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Chapter 4

Stringy holography at finite
density

4.1 Introduction

In the usual AdS/CFT setting gauge theory on the boundary has a dual
description in terms of closed string theory in the bulk. Most often, a
limit of small curvature is taken to yield a low energy theory of strings,
supergravity. In the N = 4 supersymmetric Yang-Mills case this limit
implies strong ’t Hooft coupling of field theory. A distinct example of
non-gravitational theory with a holographically dual description is the
Little String Theory [1, 2]. It can be viewed as the theory of N coincident
NS5-branes, taken at vanishing string coupling, gs = 0, where the bulk
degrees of freedom decouple. The coupling constant of the low-energy
U(N) gauge degrees of freedom, living on the NS5-branes world-volume,
stays unaffected by taking this limit, and is equal to g5 = `s, where `s is
string length in type-IIB string theory (see [3] for a review).

The holographic dual of the Little String Theory [2, 4, 5] is the the-
ory of closed strings in the background of NS5-branes, with the geometry
R5,1×Rφ× SU(2)N , the two-form field and the linear dilaton. The CFT
on SU(2) is described by WZW action at level N . The bulk physics
(in the double scaling limit) can be reformulated as the string theory
on R5 × SL(2,R)N

U(1) × SU(2)N space-time. This is due to the fact that the
gauged WZW model on SL(2,R)N/U(1) gives rise to the classical “cigar”
geometry of the two-dimensional black hole with the asymptotically linear
dilaton [6, 7]. In the large N limit the bulk theory reduces to supergrav-
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ity1.
Generally one expects that a lot of nontrivial physics drastically sim-

plifies in the limit of infinitely many degrees of freedom (large N limit),
both in the boundary field theory and from the dual bulk perspective. For
example, one expects the large N physics of a field theory at finite tem-
perature and density to have “classical” nature, resulting, in particular,
in the mean field critical exponents. (Another recent example of this is
given by the stringy nature of finite-momentum and zero-frequency sin-
gularity of the current-current two-point functions, observed in [8], where
the results of [9–15] were extensively used.)

The low energy excitations in Little String Theory at finite tempera-
ture have been considered in [16] 2. The closed string description involves
the gauged WZW (gWZW) action with the SL(2,R)/U(1) target space-
time and N = 2 world-sheet supersymmetry. In [16] the two-point func-
tions of the stress-energy tensor and the U(1) current have been computed
holographically; their pole structure indicates the presence of hydrody-
namic modes. This has been also verified by solving fluctuation equations
in supergravity approximation in the background of a large number of
NS5-branes.

In this chapter we study string theory in the background of a direct
product of the two-dimensional charged black hole [23] and flat space.
The string theory in the two-dimensional charged black hole background
is described by the gWZW action with the SL(2,R)×U(1)x

U(1) target space-time
[24–26]. Here U(1)x is a compact circle, which is Kaluza-Klein reduced,
and U(1) subgroup of SL(2,R)×U(1)x is gauged asymetrically. The left-
moving sector of the gauged U (1) is a linear combination of the left-moving
sector of the U(1)x and the left-moving sector of the U(1) subgroup of
the SL(2,R). The coefficient of this linear combination determines the
charge to mass ratio of the resulting black hole. The right-moving sector
of the gauged U (1)x is the right-moving sector of the U(1) subgroup of
the SL(2,R).

This bulk system is holographically dual to the boundary quantum
field theory at finite temperature and charge density. (One can think of
the resulting system as little string theory at finite density, but we do

1The radius of the SU(2) sphere is Rsph =
√
N`s. Therefore the large N limit is

equivalent to the limit of small `s/Rsph.
2See also e.g. [17–22] for some preceding holographic study of the Little String

Theory.
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not study the field theoretic interpretation here in detail.) The inverse
temperature is equal to β = 2π

√
k̂ cos2(ψ/2)

cosψ , where ψ ∈ [0,π/2] is the
parameter of asymmetric gauging. The finite charge density in the field
theory is described holographically by the background U(1) potential in
the bulk, At(u) ' − q

u , where q =M sinψ is the charge andM is the mass
of the black hole; u is the radial coordinate in the bulk.

The vertex operator of the string ground state in this model was con-
structed in [25]. In this chapter we construct the vertex operators which
describe massless closed string excitations in this model, which constitute
the NS-NS sector of type-II supergravity. We also construct the gauge field
vertex operators, which are obtained by Kaluza-Klein reduction on U(1)x
from graviton and antisymmetric tensor field vertex operators. The gravi-
ton in the bulk is dual to the stress-energy tensor on the boundary; the
gauge field in the bulk is dual to the charge current on the boundary. We
study the low energy excitations of the system by computing holographi-
cally the two-point functions for the charge current and the stress-energy
tensor and reading off the dispersion relation from their poles. We find
two distinct gapless modes in the shear channel; the dispersion relation
of one of them is independent of the charge to mass ratio of the black
hole. The two modes merge in the limit of vanishing charge, producing
the shear mode which was observed in [16]. We confirm these results by
solving fluctuation equations of the type-II supergravity. The situation in
the sound channel is similar.

Finally we study fluctuation equations in the low-energy limit in het-
erotic gravity [23]. We find one gapless mode in the shear channel. Com-
paring this result with the thermodynamics of the charged black hole [27]
we find that the ratio of shear viscosity to entropy density is equal to
η/s = 1/(4π), independently of the charge to mass ratio of the black
hole.

The rest of this chapter is organized as follows. In section 2 we review
the thermodynamics of the two-dimensional charged black hole and derive
the dispersion relation of the shear hydrodynamic mode. In section 3
we apply the BRST quantization method of the coset models, and the
covariant quantization of the string to construct the holomorphic and
anti-holomorphic physical vertex operators of the massless states on the
SL(2,R)×U(1)

U(1) coset. In section 4 we use these vertex operators and write
down the vertex operators of graviton, antisymmetric tensor field and
gauge fields. In that section we also compute the two-point functions of
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these vertex operators and discuss the low-energy excitation modes. We
also briefly discuss finite-momentum and zero-frequency singularity of the
correlation functions. In section 5 we solve fluctuation equations in type-
II supergravity to verify the dispersion relations, derived in section 4. We
discuss our results in section 6. Appendix A is devoted to a review of some
rudimentary conformal field theory and derivation of the gWZW action
on the SL(2,R)×U(1)

U(1) coset. In Appendix B we solve fluctuation equations
in heterotic gravity. We find one mode in the shear channel. Matching
its dispersion relation to the one, written in section 2, we obtain that
η/s = 1/(4π) for any charge to mass ratio.

4.2 Thermodynamics of the charged black hole

The metric of the two-dimensional charged black hole [23] with mass M
and charge q in suitable coordinates can be written as [26, 27]

ds2 = −f(u)dt2 + k̂

4
du2

u2f(u)
,

f(u) =
(u− u+)(u− u−)

u2 , u± =M ±
√
M2 − q2 (4.1)

with the background U(1) gauge field and the dilaton field being equal to

At(u) = q

( 1
u+
− 1
u

)
, (4.2)

Φ = Φ0 −
1
2 log

(
u
√
k̂

2

)
, Φ0 = −1

2 log
(
Mu+

√
k̂

u+ + u−

)
.

The gauge potential vanishes at the outer horizon, At(u+) = 0. Define
parameter ψ by the equation

u−
u+

= tan2 ψ

2 . (4.3)

For the full description of thermodynamics of two-dimensional charged
black hole the reader is referred to [27], we just review their results which
are useful for us. It is convenient for further purposes to denote the
background dilaton slope (see eq. (4.2)) as Q = 2/

√
k̂. Requiring the

130



metric (4.1) near external horizon u = u+ to be regular, we find the
temperature of the charged black hole

β =
4π
Q

u+
u+ − u−

=
4π
Q

cos2 ψ
2

cosψ . (4.4)

Asymptotical u � 1 value of the gauge potential (see eq. (4.2)) is equal
to the chemical potential:

µ =
q

u+
=
√
u−
u+

= tan ψ2 . (4.5)

The entropy of the two-dimensional charged black hole is given by [27]

Sbh(M , q) = 2π
Q

(M +
√
M2 − q2) . (4.6)

Using (4.6) and evaluating the grand canonical partition sum Z one ob-
serves [27] that the grand canonical potential Ω ∼ − logZ vanishes, and
therefore the pressure vanishes.

Consider black brane background space-time CBH2 ×Rd−1, which is
a direct product of the two-dimensional charged black hole and flat d− 1-
dimensional space. Denote by X the direction of Rd−1 of propagation of
all the excitation, and denote by Y some transverse direction of Rd−1.
In the shear channel excitation modes appear as poles of the two-point
function 〈TXY TXY 〉 of the stress-energy tensor TMN , with the dispersion
relation of the low-energy mode given by

ω = − iη

(M + P )/V
p2 , (4.7)

where p is the momentum and ω is the frequency of the mode; η is the
shear viscosity, M/V and P/V are energy and pressure densities.

Because for the two-dimensional charged black hole the pressure van-
ishes, we obtain

ω = − iη

M/V
p2 . (4.8)

Using (4.6) one can express,

M =
QSbh

2π(1 + cosψ) , (4.9)
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and therefore the hydrodynamics predicts a shear pole with the dispersion
relation

ω = −4πiη
s

√
k̂ cos2(ψ/2)

2 p2 , (4.10)

where s = S/V is the entropy density. Bellow we are going to compare
this result with the computation in heterotic gravity and derive the value
of η/s.

4.3 The physical state conditions and vertex op-
erators

4.3.1 BRST quantization

The gauging of the U(1) subgroup from the SL(2,R)×U (1) group in the
gWZW model on the SL(2,R)×U(1)

U(1) coset is realized by adding the U(1)
non-dynamical gauge field to the system, and adding corresponding action
terms to the SL(2,R)×U (1) WZW action. The U(1) subgroup is gauged
left-right asymetrically, and anomaly-free condition must be satisfied. The
details of the construction are reviewed in Appendix A. The end product
is the gWZW action

Sg = S[g] +
1

2π

ˆ
d2z∂x∂̄x

+
1

2π

ˆ
d2z

[
A k̃+ Ā k+AĀ

(
2 + Tr(g−1σ3gσ3) cosψ

)]
. (4.11)

Here we have denoted the currents of the gauged U(1) subgroup as

k =
√
k̂Tr(∂gg−1σ3) cosψ+ 2 sinψ∂x =

2√
k̂
j3 cosψ+ 2 sinψ∂x , (4.12)

k̃ =
√
k̂Tr (g−1∂̄gσ3) = − 2√

k̂
j̃3 . (4.13)

To determine physical spectrum of the quantummodel on the SL(2,R)×U(1)
U(1)

coset, we are going to use BRST quantization method [28] (see [7] where
this method was applied to build the SL(2,R)/U(1) model). The path
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integral for the theory is

Z =

ˆ
[dG][dA][dĀ] exp (−Sg[G,A, Ā])

=

ˆ
[dG][du][dv] det ∂ det ∂̄ exp (−S[G] + S[w]) . (4.14)

Represent functional determinants in terms of the gauge ghost fields

det ∂ det ∂̄ =

ˆ
[db][dc][db̃][dc̃] exp

(
− 1

2π

ˆ
d2z(b∂̄c+ b̃∂c̃)

)
. (4.15)

Ghosts satisfy OPEs

c(z)b(w) ∼ 1
z −w

+ · · · , c̃(z̄)b̃(w̄) ∼ 1
z̄ − w̄

+ · · · . (4.16)

Fix the gauge symmetry, for concreteness fix v = 1, therefore u = w.
Consequently the path integral is given by

Z=

ˆ
[dG][dw][db][dc][db̃][dc̃] exp

(
−S[G]+S[w]− 1

2π

ˆ
d2z(b∂̄c+b̃∂c̃)

)
(4.17)

and the total action is given by

Sq = S[G]− S[w] + 1
2π

ˆ
d2z(b∂̄c+ b̃∂c̃) (4.18)

Notice from this action that the correlation function for w has the wrong
sign:

〈∂w(z1)∂w(z2)〉 =
1

2(z1 − z2)2 . (4.19)

Perform variations (δG, δw, δb) in the action (4.18),

δSq = −
1

2π

ˆ
d2z

[
k̂Tr(∂GG−1∂̄(G−1δG)) + 2∂w∂̄δw− δb∂̄c

]
. (4.20)

For the transformations with a local Grassmann parameter η:

δG = ηcGTL , δw = ηc , δb = η(k+ 2∂w) (4.21)

we therefore obtain

δSq =
1

2π

ˆ
d2z(∂̄η) c(k+ 2∂w) . (4.22)
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If η is a global parameter, then Sq is invariant. Corresponding transfor-
mation is BRST symmetry transformations. Then from (4.22) for anti-
holomorphic η(z̄) we can read off holomorphic component of the corre-
sponding conserved Noether current:

jBRST = c(k+ 2∂w) . (4.23)

Notice that

〈(k(z1) + 2∂w(z1))(k(z2) + 2∂w(z2))〉 = 0 . (4.24)

Therefore corresponding BRST charge

QBRST =
1

2πi

˛
dzjBRST (4.25)

is nilpotent. Similarly one finds the anti-holomorphic component of the
BRST current

j̃BRST = c̃(k̃+ 2∂̄w̃) . (4.26)

Physical states of the SL(2,R)×U(1)
U(1) coset model are the BRST-closed

states of the SL(2,R)×U(1) model:

QBRST |phys〉 = 0 , Q̃BRST |phys〉 = 0 , (4.27)

and are defined up to BRST-exact states.
Denote null bosonic currents as

J = k+ 2∂w , J̃ = k̃+ 2∂̄w̃ . (4.28)

BRST physical state conditions (4.27) therefore become

Jn|phys〉 = 0 , n ≥ 0 , J̃n|phys〉 = 0 , n ≥ 0 . (4.29)

The BRST-exact massless state is obtained by acting with J−1 and J̃−1
on the BRST-closed ground state.

4.3.2 Ground state vertex operator

The ground state vertex operator Vt of the SL(2,R)×U(1)
U(1) model was con-

structed in [25] as a ground state vertex operator of the SL(2,R)×U(1)
model invariant under gauge U(1) transformations. This vertex operator
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describes a tachyon, which due to GSO projection is projected out of the
NS-NS sector. The lowest NS states are massless, and they are described
by the vertex operator VM = jM−1Vt (and similarly for anti-holomorphic
vertex operator). We derive these massless vertex operators bellow in this
section. In this subsection we find it useful to reproduce the result of
citeGiveon:2003ge4 using BRST quantization, developed in the previous
subsection.

Suppose Φ(z, z̄) is a vertex operator on SL(2,R)×U(1). Then

Vt(z, z̄) = Φ(z, z̄) exp (imLwL + imRwR) (4.30)

where
w(z, z̄) = wL(z) +wR(z̄) (4.31)

is a vertex operator on the coset SL(2,R)×U(1)
U(1) if the physical state condition

(4.27) are satisfied. We obtain

k0 · Vt(z, z̄) = −imLVt(z, z̄) , (4.32)

k̃0 · Vt(z, z̄) = −imRVt(z, z̄) . (4.33)

The non-compact w-circle contains only momentum modes and does not
contain any winding modes, therefore

mL =
M

R
−WR , mR =

M

R
+WR ⇒ mL = mR . (4.34)

Let us denote mL = mR = N . The ground state on SL(2,R)× U(1) is
described by the vertex operator 3

Φ(z, z̄) = Vjmm̄e
2inLxL+2inRxR , (4.35)

therefore

k0 ·Φ(z, z̄) = 2
(
m cosψ√

k̂
− inL sinψ

)
Φ(z, z̄) , (4.36)

k̃0 ·Φ(z, z̄) = −2m̄√
k̂

Φ(z, z̄) . (4.37)

3Define x ∼ x+ π, so that nL,R are integers. The Vjmm̄ is the SL(2,R) ground
state primary field, see details in Appendix A.
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The BRST physical state conditions (4.32), (4.33) due to (4.34) therefore
imply

2
(
m cosψ√

k̂
− inL sinψ

)
= −iN (4.38)

2m̄√
k̂
= iN (4.39)

and consequently

m cosψ+ m̄− i
√
k̂nL sinψ = 0 , (4.40)

as was derived in [25].

4.3.3 Vertex operators of massless states in type-II super-
string theory

The stress-energy tensor, which follows from the action (4.18), has the
following holomorphic (left-moving) component 4

T (z) =
1
k̂
ηABj

AjB − ∂x∂x+ ∂w∂w (4.41)

and similarly for anti-holomorphic component. Therefore O((z − w)−2)
terms of the OPEs of the stress-energy tensor and the ground state pri-
mary Vt are given by

T (z)Vt(w, w̄) = 1
(z −w)2

(
−j(j + 1)

k̂
+
n2
L −m2

L

2

)
Vt(w, w̄) + · · ·

(4.42)

T̃ (z̄)Vt(w, w̄) = 1
(z̄ − w̄)2

(
−j(j + 1)

k̂
+
n2
R −m2

R

2

)
Vt(w, w̄) + · · ·

(4.43)
In what follows we are going to perform Kaluza-Klein reduction of the
U(1)x circle, therefore nL = nR = 0.

In this chapter we are interested in the NS-NS vertex operators of
the massless closed string excitations in type-II superstring theory. These

4The term with w corresponds to the coset Kazama-Suzuki construction [29, 30],
where TG/H = TG−TH , in the following way. From BRST condition due to (4.23) one
obtains, schematically, ∂w = − 1

2k. Therefore contribution of w to the stress-energy
tensor T (z) is Tw(z) = ∂w∂w = 1

4kk. Then we expect TH = −Tw, which is indeed the
case: TH (z)k(0) = k(z)/z2.

136



operators in the (−1,−1) picture are constructed as (anti)symmetrized
direct products of massless holomorphic Vµ(z) = e−ϕψµ−1/2 · Vt and anti-
holomorphic Ṽµ(z̄) = e−ϕ̃ψ̃µ−1/2 · Vt vertex operators. Here ψµ(z) and
ψ̃µ(z̄) are world-sheet fermions, and ϕ , ϕ̃ are bosonized superconformal
ghosts. The only non-trivial super-Virasoro physical state condition, which
one needs to impose on the massless states, is G1/2 ·Vµ(z) = 0, and sim-
ilarly for anti-holomorphic vertex operator, where G(z) =

∑
r Gr/z

r+3/2

is the supercurrent.
The other option, which is what we are going to use in this chapter, is

to consider vertex operators V µ and Ṽ µ in zero-ghost picture. They are
obtained from (−1,−1) picture vertex operators Vµ and Ṽµ by acting
with the picture changing operators eϕG and eϕ̃G̃. As a result one obtains
vertex operator in zero-ghost picture

V µ = G−1/2 ·ψ−1/2 · Vt = (jµ−1 + p ·ψ−1/2ψ
µ
−1/2) · Vt , (4.44)

where jµ is the current, supersymmetric to the fermion ψµ, and pµ is the
momentum of the state. Similar expression is true for anti-holomorphic
vertex operator. The only non-trivial super-Virasoro constraint which
one should impose in zero-ghost picture is L1 · V µ = 0. Moreover, the
L1 here is actually the amplitude of the stress-energy tensor L(b)

1 for only
bosonic modes: in the r.h.s. of (4.44) contribution of fermions is au-
tomatically annihilated by the fermionic stress-energy tensor amplitude
L
(f )
1 = ψν1/2ψν1/2. Therefore instead of studying massless NS-NS states

in type-II superstring theory we can study gravity multiplet in bosonic
string theory.

4.3.4 (Anti)holomorphic vertex operators of massless modes
in the R× SL(2,R)

U(1) coset model

In this subsection we review the construction of (anti)holomorphic vertex
operators [16], describing massless (right-)left-moving excitations in the
gWZW model on R× SL(2,R)

U(1) [6, 7]. The classical background is the two-
dimensional black hole with the linear dilaton in a direct product with a
real line. The real line is parametrized by the flat coordinate X, which we
choose as a direction of propagation of all the excitations. The momentum
is equal to p.

The authors of [16] considered graviton vertex operator in (−1,−1)
picture on the world-sheet with N = 2 supersymmetry. We perform a

137



picture changing and consider vertex operators in zero-ghost picture. Due
to noted in the previous subsection, we can actually study bosonic string
and then make contact with the results of [16].

Without loss of generality let us focus on holomorphic vertex operators.
The ground state vertex operator of the R× SL(2,R)

U(1) coset theory is

Vt = eipXeiNwVjm . (4.45)

This state must be closed under the action of the null U(1) BRST current,

J = j3 −
√
k̂∂w , (4.46)

which imposes the condition

iN =
2m√
k̂

. (4.47)

The most general holomorphic vertex operator of the massless state
(which is a gauge field from the space-time point of view) on R× SL(2,R)

U(1)
is

V χ = (a+j
+
−1j
−
0 + a−j

−
−1j

+
0 + a3j

3 + aw∂w+ aX∂X)Vt . (4.48)

Mass-shell Virasoro constraint (see (4.42)) gives

L0V
χ = V χ ⇒ −j(j + 1)

k̂− 2
+
p2 −N2

4 = 0 (4.49)

Closeness of (4.48) w.r.t. J1 (see (4.46)) reduces the number of parameters
by one, giving the most general BRST-closed state

V χ = (a+j
+
−1j
−
0 + a−j

−
−1j

+
0 +

2√
k̂
(a+(m+ j)(m− 1− j)

− a−(m− j)(m+ 1 + j))∂w+AJ + aX∂X)Vt . (4.50)

Also V χ is defined up to BRST-exact state JVt, which makes one more
parameter unphysical, leaving us with a gauge field in three dimensional
R× SL(2,R)

U(1) with three polarization parameters.
Gauge field in three dimensions has one transverse physical d.o.f. Two

of the three d.o.f. are eliminated in the following way. First, we impose
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Virasoro constraint L1V
χ = 0. Second, the state V χ, which satisfies this

constraint, is defined up to the null state L−1Vt

L−1Vt =

( 1
k̂− 2

(j+−1j
−
0 + j−−1j

+
0 − 2mj3) + iN∂w+ ip∂X

)
Vt . (4.51)

As a result we are left with one transverse d.o.f.
The L1V

χ = 0 constraint gives

a+(m+ j)(m− 1− j) + a−(m− j)(m+ 1 + j)

+
iN√
k̂
(a+(m+ j)(m− 1− j)− a−(m− j)(m+ 1 + j)) = aX

ip

2 . (4.52)

Let us parametrize the solution to this equation by two independent pa-
rameters aX , a:

a+ =
aX

ip
4 + a

(
1− 2m

k̂

)
(m+ j)(m− 1− j) , a− =

aX
ip
4 − a

(
1 + 2m

k̂

)
(m− j)(m+ 1 + j)

. (4.53)

Therefore the most general massless left-moving state, satisfying all the Vi-
rasoro and U (1) gauge BRST constraints (and defined up to BRST-exact
state J−1Vt and null Virasoro state L−1Vt) is described by holomorphic
vertex operator

V χ=

aX ip
4 +a

(
1−2m

k̂

)
(m+j)(m−1−j) j

+
−1j
−
0 +

aX
ip
4 −a

(
1+ 2m

k̂

)
(m−j)(m+1+j)j

−
−1j

+
0

+
4a√
k̂
∂w+ aX∂X

)
Vt . (4.54)

Now notice that for

a = ma1 , aX = −i(k̂− 2)pa1 (4.55)

we obtain that the state (4.54) is

V χ
0 = a1(−2mJ−1 − (k̂− 2)L−1)Vt . (4.56)

Such a state is a pure gauge (BRST-exact).
Therefore the most general physical state, which satisfies all the con-

straints and which is not a pure gauge, is a state for which

a

aX
6= im

(k̂− 2)p
. (4.57)
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Any such state is orthogonal to the V χ
0 state (4.56), due to Virasoro and

BRST physical state conditions.
The two-point function of the most general physical state (4.54) is

〈V χ(p, j,m)V χ(−p, j,−m)〉 = (k̂2 − k̂p2 − 4m2)(maX + i(k̂− 2)pa)2

2k̂2(m2 − j2)(m2 − (j + 1)2))

〈Vt(p, j,m)Vt(−p, j,−m)〉 . (4.58)

When (4.57) is not satisfied, we are dealing with the null pure gauge state,
which is a linear combination of timelike and longitudinal polarizations,
that is for such a state

maX + i(k̂− 2)pa = 0 . (4.59)

Finally let us make contact with the result of [16]. The two holo-
morphic supercurrents of N = 2 supersymmetric SL(2,R)/U (1) gWZW
theory are

G+ = ψ+j− , G− = ψ−j+ . (4.60)

Applying the picture-changing operator G+
−1/2 + G−−1/2 to the physical

holomorphic vertex operator of [16] we obtain the vertex operator of the
form

V χ = (∂X + a+j
+
−1j
−
0 + a−j

−
−1j

+
0 + fermions)Vt . (4.61)

Here due to (4.54) we have

a+ =
ip/4

(m+ j)(m− 1− j) , a− =
ip/4

(m− j)(m+ 1 + j)
. (4.62)

Due to (4.58) we obtain that the two-point function of this vertex operator
has poles at m = ±j. Bellow we discuss these poles in detail and show
that actually only m = −j pole is present, which after taking into account
the mass-shell condition precisely reproduces the dispersion relation of the
gapless low-energy mode, found in [16].

4.3.5 (Anti)holomorphic vertex operators of massless modes
in the R× SL(2,R)×U(1)

U(1) coset model

In this subsection we are going to construct (anti)holomorphic vertex op-
erators, describing massless (right-)left-moving string excitations in the
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R× SL(2,R)×U(1)
U(1) model. The classical geometry of this model is a geome-

try of the 2d charged black hole in a direct product with a real line. We
choose this real line as a direction of propagation of all the excitations,
and parametrize it by the coordinate X. The momentum of propagation
is p.

The vertex operator operators must satisfy BRST and Virasoro phys-
ical state conditions. Recall the null BRST currents (4.28):

J =
2√
k̂
j3 cosψ+ 2 sinψ∂x+ 2∂w (4.63)

J̃ = − 2√
k̂
j̃3 + 2∂̄w̃ . (4.64)

Notice that the anti-holomorphic sector is the same as for the model of the
previous subsection: anti-holomorphic (right-moving) sector of the circle,
U(1)x̃, is disconnected from the rest of the geometry.

Consider holomorphic sector. Ground state vertex operator is

Vt = eipXeiNwVjm . (4.65)

This state must be closed w.r.t. BRST current (4.63), which imposes the
constraint

iN = −2m cosψ√
k̂

. (4.66)

The most general massless holomorphic vertex operator on the R×
SL(2,R)×U(1)

U(1) is given by

V χ = (a+j
+
−1j
−
0 + a−j

−
−1j

+
0 + aw∂w+ aX∂X + bx∂x+AJ)Vt . (4.67)

It must be closed w.r.t. BRST current (4.63), which requires

aw = bx sinψ− 2√
k̂

cosψ(a′+ − a′−) . (4.68)

where we have denoted for brevity

a′+ = a+(m+ j)(m− 1− j) , a′− = a−(m− j)(m+ 1 + j) . (4.69)

The most general massless state, closed w.r.t. (4.63), is therefore described
by the vertex operator

V χ =
(
a+j

+
−1j
−
0 + a−j

−
−1j

+
0 + aX∂X + bx∂x

+

(
bx sinψ− 2√

k̂
cosψ(a′+ − a′−)

)
∂w+AJ

)
Vt . (4.70)
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One d.o.f. in (4.70) is unphysical due to the fact that each state V χ is
defined up to BRST-exact state J−1Vt. Therefore there remain four d.o.f.
of the gauge field V χ in four dimensional target space. Two of them are
unphysical, and are eliminated due to Virasoro constraints, as we show
bellow.

Imposing Virasoro constraint L1V
χ = 0, with account to (4.66), we

obtain condition

a′+ + a′− +
2m cos2 ψ

k̂
(a′+ − a′−) = aX

ip

2 + bx
m sin 2ψ

2
√
k̂

. (4.71)

We parametrize the solution to this equation as

a+ =
aX

ip
4 + a

(
1− 2m cos2 ψ

k̂

)
+ bxm sin 2ψ

4
√
k̂

(m+ j)(m− 1− j) (4.72)

a− =
aX

ip
4 − a

(
1 + 2m cos2 ψ

k̂

)
+ bxm sin 2ψ

4
√
k̂

(m− j)(m+ 1 + j)
. (4.73)

Using the mass-shell Virasoro condition (see (4.42))

L0V
χ = V χ ⇒ −j(j + 1)

k̂− 2
+
p2 −N2

4 = 0 . (4.74)

we can re-write

(m+j)(m−1−j)=− k̂−2
4 p2−m

(
1−2m cos2 ψ

k̂

)
+m2 sin2 ψ , (4.75)

(m−j)(m+1+j)=− k̂−2
4 p2+m

(
1+2m cos2 ψ

k̂

)
+m2 sin2 ψ . (4.76)

These expressions are useful for computations, described bellow.
To summarize, the most general massless physical state V χ on the

R× SL(2,R)×U(1)
U(1) , satisfying all the physical constraints, is

V χ =

aX
ip
4 + a

(
1− 2m cos2 ψ

k̂

)
+ bxm sin 2ψ

4
√
k̂

(m+ j)(m− 1− j) j+−1j
−
0

+
aX

ip
4 − a

(
1 + 2m cos2 ψ

k̂

)
+ bxm sin 2ψ

4
√
k̂

(m− j)(m+ 1 + j)
j−−1j

+
0

+ aX∂X + bx∂x+

(
bx sinψ− 4a cosψ√

k̂

)
∂w

)
Vt . (4.77)

142



This state is defined up to the null Virasoro state (recall nL,R = 0 due to
Kaluza-Klein reduction of the x-circle)

L−1V
′
jm =

( 1
k̂− 2

(j+−1j
−
0 + j−−1j

+
0 − 2mj3) + iN∂w+ ip∂X

)
Vt . (4.78)

Using (4.75) and (4.76) one then demonstrates that for

aX = −i(k̂− 2)pa1 , a = ma1 , bx = −2m
√
k̂ tanψa1 (4.79)

the state (4.77) is non-physical (it is the sum of the BRST-exact and the
null Virasoro states)

V χ
0 = −a1

(
(k̂− 2)L−1 +

m
√
k̂

cosψ j
)
Vt . (4.80)

The two-point function of the vertex operator (4.77) is given by

〈V χV χ〉=(m2 − j2)−1(m− (j + 1)2)−1(c1(i(k̂− 2)pa+maX)2 (4.81)

+c2(i(k̂− 2)pbx−2m
√
k̂ tanψaX)2+c3(bx+2a

√
k̂ tanψ)2)〈VtVt〉 ,

where

c1 =
1

4k̂2(k̂− 2)
(k̂(k̂− 2)2 cos2 ψp2 − 8(k̂− 2) cos4 ψm2

− k̂2(k̂− 2)(p2 − 2) + 2k̂(sin2 2ψ+ 2k̂ sin4 ψ)m2) , (4.82)

c2=
cos2 ψ

32k̂2(k̂−2)
(2((k̂−2)2 cos 2ψ+4−4k̂−k̂2)m2+(k̂−2)2k̂p2) , (4.83)

c3 =
cotψ
32k̂2 ((8m

2(k̂2 − 2m2) + 2(k̂2 − 4)m2p2 − (k̂− 2)2k̂p4) sin 2ψ

−m2(8m2 + (k̂− 2)2p2) sin 4ψ) . (4.84)

When the (4.79) is satisfied, we are dealing with the null state V χ
0 with

zero norm.
Like in the previous section, where we derived the vertex operator

(4.61), we now proceed to writing down the vertex operators V x = (∂x+
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...)Vt and V X = (∂X + ...)Vt, where dots denote contribution from j±−1
currents:

V X=

(
∂X+

ip/4
(m+j)(m−1−j)j

+
−1j
−
0 +

ip/4
(m−j)(m+1+j)j

−
−1j

+
0

)
Vt (4.85)

V x=

(
∂x+

(
√
k̂/4) tanψ

(m+j)(m−1−j)j
+
−1j
−
0 −

(
√
k̂/4) tanψ

(m−j)(m+1+j)j
−
−1j

+
0

)
Vt . (4.86)

4.4 Vertex operators of massless NS-NS states,
and correlation functions

In the previous section we constructed holomorphic and anti-holomorphic
vertex operators, describing respectively left-moving and right-moving
massless excitations of the string on the SL(2,R)×U(1)x

U(1) coset. The state
of the closed string is described by the vertex operator which is a di-
rect product of holomorphic and anti-holomorphic vertex operators. In
this section we will construct the vertex operators for graviton and anti-
symmetric tensor field, which are massless NS-NS states of type-II gravity.
Kaluza-Klein reduction on U(1)x, applied to graviton and antisymmetric
tensor field vertex operators, gives vertex operators for gauge fields. We
will split the vertex operators into two decoupled from each other groups,
and find correlation functions for vertex operators within each group.

Denote M = a,X,x, and µ = a,X, where a labels non-compactified
directions, transverse to the direction X of propagation of all the excita-
tions, and x is a coordinate of the compactified circle. Then, VM = jMVt
are holomorphic physical vertex operators and ṼM = j̃MVt are anti-
holomorphic physical vertex operators of the massless left-moving and
right-moving states.

Here ja = ∂xa and j̃a = ∂̄xa. Due to (4.85) and (4.86) the jx and jX
are elements of two different BRST and Virasoro cohomology classes, and
are defined by

jX=∂X+
ip/4

(m+j)(m−1−j)j
+
−1j
−
0 +

ip/4
(m−j)(m+1+j)j

−
−1j

+
0 (4.87)

jx=∂x+
(
√
k̂/4) tanψ

(m+j)(m−1−j)j
+
−1j
−
0 −

(
√
k̂/4) tanψ

(m−j)(m+1+j)j
−
−1j

+
0 . (4.88)
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Due to anti-holomorphic version of (4.61),

j̃X=∂̄X+
ip/4

(m̄+j)(m̄−1−j) j̃
+
−1j̃
−
0 +

ip/4
(m̄−j)(m̄+1+j) j̃

−
−1j̃

+
0 . (4.89)

Finally, j̃x = ∂̄x.
Notice that due to (4.81) the normalized two-point functions

〈jxjx〉jmm̄/〈VtVt〉, 〈jxjX〉jmm̄/〈VtVt〉, 〈jXjX〉jmm̄/〈VtVt〉 have simple poles
at m = ±j, and due to (4.58) (the anti-holomorphic version of it) the two-
point function 〈j̃X j̃X〉jmm̄/〈VtVt〉 has simple poles at m̄ = ±j.

The two-point function for ground state of the SL(2,R) model is given
by (see e.g. [14, 15] for a recent discussion)

〈Vj,m,m̄Vj,−m,−m̄〉=ν
Γ
(
1−2j+1

k̂−2

)
Γ(−2j−1)Γ(1+j+m)Γ(1+j−m̄)

Γ
(
1+ 2j+1

k̂−2

)
Γ(2j+1)Γ(−j+m)Γ(−m̄−j)

(4.90)
where ν is some number. Notice that due to factors of Γ(−j +m) and
Γ(−m̄− j) in the denominator, the (4.90) has simple zeroth are j = m
and j = −m̄. Therefore the two-point functions 〈jxjx〉jmm̄, 〈jxjX〉jmm̄,
〈jXjX〉jmm̄ have simple pole at m = −j, while the simple pole at m = j
is canceled, and the two-point function 〈j̃X j̃X〉jmm̄ has simple pole at
m̄ = j, while the pole at m̄ = −j is canceled.

4.4.1 Vertex operators and their correlation functions

Graviton vertex operator is

GMN = (jM j̃N + jN j̃M )Vt . (4.91)

Antisymmetric tensor field vertex operator is

BMN = (jM j̃N − jN j̃M )Vt . (4.92)

Gauge field vertex operators are:

Aµ = Gxµ = (jxj̃µ + ∂̄xjµ)Vt (4.93)

Bµ = Bxµ = (jxj̃µ − ∂̄xjµ)Vt . (4.94)

We have the following groups of vertex operators defined by the spin
w.r.t. to the rotations in the transverse non-compactified space (for which
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the coordinates are labeled by small Latin indices).5 In the sound channel
the spin is zero, and one considers the fields GXX , AX BX . In the shear
channel the spin is one, and one considers the fields GXa, BXa, Aa, Ba.
In the scalar channel the spin is two, and one considers the fields Gab
and Bab. Due to the rotational symmetry in the transverse space, vertex
operators from different groups are decoupled from each other.

Shear channel

In the shear channel we have vertex operators

GXa = (jX ∂̄xa + j̃X∂xa)Vt (4.95)

BXa = (jX ∂̄xa − j̃X∂xa)Vt (4.96)

Aa = Gxa = (jx∂̄xa + ∂̄x∂xa)Vt (4.97)

Ba = Bxa = (jx∂̄xa − ∂̄x∂xa)Vt (4.98)

Notice that all these vertex operators are coupled to each other. We can
consider instead two groups of operators:

the first group is

SXa =
1
2 (G

Xa +BXa) = jX ∂̄xaVt (4.99)

W a =
1
2 (A

a +Ba) = jx∂̄xaVt (4.100)

and the second group is

RXa =
1
2 (G

Xa −BXa) = j̃X∂xaVt (4.101)

Ua =
1
2 (A

a −Ba) = ∂̄x∂xaVt . (4.102)

We call the operators from the first group S-system and the operators
from the second group R-system. The S-system is decoupled from the R-
system. For the vertex operators of the S-system the two-point functions
are

〈SXaSXb〉 = −1
2δ

ab〈jXjX〉jmm̄ (4.103)

5See e.g. [31] for a recent discussion in the holographic context.
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〈W aW b〉 = −1
2δ

ab〈jxjx〉jmm̄ (4.104)

〈SXaW b〉 = −1
2δ

ab〈jxjX〉jmm̄ (4.105)

These correlation functions have a simple pole at j = −m.
For the vertex operators of the R-system the two-point functions are

〈RXaRXb〉 = −1
2δ

ab〈j̃X j̃X〉jmm̄ (4.106)

〈UaU b〉 = 1
4δ

ab (4.107)

〈RXaU b〉 = 0 . (4.108)

These correlation functions have a simple pole at j = m̄.
Due to holographic correspondence we obtain correlation functions of

the shear components of the stress-energy tensor of the dual field theory:6

〈GXaGXb〉 = 〈TXaTXb〉 = −1
2δ

ab
(
〈jXjX〉jmm̄ + 〈j̃X j̃X〉jmm̄

)
(4.109)

The correlation functions for the transverse components of the charge
current are

〈JaJb〉 = 〈AaAb〉 = −1
2δ

ab
(
〈jxjx〉jmm̄ −

1
2

)
(4.110)

Finally,
〈JaTXb〉 = 〈AaGXb〉 = −1

2δ
ab〈jxjX〉jmm̄ . (4.111)

We conclude that in the shear/transverse diffusion channel we have modes
with the dispersion relations m = −j and m̄ = j.

Sound channel

In the sound channel we have vertex operators

GXX = jX j̃XVt (4.112)

AX = GxX = (jxj̃X + ∂̄xjX)Vt (4.113)
6One also may be interested in computing correlation functions of the operator, dual

to BMN -field. See [32, 33], where the primary operator in N = 4 SYM, holographically
dual to the B-field in AdS5 × S5, was found.
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BX = BxX = (jxj̃X − ∂̄xjX)Vt . (4.114)

Notice that AX and BX are coupled. Consider instead decoupled gauge
fields vertex operators

WX =
1
2 (A

X +BX) = jxj̃XVt (4.115)

UX =
1
2 (A

X −BX) = ∂̄xjXVt . (4.116)

Correlation functions are

〈GXXGXX〉 = 〈jXjX〉jmm̄〈j̃X j̃X〉jmm̄ (4.117)

〈GXXWX〉 = 〈jxjX〉jmm̄〈j̃X j̃X〉jmm̄ (4.118)

〈GXXUX〉 = 0 (4.119)

〈WXWX〉 = 〈jxjx〉jmm̄〈j̃X j̃X〉jmm̄ (4.120)

〈UXUX〉 = −1
2〈j

XjX〉jmm̄ . (4.121)

The correlation functions (4.117), (4.118) and (4.120) have simple poles
at j = −m and j = m̄ and the correlation function (4.121) has simple
pole at j = −m.

Due to holographic correspondence we obtain correlation functions of
the longitudinal component of the stress-energy tensor of the dual field
theory:

〈TXXTXX〉 = 〈GXXGXX〉 = 〈jXjX〉jmm̄〈j̃X j̃X〉jmm̄ . (4.122)

The correlation function of the longitudinal component of the charge cur-
rent is

〈JXJX〉 = 〈AXAX〉 = 〈jxjx〉jmm̄〈j̃X j̃X〉jmm̄ −
1
2〈j

XjX〉jmm̄ . (4.123)

Finally,

〈JXTXX〉 = 〈AXGXX〉 = 〈jxjX〉jmm̄〈j̃X j̃X〉jmm̄ . (4.124)

Therefore in the sound channel we have modes with the dispersion rela-
tions m = −j and m̄ = j.
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Scalar channel

In the scalar channel one considers Gab and Bab, correlation functions for
which do not have poles at j = −m and j = m̄.

4.4.2 Low-energy modes

In the previous subsection we concluded that there are modes with the
dispersion relationsm = −j and m̄ = j in the shear and sound channels of
the quantum field theory holographically dual to the charged black brane.
Now we are going to show, considering small ω and q, that these modes
are actually gapless modes.

The frequency is determined by the asymptotic behavior of the tachyon
vertex operator Vt ∼ eiωt (see [25]), and is given by (for ψ 6= π/2, that is
in non-extremal case)

ω =
(1− tan2(ψ/2))(m− m̄)√

k̂
(4.125)

Due to the gauge physical state condition (4.40) we have m̄ = −m cosψ,
and therefore (also after Wick rotation m→ im)

ω =
2im cosψ√

k̂
. (4.126)

Due to the mass-shell condition

−j(j + 1)
k̂

+
p2 −N2

4 = 0 (4.127)

where N ∼ m ∼ ω, for ω ∼ p2 and p� 1 we obtain

j =
k̂

4p
2 . (4.128)

Therefore the S-system possesses the low-energy excitation mode with
the dispersion relation

ω = −i
√
k̂

2 cosψ p2 (4.129)

while for the R-system we obtain the mode with the dispersion relation

ω = −i
√
k̂

2 p2 . (4.130)
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In the extremal case ψ = π/2 the two-point functions in the S-system,
due to (4.129), behave as 〈SS〉 ∼ 1/ω, indicating local criticality, while
the dispersion relation (4.130) of the R-system stays unaffected.

At zero density q = 0 we have ψ = 0, and the mode (4.129) coincides
with the mode (4.130). In this case U(1)x completely decouples from
SL(2,R)/U (1), and we recover the results of [16] for the model on the
SL(2,R)/U (1). Due to (4.4) we obtain

ω = −i 1
4πT p

2 (4.131)

Comparing it with the shear mode dispersion relation at zero density

ω = −i η
sT
p2 (4.132)

we recover the result of [16]

η

s
=

1
4π . (4.133)

4.4.3 “2kF” singularity

Expression (4.90) for the groundstate two-point function contains the fac-
tor of Γ

(
1− 2j+1

k̂−2

)
. Due to the physical state mass-shell condition (4.127)

we obtain
j = −1

2 +
1
2

√
1 + (k̂− 2)(p2 −N2) . (4.134)

At zero frequencyN = 0. Therefore equation 2j+ 1 = k̂−2, which defines
singularity of Γ

(
1− 2j+1

k̂−2

)
, has a zero frequency and finite momentum

solution. The value of the momentum is given by

p2
? =

1
`2s

(
k̂− 2− 1

k̂− 2

)
. (4.135)

Note that p∗ is independent of the chemical potential µ = tan ψ
2 . The

singular behavior of 〈Vjmm̄Vjmm̄〉 at ω = 0 and p = p∗ was compared by
Polchinski and Silverstein [8] with “2kF " singularities in current correlation
functions of condensed matter systems (see e.g. [34]).
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4.5 Type-II gravity approximation
In this section we will compute the two-point functions for graviton, an-
tisymmetric tensor field and gauge fields in the background of the 2d
charged black hole (in a direct product with a flat space). Our purpose is
to verify the dispersion relations (4.129-(4.130).

One-loop beta-functions for the NS-NS fields of type-II gravity are
given by (see e.g. [35],Polchinski:1998rr4)

βGMN = RMN + 2∇M∂NΦ− 1
4H

LS
M HNLS , (4.136)

βΦ = c+
1

16π2

(
4(∂Φ)2 − 4∇2Φ−R+

1
12H

2
)

, (4.137)

βBMN = ∇LHL
MN − 2(∂LΦ)HL

MN . (4.138)

Corresponding equations of motion are βG,Φ,B = 0.
Here the field strength of antisymmetric tensor BMN is given by

HMNL = ∂MBNL + ∂NBLM + ∂LBMN . (4.139)

The beta-functions (4.216)-(4.218) are invariant w.r.t. the gauge symme-
try

δBMN = ∂MΛN − ∂NΛM . (4.140)

Requirement of the world-sheet conformal invariance gives the equa-
tions of motion βG,B,Φ = 0. These equations have a black brane solution,
which is a direct product of two-dimensional charged black hole (CBH)
and flat space, CBH ×Rd−1:

gMN = diag{−f(r), 1/f(r), 1, ..., 1} ,
f(r) = 1− 2Me−Qr + q2e−2Qr , (4.141)

Φ = Φ0 −
Qr

2 , Ftr = F (r) = Qqe−Qr . (4.142)

where7

gtx = Bxt = −Btx = At . (4.143)

The string theory solution, described in the previous section, implies Q =
2/
√
k̂.

7We thank A. Giveon for pointing out to us the role of this equation in the 2d
charged black hole solution of type-II superstring theory.
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Consider fluctuations hMN , bMN and ϕ around this solution. Use the
diffeomorphism invariance to fix hMr = 0. Use gauge invariance (4.140)
to fix bMr = 0. Among d+ 1 space-time coordinates, denoted by capital
Latin indices, we have t, r coordinates of the charged black hole and d− 1
flat coordinates. Let us consider CBH × R3. Choose X to be the R3

direction of propagation of excitations (with momentum p) and choose Y
to be the R3 direction, transverse to propagation of excitations. Finally
x is the direction of R3 which we are going to Kaluza-Klein reduce. Fluc-
tuations depend on t, r,X. The dependence on t and X in momentum
representation boils down to the factor e−iωt+ipX .

Perform Kaluza-Klein reduction of the x coordinate. Small Greek
indices are used for non-reduced coordinates, M = µ,x. It is convenient,
as we did in the world-sheet consideration, to consider fluctuations of the
fields

SMN =
1
2 (hMN + bMN ) (4.144)

RMN =
1
2 (hMN − bMN ) . (4.145)

The fields (4.144) belong to the S-system and the fields (4.145) belong
to the R-system, we are using the same terminology as in the previous
section.

Let us consider shear fluctuations in the reduced space CBH ×R2:
RtY , RXY , StY , SXY and transverse components of gauge fields wY and
uY (see bellow). The ansatz for graviton and two-form field in the non-
reduced space CBH × R3 in terms of the fields on the reduced space
CBH ×R2 is

G =

 A2
t−f
0
0

RtY +StY +At(uY +wY )
At

0
1/f

0
0
0

0
0
1

RXY +SXY
0

RtY +StY +At(uY +wY )
0

RXY +SXY

1
uY +wY

At
0
0

uY +wY
1


(4.146)

B = (4.147) 0
0
0

−(StY −RtY )−At(wY −uY )
At

0
0
0
0
0

0
0
0

−(SXY −RXY )
0

StY −RtY +At(wY −uY )
0

SXY −RXY
0

wY −uY

−At
0
0

−(wY −uY )
0

 .

Before proceeding, rescale

r = rQ , w = ω/Q , p = p/Q , (4.148)
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which eliminates Q dependence from the equations of motion.
Due to string theory result we know that the R-system fields R and

u are decoupled from the S-system fields S and w. We will find out
that this decoupling is true in gravity computations as well. To find
equations of motion for the fields Rµν , Sµν , wµ and uµ we compute the
beta functions βRMN = βGMN −βBMN and βSMN = βGMN +βBMN for (MN ) =
(tY ), (rY ), (XY ), (xY ).

Consider first equations of motion in the R-system.
βRtY :

pf(pRtY + ωRXY ) + f2(2Φ′R′tY −R′′tY )−At(f2u′′Y (4.149)
+ f(f ′ − 2fΦ′)u′Y + (ω2 − p2f + (f2/At)(A′′t − 2A′tΦ′)uY ) = 0 .

βRrY :
ωR′tY + pfR′XY = 0 . (4.150)

βRXY :

ω(pRtY + ωRXY ) + f(fR′′XY + (f ′ − 2fΦ′)R′XY ) = 0 . (4.151)

βRxY :

f2u′′Y + f(f ′ − 2fΦ′)u′Y + (ω2 − p2f)uY = 0 . (4.152)

Notice that for the CBH background Φ′ = −1/2 and A′′t = −A′t.
Therefore one sees that uY contribution to RtY equation (4.149) vanishes
due to uY equation (4.152). Therefore we see thatRµY and uY fluctuations
decouple, as expected from the string theory computations (4.108).

Introduce diff-invariant quantity

Z = pRtY + ωRXY . (4.153)

Solving following from this definition equation

Z ′ = pR′tY + ωR′XY (4.154)

together with RrY equation (4.150) one obtains

R′tY = − pfZ ′

ω2 − p2f
, R′XY =

ωZ ′

ω2 − p2f
. (4.155)
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Plugging expressions (4.155) into RtY equation (4.149) one obtains equa-
tion (the same equation is obtained if one plugs (4.155) into RXY equation
(4.151))

Z ′′ +

(
ω2f ′

f(ω2 − p2f)
− 2Φ′

)
Z ′ +

ω2 − p2f

f2 Z = 0 . (4.156)

Together with decoupled from it transverse gauge field equation (4.152)
for uY these are fluctuation equations for shear components of R-system.

Consider now S and w fluctuation equations of the S-system.
βStY :

− ω2AtwY + f(p(pStY + ωSXY ) +At(wY (p
2 − 2A′2t )− 2A′tS′tY

− f ′w′Y ))− f2(−2Φ′(S′tY +Atw
′
Y ) + 2A′t(w′Y −Φ′wY ) +A′′twY (4.157)

+ S′′tY +Atw
′′
Y ) = 0 .

βSrY :
2ωA′twY + ωS′tY + pfS′XY = 0 . (4.158)

βSXY :

ω(pStY + ωSXY ) + f(S′XY (f
′ − 2Φ′f) + fS′′XY ) = 0 . (4.159)

βSxY :

(ω2−f(p2−2A′2t ))wY+f(2A′tS′tY+(f ′−2Φ′f)w′Y+fw
′′
Y ) = 0 . (4.160)

Introduce diff-invariant quantity

V = pStY + ωSXY . (4.161)

Then solving equation

V ′ = pS′tY + ωS′XY . (4.162)

together with βSrY equation (4.158) we obtain

S′XY =
ω(2pA′twY + V ′)

ω2 − p2f
, S′tY = −2ω2A′twY + pfV ′

ω2 − p2f
. (4.163)
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Plugging into βStY equation (4.157) the expressions (4.163) together with
w′′Y , expressed from wY equation (4.160), we arrive at (the same result is
obtained by plugging (4.163) into βSXY equation (4.159)) 8

V ′′ +

(
ω2f ′

f(ω2 − p2f)
− 2Φ′

)
V ′ +

ω2 − p2f

f2 V (4.164)

+
2pA′t
f

(
fw′Y +

ω2f ′

ω2 − p2f
wY

)
= 0 .

Finally, using S′tY , expressed in (4.163), in wY equation (4.160) we obtain

w′′Y +
f ′ − 2fΦ′

f
w′Y +

(
ω2 − p2f

f2 +
2A′2t
f

(
1− 2ω2

ω2 − p2f

))
wY (4.165)

− 2pA′t
ω2 − p2f

V ′ = 0 .

We see that in the S-system tensor field shear components are coupled to
gauge field transverse component, which agrees with string computation
(4.105).

Let us look for poles of the correlation functions in R-system and in
S-system. Notice that R-system is just S-system at vanishing background
flux A′t = 0; compare equation (4.164) with equation (4.229) and equation
(4.165) with equation (4.152) to see that. Therefore it is sufficient to study
S-system.

Introduce new radial coordinate u = er. Then inner and outer horizons
are located at

u± =M ±
√
M2 − q2 . (4.166)

The equations of motion (4.164) and (4.165) become (also take into ac-
count q = √u+u−)

d2wY
du2 +

( 1
u− u−

+
1

u− u+

)
dwY
du

+
1

(u− u−)(u− u+)
(4.167)

×
(

w2u2 − p2(u− u−)(u− u+)
(u− u−)(u− u+)

− 2u+u−w2

w2u2 − p2(u− u−)(u− u+)

+
2u+u−
u2

)
wY +

2p√u+u−
w2u2 − p2(u− u−)(u− u+)

dV
du

= 0 .

8Also take into account Φ′ = −1/2 and A′′
t = −A′

t.
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d2V
du2 +

1
u

(
2+ w2u2

w2u2−p2(u−u−)(u−u+)

(
u+

u− u+
+

u−
u− u−

))
dV
du

−
2p√u+u−

u2
dwY
du

+
w2u2−p2(u− u−)(u− u+)

(u− u−)2(u− u+)2 V (4.168)

−
2p√u+u−

u

w2

w2u2−p2(u− u−)(u− u+)

(
u+

u− u+
+

u−
u− u−

)
wY=0 .

In the near horizon limit v = u−u+ � 1 equations (4.235) and (4.236)
give rise to

d2wY
dv2 +

1
v

dwY
dv

+
w2u2

+

(u+ − u−)2v2wY = 0 (4.169)

d2V
dv2 +

1
v

dV
dv

+
w2u2

+

(u+ − u−)2v2 V = 0 . (4.170)

The incoming-wave solutions are

wY (u) = C1(u− u+)
−iwu+
u+−u− , V(u) = C2(u− u+)

−iwu+
u+−u− . (4.171)

In the asymptotic region u� 1 equations (4.235) and (4.236) give rise
to

d2wY
du2 +

2
u

dwY
du

+
w2 − p2

u2 wY = 0 (4.172)

d2V
du2 +

2
u

dV
du

+
w2 − p2

u2 V = 0 (4.173)

with the solution

wY = Awu
1
2 (−1+

√
1+4(p2−w2)) + Bwu

1
2 (−1−

√
1+4(p2−w2)) (4.174)

V = AV u
1
2 (−1+

√
1+4(p2−w2)) + BV u

1
2 (−1−

√
1+4(p2−w2)) . (4.175)

We solve numerically the equations (4.235), (4.236) with boundary
conditions (4.239) and find two linearly-independent solutions (w(1)

Y , V(1))

and (w
(2)
Y , V(2)) (for two independent choices of C1,2). The correlation

matrix is given by [37] G ' BA−1, where the matrices of leading and
subleading coefficients are determined by (4.242) and (4.243):

A =

A(1)
V

A(1)
w

AA(2)
V

A(2)
w

 , B =

B(1)V

B(1)w

B(2)V

B(2)w

 . (4.176)
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Zeroes of the determinant of the matrix of the leading behavior coefficients
9

A(1)
V A

(2)
w −A

(2)
V A

(1)
w (4.177)

define the dispersion relation of low-energy mode, which is given by

w = −ip2 cosψ . (4.178)

Due to (4.232) and Q = 2/
√
k̂ the dispersion relation (4.245) coincides

with the dispersion relation (4.129), obtained for the S-system by the
world-sheet computation.

From the S-system result (4.245) we conclude that in the R-system
〈ZZ〉 correlation function has pole at

w = −ip2 , (4.179)

which coincides with the pole (4.130), obtained by the world-sheet com-
putation. Notice that as in [16] the supergravity result does not receive
stringy corrections.

4.6 Discussion
In this chapter we have used the holographically dual string theory to
study quantum field theory at finite temperature and chemical potential.
The string theory was defined by the gWZW model on the SL(2,R)×U(1)x

U(1) ×
Rd−1, with the U(1) gauged asymmetrically [25] coset and the covariant
quantization of the string, we have constructed vertex operators, repre-
senting massless NS-NS states of the string. The gauge fields vertex op-
erators were obtained by the Kaluza-Klein reduction of the graviton and
the two-form field vertex operators on the U (1)x.

We have found that these vertex operators split into two decoupled
systems. This implies that the boundary low energy theory splits into two
decoupled models, as far as the two-point functions are concerned. At
low energies the Green’s functions of stress energy tensor and global U(1)
current exhibit two gapless poles. Corresponding dispersion relations are
(4.129) and (4.130) in the shear and sound channels. The dispersion rela-
tion (4.130) does not depend on the charge to mass ratio of the charged

9See e.g. [38] where computation of correlation matrix in the different system of two
coupled differential equations is explained in detail.
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black hole background. When the charge density is zero, the dispersion
relation (4.129) coincides with the dispersion relation (4.130). We have
verified these results by computations in type-II supergravity; the super-
gravity results exactly coincide with superstring results. We speculate
that the system is described at low energies by a decoupled sum of two
non-interacting fluids. It would be interesting to make this picture more
precise.

The current and stress-energy tensor two-point correlation functions,
which we have computed, also possess finite-momentum zero-frequency
singularity. As in [8] it originates from the two-point function of the
vertex operator of the ground state of the WZW model on SL(2,R). This
“2kF ” singularity is a purely stringy effect [8], absent in the supergravity
approximation: from (4.135) it follows, that the momentum p∗, measured
in units of inverse curvature radius, scales as (Rp∗)2 ' k̂`2sp

2
∗ ∼ k̂2 when

k̂ is large. Therefore in supergravtiy approximation p∗ is parametrically
large.

We have also studied the shear channel in heterotic gravity (see Ap-
pendix B), and found one low-energy mode. Matching its dispersion re-
lation to the one obtained from the thermodynamics of the 2d charged
black hole, we have derived η/s = 1/(4π) for any charge to mass ratio.
It would be interesting to obtain this result from heterotic string theory
as well. However naive construction of the heterotic string theory, based
on the SL(2,R)×U(1)x

U(1) coset model (where U(1)x is holomorphic, that is
a part of internal space from purely bosonic left-moving sector of het-
erotic string theory), appears to contain U(1) chiral anomaly. Indeed,
naively, to construct heterotic string, based on the coset model used in
this chapter, one takes the gWZW action (4.11) and adds to it the Dirac
term Sf '

´
d2zTr Ψ̃(∂ + A)Ψ̃, where anti-holomorphic (right-moving)

fermions Ψ̃ ∈ sl(2,R) 	 u(1) are superpartners of the anti-holomorphic
bosonic currents on SL(2,R)/U(1), and A is the U(1) gauge field. Due
to such chiral interaction, on the quantum level the anomaly appears, and
the theory becomes inconsistent.

This issue was actually resolved in a different heterotic coset stringy
realization of the 2d charged black hole [24]. As it was observed there, the
chiral anomaly due to fermions should be compensated by the classical
anomaly of gWZW action for bosons [39]. In fact, bosonization of the
fermions results in the chiral anomaly due to fermions appearing on the
classical level, just as in the anomalous gWZW action [40]. Therefore
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separately the bosonic and fermionic parts of the action are not invariant
under U(1) gauge transformation, while their sum is invariant. It is not
clear however how these ideas can be directly applied to the model, based
on the bosonic action (4.11), which was constructed [25] to be anomaly-
free on its own.

4.7 Appendix A: Conventions and review of the
gWZW model on the SL(2,R)×U(1)

U(1)

4.7.1 Conventions

Put the string length equal to one, α′ ≡ `2s
2 = 1

2 . The contribution to the
world-sheet stress-energy tensor, coming from the coordinates Xµ(z, z̄) of
the flat subspace of the target space-time, is given by

Tflat(z) = −∂Xµ(z)∂Xµ(z) , (4.180)

and similarly for the anti-holomorphic part T̃ (z̄). The Polyakov action is

SP =
1

2π

ˆ
d2z ∂X∂̄X . (4.181)

The two-point function is

〈Xµ(z, z̄)Xν(w, w̄)〉 = −1
2η

µν (log(z −w) + log(z̄ − w̄)) . (4.182)

The Kac-Moody holomorphic (left-moving) and anti-holomorphic (right-
moving) currents of the WZW model at level k̂ are given by

j(z) = jAt
A = − k̂2∂gg

−1 , j̃(z̄) = j̃At
A =

k̂

2g
−1∂̄g . (4.183)

Here hermitean generators of a gauge algebra are

tA = jA0 , [tA, tB ] = ifABCtC . (4.184)

For SL(2,R), which is the group we are interested in, the following ex-
pressions in terms of Pauli matrices take place:

jA0 =
1
2σ

A , fABC = εABC , (4.185)
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and indices are raised and lowered with the help of ηAB = diag{1, 1,−1}.
In Euclidean realization of SL(2,R) we put ηAB = δAB.

The holomorphic currents of Kac-Moody algebra satisfy the following
OPE

jA(z)jB(w) =
k̂
2η

AB

(z −w)2 +
ifABC

z −w
jC(w) , (4.186)

and similarly for the anti-holomorphic currents.
The holomorphic component of the stress-energy is given by the Sug-

awara expression
T (z) =

1
κ
ηABj

A(z)jB(z) , (4.187)

similar expression is true for the anti-holomorphic component. Here

κ = k̂+ cV . (4.188)

For SU(2) (and for Euclidean SL(2,R)) the index of the adjoint repre-
sentation is cV = 2 and for SL(2,R) it is cV = −2.

The groundstate representation space of the SL(2,R) currents is formed
by the primary fields Vj(x, x̄;w, w̄), characterized by the index j. This in-
dex determines the value of Casimir operator of SL(2,R). The (x, x̄)
coordinates can be regarded as the boundary coordinates of the SL(2,R)
target space-time, and (w, w̄) are world-sheet coordinates. One can re-
place the boundary coordinates with the numbers (m, m̄), defined via
transformation

Vj;m,m̄(w, w̄) =
ˆ
d2xxj+mx̄j+m̄Vj(x, x̄;w, w̄) . (4.189)

OPE of SL(2,R) currents and SL(2,R) primaries are 10

J3(z)Vj;m,m̄(w, w̄)= m

z −w
Vj;m,m̄(w, w̄)+ · · · , (4.192)

J±(z)Vj;m,m̄(w, w̄)=m∓ j
z −w

Vj;m±1,m̄(w, w̄)+ · · · .

10For Euclidean SL(2,R),

J3(z)Vj;m,m̄(w, w̄) = im

z −wVj;m,m̄(w, w̄) + · · · . (4.190)

Therefore
η33(J

3)2(z)Vj;m,m̄(w, w̄) = − m2

z −wVj;m,m̄(w, w̄) (4.191)

is true for both Euclidean and Minkowski signatures.
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From this one finds how the SL(2,R) currents act on the primaries:

J3
0 · Vj;m,m̄(w, w̄) = mVj;m,m̄(w, w̄) , (4.193)

J±0 · Vj;m,m̄(w, w̄) = (m∓ j)Vj;m±1,m̄(w, w̄) , (4.194)

with all other JAn · Vj;m,m̄(w, w̄) = 0, n ≥ 1.
Second order SL(2,R) Casimir operator is given by

C2 = ηABJ
A
0 J

B
0 ≡ −(J3

0 )
2 +

1
2{J

+
0 , J−0 } . (4.195)

Here
J1

0 =
1
2 (J

+
0 + J−0 ) , J2

0 =
i

2 (J
−
0 − J

+
0 ) . (4.196)

It takes place
C2 · Vj(w, w̄) = −j(j + 1)Vj(w, w̄) . (4.197)

This expression is also true for Euclidean SL(2,R), due to (4.190). Then
clearly for SL(2,R) algebra with currents of weight k̂,

L0 · Vj(w, w̄) = −j(j + 1)
k̂− 2

Vj(w, w̄) , (4.198)

which gives the conformal dimension of Vj

∆j = −
j(j + 1)
k̂− 2

. (4.199)

In the superstring theory one considers the total bosonic currents Ja,
which include contributions from world-sheet fermions, dual to SL(2,R)
currents. The level of total SL(2,R) currents is equal to k̂+ 2, if k̂ denotes
the level of purely bosonic currentt, and therefore the conformal dimension
of the Vjmm̄ is equal to ∆j = − j(j+1)

k̂
.

4.7.2 Gauged WZW model on the SL(2,R)×U(1)
U(1)

Let us review the derivation [25] of the gWZW action on the SL(2,R)×U(1)
U(1)

coset.
Perform the following asymmetric gauging of the U(1) subgroup of

SL(2,R)×U(1) group with the parameter τ :

(g, xL, xR) ∼
(
eτ cosψσ3/

√
k̂geτσ3/

√
k̂, xL + τ sinψ, xR

)
. (4.200)
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The condition that the gauge transformation leaves the action invariant
is

Tr
(
T 2
L − T 2

R

)
= 0 , (4.201)

where TL and TR are the generators of left-moving and right-moving sec-
tors of the gauged U(1) group.

Let us write the element of the SL(2,R)×U(1) group as

G =

(
g

0
0

exp
(√

2
k̂
x
)) . (4.202)

Then G is a field of the SL(2,R)×U(1) WZW model at level k̂:

S[G] =
k̂

4π [
ˆ
d2zTr(G−1∂GG−1∂̄G)− 1

3

ˆ
B

Tr(G−1dG)3]

=
k̂

4π [
ˆ
d2zTr(g−1∂gg−1∂̄g)− 1

3

ˆ
B

Tr(g−1dg)3] (4.203)

+
1

2π

ˆ
d2z∂x∂̄x .

The gauge transformation (4.200) acts on G-field as

G→ eTLτGeTRτ , (4.204)

where the generators of left and right sectors of the u(1) algebra are

TL =

( 1√
k̂

cosψσ3

0
0√

2
k̂

sinψ

)
, TR =

( 1√
k̂
σ3

0
0
0

)
. (4.205)

These generators satisfy anomaly-free condition (4.201. Because of this
condition is satisfied we can make gauge fields non-dynamical, as it is
shown bellow.

Consider compensator fields (gauge field ‘prepotentials’):

U = exp (−uTL) , V = exp (−vTR) . (4.206)

Define gauge transformation of compensator fields as

u→ u+ τ , v → v+ τ . (4.207)

The combination UGV is clearly invariant under gauge transformations
(4.200), and therefore the WZW-action S[UGV ] is gauge-invariant.
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But it contains terms which are quadratic in derivatives of compen-
sator field u and quadratic in derivatives of compensator field v. Such
terms make the compensator (gauge) d.o.f. dynamical, and therefore the
theory with the action S[UGV ] instead of gauging some degrees of free-
dom away adds more degrees of freedom.

Therefore let us consider instead the gWZW action

Sg = S[UGV ]− 1
2π

ˆ
d2z∂w∂̄w , (4.208)

where we have introduced gauge-invariant field

w = u− v . (4.209)

Due to the Polyakov-Wiegmann indentity

S[UGV ] = S[G] + S[U ] + S[V ] (4.210)

+
k̂

2π

ˆ
d2zTr

[
G−1∂̄G∂V V −1+U−1∂̄U∂GG−1+U−1∂̄UG∂V V −1G−1

]
.

Here

S[U ] =
1

2π

ˆ
d2z∂u∂̄u , S[V ] =

1
2π

ˆ
d2z∂v∂̄v , (4.211)

and therefore

S[U ] + S[V ]− 1
2π

ˆ
d2z∂w∂̄w =

1
2π

ˆ
d2z(∂v∂̄u+ ∂u∂̄v) (4.212)

=
1
π

ˆ
d2zAĀ , (4.213)

where
A = −∂v , Ā = −∂̄u . (4.214)

The action term (4.212) is non-dynamical, as it is expected in gWZW
model with asymmetric gauging, satisfying anomaly-free condition (4.201).
As a result, the gWZW action on the SL(2,R)×U(1)

U(1) is given by

Sg = S[g] +
1

2π

ˆ
d2z∂x∂̄x (4.215)

+
1

2π

ˆ
d2z

[
A
√
k̂Tr (g−1∂̄gσ3)+Ā

(√
k̂Tr(∂gg−1σ3) cosψ+2 sinψ∂x

)
+

+ AĀ
(
2 + Tr(g−1σ3gσ3) cosψ

)]
.
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4.8 Appendix B: Heterotic gravity approxima-
tion

In the type-II supergravity, considered in the section 5, two gauge fields
appear as Gxµ and Bxµ components after Kaluza-Klein reduction of the
compact x coordinate. The two-dimensional charged black hole is also a
solution [23] of heterotic supergravity equations of motion. In this sec-
tion we compute graviton and gauge field two-point functions in the two-
dimensional charged black hole background in heterotic supergravity. In
this case there is just one background gauge field. We solve fluctuation
equations of motion for the shear components of graviton and the trans-
verse component of the gauge potential and find one hydrodynamic mode.
Matching the obtained dispersion relation with the result obtained in the
study of thermodynamics of the 2d charged black hole we derive shear
viscosity to entropy ratio for any value of ψ.

The two-loop beta-functions of bosonic fields in heterotic string theory
are [41, 23]

βGµν = Rµν + 2∇µ∂νΦ− 1
2g

λρFµρFνλ , (4.216)

βΦ =
1
4F

2 −R+ c+ 4(∂Φ)2 − 4∇2Φ , (4.217)

βAν = gµλ(∇µFνλ − 2Fνλ∂µΦ) . (4.218)

Corresponding equations of motion, βG,B,Φ = 0, have the CBH ×Rd−1

solution,

gµν = diag{−f(r), 1/f(r), 1, ..., 1} , (4.219)
f(r) = 1− 2Me−Qr + q2e−2Qr ,

Φ = Φ0 −
Qr

2 , Ftr = F (r) =
√

2Qqe−Qr . (4.220)

Here Q = 2/
√
k̂.

Consider fluctuations hµν , aµ and ϕ around this solution. Use the
diffeomorphism invariance to fix hµr = 0. Among d+ 1 space-time coor-
dinates we have t, r coordinates of CBH and d− 1 flat coordinates. Let
us consider CBH ×R2. Choose X to be the R2 direction of propagation
of excitations (with momentum p) and choose Y to be the R2 direction,
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transverse to the direction of propagation of excitations. Fluctuations de-
pend on t, r,X. The dependence on t and X in momentum representation
boils down to the factor e−iωt+ipX .

Plugging gµν + hµν , Aµ + aµ and Φ + ϕ with the most general fluctu-
ations, we obtain shear channel expressions (prime denotes differentiation
w.r.t. r)

βGrY =
ie−iωt+ipX

2f (ωh′tY + pfh′XY − ωFaY ) , (4.221)

βGXY = e−iωt+ipX
(
− 1

2f (ωphtY + ω2hXY + ff ′h′XY + f2h′′XY ) (4.222)

+ fΦ′h′XY ) ,

βGtY=
e−iωt+ipX

2
(
p2htY+ωphXY−fh′′tY+2fΦ′h′tY+fFa

′
Y

)
. (4.223)

The equations of motion in shear channel are therefore

ωh′tY + pfh′XY − ωFaY = 0 , (4.224)

ωphtY + ω2hXY + ff ′h′XY + f2h′′XY − 2f2Φ′h′XY = 0 , (4.225)

p2htY + ωphXY − fh′′tY + 2fΦ′h′tY + fFa′Y = 0 . (4.226)

Consider diff-invariant field

Z = ωhXY + phtY . (4.227)

Using (4.227) and (4.224) express

h′tY =
ω2FaY − pfZ ′

ω2 − p2f
, h′XY = ω

Z ′ − pFaY
ω2 − p2f

. (4.228)

The equations (4.225) and (4.226) after one substitutes (4.228) into
them, both give rise to the same equation (due to F ′ − 2FΦ′ = 0)

Z ′′ +

(
ω2f ′

f(ω2 − p2f)
− 2Φ′

)
Z ′ +

ω2 − p2f

f2 Z (4.229)

− pF

f

(
fa′Y +

ω2f ′

ω2 − p2f
aY

)
= 0 .
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Compute the beta-function for gauge field fluctuation aY (choose the
gauge ar = 0)

βAY=− e−iωt+ipXf
(
a′′Y+

f ′−2fΦ′

f
a′Y+

ω2−p2f

f2 aY−
Fh′tY
f

)
. (4.230)

Express h′tY using (4.228). The equation on aY is then

a′′Y +
f ′ − 2fΦ′

f
a′Y +

(
ω2 − p2f

f2 − ω2F 2

f(ω2 − p2f)

)
aY (4.231)

+
pFZ ′

ω2 − p2f
= 0 .

Before proceeding, rescale

r = rQ , w = ω/Q , p = p/Q , Z = Z/Q . (4.232)

The dependence on Q disappears from both fluctuation equations, and
due to (4.220) we obtain

f = 1− 2Me−r + q2e−2r , Φ = Φ0 −
r
2 . (4.233)

Introduce new radial coordinate u = er. Then inner and outer horizons
are located at

u± =M ±
√
M2 − q2 . (4.234)

The equations of motion become (substitute q = √u+u−)

d2a

du2 +

( 1
u− u−

+
1

u− u+

)
da

du
+

1
(u− u−)(u− u+)

×
(

w2u2 − p2(u− u−)(u− u+)
(u− u−)(u− u+)

− 2u+u−w2

w2u2 − p2(u− u−)(u− u+)

)
a

+
p
√

2u+u−
w2u2 − p2(u− u−)(u− u+)

dZ
du

= 0 , (4.235)

d2Z
du2 +

1
u

(
2 + w2u2

w2u2 − p2(u− u−)(u− u+)

(
u+

u− u+
+

u−
u− u−

))
dZ
du

− p
√

2u+u−
u2

da

du
+

w2u2−p2(u− u−)(u− u+)
(u− u−)2(u− u+)2 Z (4.236)

−p
√

2u+u−
u

w2

w2u2−p2(u− u−)(u− u+)

(
u+

u− u+
+

u−
u− u−

)
a=0 .
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In the near horizon limit v = u−u+ � 1 equations (4.235) and (4.236)
give rise to

d2a

dv2 +
1
v

da

dv
+

w2u2
+

(u+ − u−)2v2a = 0 , (4.237)

d2Z
dv2 +

1
v

dZ
dv

+
w2u2

+

(u+ − u−)2v2 Z = 0 . (4.238)

The incoming-wave solutions are

aY (u) = C1(u− u+)
−iwu+
u+−u− , Z(u) = C2(u− u+)

−iwu+
u+−u− . (4.239)

In the asymptotic region u� 1 equations (4.235) and (4.236) give rise
to

d2a

du2 +
2
u

da

du
+

w2 − p2

u2 a = 0 , (4.240)

d2Z
du2 +

2
u

dZ
du

+
w2 − p2

u2 Z = 0 , (4.241)

with the solution

aY = Åau
1
2 (−1+

√
1+4(p2−w2)) + Bau

1
2 (−1−

√
1+4(p2−w2)) , (4.242)

Z = ÅZu
1
2 (−1+

√
1+4(p2−w2)) + BZu

1
2 (−1−

√
1+4(p2−w2)) . (4.243)

We solve numerically the equations (4.235), (4.236) with boundary
conditions (4.239). Zeroes of determinant of the leading behavior coeffi-
cients matrix

Å(1)
Z Å(2)

a −Å(2)
Z Å(1)

a (4.244)
are located at

w = −ip2 cos2(ψ/2) . (4.245)

Due to (4.232) and Q = 2/
√
k̂ from (4.245) it follows

ω = −i
√
k̂ cos2(ψ/2)

2 p2 . (4.246)

Finally, matching the dispersion relation (4.246) to the dispersion re-
lation (4.10), obtained in Section 2 from the consideration of thermody-
namics of the 2d charged black hole, we conclude

η

s
=

1
4π (4.247)

is valid for any value of ψ, and due to q = M sinψ it is valid for any
charge density.
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