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Chapter 1

Introduction

Coherent optical manipulation of a single quantum dot (QD) is interesting for
fundamental research and quantum information applications. This thesis fo-
cuses on enhancing the interaction of QDs with light by embedding the QDs in
microcavities. This field of research is closely related to atomic physics, quan-
tum optics, condensed matter physics, material science, and quantum informa-
tion science. Atomic physics describes transitions between electronic energy
levels via interaction with light. Quantum optics explains quantum mechanical
properties of light and its dependence on optical resonators. Condensed matter
physics and material science describe the self-assembly and properties of semi-
conductor QDs and semiconductor microcavity structures. Finally, quantum
information science provides the main motivation for the research by describ-
ing quantum logic schemes that could be implemented with QDs embedded in
microcavities. The overarching field of research is called Quantum electrody-
namics (QED) and when dealing with microcavities in particular cavity QED.

The speed at which the semiconductor industry is establishing new gen-
erations of computers is determined by the technological progress in reducing
the physical size of an elementary bit and the elementary gate operations. The
smaller the size, the shorter the connections, and the lower the energy con-
sumption (and associated heat dissipation) per gate operation. Eventually the
elementary building blocks will become so small that quantum effects, such as
quantum superpositions of bit values (referred to as quantum bits or qubits)
and quantum entanglement between such quantum bits will become impor-
tant for the functionality of the computation. Of course quantum mechanics
is already essential for understanding the operation of semiconductor based
’classical’ computation but here we are concerned with quantum properties of
the logic operations leading to the concept of quantum computation.



1. Introduction

Currently there are several experimental routes towards quantum com-
putation, for example exploring trapped atoms and ions, superconducting cir-
cuits, quantum optics, and confined electron spins. The quantum bit of rele-
vance to this thesis is an electron spin confined to a semiconductor QD. The
QD itself is confined within a microcavity structure in order to efficiently in-
terface with light.
Building a quantum computer is a world wide effort that started about 15
years ago and most likely will take many more years to build quantum sys-
tems that might outperform classical computers for certain tasks. Therefore
it should be clear that in this thesis only one aspect of one particular scheme
towards quantum computation will be addressed. This aspect is expressed by
the title of this thesis: Cavity quantum electrodynamics with quantum dots in
microcavities.

The long-term vision of controlling electron spins via single photons in
microcavities will be presented in Sect. 1.1. Section 1.2 provides a list of
scientific and technological challenges that have to be addressed. Several of
these challenges are being addressed in parallel in various forms of collabo-
rations, in particular with researchers at the University of California Santa
Barbara. This thesis focuses on several of those challenges, in particular the
optical properties of oxide-aperture micropillar cavities, the control of their
birefringence by strain, the properties of photonic crystals that are actively
positioned around QDs, the theoretical study of electron spins jumps in QDs,
and the study of quantum information protocols. Section 1.3 describes the
growth and properties of single QDs. They allow a total quantization in all
three spatial dimensions leading to discrete electron energy levels. Implementa-
tion of single QD structures has been an active field of research since their first
demonstrations in the mid 90ies [1–3]. Coherent manipulation of single QDs is
a promising path for realizing quantum computing. Section 1.4 describes the
optical microcavities used in the experiments presented in this thesis. Section
1.5 describes the theory of cavity quantum electrodynamics.

Chapter 2 presents the experimental measurement techniques that have
been developed. Chapter 3 describes the optical mode profile in oxide-apertured
micropillars. It is crucial to achieve an efficient coupling of photons to the cav-
ity in order to achieve a high fidelity of the quantum bit operations. This is
an important criterion allowing to connect these operations to eventually build
a quantum computer. For successful implementation of quantum information
processing with QDs in microcavities we need to have the fundamental mode
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1.1 Introduction

in our microcavities to be polarization degenerate. Furthermore, the QD tran-
sition frequency and the polarization-degenerate fundamental mode frequency
have to be on resonance. Chapter 4 demonstrates how to systematically and
permanently tune the cavities and the QD to fulfill these requirements. Grow-
ing self-assembled QDs is an art in itself. For our applications wavelength
and position have to match the cavity properties. The self-assembled QDs
are randomly growing on the surface of a non-matching lattice substrate. We
developed a technique allowing to position QDs at the center of microcavities.
The technique was successfully utilized to demonstrate measurements in the
strong coupling regime with a QD in a photonic crystal (PC) cavity. Here,
the accuracy for positioning a single QD is in the order of 10nm. Chapter 5
explains the positioning technique. Chapter 6 elaborates theoretically on how
electron spin quantum jumps could be measured in a singly charged QD. This
is one of the initial ideas that evolved when thinking about the use of single
QDs in micropillar cavities. The following Chap. 7 presents a larger picture
of how to use these devices for implementation of quantum computing in the
weak-coupling cavity QED regime. Finally, by combining several techniques
developed in previous chapters, Chap. 8 presents reflection spectroscopy mea-
surements of QDs in micropillar cavities, those results utilize all the techniques
developed in this thesis.

The nature of this complex solid-state research implies that many results
have been obtained in close collaboration with several colleagues. Therefore it
is appropriate to point out the support for the various chapters. My colleague
Cristian Bonato contributed substantially in theoretical questions and practical
matters to chapters 3, 4 and 8. For the same chapters samples were fabricated
by Hyochul Kim in Santa Barbara. Theoretical input and ideas for Chaps. 3
and 4 were also provided by Martin van Exter. The work on active positioning
QDs described in Chap. 5 is based on work I carried out in Santa Barbara.
For the same chapter, photonic crystal samples were provided by Susanna
Thon and measured in Leiden. Chapter 6 is strongly based on theoretical
work by Martin van Exter and earlier work by Gerard Nienhuis. Chapter 7 is
based on joint theoretical work of Cristian Bonato and Sumant Oemrawsingh.
Contributions by others not mentioned here are co-authors of the published
papers referred to in each chapter.
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1. Introduction

1.1 Controlling electron spin interactions

via photons

In recent years many groundbreaking results have been reported which indi-
cate that optical and electrical control of single electron spins within optical
nano and micro resonators is a promising approach to classical and quantum
data processing. For example, strong coupling between single semiconduc-
tor QDs and optical modes in photonic crystals [4] and microcavities [5] has
been observed, electron spin storage has been demonstrated with ms stor-
age times [6, 7], and phase coherence times of spins between 10ns and 100ns
have been observed by using applied magnetic fields [8]. Furthermore opti-
cal pumping [9], spin echo techniques, charging of one electron at the time in
nanostructures [10], formation of double-dot ’molecules’ [11–13], exciton Rabi
oscillations in single QDs [14], and semiconductor single-photon [15, 16] and
entangled-photon sources [17, 18] have been demonstrated.

The main reason for being optimistic about electron spin quantum com-
puting is that the electron spin, playing the role of a qubit in the schemes
described below, is manipulated and read out by fast spin-dependent opti-
cal processes that couple efficiently to external modes. Compared to schemes
based on trapped ions /atoms this system has the advantage that the QDs,
playing a similar role as the trapped ions/atoms, are directly grown at the
center of optical cavities what allows for excellent optical coupling and what
removes the complexity of trapping particles during the final experiments. The
price to pay for this is that the qubit, in the form of a QD confined electron (or
in some schemes a hole) spin, is quite strongly interacting with its solid-state
environment. In the end, the relevant parameter is the qubit coherence time
over the single and two-qubit gate times. In solid-state systems the electron/-
hole spin decoherence time (typically in the nano- to microsecond range for
solid-state systems [19]) over the optical readout/control gate (reported to be
as short as 300ps in cavity enhanced configurations) can exceed 10.000.

A major complication for this solid-state based approach is that the
required material growth and clean room fabrication techniques are very spe-
cialized, expensive, and time consuming. As a result a significant research
team and infrastructure is required in order to make progress.
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1.1 Controlling electron spin interactions via photons

1.1.1 Vision

It will be demanding to write and read single electron spins confined in QDs,
but it will be even more challenging to have controlled interactions between
specific spins. Such interactions will be crucial for quantum gate operations.
Recently an ingenious scheme has been proposed that uses photonic qubits
to implement interactions between stationary qubits, here the electron spins,
through quantum teleportation. The general idea has been put forward in a
series of theoretical papers [20–23], starting with the invention of cluster state
quantum computation. To implement cluster-state quantum computation an
array (2 or higher dimensional) of basis qubits (here the electron spins) has
to be prepared in a cluster-state through nearest neighbor two-qubit gate op-
erations. For example, the most elementary cluster state of two qubits is a
two-particle (entangled) Bell state. After the cluster state has been estab-
lished, which basically produces an entangled state involving all the qubits,
specific measurements on individual qubits will ’program’ the quantum com-
puter. After this step a specific input state can be provided and the cluster
state quantum computation will be performed. The special feature of this
approach is that all the quantum correlations are introduced in the system
before any specific calculation or input is considered. Only local (single qubit)
operations and measurements are needed afterwards. Therefore the main chal-
lenge is to produce a cluster state. To produce this cluster state for individual
electron spins (each in a single QD), a hybrid, solid-state/photonics, approach
has been put forward. The hybrid approach combines advantages of different
systems, quantum information is stored in a one qubit type and processed in
another one. Figure 1.1 illustrates how two electron spins can undergo a two-
qubit gate operation (that can result in an entangled state and therefore can
be used for cluster state quantum computation).

The two-qubit gates can be implemented via the following steps:

1. Two independent electron spin qubits will first be prepared in two sep-
arated QD micropillar structures. Hence, we have two prepared spin
states:

|Ψ〉Spin1 = α1 |↑〉1 + β1 |↓〉1 , (1.1)

|Ψ〉Spin2 = α2 |↑〉2 + β2 |↓〉2 . (1.2)

Together they form the following product state

|Ψ〉Spin1,Spin2 = |Ψ〉Spin1 ⊗ |Ψ〉Spin2 = α |↑↑〉 + β |↑↓〉 + γ |↓↑〉 + δ |↓↓〉 ,
(1.3)

with α = α1α2, β = α1β2, γ = β1α2 and δ = β1β2.
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Figure 1.1: Outline of scheme for a two-qubit phase gate.
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1.1 Controlling electron spin interactions via photons

2. Each electron spin will be entangled with a photon using cavity QED
being described by a total wave function
|Ψ〉total = |Ψ〉Spin1,photon1,Spin2,photon2:

|Ψ〉total = α |↑〉1 |↑〉2 |	〉A |	〉B + β |↑〉1 |↓〉2 |	〉A |�〉B +

γ |↓〉1 |↑〉2 |�〉A |	〉B + δ |↓〉1 |↓〉2 |�〉A |�〉B . (1.4)

3. Through optical cavities, optical modes and linear optical elements the
two photons will then be projected onto an entangled state:

ΨC,D =
1

2
{|	〉C |	〉D + |	〉C |�〉D + |�〉C |	〉D − |�〉C |�〉D} . (1.5)

This will project the spin qubits onto a state that is equivalent to the
action of a two-qubit gate [22, 23]:

C,D〈Ψ | Ψ〉total = |Ψ〉Spin1,Spin2 = α |↑↑〉+ β |↑↓〉+ γ |↓↑〉 − δ |↓↓〉 . (1.6)

The fact that the |↓〉1 |↓〉2 component of the state has required a −sign
makes this the action of a universal 2-qubit entangling gate.

In order to make the two photon projection measurement onto the state
(1.5) we make use of the general quantum optics effect that a 50/50
beamsplitter (BS) followed by a photon detection in each arm acts as a
projection onto the |Ψ−〉 2-photon Bell state:

∣∣Ψ−
〉
=

1√
2
(|0〉i |1〉j − |1〉i |0〉j), (1.7)

where i, j are the labels for the two modes in question and where |0〉, |1〉
indicate the two basis states in an arbitrary orthogonal polarization ba-
sis. The three other Bell states will have two photons together detected
in either arm C or D. To see this we show that a BS is transparent for
the |Ψ−〉 state. By inserting a λ/2 @ 22.5◦ in arm B the |0〉B and |1〉B
basis states will be rotated into |0〉B+|1〉B√

2
and |0〉B−|1〉B√

2
. Therefore the

|Ψ−〉 Bell state projection becomes a projection onto
1
2 {|0〉A |0〉B + |0〉A |1〉B + |1〉A |0〉B − |1〉A |1〉B}, as required for our scheme.
The action of the BS is given by

[
C
D

]
=

1√
2

[
1 i
i 1

] [
A
B

]
, (1.8)

where the i indicates that a reflected EM field obtains a π
2 phase shift

relative to the transmitted EM field. In order to properly include the
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bosonic properties of photons we describe the in and output state of
the BS in terms of creation operators active on the vacuum |0〉AB ≡
|0A0 , 0A1 , 0B0 , 0B1〉. With

|Ψ〉in =
∣∣Ψ−

〉
AB

=
1√
2

{
a†A0

a†B1
− a†A1

a†B0

}
|0〉AB (1.9)

after the BS action we obtain

|Ψ〉out =

=
1

2
√
2

{
(a†C0

+ ia†D0
)(a†D1

+ ia†C1
)− (a†C1

+ ia†D1
)(a†D0

+ ia†C0
)
}
|0〉CD

=
1√
2

{
a†C0

a†D1
− a†C1

a†D0

}
|0〉CD

=
∣∣Ψ−

〉
CD

. (1.10)

In the same way it is shown that

|Ψ+〉AB = 1√
2
{|0〉A |1〉B + |1〉A |0〉B} and

|Φ±〉AB = 1√
2
{|0〉A |0〉B ± |1〉A |1〉B}

after the beamsplitter give

i√
2

{
a†C0

a†C1
+ a†D0

a†D1

}
|0〉CD and

1
2
√
2

{
i(a†C0

)2 + i(a†D0
)2 ±

{
i(a†C1

)2 + i(a†D1
)2
}}

|0〉CD .

In those three cases there will always be 2 photons detected together
either in arm C or D. This completes the proof that the 50/50 BS with
two single photon detectors forms a |Ψ−〉 Bell state projection.

In a sense, the gate on two separated electron spins is implemented by
quantum teleportation (the photons are projected onto an entangled state and
through their initial entanglement with the two electron spins those spins be-
come entangled). In Ref. [23] it is shown that the scheme can be modified
to still work under photon loss and incomplete Bell-state projection. If the
scheme can be shown to work for two spins it is a matter of linear scaling of
the optical network (only neighboring QD/micropillar structures have to per-
form two-qubit interactions in order to build a global cluster state) to scale up
to more and more qubits.
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1.1.2 Required developments

The scheme outlined in Fig. 1.1 is well suited for a solid-state approach be-
cause no direct interactions between electron spins are needed to perform gate
operations. The individual electron-spin states first have to be entangled with
single photon states. This can be done using a spin dependent interaction
with a polarization degenerate optical cavity mode. The interaction involves
the QD trion state which has the important feature that the recombination
energy of the additional electron-hole pair (exciton) is independent of the spin
of the emitted photon and therefore independent of the initial and remain-
ing electron spin. Note that the recombination energies of (neutral) excitons
(without the presence of an additional electron) form a doublet with a small
energy splitting due to electron-hole spin exchange interaction. Such an ex-
change interaction implies that the emitted photon is linearly polarized along
the crystal axes. The trion state has two electrons in the singlet state (J = 0)
and therefore no electron-spin dependent interaction. As a result any arbi-
trary electron spin qubit can in principle become entangled with a photon
polarization qubit despite broken symmetries in the QD. The scheme requires
an efficient single-photon QD interaction with tuning of the cavities and QDs
in order to entangle photons with electron spins and to make two systems in-
distinguishable in frequency as needed to perform a Bell state projection, step
3 in Fig. 1.1.

1.2 Challenges

For implementation of the hybrid scheme outlined above the following tasks
have to be performed:

1. Deterministic single spin positioning at the center of optical micro res-
onators

2. Control emitter-cavity interaction in the weak-coupling regime

3. Control emitter-cavity interaction in a polarization degenerate way

4. Single electron spin preparation in QDs

5. Entangle a single spin with a photon via the trion state

6. Enhance single spin coherence time

7. Couple multiple microcavity-QD systems

8. Entangle two electron qubits via the hybrid scheme

9
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(a)

(b)

10mm

(c)

C

tapered oxidation aperture

Figure 1.2: (a) Schematic structure for the oxide apertured micropillars (for
more details see Fig. 4.2). The active region with the embedded InGaAs/GaAs
self-assembled QDs and the tapered oxide aperture are sandwiched between dis-
tributed Bragg reflection mirrors. Light is coupled normal to the sample surface
(in the z-direction). (b) SEM image of a fully processed 22 µm diameter mi-
cropillar. (c) SEM cross-section image of an oxidized mesa calibration, showing
the layer structure depicted in (a) including the tapered oxide aperture.

As mentioned before, addressing those challenges requires a large re-
search team with experts on material growth, sample fabrication, sample char-
acterization, and quantum optical measurements. During my PhD research I
have been partly involved in the sample fabrication but my main research con-
cerns the optical study, control and fine-adjustment of the microcavity struc-
tures.

The choice of materials for the research presented in this thesis is
In(Ga)As / AlxGa1−xAs. The reason for using In(Ga)As / AlxGa1−xAs, in-
stead of other materials such as II-VI semiconductors, is that there is exten-
sive knowledge on how to make high quality optical (in the range from 800
to 950nm) and electronic structures, especially at the University of California
Santa Barbara (UCSB). Our research collaborators Prof. P.M. Petroff and
Prof. L.A. Coldren (at the Materials and Engineering Departments at UCSB)
have extensive experience and provide support in Molecular Beam Epitaxy
(MBE) growth and optical studies of In(Ga)As /GaAs QDs and quantum
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1.2 Challenges

wells (III-V semiconductors). In particular Prof. Petroff first investigated
self-assembled QDs at Bell Labs many years ago.

The choice of cavity system is the oxide-apertured micropillar struc-
ture shown in Fig. 1.2. The group of Prof. D. Bouwmeester has extensive
experience with modeling, fabricating, and characterizing of both photonic
crystal membranes and micropillars. Photonic crystal membranes are partic-
ular useful for integrated optics and for schemes to actively position QDs at
the center of the optical mode and for frequency tuning. There is however one
drawback and that is that it is very difficult to have polarization independent
photon coupling to external field modes. It is possible to use efficient evanes-
cence wave coupling through fibers near the surface of the photonic crystal
however this approach is highly polarization dependent, which is detrimental
for the above scheme. Another drawback is that the electronic control of the
state of the QD is very challenging because of the thin membrane structure.
Micropillars seem better candidates for the above scheme since they couple very
efficiently to external optical modes, they can be made polarization degener-
ate, and doped layers can be integrated into the structures. A disadvantage
of micropillar resonator, namely scattering from the sidewalls that limits the
cavity quality to a few thousand, has been overcome by using a broad mi-
cropillar structure and confining the optical mode to a small inner region by
inserting an oxidation aperture in the cavity (see Fig. 1.2). In this way we
obtain cavity quality factors as high as 50.000 and 30% single photon collection
efficiencies [24].

1.2.1 Deterministic spin positioning at the center of optical

micro resonators

Figure 1.3(a) shows an optical imaging of an In(Ga)As QD in a layer of GaAs.
The image is taken by scanning confocal microscopy with a computer controlled
tracking system of the drift of the cryogenic sample mount (measurements have
to be performed at 4K for good optical properties of the QDs). The position
of the QD can be determined to within 10nm with respect to alignment marks
(see Fig. 1.3(b)) pre-depositioned on the substrate.

1.2.2 Controlled emitter-cavity interaction in the weak-coupling

regime

Once a single QD is positioned at the center of an optical mode of a micropillar
it should also be matched in frequency with the mode. The common way to
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(a) (b)

Figure 1.3: Optical images obtained by scanning optical confocal microscopy.
(a) Emission from a single QD signal. By curve fitting the QD position can be
determined to within 10nm. (b) Reflection signal from alignment markers.

(a)

z

n-type top gate

n-type back gate

V

(b)

Figure 1.4: (a) Scheme for electrical contacting of n-doped Bragg layers leading
to ’trench’ designs (b) that allow implementation of oxidization micropillars
with parallel contacting (courtesy of M.T.Rakher).
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1.2 Challenges

achieve this is to use temperature tuning which will result in a relative shift
between the frequencies of the QD emission and the optical mode. Temperature
tuning is however undesirable because an increase in temperature will reduce
the coherence time of the electron spins. As an alternative an applied electric
field can be used to introduce a Stark shift of the transition frequency, typically
of the order of a few meV. Applying an electric field means that doped layers
have to be included close to the QDs embedded in the micropillar structure. A
simple approach of providing a top and bottom gate will not work because the
Bragg mirror ’shield’ the QD. An extensive study showed that doped Bragg
mirror layers close to the QDs, see sketch in Fig. 1.4(a), can provide the Stark
tuning fields. To contact an individual Bragg layer on an individual etched
micropillar is however unrealistic. Therefore the familiar pillar design is not
adequate for this task. Since the optical mode is defined by a final oxidation
step, holes (instead of pillars) can be etched in such a way that after the
oxidation step there is still an optical mode defined via the oxidation taper.
Figure 1.4(b) shows four ’trench’ designs (top view on sample). The center of
each figure is about 20µm in diameter and will after oxidation provide a 1 to
3µm diameter pillar mode; just like the familiar structures (Fig. 1.2). Given
this design it is possible to electrically contact the desired Bragg layers at the
side of the sample and control the voltage across an array of pillars, providing
the desired frequency fine-tuning by a Stark shift.

Figure 1.5 shows the performance of such an electrical gating scheme on
a Bragg structure with no pillars defined. The emission of a small number (3 to
6) of QDs has been monitored as function of the applied voltage between Bragg
layers closely above and below the QDs. Discrete steps occur which indicate
the charging of the QDs by additional electrons resulting in the exciton states
X0,X−1 and X−2. Looking in the regions away from the discontinuities a small
shift is observable which is the small Stark shift needed for the fine-tuning.

1.2.3 Controlled emitter-cavity interaction in a polarization

degenerate way

As explained in Sect. 1.1 it will be crucial to have polarization degenerate
interactions between a single QD and an optical resonator. Therefore the mi-
cropillar has to be degenerate in polarization. Usually there is a polarization
splitting due to symmetry breaking by the optical axes of the materials and
eventually due to fabrication imperfections. Some symmetry breaking is al-
lowed since the optical resonator modes have a finite linewidth. As long as
the symmetry breaking leads to shifts smaller than the linewidth the modes
have significant overlap and are therefore largely degenerate. The oxidation-
aperture pillar design can lead to large symmetry breaking due to different
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Figure 1.5: Loading of QDs sandwiched between two Bragg layers of which
the nearest layers are n-doped and electrically gated. The vertical lines mark
discrete steps where the QDs get charged with additional electrons resulting in
the exciton states X0,X−1 and X−2 (courtesy of M.T.Rakher).
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(a)

A

(b)

(c)

Figure 1.6: (a) SEM image of arrays of different ’trench’ pillars. (b) and (c)
show experimental data for the different polarization splitting (especially for the
first fundamental mode) of the same trench design but rotated by 45 degrees.
Courtesy of M.T.Rakher.

oxidation rates along the crystal axes. To investigate this effect, experiments
have been performed in which the trench pillar design has been rotated by
45 degrees. Fig. 1.6 shows the remarkable difference between the polariza-
tion splitting in the two cases. This result shows that it should be feasible
to optimize the geometry of the trenches (by rotations and possibly different
hole sizes) such that after oxidization the fundamental pillar mode is close to
degeneracy in polarization. To achieve the fine tuning of the birefringence we
have investigated a technique to permanently alter strain in the sample via
laser induced surface defects. The strain changes birefringence and as such
can be used to tune the polarization degeneracy.

1.2.4 Single electron spin preparation in QDs

It is important to be able to load individual electrons onto a single QD (in-
side a polarization degenerate micropillar). This can be achieved by using the
gated doped layer/Bragg mirror structure. But there is a complication in com-
bining steps 2 and 4 namely that the Stark shift tuning range is very small
(1− 3 meV), because we can only apply a voltage up to the point that another
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electron tunnels into the QD. The tunnel barrier has to be limited in order to
preserve the possibility of loading the QD with a single electron. In short, the
Stark tuning and the charging of the QD are to some extend complementary.
Pillar fabrication and the frequency and spatial pre-positioning of the QDs
have to be optimized to such a degree that post-fabrication tuning methods
together with the small Stark shift as a fine-tuning method will be sufficient
to prepare a single electron spin in a QD.

Loading the QD with a single electron is not sufficient for quantum in-
formation processing. A well defined initial quantum state preparation of
the spin of the electron is required. This can in principal be achieved by op-
tical pumping using resonant circular polarized light. Additional excitons in
the QDs with the electron spin corresponding to the light polarization are cre-
ated. The reemitted photons should have the same polarization as the pump
and thereby forcing the additional stored electron spin to become orthogonal
in spin to that of the optically pumped electrons [25]. Pauli Blockade inter-
rupts the absorption and subsequent reemission of photons if a forbidden (spin
−2, or 2) transition took place. Such ’dark’ transitions occur as a result of
heavy-light hole mixing. The absence of laser absorption is therefore also a
signature of electron spin state preparation [9]. The lifetime of the spin state,
directly related to the fidelity with which a specific state can be prepared, de-
pends on the strength of electron spin flip (rotation) processes. Such processes
can be strongly suppressed by introducing a Zeeman splitting, however this
will remove the possibility of preparing an ’arbitrary’ spin state [7]. The opti-
cal pumping technique requires the addition of magnetic fields and of narrow
linewidth lasers.

1.2.5 Entangle a single spin with a photon via the trion state

Entanglement of an single electron spin state with a photon is necessary for
implementation of the scheme. We utilize the trion state, that is the formation
of an electron pair in the singlet state and an additional heavy hole, to map
the spin state onto an optical state. Given the nature of the quantization
axis for angular momentum of a QD (the QD confinement potential is much
tighter in the z-growth direction than in the transversal direction due to the
QD geometry), we can entangle a single electron spin state with a photon
state by addressing the micropillar with resonant circularly-polarized light.
The selection rules and a detailed description of this scheme is provided in
Chap. 7 and published in [26]. In short, we can map an arbitrary electron spin
state:

| Ψel〉 = α |↑〉+ β |↓〉 (1.11)
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onto an entangled electron-photon state

| Ψ〉 = α |	↓, ↑〉 − β |�↑, ↓〉, (1.12)

by exciting with a right-circularly polarized photon |�〉 (oriented in direction
of the z-axis). The superscript arrow of |	↓〉 and |�↑〉 indicates the resulting
propagation direction with respect to the z-axis. In case we measure a photon
reflected by the cavity, we know that the electron spin is in the |↑〉 state. And
in case of a transmitted photon, the photon projects the electron spin onto the
|↓〉 state.

The principle of this operation is based on the Pauli exclusion principle
which will prevent two electrons from having the same state. Therefore the
absorption of say a spin 1 photon (producing a spin −1/2 electron and a spin
+3/2 hole) will (not) be possible if the electron spin is (−1/2) 1/2. By placing
the electron spin in a cavity that is modematched, in a polarization degenerate
way, to the incoming photon mode the difference between whether or not the
photon can be absorbed results in whether or not the photon is reflected or
transmitted by the cavity. Here we make use of the fact that a balanced Fabry-
Pérot optical cavity 100% transmit resonant light and that such a cavity with
an absorber reflects the light.

This scheme is part of the mapping process that takes place in step
2 of Fig. 1.1. To investigate the entanglement between spin and photon it
is important to have a near unity photon collection efficiency, otherwise the
electron spin becomes entangled with the environment through the emitted
photons absorbed by the environment. The use of micropillars is crucial in
this respect.

1.2.6 Enhance single spin coherence time

Single quantum-dot single-spin relaxation time T1 of approximately 0.1ms has
been measured at low temperatures [7,9,27,28], and the single spin coherence
time T2 has been measured to be approximately 10ns [10,29–31]. For perform-
ing a single optical entangling operation between two spins those coherence
properties are marginally sufficient. However, in order to perform many op-
erations we have to investigate the origin of decoherence and develop ways of
reducing decoherence. We keep in mind, that more challenging measurements
using spin echo and nuclear polarization techniques have successfully been used
to extend the coherence time to more than 1µs [10, 32].

Electron spin dephasing by phonon scattering in QDs is suppressed at
temperatures below a few Kelvin, leaving interactions with nuclear spins as the
dominant mechanism for electron spin dephasing [33]. The nuclear spins are
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slowly changing, partly through their interaction with the electron, and there-
fore form an unknown spin environment, which causes an unknown electron
spin precession. To some extend it is not appropriate to call this decoherence
since in principal the dephasing can be undone by applying a π-pulse at half-
time of the dynamical time interval of interest (assuming this interval is much
shorter than the nuclear spin drift time) that will flip the electron spin state
and therefore will reverse the dephasing in the second half of the dynamical in-
terval. This spin echo technique has been well established in studies of nuclear
magnetic resonances. To rotate a spin one typically has to apply a magnetic
field, around which the spin will perform a precession. Such pulses can be
obtained by using the magnetic field component of an optical field [34, 35]. It
has been shown that dephasing can be suppressed by applying a train of light
pulses synchronized to the phases of precessing spins [8].

1.2.7 Couple multiple microcavity-QD systems

In order to implement a two-spin qubit gate using intermediate trion and pho-
ton states two independent micropillars are needed, each with an electrically-
and optically-controlled single QD, connected with each other through opti-
cal fibers and optical elements. Here the new micropillar design is again very
advantageous since the pillars are mechanically as robust as a solid substrate
(only holes are etched out of the solid-state sample and the actual pillars are
defined by oxidation into the material). This allows the mechanical approach
of antireflection-coated fiber tips right to the surface. Using a fiber core of
typically 5µm in diameter pillar to fiber coupling efficiency of 80% should be
possible.

1.2.8 Entangle two electron qubits via the hybrid scheme

The final step is the implementation of two-electron spin entanglement by tele-
portation measurements on corresponding photons. To achieve this we need
two fiber-couple pillars tuned in resonance with each other and with the trion
transitions and perform a Bell state projection measurement on the photons us-
ing fiber beam splitters and single photon detectors optimized around 940nm.
To prove that the entangling gate operation works we would have to perform
spin correlation measurements on spins again using the trion states.

In summary Sect. 1.2 listed the challenges to be addressed in order
to implement the visionary scalable, hybrid approach (photon - solid state).
This thesis mainly deals with the cavity aspects of this scheme. The following
sections introduce the different theoretical frameworks that are fundamental
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to the different aspects of this thesis in detail. For a profound introduction to
this field see the book Spins in Optically Active Quantum Dots Concepts and
Methods by Gywat, Krenner and Berezovsky [36].

1.3 Quantum dots

A QD is a nanoscale solid-state structure that confines electronic wavefunc-
tions in all three spatial dimensions. This leads to discrete energy states for
conduction band electrons and valence band holes. For this reason QDs are
often referred to as artificial atoms. For our research it is of importance to
work with optically active QDs, meaning the interaction between light and the
charge carriers in the QD is sufficiently strong. Photons in the optical domain
lead to electron transitions between the valence and the conduction band. The
transitions can take place in two ways. In an optical absorption the electrons
can be driven by a photon of sufficient energy from the valence to the conduc-
tion band. In the inverse process, luminescence, an electron relaxes from the
conduction band to an unoccupied state in the valence band during which a
photon is emitted.

1.3.1 Types of QDs

Three major types of QDs can be distinguished. These are colloidal QDs,
lithographically patterned QDs and self-assembled QDs. The latter ones are
introduced in detail as all experimental studies presented in this thesis are
performed on self-assembled QDs. They have the advantage that they can be
grown in layers and therefore allow integration in complex solid state structures
that can for example contain contact layers for electrical control and Bragg
mirrors.

1.3.2 Fabrication of self-assembled QDs

Self-assembled semiconductor QDs are grown by molecular beam epitaxy (MBE).
Three different methods of growing self-assembled QDs are known: The Frank
van der Merve, the Volmer-Weber and the Stanski-Krastanow method. The
first two methods occur when the sum of the surface and interface energies is
less or greater than the surface energy of the substrate. We use the Stanski-
Krastanow method that takes place in strained systems such as In(Ga)As/GaAs,
In(Ga)As/InP, SiGe/Si or CdSe/ZnSe. The strain is caused by the lattice mis-
match of the substrate and the grown material.
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(a) (b) (c)

Figure 1.7: (a) Scheme of QD island growth on substrate with approximate
dimensions. (b) 7% lattice mismatch. (c) Atomic force micrograph of an
ensemble of uncapped InAs islands on GaAs (courtesy of P.M. Petroff, T.A.
Truong, and H.Kim, UC Santa Barbara).

The QDs utilized in all samples in this thesis are self-assembled InAs QDs (dur-
ing the growth Ga diffuses into the InAs leading to In(Ga)As QDs), with GaAs
as a substrate and capping material. Figure 1.7(a) shows a schematic overview
of the structure. In the very first step In and As atoms are deposited onto a
GaAs substrate at high temperature. These atoms self-assemble defect-free and
create atomic layers if the lattice mismatch of the substrate and deposits are
small enough. The layer growth switches to the self-assembled island growth
mode as the strain and the surface energy build up with continued deposition.
Figure 1.7(b) illustrates the 7% lattice mismatch between the two materials.
The total energy minimizes when building islands. See Fig. 1.7(c) for and
AFM image of uncapped In(Ga)As islands on GaAs. Lateral dimensions of
each island, meaning each QD, are usually 20− 30nm in diameter with a typ-
ical vertical height of 2− 5nm. Size and density of the QDs have an important
effect on the optical emission characteristics; the tighter the confinement the
larger the energy separation between levels and the more the optical properties
shifted to shorter wavelength. A drawback of the Stanski-Krastanow method is
the lack of control over positioning individual QDs. However, the MBE growth
process allows to grow QDs with a different surface density on the same wafer.
The density can vary from a few hundred dots per µm2 to none. This fact
enables to identify regions with a limited number of dots for further process-
ing creating single QDs devices (see Chap. 5). As a last processing step, the
uncapped QDs are overgrown with GaAs.
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1.3.3 Optical and electrical properties

Exact size and composition, such as the concentration of In and As and the
local strain in the structure, of a single QD are usually only roughly known.
For that reason precise theoretical determination of the energy levels proves
to be difficult, but models have been established that allow for a description
of the optical and electrical properties that are consistent with experimental
measurements.

Optical transitions

When an electron and a hole, particles of opposite charge, form a bound state,
they are called an exciton. Excitons occur through Coulomb interaction in self-
assembled InGaAs-QDs which constitute a few unique properties that make
them excellent candidates for quantum information processing. Under weak
optical excitation and low temperatures (< 30K) the QD exhibits a single nar-
row emission line (the single exciton recombination line X0) with a linewidth
as small as 5µeV [37]. Applying voltages across the QD can charge the QD with
a single (or more) electron or hole. The resulting optical transitions will shift
in energy due to electrostatic interactions. Strong optical excitation conditions
give rise to more complicated recombination possibilities resulting in charged
and multiple excitons that are energy separated from the single exciton line
X0. An advantage compared to atoms is the fact that QDs can optically be
pumped non-resonantly above the bandgap of the GaAs; via a phonon relax-
ation process the QD will capture the optically excited charges. The typical
peak emission wavelength of an InAs QD can be designed for the range of 0.9
to 1.2µm at 4K. Our samples typically emit around 930− 955nm.

Photoluminescence

The generation of electron-hole pairs in the material through optical excitation
above the bandgap serves as an effective way to investigate the optical prop-
erties of a QD. The electron-hole pairs can relax into the QD and recombine
radiatively (see Fig. 1.8). This measurement technique is called photolumi-
nescence (PL) spectroscopy and provides information on the level structure of
the QD. The optical excitation density controls the amount of carriers created
and allows to relatively adjust the emission from different shells.

21



1. Introduction

E
n

e
rg

y

conduction

band

valence

band

electron

hole GaAsInAs

photon

Figure 1.8: Schematic recombination of an electron and a hole resulting in the
emission of a photon. The InAs quantum is embedded in GaAs. When optically
excited above the GaAs bandgap the electron-hole pairs relax into the QD where
they can recombine.

QD shell structure

In order to understand the characteristic QD transitions lines, which can be
measured in PL spectroscopy, it is important to understand the energy levels
in a QD. In its growth direction, the z-direction, a QD is rather small in
dimension and its confinement can therefore be treated as a narrow quantum
well. In the x-y-plane in comparison, the dimensions are larger (see Sect. 1.3.2)
and the in-plane confinement can be approximated by a radially symmetric,
two-dimensional harmonic potential. Thus, the effective bandgap energy Eg,eff

is the sum of the bulk bandgap energy Eg of the material and the energies of
the electron Ee

z and the hole Eh
z as resulting from the strong confinement in

the z-direction:
Eg,eff = Eg + Ee

z + Eh
z . (1.13)

In the xy-direction the confinement is much weaker; the in-plane energies
Ea

ma,na
of electrons and holes are described by the two-dimensional harmonic

oscillator energies with the quantum numbers ma and na:

Ea
m,n = ~ωa(m+ n+ 1), (1.14)

where m,n = {0, 1, 2, . . .}. Finally, the total transition energy describing the
electron-hole recombination is:

Etransition = Eg +
∑

a=e,h

Ea
z +

∑

a=e,h

Ea
ma,na

= Eg,eff +
∑

a=e,h

Ea
ma,na

. (1.15)
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Figure 1.9: QD energy levels with s,p,d shells for electrons and holes. The
potential is harmonic resulting in an equal energy spacing between the levels.

Following atomic physics, the quantum numbers n and m can be added and
label the different shells. This first three shells, relevant for this thesis, are
labeled s, p, d and correspond to m+n = 0, m+n = 1 and m+ n = 2. In the
z-direction the orbital angular momentum is obtained by

La
m,n = ±(m− n), (1.16)

where the + stands for electrons and the − for holes. The degeneracy in en-
ergy of the i-th shell is given by i + 1. This means that the s-shell has only
one degenerate state (| 0, 0〉) while the p-shell has two (| 0, 1〉 and | 1, 0〉) and
the d-shell three states (| 0, 2〉, | 1, 1〉 and | 2, 0〉). The QD energy levels for
the first three levels for electrons and holes is schematically presented in Fig.
1.9. The Pauli Exclusion Principle determines the number of particles allowed
in each orbital state. With a single-band approximation for the valence band,
holes have a spin of ±3

2 . Electrons in the conduction band have a spin of ±1
2 .

With two allowed spin states in each orbital level, the total degeneracy of the
i-th shell is given by 2(n + 1).

Dominant allowed optical interband transitions are between states with
the same quantum number n and m. Additionally, the total spin Mz of the
conduction band (Sz) and the valence band (Jz) must be ±1. This results
in creation of right (σ+) or left (σ−) oriented polarized photons. Therefore,
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Figure 1.10: QD charge state configurations for various electron hole states.

recombination of electrons with spin +1
2 (−1

2) only takes place with holes of
spin −3

2 (+3
2).

Important charged state configurations

For many quantum information proposals, and for this thesis, carrier config-
urations in the s-shell are of importance. Figure 1.10 illustrates the configu-
rations for the four important exciton states in the s-shell. These are the X0

(the neutral exciton line), X− (the negatively charged single electron line), X+

(the positively charged single hole exciton line) and XX (double exciton line or
biexciton line) of a QD. For the first three states additional configurations with
inverted spins exist resulting in inverted polarization of the emitted photon.
The states described are optically active and called bright states. Optically
inactive states, referred to as dark states, arise when an electron and a hole
have an angular momentum difference of ±2 that is impossible to be achieved
with an electric dipole transition.
Figure 1.5 experimentally shows some of the states applying an electrical field
over the QD.

Band structure

Self-assembled InGaAs-QDs are III-V semiconductors with the symmetry of
zinc-blende lattices. Close to their Γ-point (k = 0) the extrema of the relevant
bands are parabolic. Figure 1.11 schematically shows the conduction band,
the heavy-hole (HH), the light-hole (LH) and the split-off valence bands. In
Fig. 1.11(a) the HH and the LH state is energetically degenerate. Eg is
the bandgap energy and ∆SO the spin-orbit energy. Growth of different thin
layered semiconductor materials lifts this degeneracy and results in an energy
splitting ∆LH between the light-hole and heavy-hole state, see Fig. 1.11(b).
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Figure 1.11: Band structure of III-V semiconductors near the Γ-point for the
energetically degenerate case (a) and with lifted degeneracy (b) resulting in a
two-level system in the HH and LH sub-bands.

This is the two-level system in the heavy-hole and light-hole bands important
for hole-spin qubits.

Optical selection rules

Controlled electron spin and photon interaction can be implemented utilizing
different transitions of spin-polarized electrons and holes in the QD. In the
previous section Fig. 1.11(b) shows the optical transitions of the different
bands. The energy of the exciting light can be chosen to only excite carriers
from a specific band. Furthermore, using polarized light for excitation limits
the possible transitions. Circularly polarized photons can only be absorbed if
a change of the angular momentum of ±~ is possible, resulting in the possible
optical transitions shown in Fig. 1.12. The focus of this thesis is the creation
of electron-heavy hole pairs.

Electron-hole pairs can be created through resonant or non-resonant
pumping. The latter method requires a doped layer near the QD as existing
in our structures. When the excitation laser is tuned to the InGaAs wetting
layer (temperature depended, around 865nm at 4K) a continuum of electron
(spin up or spin down) states is added depending on the helicity of the excita-
tion (σ+ or σ−). These electrons can relax into the QD and when the QD is
singly doped, form a trion state consisting of two electrons and a hole. Using
non-resonant pumping above the GaAs bandgap with arbitrary polarization is
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Figure 1.12: Possible optical transitions exciting carriers with circularly po-
larized light. The solid arrows are the optical transition of interest: optical
excitation of heavy holes.

typically the first characterization method of our samples.
In the second method, we resonantly probe the QD with a narrow-linewidth
laser. This technique is in particular important for chapters 6, 7 and 8. Fig.
1.13 summarizes the optical transitions. Shown are the two optically allowed
transitions when exciting resonantly with circularly polarized light, that are
photons with spin sz = +1 (left side) or sz = −1 (right side). The electron
state with spin Sz = +1/2 (|↑〉) excited with a photon with spin sz = +1 leads
to formation of a trion state. In that trion state two electrons form a singlet
state that has a total spin of zero and therefore prevents electron-spin interac-
tions with the hole spin Jz = +3/2 (|⇑〉). The other configuration is achieved
when an electron with spin sz = −1 leads to a trion state where the hole spin
is Jz = −3/2 (|↓〉). As mentioned before, it is important to note that the two
dipole transitions are degenerate in energy which is a crucial requirement for
achieving entanglement between photon spin and electron spin.

1.3.4 QD tuning via the Stark effect

When applying an external electric field to the QD, its transition frequencies
shift.This effect is called the quantum-confined Stark Effect and allows for pre-
cise frequency tuning and therewith matching to cavity resonances. However,
the absolute range for adapting the energy levels of the QD is rather small
since additional charges will be captured by the QD if the applied field gets
too large. The quantum-confined Stark effect is illustrated in Fig. 1.14. When
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Figure 1.13: Optical selection rules for the trion state.

applying an electrical field to a QD (or as presented in the schematic to a
quantum well) in the z-direction the wavefunctions experience a shift resulting
in a reduction of the transition energy ∆E = EC−EV . The quantum-confined
Stark Effect additionally allows to control the number of particles in the QD
and therefore address different states. Figure 1.5 shows a density plot of a QD
spectra as a function of applied voltage. The differently charged states are
visible and in addition to each state’s wavelength tuning.

Implementation of controllable electric fields can be achieved by embed-
ding the QDs in a diode structure. It is possible to load the QD either with
electrons or holes. This is realized with a p-i diodes (holes) or n-i diodes
(electrons). With p-i-n diodes both carriers can be injected and are used for
our samples. Figure 1.15 schematically shows the the band structure of QD
embedded in a such a p-i-n diode. When no bias voltage Vapp is applied (Fig.
1.15(a)), the Fermi energy is designed to be lower than the conduction band en-
ergy and no current can flow. Once the structure is forward biased (Vapp > 0),
the electric field Eapp drops over the intrinsic region. This lowers the energy
of the p-type region in respect to the n-type region. Electrons move from the
n-type region towards the p-type region while holes moves from the p-type
region towards the n-type region resulting in an electric current. If they opti-
cally recombine in the QD in the intrinsic region emitted light can be observed.
This phenomenon, the radiative recombination of electrons and holes, is called
electroluminescence.

The electric field Eapp is approximated by Eapp = Vbi − Vapp/dinstrinsic,
where Vbi is the build-in potential difference and dinstrinsic the length of the
intrinsic region. Vbi depends on the doping of the n-type and p-type regions
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Figure 1.14: Quantum-confined Stark effect. Left: No applied electrical field.
Right: applied electrical field causing the electron states to shift to lower ener-
gies. The holes shift to higher energies
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Figure 1.15: Schematic band structure of a QD embedded in a p-i-n diode.
(a) When no voltage bias is applied, the QD energy levels lie above the Fermi
energy. When biasing the p-i-n structure, the static electric field across the
intrinsic region Eapp can be tuned so that electrons and holes can optically
recombine in the QD.
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and is close to the bandgap of the material for high doping concentrations.
Using GaAs for our samples, Vbi is around 1.5V, and dinstrinsic typically around
500nm. Electric fields can be in the order of up to 300kV/cm.

1.4 Microcavities

In this section the effect of an optical resonator on the transition properties
of QDs are described. Using MBE growth and nanofabrication techniques the
QDs can be placed inside micron-size optical resonators. When the cavity is of
the order of the emitters wavelength quantum mechanical effects on the cavity
QD interaction can be observed that are absent for larger optical cavities.
The interaction between emitter and cavity by resonant recirculation is of inter-
est for research with optical microcavities. Figure of merit for characterization
of any optical microcavity is the the ratio of the quality factor Q and the
mode volume V that is proportional to the Purcell factor. The Purcell fac-
tor describes the enhancement of the cavity optical mode density compared to
free-space. In the field of cavity QED various types of microcavities are being
investigated [38], for example micropillars; they exhibit a small cavity volume
and relatively high Q [5], microtoroids; they can have an ultrahigh-Q [39] but
have typically a fairly large mode volume, photonic crystal membrane cavi-
ties [40,41]; they can have a very small mode volume V , microsphere whisper-
ing gallery resonators; extremely high Q but large V , and microdisks; high Q,
fairly large V . Different microcavities are suited for particular novel devices
or operation in certain coupling regimes. In this thesis we mainly investigate
micropillar cavities and some results for photonic crystal cavities are presented
in Sect. 5.3. Micropillar cavities consist of a high-refractive-index region sand-
wiched between two dielectric mirrors. The QDs are embedded in the center
of the cavity between the mirrors such that they match the field maximum
of the cavity and allow for highly-efficient polarization degenerate coupling to
external cavity modes. We address single QDs electrically to have specific QD
transitions interact with the cavity by implementing electrical gates. Light
confinement is achieved by the combined action of distributed Bragg reflection
(DBR) in the longitudinal direction along the post axis (the z-direction). In
the lateral direction (in the x, y-plane) light confinement is usually provided
by air-dielectric guiding. The fact that the light is coupled normal to the semi-
conductors sample surface allows for a high photon collection efficiency. As a
disadvantage, micropillars do not allow for the smallest possible mode volume,
because the cavity optical field extends into the Bragg mirror structure. Our
cavities have Q factors that are currently limited to 50.000 [24]. However, Q
factors up to 150.000 have been reported [42].
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We work with modified micropillar structures that are not free-standing pillars
but have remaining DBR mirrors surrounding the cavity region. Additionally,
an oxide-aperture close to active layer with the QDs causes a difference in
effective refractive index between the fully oxidized and the un-oxidized re-
gion. This provides an optical confinement effect in the x, y-plane [43,44]. The
oxide-apertured micropillars relevant for this thesis are presented in detail in
Sect. 3.2.

1.5 Cavity quantum electrodynamics

Cavity quantum electrodynamics (CQED) is the field of research that investi-
gates the interaction between light confined in an optical cavity and atoms or
QDs (artificial atoms). The spontaneous emission (SE) of an emitter coupled
to a cavity is one important aspect of many experiments of interest. This sec-
tion describes the essential theoretical concepts of CQED. First, we introduce
the relevant cavity coupling parameters in order to describe a two-level dipole
interacting with the quantized mode of an optical cavity using the Jaynes-
Cummings model. By elaborating on the dynamics of the model we get a
description for the weak and the strong coupling regime. Different approaches
for deriving the full model exist in literature. I personally like the way of J.-M.
Gérard as for instance published in [45]. But for reasons of completeness I
follow C. Gerry and P. Knight in [46] while conceptually starting with [47].

1.5.1 Cavity coupling parameters

The key parameters to characterize a resonant dipole inside an optical cav-
ity are the dipole-field coupling g, the photon cavity decay-rate κ, and the
non-resonant dipole decay rate γ (see Fig. 1.16). Before discussing realistic
conditions, consider the ideal case of a lossless microcavity. In this case the
spontaneous emission becomes a reversible process that is described by Rabi
oscillations. At Rabi frequency Ω a photon gets emitted and reabsorbed by
the same 2-level system. The Rabi frequency depends on the initial number
of photons in the cavity mode and even if this number is zero there can be a
(vacuum) Rabi oscillation.

Experimentally, microcavities are never perfect and cavity losses have to
be considered. The rate of these processes allows classification of two cases for
the dipole-photon interaction:

• the strong coupling regime where g > (κ− γ)/2 and
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Figure 1.16: Schematic of a probed cavity with a dipole inside. The key pa-
rameters to describe the cavity are the dipole-field coupling g, the photon cavity
decay-rate κ, and the non-resonant dipole decay rate γ. The dipole can either
be in the ground state | g〉 or the excited state | e〉.

• the weak coupling regime where g < (κ− γ)/2

In literature, the different regimes of atom-light coupling are also often loosely
defined by g ≫ (κ, γ) for the strong coupling regime and g ≪ (κ, γ) for the
weak coupling regime [48–50]. For our cavity QED systems we typically are
in the regime where γ < g < κ which we classify as the weak coupling regime.
When the rate of the loss /decoherence processes approaches the Rabi fre-
quency, the dipole-photon interaction is still in the strong coupling regime.
The system can then be regarded as damped. A photon emitted by the dipole
is likely to be re-absorbed before it escapes the cavity. For an increased rate of
the decoherence processes the system is over-damped, and photons emitted by
the 2-level system will not be reabsorbed but leave the cavity instead. Even-
tually, the excited state of the dipole decays to the ground state.
This thesis mostly presents experiments exploiting the weak coupling regime.
However, experimental observations of strong coupling are also presented in
Chap. 5.2.

1.5.2 The Jaynes-Cummings model

Entanglement of states is fundamental to quantum information systems. An
entangled state can be generated between an atom and an electromagnetic
field. A well studied model to describe such an atom-field interaction for a
two-level system is the Jaynes-Cummings model (JCM) [51]. It treats the
atom, which in our case is the QD, as an electric-dipole interacting with a
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quantized electromagnetic field. Its Hamiltonian looks as follows:

H = Hfield +Hatom +Hint = H0 +Hint (1.17)

where Hfield and Hatom express the light-field Hamiltonian and the atom
Hamiltonian summarized as the free Hamiltonian H0. The interaction part
between the light and the atom is described by Hint. The electric dipole can
be in two states, either in the ground state |g〉 or in the excited state |e〉, see
Fig. 1.16. We define two bosonic operators: the annihilation operator a that
lowers the cavity field and the creation operator a† that raises it. Commutation
relation [a, a†] = 1 applies to these operators.

For a cavity with mode frequency ωc we can then write the free-field
Hamiltonian as:

Hfield = ~ωc

(
a†a+

1

2

)
. (1.18)

As we are mainly interested in the dynamics of the system, we can neglect the
zero-point energy term and the free-field Hamiltonian becomes:

Hfield = ~ωca
†a (1.19)

In order to describe the atom coupling, it is convenient to introduce the
atomic transition operators

σ+ = |e〉 〈g| (1.20)

as the raising operator and

σ− = |g〉 〈e| = σ†+ (1.21)

as the lowering operator. Additionally, we define a population operator

σz = |e〉 〈e| − |g〉 〈g| . (1.22)

σ+, σ− and σz are spin-12 Pauli operators which in atomic Hilbert space are
expressed as 2× 2 matrices:

σ+ =

[
0 1
0 0

]
, σ− =

[
0 0
1 0

]
, σz =

[
1 0
0 −1

]
(1.23)

and obey commutation relations

[σ+, σ−] = σz, [σz, σ+] = 2σ+, [σz, σ−] = 2σ−. (1.24)

The energy levels are Ee = −Eg = 1
2~ωa, where ωa is the atomic fre-

quency. Thus, with population operator σz we find the expression for the free
atomic Hamiltonian:

Hatom = (Ee − Eg) σz =
1

2
~ωaσz. (1.25)
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Interaction between the two-level atom and the cavity mode field can be
described by the Schrödinger dipole interaction Hamiltonian

Hint = −d ·E (1.26)

where d is the dipole moment matrix element between the excited |e〉 and the
ground state |g〉. The cavity mode field E is of the form

E = e

(
~ωc

2ǫMV

) 1
2

(a+ a†) sin(kz) (1.27)

where e is an arbitrary oriented polarization vector and ǫM the dielectric con-
stant at maximum field intensity. The cavity mode volume V is defined as [52]

V =

∫∫∫
ǫ(r)|E(r)|2d3r
ǫM |E(rM )|2 (1.28)

with rM being the point of maximum field intensity.
The strength of the coupling can be expressed by a coupling parameter

g. It describes the coupling of the transition dipole moment d to the electric
field E:

~g = |〈d ·E〉| . (1.29)

We can now express the dipole interaction Hamiltonian (1.26) in terms of
atomic transition operators

Hint = −d ·
(

~ωc

2ǫMV

) 1
2

sin(kz)(σ+ + σ−)(a+ a†). (1.30)

If the atomic frequency ωa and cavity frequency ωc are close to resonance,
rapidly oscillating terms can be neglected. These are the non-energy conserving
and non-resonant terms σ+a† and σ−a which are the creation of an exciton
and photon and the annihilation of an exciton and a photon, respectively. This
rotating wave approximation (RWA) leads to Hamiltonian Hint expressed by
coupling constant g:

Hint = ~g(r)(σ+a+ σ−a
†). (1.31)

Looking at coupling constant g we can see that small mode volumes V enhance
the microcavity performance: g(r) is given by

g(r) =
cos(ξ)g0

~
ψ(r) (1.32)
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with cos(ξ) being the polarization-dependent part, g0 being the single-photon
Rabi frequency and ψ(r) the position-dependent part:

cos(ξ) =
d · ê
d

(1.33)

g0 =
d

~

(
~ωc

2ǫMV

)
(1.34)

ψ(r) =
E(r)

|E(rM )| (1.35)

Finally, we have derived a complete expression for the Jaynes-Cummings
Hamiltonian (in the RWA):

HJC = ~ωca
†a+

1

2
~ωaσz + ~g(r)(σ+a+ σ−a

†). (1.36)

The Jaynes-Cummings Hamiltonian does not include any coupling to
an environment. These loss-mechanisms classified into the strong- and weak-
coupling regime introduced in the previous section, are namely the spontaneous
decay into the vacuum modes from the excited state |e〉 at rate γ and the decay
of the field mode at rate κ. The following sections first introduce the dynamics
of the JCM before elaborating on the theoretical description of the strong- and
weak-coupling regime.

1.5.3 Dynamics of the Jaynes-Cummings model

Finding the stationary states of the JCM (1.36) yields a description for the
transitions of the product states and their energy eigenstates caused by the
interaction Hamiltonian Hint. For a cavity field with |n〉 photon states the
interaction causes transitions of type

|e〉 |n〉 ↔ |g〉 |n+ 1〉 (1.37)

or
|e〉 |n− 1〉 ↔ |g〉 |n〉 . (1.38)

These product states are referred to as the bare states of the JCM because
they are the product states of the unperturbed atom and field. Given a fixed
n, the dynamics are confined to the two-dimensional space (either (1.37) or
(1.38)) and we can define the following product states:

|ψ1n〉 = |e〉 |n〉 (1.39)
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|ψ2n〉 = |g〉 |n+ 1〉 . (1.40)

with their corresponding energy eigenstates are:

E1n = ~

(
1

2
ωa + nωc

)
(1.41)

E2n = ~

(
−1

2
ωa + (n+ 1)ωc

)
. (1.42)

The 2× 2 subspace matrix representation of H follows from H
(n)
ij = 〈ψin | H |

ψjn〉:

H =



nωc +

1
2ωa g

√
n+ 1

g
√
n+ 1 (n+ 1)ωc − 1

2ωa


 (1.43)

When diagonalizing the matrix, the energy eigenvalues are as follows:

E±(n) =

(
n+

1

2

)
~ωc ±

~

2

√
(ωa − ωc)2 + 4g2(n+ 1). (1.44)

The second term corresponds to the Rabi frequency which includes the effects
of the detuning ∆ = ωa − ωc:

Ω(∆) =
√

∆2 + 4g2(n+ 1). (1.45)

The eigenstates |n,±〉 associated with the energy eigenvalues are called the
dressed states and given by:

| n,+〉 = 1√
2

(
Ω(∆) + ∆

Ω(∆)

)1/2

| ψ1n〉+
1√
2

(
Ω(∆)−∆

Ω(∆)

)1/2

| ψ2n〉 (1.46)

| n,−〉 = − 1√
2

(
Ω(∆)−∆

Ω(∆)

)1/2

| ψ1n〉+
1√
2

(
Ω(∆) +∆

Ω(∆)

)1/2

| ψ2n〉. (1.47)

It is interesting to compare the energy splitting of the bare states and the
dressed states which is ~∆ and ~Ω(∆) respectively. In case the dipole and the
cavity are on resonance, the detuning ∆ is zero. For this case, the bare states
are degenerate in energy while a splitting for the dressed states remains. They
states are related as follows:

| n,+〉 = 1√
2
(| e〉 | n〉+ | g〉 | n+ 1〉) (1.48)
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Figure 1.17: Quantum level diagram with the uncoupled (right) and coupled
levels (left). The uncoupled states are called bare states and the coupled eigen-
states are referred to as dressed states.
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| n,−〉 = 1√
2
(− | e〉 | n〉+ | g〉 | n+ 1〉). (1.49)

The different energy splittings are summarized in the quantum level diagram
in Fig. 1.17.

For the non-ideal case, we have to include losses in our description for
the dynamics of the JC model. For this purpose we include the photon cavity
decay-rate κ and the non-resonant dipole decay rate γ that both describe the
damping of the system. The approach is to see the damping being caused
by interaction with a large reservoir of simple harmonic oscillators. In the
Heisenberg picture the equation of motion for a general operator Θ becomes:

dΘ

dt
= − i

~
[Θ,H] + L(Θ) (1.50)

with L being the Markovian loss operator. Applying Eq. (1.50) to annihilation
operator a and lowering operator σ− yields:

da

dt
= −iωca− igσ− − κa (1.51)

dσ−
dt

= −iωaσ− + igσza+ γσzσ−. (1.52)

The Hermitian conjugates of these correspond to creation operator a† and rais-
ing operator σ+. Assuming a very small photon number (〈n〉 ≪ 1) the emitting
dipole will almost always be in its ground state which is equal to 〈σz〉 ∼ −1.
This allows us to replace σz with the expectation value −1. Additionally, when
taking a vector oscillating at frequency ω with decay rate Γ, it adds a factor
of iω−Γ in the time derivation, so that Eqs. (1.51) and (1.52) can be written
as:

dv

dt
= Mv = (−iω − Γ)v (1.53)

with

v =

[
a
σ−

]
(1.54)

and

M =




−iωc − κ −ig

−ig −iωa − γ


 . (1.55)
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Setting the eigenvalues of M equal to −iω − Γ yields a description for the
resonant frequency and the decay rate of the coupled system with losses:

ω − iΓ =
1

2
(ωa + ωc)−

i

2
(κ+ γ)±

√
g2 +

1

4
[(ωa − ωc) + i(κ− γ)]2. (1.56)

This result compares to the ideal system with no losses (κ = 0 and γ = 0)
expressed in Eqs. (1.44) and (1.45) when n ∼ 0. The term under the square
root in Eq. (1.56) indicates that Rabi oscillations can occur in case the term
is real and not damped. A negative term implicates modification of the decay
rate. Finally, we can see that the combination of the coupling constant g, the
cavity and emitter decay rates κ and γ determines the regime the system is in.

1.5.4 The strong coupling regime

If g > (κ − γ)/2 the system is in the strong coupling regime. This is also
the case if κ ≫ γ and therewith g > κ/2. This yields the square root in Eq.
(1.56) to be positive. This regime is characterized by coherent energy transfer
between the emitter and the dipole. The coupling between the emitter and the
dipole dominates over the other decay channels. A characteristic signature for
the strong coupling regime is the anticrossing of the cavity mode and the dipole
emitter when tuned into resonance. Figure 1.18 shows the principal behavior
for the anticrossing resulting from Eq. (1.56) as a function of the detuning
∆ = ωa − ωc. The solid lines show the coupled case and the dashed lines the
uncoupled case. For the latter case the curves intersect at ωa = ωc. They act
as asymptotes for the coupled-energy-lines, that do not intersect, for energies
far from the resonant case at point ωa = ωc. The coupled states are referred to
as polaritons. At the zero-detuning point the energy splitting between the two
polariton states is at a minimum. This energy depends on the Rabi frequency,
and therefore also on the coupling constant g:

∆E = 2~Ω = 2~

√
g2 − 1

4
(κ− γ)2. (1.57)

The energy splitting increases when g is maximized.

1.5.5 The weak coupling regime

In the weak coupling regime dissipative processes outweigh coherent coupling.
The SE is irreversible and the QD emission relaxes towards its ground state.
The regime is classified by g < (κ − γ)/2, corresponding to a negative term
under the square root in Eq. (1.56). The emitter is still coupled to the cavity
mode resulting in an enhancement of the spontaneous emission rate of the
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Figure 1.18: Anticrossing of the coupled QD-cavity system calculated with the
Jaynes-Cummings model. The energy of the polaritonic states (solid lines) and
the uncoupled states (dashed lines) is plotted as a function of ∆ = ωa − ωc.
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emitter. We get an interesting relation when neglecting the non-resonant dipole
decay rate γ (for our systems γ << g, κ) and only look at the relative effect of
the photon cavity decay-rate κ and the dipole field coupling g. In case κ≫ g,
linear expansion of the term under the square root in Eq. (1.56) leads to:

ω1 − iΓ1 = ωa − i
g2

κ
(1.58)

ω2 − iΓ2 = ωc − iκ+ i
g2

κ
, (1.59)

where ω1 and Γ1 are the frequency and decay rate describing the dipole, and
ω2 and Γ2 describing the cavity. A way of characterizing the enhancement
of the spontaneous emission caused by the dipole-cavity coupling is provided
in the next section. From Eq. (1.58) we see that dipole decay rate is g2/κ,
describing a cavity enhancement factor of g2/κγ.

1.5.6 Spontaneous emission and Purcell effect

in microcavities

The spontaneous emission rate for a dipole resonantly coupled to a single-mode
of a cavity in the weak-coupling regime is described by the Purcell effect. In
1946, Purcell predicted an enhancement of the spontaneous emission compared
to free-space [53]. The so called Purcell factor describes this enhancement and
conceptually is the same for any cavity. Different boundary conditions yield to
different Purcell factors. The following derivation is given for the case that the
emission frequency of the dipole couples exactly to the one and only existing
single mode of the cavity of mode volume V0.
Fermi’s golden rule [53] describes the transition rate for spontaneous emission:

W =
2π

~2
|M12|2g(ω), (1.60)

where M12 is the transition matrix element, and the density of states is de-
scribed by g(ω). Because there is only one resonant mode such that

∫ ∞

0
g(ω) = 1, (1.61)

the density of states g(ω) can be described by a Lorentzian function. Normal-
ization fulfills Eq. (1.61). If we assume ωa to be the frequency of the dipole
transition and ωc the resonance frequency of the cavity, the density of states
writes as

g(ωa) =
2

π∆ωc
· ∆ω2

c

4(ωa − ωc)2 +∆ω2
c

, (1.62)
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where ∆ωc is the linewidth. For the resonant case (ωa = ωc) the formula
reduces to

g(ωa) =
2

π∆ωc
=

2Q

πωa
, (1.63)

with Q being the quality factor defined by Q = ω
∆ω .

The matrix element for the electric dipole interaction in general writes as

M12 = 〈p · ε〉. (1.64)

or
M2

12 = ξ2µ212ε
2
vac, (1.65)

where the factor ξ is the normalized dipole orientation factor given by:

ξ =
|p · ε|
|p||ε| . (1.66)

For the free-space case we have to average over all possible orientations
of the dipole with respect to the field direction. Therefore ξ2 averages 1/3
because the dipole is randomly oriented in free-space

M2
12 =

1

3
µ212ε

2
vac. (1.67)

However, for the case that the dipole moment is oriented parallel to the cavity
mode E-field the electric dipole interaction becomes

M2
12 = ξ2µ212ε

2
vac = ξ2

µ212~ω

2ǫ0V0
. (1.68)

Finally, we can express the transition rate for the spontaneous emission
as given by Fermi’s golden rule in Eq. (1.60) by substituting with Eqs. (1.68)
and (1.62).

Wcav =
2Qµ212
~ǫ0V0

ξ2
∆ω2

c

4(ωa − ωc)2 +∆ω2
c

. (1.69)

The Purcell factor FP compares the free-space transition rate with the
cavity transition rate for the spontaneous emission

FP =
Wcav

Wfree
=

3Q

4π2V0

(
λ

n

)3

ξ2
∆ω2

c

4(ωa − ωc)2 +∆ω2
c

, (1.70)

with c/ω = (λ/n)/2π. λ is the free-space wavelength and n the refractive
index of the active area of the cavity. At exact resonance (ωa = ωc) and with
the dipoles oriented along the field direction the Purcell factor becomes

FP =
3Q

4π2V0

(
λ

n

)3

. (1.71)

To summarize, the given Purcell factor in Eq. (1.71) is valid for the
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1. resonant case of a dipole in a cavity,

2. with one single mode,

3. and the dipoles orientated along the field direction.

For the development of microcavities, the Purcell factor is an important
figure of merit as it only depends on the cavity properties Q and V that can
be modified by various design and fabrication techniques.

1.5.7 Cavity reflectivity with a single QD

Measuring the interaction between a cavity and a single QD in photolumi-
nescence is one way of characterizing the solid-state QD-cavity QED system.
Probing the system by reflectivity measurements is another way. A QD cou-
pled to a cavity modifies its transmission and reflection spectra. In the ideal
case a photon interacting on resonance with an electron spin in a cavity gets
reflected. In other words, the cavity becomes reflective in case light is coupled
to an absorber on resonance with the cavity. In the uncoupled case, that is,
the QD transition is not resonant with the cavity, the cavity is transmissive.
The cavity reflectivity is given by [54]:

R =

∣∣∣∣1− 2κ1 ·
γ − i(ω − ωa)

(γ − i(ω − ωa)) · (κ− i(ω − ωc)) + g2

∣∣∣∣
2

, (1.72)

where κ is the total cavity field loss rate and κ1 the loss rate of the first mirror
only. Equation (1.72) is illustrated schematically in Fig. 1.19 where we plot
the reflectivity as a function of the frequency of the probed light for the cou-
pled (solid blue curve) and the uncoupled (g = 0; dashed red curve) case for
(κ = κ1) In the ideal case, the height of the peak at the resonant frequency
goes up to 1 in reflection.

An interesting aspect to be perceived from the reflectivity measurements
is the dependence of the peak height on the probing beam intensity. Consider a
few photons interacting with the cavity. The first photon that gets absorbed by
the QD raises it to the excited state. As long as the QD remains in this excited
state (described by the lifetime of the system), the cavity appears transmissive
for further photons as there is no more state to be excited. Hence, at higher
probing intensities a decreasing peak height can be observed. Literature de-
scribes this phenomenon as the reflection peak nonlinearity [54, 55]. Various
aspects resulting from reflectivity measurements are investigated in Chap. 8.

42



1.5 Cavity quantum electrodynamics

0.

0.2

0.4

0.6

0.8

1

R
e
 
e
ct
iv
it
y

re�ection

peak

FrequencyDn=0

Figure 1.19: Ideal reflection curves as a function of frequency for the coupled
and uncoupled situation. If a QD transition is on resonance with the cavity, the
cavity becomes reflective (blue curve) and at the resonance frequency all light
is reflected, the peak in the dip goes to 1. If the QD is out of resonance, all
light gets transmitted and a dip in the reflection can be observed at the cavity
resonance (red curve).
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