

Cavity quantum electrodynamics with quantum dots in microcavities Gudat, J.

Citation

Gudat, J. (2012, June 19). *Cavity quantum electrodynamics with quantum dots in microcavities*. *Casimir PhD Series*. Retrieved from https://hdl.handle.net/1887/19553

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/19553

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/19553</u> holds various files of this Leiden University dissertation.

Author: Gudat, Jan Title: Cavity quantum electrodynamics with quantum dots in microcavities Issue Date: 2012-06-19

Cavity Quantum Electrodynamics with Quantum Dots in Microcavities

Jan Gudat

Cover: The picture on the cover shows an optical cavity with a dipole inside. The curves in the background illustrate a cavity reflectivity measurement. The photon entering the cavity (from the left) interacts with the dipole. When the dipole is coupled to the cavity and the photon is interacting on resonance with a dipole electron spin, the photon gets reflected. This can be measured by a peak in the dip of the reflection (blue) curve. In the uncoupled case with the dipole being out or resonance, the photon gets transmitted and a dip in the reflection (red) curve can be observed. This simplified idea can be realized with a quantum dot in a microcavity, which could serve as the building block (a qubit) for a quantum computer.

Cavity Quantum Electrodynamics with Quantum Dots in Microcavities

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties te verdedigen op dinsdag 19 juni 2012 klokke 10:00 uur

 door

Jan Gudat

Promotiecommissie:

Promoter:	Prof. dr. D. Bouwmeester	Universiteit Leiden $/$
		University of California, Santa Barbara
Leden:	Dr. M.P. van Exter	Universiteit Leiden
	Dr. M.J.A. de Dood	Universiteit Leiden
	Prof. dr. E.R. Eliel	Universiteit Leiden
	Prof. dr. A. Fiore	Technische Universiteit Eindhoven
	Dr. H. Krenner	Universtät Augsburg
	Prof. dr. ir. C.H. van der Wal	Rijksuniversiteit Groningen

The work presented in this thesis has been made possible by financial support from the Marie-Curie Program No. EXT-CT-2006-042580.

Casimir PhD series, Delft-Leiden, 2012-15

ISBN: 978-90-8593-126-3

Contents

1	Inti	roduction 1		
	1.1	Controlling electron spin interactions via photons		4
		1.1.1	Vision	5
		1.1.2	Required developments	9
	1.2	Challe	enges	9
		1.2.1	Deterministic spin positioning at the center of optical	
			micro resonators	11
		1.2.2	Controlled emitter-cavity interaction in the weak-coupling	
			regime	11
		1.2.3	Controlled emitter-cavity interaction in a polarization	
			degenerate way \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	13
		1.2.4	Single electron spin preparation in QDs	15
		1.2.5	Entangle a single spin with a photon via the trion state	16
		1.2.6	Enhance single spin coherence time	17
		1.2.7	Couple multiple microcavity-QD systems	18
		1.2.8	Entangle two electron qubits via the hybrid scheme	18
	1.3	Quant	um dots	19
		1.3.1	Types of QDs	19
		1.3.2	Fabrication of self-assembled QDs	19
		1.3.3	Optical and electrical properties	21
		1.3.4	QD tuning via the Stark effect	26
	1.4	Microcavities		29
	1.5	Cavity	v quantum electrodynamics	30
		1.5.1	Cavity coupling parameters	30
		1.5.2	The Jaynes-Cummings model	31
		1.5.3	Dynamics of the Jaynes-Cummings model	34
		1.5.4	The strong coupling regime	38
		1.5.5	The weak coupling regime	38
		1.5.6	Spontaneous emission and Purcell effect in microcavities	40
		1.5.7	Cavity reflectivity with a single QD	42

2	Exp	perimental Setup	45
	2.1	Optical setup	45
	2.2	Laser and detector options	46
	2.3	Cryostat	48
3	Opt	cical Modes in Oxide-Apertured Micropillars	51
	3.1	Introduction	52
	3.2	Oxide-apertured micropillars design and fabrication	53
	3.3	Theoretical model of the optical modes	60
		3.3.1 Theoretical spectrum of the modes	64
		3.3.2 Anisotropic materials	65
		3.3.3 Relative mode splitting and Purcell factor	66
	3.4	Measurements	67
	3.5	Results	68
	3.6	Improving the theoretical model	77
	3.7	Conclusion and discussion	84
4	Mic	crocavity Tuning	87
	4.1	Introduction	88
	4.2	Oxide-apertured micropillar design and properties	89
	4.3	Tuning micropillar cavity birefringence by laser induced surface	
		defects	91
		4.3.1 Experimental procedure	92
		4.3.2 Data analysis	93
		4.3.3 Summary and outlook	98
	4.4	Permanent tuning of quantum dot transitions to degenerate mi-	
		crocavity resonances	99
		4.4.1 Experimental procedure	99
		4.4.2 Summary	106
	4.5	Theoretical model	107
		4.5.1 Effect on cavity modes	108
		4.5.2 Effect on QD optical transitions	110
	4.6	Conclusion and discussion	115
5	Act	ive Positioning of Single QDs in Microcavities	117
	5.1	Optical positioning of single QDs	118
		5.1.1 Physical limits of the scanning method	119
		5.1.2 QD positioning in planar cavities	120
	5.2	Strong coupling through optical positioning of a QD in a pho-	
		tonic crystal cavity	121
		5.2.1 Sample design	121

		5.2.2 Scanning technique	121
		5.2.3 Photonic crystal fabrication	123
		5.2.4 Demonstration of strong coupling	125
	5.3	Waveguide-coupled photonic crystal-QD cavities	127
		5.3.1 Sample design and fabrication	127
		5.3.2 Measurements and results	130
	5.4	Conclusion and discussion	134
6	Spir	n Quantum Jumps	135
	6.1	Open quantum systems	136
		6.1.1 Density operator \ldots \ldots \ldots \ldots \ldots \ldots \ldots	137
		$6.1.2 \text{Liouville operator} \dots \dots$	138
		6.1.3 Master equation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	139
	6.2	Separation of time scales	140
	6.3	Spin quantum jumps in a singly charged quantum dot $\ . \ . \ .$.	143
		$6.3.1 The four-level system \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	145
		6.3.2 Separation of time scales	148
		6.3.3 Jump rate due to coherent spin coupling	151
		6.3.4 Experimental possibilities	157
	6.4	Conclusion	158
	6.5	Further extension of the model	159
7	Sch	emes in the Weak-Coupling Cavity QED Regime	161
	7.1	Introduction	161
	7.2	Optical selection rules	162
	7.3	CNOT gate	164
	7.4	Bell-state analyzer	166
	7.5	Experimental feasibility	168
	7.6	Conclusion	169
8	Ref	ection Spectroscopy of a Quantum Dot in a Microcavity	171
	8.1	Introduction	171
	8.2	Experimental procedure	172
	8.3	Experimental results	173
	8.4	Conclusion and discussion	178
A	Appendices 1		
\mathbf{A}	\mathbf{Exp}	erimental setup	183

В	Fabrication of micropillars	189
	B.1 Process structure for different sample types	189
	B.2 Step details	190
\mathbf{C}	Glossary of Terms	195
Bi	bliography	197
Su	mmary	215
Nederlandse samenvatting		219
Curriculum Vitae		223
Lis	st of Publications	225
Ac	knowledgements	227