctions

fn(ζ) = Hn(ζ)e
−ζ2/2 (3.19)

Eventually with Eqs. (3.19) and (3.15) for ψ(x, y) we get a solution for the
original wave function. The solution describes the component of the wave
function transversal to the propagation direction z

ψ[nm](x, y) = Hn

(√
2x

wx

)
Hm

(√
2y

wy

)
e
−
(

x2

w2
x
+ y2

w2
y

)

, (3.20)

where Hn and Hm are the Hermite-Gaussian functions of order n and m. wx,y

is a measure for the spot size of a mode and can be calculated by

wx,y =

√
2

αx,y
=

√
2rx,y
k

(3.21)

with k being the wave number.
Figure 3.8 shows the solutions for the wave equation (3.6) assuming a spot size
of the mode with wx = wy = 1/

√
2.
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Figure 3.8: Examples of Hermite-Gaussian solutions for the wave equation

(3.6): ψ[nm](x, y) = Hn

(√
2x

wx

)
Hm

(√
2y

wy

)
e
−
(

x2

w2
x
+ y2

w2
y

)

. The spot size of the

mode given by Eq. (3.21) is set to wx = wy = 1/
√
2. The x- and the y-axis

indicate the values for x and y.
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3. Optical Modes in Oxide-Apertured Micropillars

3.3.1 Theoretical spectrum of the modes

The mode spectrum of the cavity can be derived from the eigenvalues of the
eigenfunctions. In order to do so we need to solve k respectively λ for a certain
combination of n and m. From Eqs. (3.18) and (3.14) it follows

k2 − β2l − α2
y (2m+ 1) = α2

x (2n+ 1) (3.22)

or

k2 − 2γk − β2l = 0 (3.23)

with γ = 1
2 ·
[
(2n+1)

rx
+ (2m+1)

ry

]
. Solutions for Eq. (3.23) are

k = γ ±
√
γ2 + β2l . (3.24)

With λ = 2π
k and assuming weak index guiding the wavelength λ in GaAs for

the mode number n,m, l can be expressed as

λ[nml] =
2π

1
2

[
(2n+1)

rx
+ (2m+1)

ry

]
±
√

1
4 ·
(
(2n+1)

rx
+ (2m+1)

ry

)2
+
(
lπ
h

)2
(3.25)

We can simplify this model knowing that the light is pre-dominantly confined
to the lambda-sized GaAs central region in the z-direction. As explained above
we use l = 2 in order to have a field maximum at the QD layer in the center
of the GaAs (see Fig. 3.2).
Equation (3.25) can be further simplified assuming the width of the cavity
to be reasonable larger (≈ 5µm) compared to the height of h of the cavity
(≈ 1µm).
With γ ∼ 1

rx,y
and βl=2 ∼ 1

h we may expect that γ < β.
Given this assumptions and keeping in mind that k > 0, Eq. (3.24) becomes

k = γ + βl

(
1 +

1

2

γ2

β2l
+ ...

)
= βl

(
1 +

λ

βl
+

1

2

γ2

β2l
+ ...

)
(3.26)

resulting in

λ =
2π

k
=

2π

βl


 1

1 + γ
βl

+ 1
2
γ2

β2
l

+ ...


 ≈ 2h

l

(
1− γ

βl

)
. (3.27)

Re-substituting γ and with the wavelength in GaAs being λ0 = n0λ the wave-
lengths of the various modes are given by:

λ[nml],0 = n0

(
2h

l
− h2

πl2

{
(2n+ 1)

rx
+

(2m+ 1)

ry

})
. (3.28)
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3.3 Theoretical model of the optical modes

The label [nml] indicates the mode numbers of the x−, y−, and z−component
while the 0 indicates this being the wavelength in GaAs.
For a given mode in the z-direction the predicted wavelength for isotropic
materials in vacuum becomes

λ[nml] = λ[00] − an− bm = λ[00] −
n0h

2

2πl2

(
n

rx
+
m

ry

)
(3.29)

with

a =
2n0h

2

πrxl2
(3.30)

b =
2n0h

2

πryl2
(3.31)

λ[00] =
2n0h

l
−
(
a+ b

2

)
. (3.32)

3.3.2 Anisotropic materials

So far we considered an isotropic refractive index which is not dependent on the
polarization of the light. Since we aim for polarization degenerate fundamental
modes (see Chap. 1) we need to carefully analyze polarization effects. A
description for anisotropic materials can be obtained modeling the geometry
and strain by a position dependent dielectric tensor introducing polarization
into the discussion. We replace k20n

2(x, y) by the tensor

ǫ =

(
ǫxx 0
0 ǫyy

)
(3.33)

with

ǫxx(x, y) = ǫm

(
1− x2

r2xX
− y2

r2yX

)
(3.34)

ǫyy(x, y) = ǫm

(
1− x2

r2xY
− y2

r2yY

)
(3.35)

where X and Y indicate orthogonal linear polarizations with their predicted
wavelengths

λ[nm]X = λ[00]X − aXn− bXm (3.36)

λ[nm]Y = λ[00]Y − aY n− bYm. (3.37)

The orientation of the axes will be determined by geometry, strain, and oxi-
dation. This is highly complicated and we therefore use experimental data to
determine the orientation.
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3.3.3 Relative mode splitting and Purcell factor

The factors a and b in Eq. (3.30) and (3.31) describe the relative mode splitting
between the fundamental mode and the first order modes:

a = ∆λx = λ[00] − λ[10] (3.38)

b = ∆λy = λ[00] − λ[01]. (3.39)

According to Eq. (3.21) we know that the radii rx,y can be expressed as

rx,y =
πw2

x,y

λ
. (3.40)

We get a direct link between the relative spacing of the transverse modes and
the spot size w. It follows

∆λx,y =
2n0
πrx,y

· h
2

l2
=

λ30
2π2n0w2

x,y

(3.41)

with
h

l
=

λ0
2n0

. (3.42)

where λ0 is the vacuum wavelength and n0 the refractive index in GaAs. This
assumes the boundary conditions for the optical mode l = 2 to be the height
of the active cavity region with one optical wavelength thickness (following our
discussion in the previous section). If we rewrite Eq. (3.41) as

∆λx,y
λ0

=
1

2n0
·
(

λ0
πwx,y

)2

(3.43)

we can directly obtain the spot size of the mode by evaluating the relative
splitting: a smaller splitting corresponds to a larger waist.

For determination of the Purcell factor we have to measure the quality factor
Q and calculate the effective mode volume Veff of the fundamental mode.
For the latter we assume a cylindrical approximation. Therefore we have to
combine the transverse mode area with the longitudinal size Leff given by
Eq. (3.2). As the time-averaged intensity distribution for Gaussian beams is

I(x, y) = I0e
−
(

2x2

w2
x
+ 2y2

w2
y

)

, the effective transverse mode area corresponds to
π
2wxwy. Hence, the effective mode volume becomes

Veff =
π

4
wxwyLeff (3.44)
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where the additional factor 1/2 stems from the fact that the effective mode
volume is composed of nodes and antinodes [67]. With Eq. (3.41) Veff can be
expressed as

Veff =
λ30

8n0π
· 1√

∆λx ·∆λy
· Leff . (3.45)

Thus, the Purcell factor for coupling to an embedded emitter scales linearly
with the transverse mode splitting P ∼ (∆λ/λ). This relation allows for a fast
evaluation of our cavities during characterization of our samples. The larger
the transverse mode splitting, the higher the Purcell factor.

3.4 Measurements

The optical modes are investigated by pumping the structure non-resonantly
(785 nm, above the GaAs bandgap) with a few mW laser power and spectrally
characterizing the photoluminescence with a spectrometer (resolution 0.016
nm/pixel) input coupled by a single-mode fiber. The pump beam is tightly
focused on the sample by a high-NA aspheric lens (focal length f0 = 4.2 mm,
NA = 0.6) or an objective (focal length f0 = 3.5 mm, NA = 0.8). In order
to have a spatially-resolved photoluminescence plot, the excitation beam is
scanned utilizing a piezo-driven xy-stage at a step size of 0.1µm over an area
of 10 × 10µm. The spatial resolution is limited by the size of the excitation
laser spot (≈ 1µm) on the sample. The repeatability of the positioning stage
and its resolution is much better than our scanning steps (compare Sect. 2.2
in Chap. 2). Optimal focusing and a high stability over the time of the scan-
ning procedure which takes up to a few hours when imaging large areas at
high resolution is required for optimal results. For polarization resolved mea-
surements, an analyzer, consisting of a fixed linear polarizer and a rotating
half-wave plate, is placed in the collection path to account for the fact that a
spectrometer is generally polarization dependent. Once a spectrum for each
coordinate has been recorded we can compile density plots of specific optical
modes by extracting the intensity of the specific wavelength from each spec-
trum and map these to the coordinate accordingly. Figure 3.9 shows a typical
set of polarization resolved spectra of the same cavity. Figure 3.10 illustrates
the typical mode order that we assume for a specific wavelength as modeled in
the previous section according to Eq. (3.25). In this case rx is larger than ry
resulting in a mode order of 00, 10, 01, ... from higher to smaller wavelength.
When measuring the spectra optimization of the focus and the position of the
sample is done in such a way that the count rate for the fundamental mode
is maximized. As the whole spectrum is recorded at each position during a
spatial scan, 2D images of the optical modes for any given wavelength can be
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Figure 3.9: Polarization resolved spectra for the two orthogonally polarized
fundamental modes.

extracted. Measurements have been carried out at room temperature and at
4K showing the same features though at low temperatures the spectra exhibit
a much better signal to noise ratio and shift to lower wavelength. All results
presented here were recorded at 4K.

3.5 Results

For a non-polarization resolved measurement with a scanning area of 10×10µm
with a step size of 0.1µm the results are presented in Fig. 3.11. Each spectrum
is recorded with an integration time of 1s. In addition to integrating the counts
on the CCD array the scanning procedure typically adds a few more tens of
a second for moving and settling the scanning stage. In total the scan took
approximately 6 hours in which the experimental setup shows a high stability
even at low temperatures. In other words, the scanning method measures the
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Figure 3.10: Theoretical predictions of the mode order and their corresponding
wavelength for rx > ry according to Eq. (3.25) up to mode 33.
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Figure 3.11: Non-polarization resolved spatial scan of 10 × 10µm with a step
size of 0.1µm. The optical mode for a given wavelength can be composed of
the intensity measured at each position for that specific wavelength. The lower
order modes (higher wavelength) can clearly be identified in accordance with
the model established in this chapter and illustrated in Fig. 3.10. For higher
order modes the resolution of the scans limit explicit identification.

70



3.5 Results

spectrum at each position causing a 6 hour time difference between the upper
left and lower right density pixel. A high symmetry in the spatial images ac-
counts for positional stability. Similar count rates at different positions for the
same mode are an indication for the temperature stability over time. Com-
paring the upper part of the 2D spatial images with the lower part the latter
ones exhibits a lower count rate. Temperature fluctuations of up to 2K were
adjusted for and cause little change in the count rate. But the whole setup
takes more than an hour to reach a temperature equilibrium. In the meantime
the sample can get slightly out of focus without readjustment. Keeping the
right focus over the whole time of the scan is difficult. Nevertheless, the 00
mode shows an equally symmetric high count rate everywhere.

Two-dimensional spatial images are shown for the peaks of the spectrum.
The spatial scans of the first ten peaks show clear features of Hermite-Gaussian
modes and allow mode identification when comparing with the projected modes
in Fig. 3.10. With increasing mode order the scanning resolution limits def-
inite identification. Given an unequal radius of rx and ry the mode order is
exactly measured as projected by the model in the previous section. (Higher
order modes as i.e. the 40, the 04 and so forth are expected to show up at
smaller wavelengths than the modes illustrated.)

Investigating the potential of efficiently coupling external modes to the
microcavity we fit a Gaussian to the spatial scan of the fundamental mode, the
TEM 00 mode. Figure 3.12 shows the spatial scan for the 00 mode in higher
resolution. (a) shows the 10 × 10µm scan with a step size of 0.1µm. The
red lines cross the center of the peak at its maximum and illustrate the data
points that are extracted to fit the 0-order Hermite-Gaussian (HG) function

H0(x)e
−x2

2 as shown in figures (b) and (c). For the fundamental TEM 00 cavity
mode the overlap accuracy of the Hermite-Gaussian model with the measure-
ment is 99.94 ± 0.06% in the x− and 99.93 ± 0.06% in the y−direction. This
important result allows to make a clear statement for the efficiency of coupling
an external fields to the cavity. Matching an external field to the cavity with
a very high accuracy is decisive for the fidelity of the entanglement process
described in Chap. 7. This is extremely important for applications because
mode-matching is easy using Gaussian beams for coupling to external fields.
The next higher order mode, the 10 mode, is fitted by a Hermite-Gaussian

H1(x)e
−x2

2 with an overlap of 98.5 ± 0.7% (see Fig. 3.13).

From Gaussian fitting of the first three modes shown in measurement
Fig. 3.11 and using Eq. (3.28) for those modes we determine the height of the
cavity to be h = 955.99 ± 0.01nm. Gaussian fitting of the intensity profile of
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(b) Horizontal fit
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(c) Vertical fit

Figure 3.12: Spatial scan of HG00 mode with a Hermite-Gaussian fit according

to H0(x)e
−x2

2 . (a) Spatial scan area of 10 × 10µm with a step size of 0.1µm.
The red lines illustrate the data points that are extracted to fit the Gaussian
as shown in (b) and (c). The fits have an overlap accuracy of the Hermite-
Gaussian mode of 99.94± 0.06% in x− and 99.93± 0.06% in the y−direction,
indicating a potentially high efficiency to couple external fields to the cavity.
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Figure 3.13: Spatial scan of HG10 mode with Hermite-Gaussian fit according

to H1(x)e
−x2

2 . (a) Spatial scan area of 10 × 10µm with a step size of 0.1µm.
The red line illustrates the data points extracted for the fit presented in (b).
The fit has an overlap accuracy of the Hermite-Gaussian mode of 98± 0.07%.

the fundamental mode (FWHM =
√
2 ln 2 · wx,y) shown in the measurement

of Fig. 3.11 yields a spot size of wx ≈ 2.13 ± 0.08 µm and wy ≈ 2.25 ± 0.09
µm which compares to the calculated widths wx ≈ 2.09 µm and wy ≈ 2.37
µm extracted from the transverse mode splitting using Eq. (3.43). That is a
deviation of less than 6% and emphasize the validity of the equation. Inserting
Eq. (3.44) in Eq. (3.1) we can determine the maximum achievable Purcell
factor

FP =
3

4π3

(
λ0
n0

)3 4Q

wx · wy · Leff
. (3.46)

We measure a Q of 11000 and with an effective cavity length of 1.39µm this
measurement yields a Purcell factor of 4. This cavity, however, has a relatively
small transverse mode splitting compared to other cavities investigated that
showed mode splittings up to 4 times larger, resulting in Purcell factors as
high as 16. Usually, the Purcell factor evaluation does not include discussion
about any polarization dependance. But we have to keep in mind that in case
of coupling to a circularly polarized transition (e.g. the QD trion state) and
a linearly polarized non-degenerate cavity mode, the Purcell factor multiplies
by an additional factor 1/2.

To this point, the results led to two conclusions. First, the spatial scans
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confirm Hermite-Gaussian profiles. And second, the expected sequence of
modes is correctly predicted. The following data investigates how well the
wavelength for each mode is projected by the model. Figure 3.14 shows a
polarization resolved spectrum with a longer wavelength range as compared
to the previous graphs. All modes potentially covering the wavelength range
shown are projected by the model and illustrated by vertical lines at their ex-
pected wavelength. The first three modes (from higher to lower wavelength)
are identified as the 00, the 01 and the 10 mode and serve for extracting the
three parameters rx, ry and h that are used to compute all higher order modes.
Given this procedure for the first three modes the wavelength fit their mea-
sured values exactly. Projected higher order modes do not fit the measured
wavelength exactly but can clearly be matched with specific peaks which all
show a shorter wavelength than expected by the model. Modes 02, 11, 20 and
03, 12, 21, 30 and 40, 31, 22, 13, 04 seem to fit the spectral peaks number 4− 6,
7 − 10 and 11 − 15. The mismatch of the projections with shorter measured
wavelengths leads to discussion for a possible enhancement of the theoretical
model in Sect. 3.6.

Since a spectrometer is generally polarization dependent we placed a
polarizer in front of the spectrometer and rotate a λ/2 waveplate in the part
towards the spectrometer (and polarizer). The polarization of a single mode
maximizes every ∆θ = π/2 angles. For a given ∆θ Fig. 3.15 plots two spectra
of opposite polarization. For higher order modes, that is at lower wavelength, it
is obvious that the modes maximize at different angles. The spectral splitting
between the same modes seem to increase with decreasing wavelength. There
is a clear spectral splitting even between the two polarization peaks of the
fundamental mode, which in the other graph can almost only be identified as
a vertical line. The next chapter describes a method how the splitting of the
fundamental mode can easily be measured with a higher resolution than the
limited CCD array resolution by means of Lorentzian fitting of the peaks. At
this point it is important to understand that the fundamental transverse cavity
mode exhibits a very good spatial Gaussian shape as shown before and that it
divides into two orthogonally-polarized submodes (M [00]

A and M
[00]
B ). This is

important for the hole burning technique presented in the next chapter where
higher order modes seem to change differently when introducing stress.

A question that comes to mind when looking at the spatial scans is
the relative orientation of the modes with respect to the cavity trenches. We
analyzed three different samples of which two samples were etched with four
trenches and one sample with three trenches. Having analyzed many cavities
on the same sample with their trenches having the same orientation relative to
the crystal orientation of the substrate, the mode orientation stayed the same.
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Figure 3.14: Polarization resolved spectrum with projected modes illustrated as
vertical lines. As the result of extracting the model parameters mode 00, 01 and
10 match the measured wavelength exactly. Higher order modes can be matched
with the measured peaks which all show a shorter wavelength than projected by
the model.
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Figure 3.15: Orthogonal polarization spectra with a polarizer angle difference of
∆θ = π/2 maximized on each polarization of the fundamental mode. Towards
lower wavelength the spectral splitting of the two polarizations of each mode
increases.
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x

y

20 µm

Figure 3.16: Preferred polarization axes relative to the etched trenches. Top
view of a micropillar cavity image showing the four trenches. A circle in the
center illustrates the position of the optical cavity. The x and y lines forming
a cross illustrate the preferred polarization axes along the etched trenches.

The measurements indicate that the preferred polarization axes coincide with
the edges of the trenches as illustrated in Fig. 3.16 by the lines x and y.

3.6 Improving the theoretical model

In the previous section measurement results show that the theoretical model
projecting the modes is lacking accurate predictions for higher order modes.
Though the sequence of the projected modes is correct, the higher order modes
spectrally need to shift to lower wavelengths (compare Fig. 3.14). We confirm
this for all our measurements carried out on three different samples with tens
of nominally identical structures. This indicates that the experimental mode
frequency distribution appears to be super-linear, suggesting that the refrac-
tive index profile might be steeper than quadratic.

We use the quadratic potential model which leads to Hermite-Gaussian
beams as a first order approximation to the cavity modes. As a first correc-
tion we introduce asymmetry in the transversal plane, modeled as a slightly
different quadratic potential in two orthogonal transversal directions which we
denote as the x and y directions. Those directions turn out to be determined
by etched edges of the trenches, indicating that strain is the dominant effect for
inducing asymmetry. With this simple elliptical model we can identify up to
10 transversal modes by comparing theoretical mode patterns to the measured
mode profiles.
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For a better match of the higher order modes, we have tried several
approaches to enhance the model. In a first attempt we applied a perturbation
to the refractive index assumption in Eq. (3.5). Given the wave function
describing our system

ψ[nm](x, y) = Hn(

√
2x

wx
) ·Hm(

√
2y

wy
) · e

−
(

x2

w2
x
+ y2

w2
y

)

(3.47)

we added a perturbation term changing the potential

〈ψ0|V |ψ0〉 →
∫

dx

∫
dyf∗nm · fnm · perturbation. (3.48)

None of the following perturbations that we could solve analytically let to a
significantly better result:

• Perturbation with linear factor

〈ψ0|V |ψ0〉 →
∫ +∞

0
dx

∫ +∞

0
dyf∗nm · fnm · |x| (3.49)

• Perturbation with quadratic factor

〈ψ0|V |ψ0〉 →
∫

dx

∫ +∞

0
dyf∗nm · fnm · x2 (3.50)

〈ψ0|V |ψ0〉 →
∫

dx

∫ +∞

0
dyf∗nm · fnm · y2 (3.51)

〈ψ0|V |ψ0〉 →
∫

dx

∫ +∞

0
dyf∗nm · fnm · x · y (3.52)

• Perturbation with quartic factor

〈ψ0|V |ψ0〉 →
∫

dx

∫ +∞

0
dyf∗nm · fnm · x4 (3.53)

〈ψ0|V |ψ0〉 →
∫

dx

∫ +∞

0
dyf∗nm · fnm · y4 (3.54)

〈ψ0|V |ψ0〉 →
∫

dx

∫ +∞

0
dyf∗nm · fnm · x2 · y2 (3.55)
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Nevertheless, the results indicated that a small correction for the higher order
modes of linear or quadratic type could improve the quantitative agreement
between the predicted mode frequencies and the measured frequencies.

In a second attempt we introduced a linear stretching of the spectra. In
graph 3.17 we plot, for one polarization, the experimental mode wavelength
measured (horizontal axis) versus the theoretical wavelength of the projected
mode (vertical axis) calculated with the parabolic refractive index profile.
We then fit a linear curve through the data points. Identification of peaks
up to number 17 is non-ambiguous (supported by spatial scans). The addi-
tional 13 data points are mapped by wavelength only (which also maps the
first 17 peaks correctly). This graph indicates that the transversal confine-
ment potential of our micropillars has a small correction of a linear poten-
tial for higher order modes (which in this measurement roughly scales with
y = 0.6142 ·x+363.6nm). This result could be explained looking at the shape
of the oxide-aperture (compare Fig. 3.7(b)). The oxide-aperture exhibits a
linear sharp edge which stops before reaching the center of the cavity during
the oxidation process. Figure 3.18 depicts the projections for the first 15 peaks
when applying the linear shift for each mode. For higher order modes the linear
shift allows to match the sets of peaks much better than compared to graph
3.14. For the first few modes the error is quite large. The fact that the oxi-
dation front does not reach all the way to the middle could explain the rather
large error for the 00-mode (longest wavelength) when applying the linear shift
to all modes.

The discussion of a possible model enhancement led to the idea of re-
constructing the refractive index potential from the measurements. In order
to do so we characterized the spatial mode patterns of another microcavity
in detail. Figure 3.19 shows the measured mode wavelength vs. the theo-
retical mode wavelength calculated with the parabolic refractive index profile
in Eq. (3.5). The experimental mode frequency distribution appears to be
super-linear, suggesting that the refractive index profile might be steeper than
quadratic.

Using the mathematical analogy between the Helmholtz equation and the
Schrödinger equation, reconstruction of the refractive index profile is equivalent
to reconstructing a potential. Expressing the stationary Schrödinger equation

Hψ = Eψ (3.56)

in the form (
− ~

2

2m
∇2 + V

)
ψ = Eψ, (3.57)
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Figure 3.17: Presented is the wavelength of the projected peaks vs. the measured
peaks of the spectral measurements. Fitting a linear curve yields a shift for the
projections.
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Figure 3.18: Projections applied to linear fit. Based on the fit from graph 3.17
the new projections are calculated (vertical lines). The error is rather large for
the first few lower order modes. But the sets of modes fit the sets of peaks much
better than compared to graph 3.14.

80



3.6 Improving the theoretical model

linear �t through

higher order

measured modes

calculated modes for

parabolic potential

943

942

941

940

943942941940
939

e
x

p
e

ri
m

e
n

ta
l l
   
   
 [n

m
]

n
m

939
predicted l      [nm]nm

Figure 3.19: Super-linear mode frequency distribution of the first 15 modes.
For higher order modes the experimental mode frequency distribution shows a
super-linear behaviour while the theoretical modes described by the parabolic
potential match the first three modes.
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for a wave function ψ we can analogously write the Helmholtz equation as

∇2ψ + n2k2ψ = 0 (3.58)

with n being the index profile and k the free-space wavenumber. Solving
for the potential, we express the Hamiltonian in terms of its complete set of
orthonormal eigenfunctions H =

∑∞
n=1 εn | n〉〈n | and calculate it in the

x-representation, we get:

V (x) = 〈x | H | x〉 =
∞∑

n=1

εn|ψn(x)|2 (3.59)

Since only a finite number of modes N can be experimentally measured, we
normalized over

∑N
n=1 |ψn(x)|2 so that the potential becomes

V (x) =

∑N
n=1 εn|ψn(x)|2∑N
n=1 |ψn(x)|2

. (3.60)

Before applying the reconstruction to our measurements, we want to see
what we can expect theoretically. Therefore we solve the Helmholtz equation
∇2ψ(x) + k20n

2(x)ψ(x) = 0 numerically. Discretization leads to the finite-
difference expression:

εψn = k20n
2(x)ψn + t0[2ψn − ψn−1 − ψn+1], (3.61)

t0 = 1/a2 being the discrete step. Eigenvalues and eigenfunctions are found
diagonalizing the matrix:

Uij = k20n
2(xi)δij + t0[2δij − δi,j−1 − δi−1,j ]. (3.62)

In Fig. 3.20 we model the eigenvalue distributions for different potentials. For
a parabolic potential (Fig. 3.20(a)) the eigenvalues increase linear with the
mode number (Fig. 3.20(b)). If we model the potential V steeper than the
parabolic potential (Fig. 3.20(c)) we obtain a super-linear correlation between
the eigenvalues and the mode number (Fig. 3.20(d)). On the contrary, for
a potential with a less steep slope compared to the parabolic potential (Fig.
3.20(e)) the correlation is sub-linear (Fig. 3.20(f)).

The experimental results, shown in Fig. 3.21 confirm that the refractive
index profile is not quadratic, but consists of a flat bottom that corresponds to
the un-oxidized region surrounded by steeper walls resulting from the end of
the oxidation front. Figure 3.21(b) plots the data-points for the cross-section
of the potential along the line indicated in Fig. 3.21(a). The solid line shows
the parabolic fit of the bottom of the curve. The results are in agreement with
a super-linear description of the potential for higher order modes.
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Figure 3.20: Eigenvalue distributions for different potentials. Left column
shows the potential modeled with its correlation between the eigenvalue and
mode number plotted on the right.
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Figure 3.21: Reconstruction of the refractive index profile.

3.7 Conclusion and discussion

In conclusion, we have developed a propagation model that explains the fre-
quency of the transverse modes. The propagation model assumes cylindrical
quadratic refractive index variation from the center of the cavity at least for the
lower order modes. We have demonstrated that the fundamental mode almost
perfectly exhibits a Hermite-Gaussian profile, which can be of use for Gaussian
beam calculations and for very efficient coupling to external modes. This sup-
ports the implementation of the scalable hybrid quantum information schemes
described in Chap. 7. Matching an external field to the cavity with a very
high accuracy is crucial for the fidelity of the entanglement process involved.
Only then micropillar cavities could be the building block for scalable quantum
information processing [68]. Higher order modes cannot be precisely matched
with the theoretical model and show a super-linear behavior. For a better
understanding of these higher order modes and the role of the oxide-aperture
we discussed a technique to retrieve the shape of the confining refractive index
distribution determined by the oxidation layer, showing that it is shallower in
the center with steep walls. This profile explains the super-linear distribution
of the confined modes.

We have studied tens of nominally identical structures and we have al-
most always seen a clear directional difference between the spot sizes wx and
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wy. Experimentally we observe that the cavity modes have preferred polariza-
tion axes which coincide with the edges of the trenches suggesting that strain
(by local deformation) is the dominant reason for the observed anisotropy.
Therefore we introduced polarization into the discussion. The polarization
properties of the micropillar cavities are at least influenced by three issues.

1. The crystal orientation.

2. The properties of the oxidation front, which is determined by the geom-
etry of the etched trenches and the oxidation rate along different crystal
axes.

3. Strain in the material.

The samples remained exhibiting Hermite-Gaussian profiles for the fun-
damental mode when the cavity was polarization degenerate. For higher order
modes with active emitters and close to polarization degenerate cavities we
have seen indications that support the Laguerre type of modes.

Having a clear understanding of in particular higher order modes can
help and improve positioning of such nanostructures relative to emitters [69].
Features from higher order modes can be seen with a larger radius and distance
from the cavity center which could be of advantage over scanning only e.g the
fundamental mode. The latter mode would also not give any insight into the
relative polarization axes in respect to device properties like i.e. trench loca-
tions. In the case of a single-mode optical cavity, the emission pattern as seen
through one of the cavity mirrors is the profile of that cavity mode. But the
radiation pattern becomes nontrivial and strongly dependent on the position
of the emitter if the cavity supports several frequency-degenerate modes [70]
allowing to track single emitters.

We derived a formula to estimate the theoretical maximum Purcell factor
from the splitting between the fundamental and the first-order modes, which
can be used to quickly assess the quality of a device for cavity-QED experi-
ments. The measurement techniques developed are very important for further
experiments described in the next chapters. Gaussian-fitting of modes mea-
sured by polarization resolved spectra allow for a quick analysis of the degree
of polarization degeneracy of a cavity during the active process of reducing the
splitting of the fundamental mode. Spatial scans provide an opportunity to
locate relative positions of emitters and cavity features and are of importance
for interpretation of our results presented in Chap. 8.
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