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Chapter 2

Fluctuations in finite
density holographic
quantum liquids

2.1 Introduction and summary

Perhaps the deepest open problem in condensed matter physics is the
classification of compressible quantum liquids. This refers to stable states
of zero temperature quantum matter that do not break any symmetry
and support massless excitations. This question cannot be easily ad-
dressed within the confines of standard field theory. The issue arises when
fermions are considered at finite density and the culprit is known as the
“fermion sign” problem. Dealing with time-reversal symmetric finite den-
sity bosonic matter the methods of equilibrium statistical physics give a
full control and invariably one finds that the ground states break sym-
metry. Dealing with incompressible quantum fluids like the fractional
quantum Hall states the mass gap is quite instrumental to control the
theory, revealing the profound non-classical phenomenon of topological
order. The hardship is with the compressible quantum fluids: the only
example which is fully understood is the Fermi-liquid.

The ease of the mathematical description of the Fermi-liquid as the
adiabatic continuation of the Fermi-gas is in a way deceptive. Compared
to classical fluids its low energy spectrum of non-charged excitations is
amazingly rich. In addition to the zero sound, there is a continuum of
volume conserving “shape fluctuations” of the Fermi-surface, correspond-
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ing with the particle-hole excitations (Lindhard continuum) of the con-
ventional perturbative lore. Although serious doubts exist regarding the
mathematical consistency and their relevance towards real physics, the
“fractionalized (spin) liquids” that were constructed in condensed matter
physics appear to be still controlled by the presence of a Fermi-surface
while these are not Landau Fermi-liquids in the strict sense. This inspired
Sachdev to put forward the interesting conjecture that the Fermi-surface
might be ubiquitous for all compressible quantum liquids [1].

The gauge-gravity duality or AdS/CFT correspondence provides a
unique framework to deal with these matters in a controlled way (see
[1–6] for recent reviews). Although it addresses field theories that are at
first sight very remote from the interacting electrons of condensed matter,
there are reasons to believe that it reveals generic emergence phenom-
ena associated with strongly interacting quantum systems. Field theories
whose understanding is plagued by the “fermion sign” problem appear to
be quite tractable in the dual gravitational description. With regard to
unconventional Fermion physics, perhaps the most important achievement
has been the discovery of the “AdS2 metal” [7, 8], dual to the asymptot-
ically AdS Reissner-Nordstrom black hole. On the field theory side this
describes a local (purely temporal) quantum critical state that was not
expected on basis of conventional field theoretic means. Although quite
promising regarding the intermediate temperature physics (the “strange”
normal states) in high Tc superconductors and so forth, this AdS2 metal
is probably not a stable state, given its zero temperature entropy. Much
of recent activity has been devoted to the study of the instability of this
metal towards bosonic symmetry breaking (holographic superconductivity
[9], “stripe” instabilities [10]) and towards the stable Fermi liquid [11–13].

The top-down constructions might become quite instrumental in facil-
itating the search for truly new quantum liquids. An important category
are the Dp/Dq brane intersections; the p = 3 case provides us with a set of
especially tractable examples. The dynamics of the low energy degrees of
freedom of the D3-Dp strings can be studied in the probe approximation
where the back-reaction to the AdS5×S5 geometry can be neglected [14].
In this chapter we will consider D3 and Dp branes intersecting along 2+1
dimensions, where p=5 (p=7) corresponds to the (non)-supersymmetric
system. As emphasized in [15] the nonsupersymmetric system can be
viewed as a model of graphene: the brane intersection fermions are like the
Dirac fermions moving on the 2+1D graphene backbone, (tunable to finite
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density by gating), interacting strongly through the gauge fields living in
3+1 dimensions. We will present a number of results for the longitudinal-
and transversal dynamical charge susceptibilities (at finite frequency w
and momenta q)1, in the absence and presence of a magnetic field, for
both the supersymmetric and non-supersymmetric D3/Dp systems at fi-
nite density. We find very similar results in both the supersymmetric- and
fermionic set ups, showing that these outcomes at strong ’t Hooft coupling
are not caused by the difference in the Lagrangians. We find suggestive
indications for the presence of an entirely new form of quantum liquid,
but we cannot be entirely conclusive. Our observations cannot entirely
rule out the existence of a Fermi liquid with vanishing Fermi velocity.

In fact, the first study of these systems at finite density already pro-
duced evidence that some odd state is created. In ref. [16] it was observed
that the density-dependent part of the heat capacity in the D3/Dp systems
with 2+ 1 dimensional intersection behaves like T 4. This is in contrast to
the result for the Fermi-liquids which is set by the Sommerfeld law of the
specific heat C = γT , where the Sommerfeld coefficient γ is proportional
to the quasiparticle mass. This behavior remains to be understood: for
example, it is conceivable that the linear term in the heat capacity exists,
but is parametrically suppressed in the holographic model. On a side, it
is worth noting that in the context of pnictide superconductivity a rogue
signal has been detected that refuses to disappear: this indicates that the
electronic specific heat of the metal state ∼ T 3 [17].

As mentioned above, besides the Lindhard continuum an interacting
Fermi liquid will carry a single propagating mode called zero sound. Un-
like the usual sound at finite temperature, translational invariance alone
is not sufficient for establishing the existence of the zero sound mode. The
discovery of zero sound associated with the brane intersection matter [16]
is therefore significant. The fate of the holographic zero sound was further
studied in [18–25] (see also [26, 27] for closely related work). At very low
temperature the attenuation (damping) of this zero sound behaves like
the (“collisionless”) Fermi liquid zero sound, in the sense that it increases
like the square of its momentum. In [24] it was found also that upon
increasing temperature the zero sound velocity decreases while the atten-
uation increases, turning into a purely diffusive pole at high temperatures.
This is different from the crossover from zero sound to ordinary sound as

1In this chapter we denote the values of frequency and momentum by bold letters.
The usual letters, defined below, are reserved for dimensionless variables.
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function of temperature in a single component Fermi-system like 3He. In
the brane intersection systems momentum is shared between the super-
conformal strongly coupled uncharged sector and the material system on
the intersection, and the latter does not support hydrodynamical sound
in isolation. Somehow, upon lowering temperature the momentum of the
brane intersection matter becomes separately conserved, facilitating the
emergence of the zero sound in the low temperature limit.

Given that zero sound is rather ubiquitous, one would like to obtain
more direct information regarding the density fluctuations of the quan-
tum liquid. These are expected to be contained in the fully dynamical,
momentum and energy dependent charge susceptibility/density-density
propagator associated with the conserved charge on the brane-intersection.
One strategy is to look for the momentum dependence of the reactive re-
sponse (real part) at zero frequency: one expects a singularity at twice
the Fermi momentum, 2qF where the Luttinger’s theorem implies that
qF is set by the bare chemical potential, qF ∼ µ . A number of papers
has been devoted to the search of such singular behavior in the frame-
work of AdS/CFT. In [19] the 〈J0J0〉 correlator has been computed in
the holographic setup where the only charged degrees of freedom are four-
dimensional fermions. The resulting function was completely smooth. In
[28–31] the two-point function for global currents was computed for vari-
ous systems and again the tree-level computation in the bulk did not show
any nonanalytic behavior. Very recently it has been argued that a singu-
larity can be observed in the systems where an exact result to all orders
in α′ is available [32].

Searching for the singularity at 2qF is in principle a tricky procedure
because these “Friedel oscillation” singularities are strongly weakened by
the self energy effects in the strongly interacting Fermi-liquid. Another
way to probe for the signatures of the Fermi liquid is to compute the imag-
inary part of the dynamical density susceptibility in a large kinematical
window because this spectral function shows directly the density excita-
tions of the system. The result is well known in the weakly interacting
Fermi liquid, see Fig. 1: besides the zero sound pole one finds the Lindhard
continuum of particle hole excitations. It is worth noting that as the value
of the Landau parameter F0 increases, the spectral weight in the density
response is increasingly concentrated in the zero sound poles, “hiding”
the Lindhard continuum. In this regard the transversal density propa-
gator is quite informative: since in this channel no collective modes are
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expected to form, this is the place to look for the incoherent Fermi-surface
fluctuations. Unfortunately technical issues prevent us from accessing the
regime of parametrically small Fermi velocity. Our holographic computa-
tions of the longitudinal and transversal dynamical charge susceptibilities
are limited to a kinematical window where w ∼ |q|.

Despite this caveat, the holographic density propagators that we com-
pute reveal very interesting information. We find that the longitudi-
nal density propagator is within our numerical resolution completely ex-
hausted by the zero sound pole (Fig. 4). Regardless the precise nature of
the underlying state this signals very strong density/density correlations
in this liquid. The transversal charge propagator shows that sound is not
the whole story. The “other stuff”, albeit very unlike a Lindhard contin-
uum, signals the presence of a sector of highly collective, deep IR density
fluctuations: the imaginary part of the transversal propagator behaves like
χ
(i)
t (q, w) ∼ w. This response is surprisingly momentum independent and

suggests local quantum criticality, which was instrumental in the “AdS2
metal” setup. All of this seems to imply that we are indeed dealing with
some entirely new quantum liquid.

To probe some of the features of this quantum liquid, we introduce
an external magnetic field which is a valuable “experimental tool”. This
induces the gap in the spectrum that is visible in the holographic calcula-
tions. Dealing with a 2+1D Fermi-liquid one would expect the signatures
of Landau levels also in the density response. In the strongly interact-
ing system, the longitudinal response should reveal the “magneto-roton”,
the left over of zero sound in the system with a magnetic field which is
well known from (fractional) quantum Hall systems [33] 2. According to
Kohn’s theorem [35], the density spectrum should show a gap equal to the
cyclotron frequency at zero momentum. Note that this theorem is very
generic and only assumes that degrees of freedom, charged under the mag-
netic field, interact pairwise. Our holographic calculation reveals that: i)
at small values of the magnetic field B the value of the gap3 scales linearly
with B, which is consistent with Kohn’s theorem for the nonrelativistic
fermions and ii) there are no signatures of Landau levels associated with
incoherent particle-hole excitations (Fig. 2).

The remainder of this chapter is organized as follows. The next sec-

2See [34] for related work in the context of holography.
3This is also consistent with the observations made in [23, 36] where the same D3/D7

system, modified by the inclusion of flux through the internal cycles, is considered.
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tion is devoted to the review of Landau Fermi liquid theory including the
random phase approximation (RPA) for the dynamical response. In par-
ticular, we review the appearance of the zero sound mode in the RPA
calculation of the density-density correlator. As the value of the interac-
tion strength increases, the Lindhard continuum gets separated from the
zero sound pole (Fig. 1) and gradually disappears. In the extreme limit
of vanishing Fermi velocity, the spectral density is completely exhausted
by the zero sound mode. We also review the RPA expectations for the
2+1 dimensional fermion system in the presence of magnetic field. There
we expect Landau levels to contribute to the spectral density (Fig. 2).

In Section III we review the holographic description of the D3/Dp
brane systems. The subject of our interest is the fermion matter, which
is formed (at finite chemical potential for the fermion number) in the
low energy theory living on intersection of the Nc D3 branes and Nf Dp
branes. We consider the case of Nc � Nf ∼ 1 and strong ’t Hooft coupling
λ, where the holographic description is applicable.

In Section IV we focus on the zero sound mode and show that it
develops a gap in the presence of magnetic field. In the case of vanishing
magnetic field, B = 0, we observe a zero sound mode whose speed is the
same as that of the first sound. As long as the value of the magnetic field
B is small compared to w2, q2 (in appropriate units), the sound mode
peak in the spectral function is not significantly affected. On the other
hand, the presence of the nonvanishing magnetic field leads to a gap in
the dispersion relation for zero sound. (The effective action proposed by
Nickel and Son [37] in the presence of the magnetic field gives vanishing
sound velocity). In the regime of small magnetic field we derive the scaling
behavior of the gap in the spectrum wc as a function of magnetic field.
The result, wc ∼ B is consistent with fermions acquiring an effective mass.

In Section V we investigate the current-current correlator at non-
vanishing frequency w and momentum q. We observe that in the lon-
gitudinal channel, the only nontrivial structure both in the real and in
imaginary parts of the correlators is provided by the zero sound. There
is no nontrivial structure in the transverse correlators when B = 0. We
discuss our results in Section VI.

In Appendix we consider higher derivative corrections and show that
when they are added to the DBI the correlators are not significantly mod-
ified.
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2.2 Fermi liquid and the random phase approxi-
mation

In this section we review the application of the random phase approxima-
tion (RPA) for the computation of the density-density response function
〈J0(w, q)J0(−w,−q)〉 in Landau Fermi liquid theory. We consider the
2+1 dimensional theory for both cases of vanishing and non-vanishing
magnetic field.

Due to the interaction of quasiparticles, the variation of quasiparticle
energy due to small perturbation of the distribution function, is given by
(see, e.g, [38])

δε(q) =
ˆ
dq′f(q, q′)δn(q′) (2.1)

Because the small changes of quasiparticle density occur in the vicinity
of a Fermi surface, one considers the function f(q, q′) to be dependent
on the momenta on the Fermi surface, and therefore it boils down to a
function of the angle between q and q′:

m∗

π
f(θ) = 2F (θ) . (2.2)

where, as usual, the effective mass at the Fermi surface is defined via

m∗ =
qF
υF

, υF =
∂ε(q)
∂q
|q=qF (2.3)

Landau parameters Fl are the coefficients of the expansion of F (θ) in
Legendre polynomials:

F (θ) =
∑
l

(2l+ 1)FlPl(cos θ) (2.4)

The Fermi liquid has a collective excitation at vanishing temperature
called zero sound. In the case of Fl = 0, l > 0, the speed of zero sound
u0 can be determined from

s

2 log s+ 1
s− 1 − 1 =

1
F0

, s =
u0
υF

(2.5)

which, in the limit F0 � 1 gives s ∼
√
F0.

To compute the dynamical collective responses of a Fermi liquid, one
evaluates the time dependent mean field (random phase approximation)
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obtained by summing up the quasiparticle “bubble” diagrams. Assuming
for simplicity only the presence of a contact interaction, with effective
coupling constant V ' F0, the nth diagram is equal to V n−1(χ0(q, w))n.
The susceptibility in the RPA is then given by the sum of a geometric
progression:

χ(q, w) =
χ0(q, w)

1− V χ0(q, w)
, (2.6)

Express χ = χ(r) + iχ(i), hence

χ(i)(q, w) =
χ
(i)
0 (q, w)

(1− V χ(r)0 (q, w))2 + (χ
(i)
0 (q, w))2

. (2.7)

Then we study density of excitations by plotting χ(i)(q, w). The result
for vanishing magnetic field is presented in Fig. 3.1, where we plot the
susceptibility (for qF = 0.2) at strong and weak coupling V . In the case

Figure 2.1. Spectral density χ(i)(q, w) at strong coupling (V = 50, left graph)
and weak coupling (V = 3, right graph) in the random phase approximation, at
vanishing magnetic field. Fermi momentum is put to qF = 0.2. Note that at
strong coupling zero sound is well separated from the particle-hole continuum,
while at weak coupling zero sound merges with the left edge of the particle-
hole continuum. At small frequencies particle-hole continuum sharply ends at
q = 2qF .

of strong coupling there is a finite gap, separating the zero sound collec-
tive mode, and the band of the particle-hole excitations. For given small
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frequency w the width of the gap is given by δq ' w
u0
(s− 1). Note the

non-analytic step behavior at q = 2qF , originating from the free response
function χ

(i)
0 (q, w). In the case of weak coupling the zero sound mode

merges with the left edge of particle-hole band.
The location of zero sound pole is determined as a solution to equations

χ
(i)
0 (q, w) = 0, χ(r)0 (q, w) = 1/V . The real part χ(r)0 (q, w) of Lindhard

function for 2D Fermi gas is given by (see, e.g., [39]):

χ
(r)
0 (q, w) = −

(
1 + qF

q

[
sign(ν−)θ(|ν−| − 1)

√
ν2
− − 1

− sign(ν+)θ(|ν+| − 1)
√
ν2
+ − 1

])
, (2.8)

where ν± = w±εq
qυF . For large w

qυF = s� 1 one may expand

χ
(r)
0 (q, w) ' q2υ2

F

2w2 . (2.9)

Therefore, for the speed of zero sound one obtains s =
√
V /2, exactly as

it follows at large F0 from the equation (2.5).
Suppose now that besides F0 there is also non-vanishing “mass” Lan-

dau parameter F1. In the relativistic case, the value of m∗ is related to
the value of the chemical potential [40],

m∗ = µ

(
1 + F1

3

)
(2.10)

The speed of zero sound u0 then satisfies equation

s

2 log s+ 1
s− 1 − 1 =

1 + F1/3
F0 + F0F1/3 + F1s2 , s =

u0
υF

. (2.11)

For free fermions in a magnetic field B, the Lindhard function is equal
to (see, e.g., [39])

χ0(q, w) =
1

2π`2
∑
n,n′

f(εn)− f(εn′)
w + (n− n′)wc + iη

|Fn′,n(q)|2 , (2.12)

where

Fn′,n(q) =

√
n!
n′!

(
(qy − iqx)`√

2

)n′−n
e−q2`2/4Ln

′−n
n

(
q2`2

2

)
, (2.13)
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for n′ ≥ n. Here we have introduced the cyclotron frequency wc = B/m?

and the magnetic length ` = 1√
B
. The functions Ln′−nn are Laguerre

polynomials, and f(εn) is an occupation number for the nth Landau level.
We would like to compute the effect of the magnetic field on the

density-density response function of the interacting fermions. Let us write
the quasiparticle interaction Hamiltonian

Hint =
∑

q
Vqnqn−q (2.14)

in the basis of Landau levels wavefunctions. The corresponding matrix
elements of the density fluctuation operator nq =

∑
k ckc

†
k+q are given by

〈n′k′y|nq|nky〉 = exp
(
−i

qx(ky + k′y)`2

2

)
Fn′n(q)δky−k′y ,qy . (2.15)

The density fluctuation operator in the basis of Landau level wavefunctions
is then given by

nq =
∑

n,ky , n′,k′y

〈n′k′y|nq|nky〉cnkyc
†
n′k′y

. (2.16)

Note that (
〈nky|nq|n′k′y〉

)?
= 〈n′k′y|n−q|nky〉 (2.17)

implies (nq)† = n−q. Substituting (2.16) into the interaction Hamiltonian
(2.14), assuming again only a contact interaction of plane waves Vq ≡
V ' F0, and considering all quasiparticles in the same Landau level n,
one obtains

Hint = V
∑

q,ky ,k′y

cnkyc
†
nky−qycnk′yc

†
nk′y+qy

exp
(
−i`2qx(ky − k′y − qy)−

q2`2

2

)
[L0
n(q2`2/2)]2 . (2.18)

Let us choose the momentum to be in y-direction, then

Hint =
∑

qy ,ky ,k′y

Vqycnkyc
†
nky−qycnk′yc

†
nk′y+qy , (2.19)

where Vqy = [L0
n(q2`2/2)]2 exp

(
−q2`2

2

)
V .
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We can explicitly demonstrate that the zero sound mode is gapped in
the magnetic field, with the gap being equal to wc, in agreement with the
Kohn’s theorem [35]. For this aim we are to solve equation χ(r)0 (q, w) =
1/Vq again. From (2.12), (2.13) one may obtain the following expression
for χ(r)0 :

χ
(r)
0 (q, w) =

e−q2`2/2

2π h̄`2
∞∑
k=1

∑
j

′ j!
(j + k)!

(
q2`2

2

)k
[
Lkj

(
q2`2

2

)]2 2kwc

w2 − (kwc)2 , (2.20)

where the prime denotes summation in the range max(0, ν − k) ≤ j ≤ ν,
and ν is the number of occupied Landau levels. Following [39], we consider
this equation for small q and w ' wc. Then the main contribution in the
sum over k comes from the term with k = 1, and we obtain equation:

const q2

w2 −w2
c

' 1
V

, (2.21)

and therefore the zero sound dispersion relation is given by

w =
√

w2
c + cq2 , (2.22)

where c ∼ Vwc is a constant. Similarly, for any integer M , there is a
mode with dispersion relation

w =
√
(Mwc)2 + c′q2M . (2.23)

We plot RPA computations of two-point function, for ωc = 0.25, restrict-
ing to the first two first branches, in Fig. 2.2.

2.3 Dp brane in AdS5× S5 background
We study strongly interacting massless fermions at zero temperature and
finite density. A good field theoretical model of such a system is N = 4
SYM theory with gauge group SU(Nc), coupled to matter in the fun-
damental representation. A convenient way to study strongly coupled
theories is provided by holography where one considers a dual gravita-
tional theory, taking the limit of large ’t Hooft coupling λ = g2

YMNc, and
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Figure 2.2. Spectral density in the random phase approximation of the 2 +
1 dimensional Fermi liquid in the plane of the magnetic field, with cyclotron
frequency ωc = 0.25. First two of infinitely many collective excitation branches
are shown. Each branch starts at (q = 0, ω =Mωc), where M is an integer.

the limit of large Nc. The dual gravitational background is created by
Nc � 1 D3 branes, and has an AdS5 × S5 geometry. The coupling to
fundamental matter is realized by considering an embedding of a probe
Dp brane in the AdS5 × S5 background [14]. We will consider D3/Dp
configurations with d = 2 + 1 dimensional intersections.

Let us now provide a more detailed description of the bulk gravitational
theory set-up. Consider AdS5 × S5 geometry, with the metric

ds2 = L2
(
r2(−dt2 + dxαdx

α) +
dr2

r2 + dΩ2
5

)
. (2.24)

Here L is the radius of S5 and scale of curvature of AdS5. We will study
the probe Dp brane, embedded in the geometry described by (2.24). We
represent the metric on S5 as

dΩ2
5 = dΩ2

n + sin2 θ̃dΩ2
5−n = dθ2 + sin2 θdΩ2

n−1 + cos2 θdΩ2
5−n ,

where n = p+ 1− d. Then we define coordinates ρ , f via the relation

ρ = r sin θ , f = r cos θ , r2 = ρ2 + f2 , (2.25)
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and write

dθ2 =
(f − ρ ∂ρf)2

r4 dρ2 , dr2 =
(ρ+ f ∂ρf)2

r2 dρ2 , (2.26)

which gives the following induced Dp brane world-volume metric

ds2
Dp=L

2
(
r2(−dt2+dxidxi)+

1
r2

(
1+(∂ρf)

2
)
dρ2+

ρ2

r2 dΩ2
n−1

)
. (2.27)

The coordinate f(ρ) defines an embedding of the Dp brane in the AdS
background (2.24). In the case of the trivial embedding f(ρ) ≡ 0, which
is what we are going to deal with in this chapter, Dp brane crosses the
Poincaré horizon of the AdS space. In the case of d = 3 p = 7 such a
configuration becomes stable only for sufficiently large values of chemical
potential µ̄ch in the dual field theory [41]. (See also [42] for the phase
structure of the similar model in the presence of the magnetic field.) Note
that holographically computed correlators do not depend on the dimen-
sionality of the probe brane; in particular our results apply in the case of
stable supersymmetric D3/D5 defect theory.

Subsequently we add a gauge field Aµ on the world-volume of the probe
D7 brane. In general we are interested in non-vanishing magnetic field B.
So we consider the following components of the field strength:

F12 = B , F0ρ = −∂ρA0(ρ) . (2.28)

Consequently the DBI action for the Dp brane is given by 4

SDBI '
Nc

L4

ˆ
dp+1x

√
−det(G+ F ) =

ˆ
dΩn−1

ˆ
ddxS , (2.29)

where we have denoted

S ' NcL
p−5
ˆ
dρρd−3

√
(L4ρ4 +B2)(1− (∂ρA0)2L−4) . (2.30)

Now rescale gauge field on the world-volume as

Āµ =
Aµ
L2 , (2.31)

4We adopt the convention 2πα′ = 1. For our purposes we are ignoring the to-
tal numerical coefficient, which leaves us with an overall normalization of the action
proportional to 1

gs
∼ Nc

λ ∼
Nc

L4 .
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which yields the DBI action in the form,

S ' NcL
p−3
ˆ
dρρd−3

√
(ρ4 + B̄2)(1− (∂ρĀ0)2) , (2.32)

where B̄ = B/L2.
In the case of a non-vanishing magnetic field there is also a Chern-

Simons term in the total action for the Dp brane. It can be shown that
this term vanishes in the case of f ≡ 0 embedding.

The boundary value of Ā0 is equal to the chemical potential of the
dual field theory: Ā0(ρ =∞) = µ̄ch. Due to f(ρ = 0) = 0 and the initial
condition Ā0(r = 0) = 0 (imposed to ensure that chemical potential
vanishes when the charge density is zero) we obtain Ā0(ρ = 0) = 0, and
therefore the chemical potential may be expressed as

µ̄ch =

ˆ ∞
0

dρ ∂ρĀ0 . (2.33)

Introducing a constant of integration d̂, the solution of the equation of
motion for ∂ρĀ0 field strength becomes,

∂ρĀ0 =
d̂2√

d̂4 + ρ4 + B̄2
. (2.34)

Using this expression and eq. (2.33), we obtain the value of the chemical
potential

µ̄ch =

ˆ ∞
0

dρ ∂ρĀ0 =
4Γ(5/4)2
√
π

d̂2

(d̂4 + B̄2)1/4 . (2.35)

2.4 Holographic zero sound
In this and the next sections we study D3/Dp system with d = 2 + 1
dimensional intersection, described by trivial f(ρ) ≡ 0 embedding of the
probe Dp brane in the AdS5×S5 background. We consider the gauge field
on the Dp brane world-volume, solve its classical equations of motion and
use AdS/CFT to find the two-point functions of the U (1) current in the
dual field theory. In this section we show the existence of holographic
zero sound in the D3/Dp configuration, to observe that it develops a gap
as the magnetic field is turned on. In the next section we will study the
current-current correlation function numerically.
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2.4.1 Zero sound in the D3/Dp system with d = 2 + 1 di-
mensional intersection

Equation (2.34) is the expression for the background field strength ∂ρĀ0.
Let us turn on small fluctuations ā0, ā1, ā2, dependent on coordinates
x0, x2, ρ. In addition let us fix the gauge āρ = 0. The longitudinal
response is described holographically by the ā0 and ā2 components of the
gauge field, and the transverse response is described by the ā1 component.
The DBI action, expanded up to the second order in fluctuations, then
takes the form 5

S=

ˆ
dρ

(√
ρ4+B̄2

1−(∂ρĀ0)2

(
− (∂ρā0)2

1−(∂ρĀ0)2+
ρ4(∂ρā2)2−(∂0ā2−∂2ā0)2

ρ4+B̄2

)
+

+

√
1− (∂ρĀ0)2

ρ4 + B̄2

(
ρ4(∂2ā1)2

ρ4 + B̄2 +
ρ4(∂ρā1)2 − (∂0ā1)2

1− (∂ρĀ0)2

)
+ (2.36)

+
2B̄∂ρĀ0√

(ρ4+B̄2)(1−(∂ρĀ0)2)
(∂2ā1∂ρā0−∂0ā1∂ρā2+(∂0ā2−∂2ā0)∂ρā1)


Note that the last line in (2.36) describes a coupling of the transverse and
longitudinal gauge potential components. Bellow we will consider Fourier
transform of the gauge field

āµ(ρ,x0,x2) =

ˆ
dwdq
(2π)2 e

−iwx0+iqx2 ãµ(ρ, w, q) (2.37)

Now we substitute eq. (2.34) into the action (2.36), define b2 = B̄2/d̂4,
and introduce a new variable z = d̂

ρ , so that z = 0 is a boundary and
z =∞ is a Poincaré horizon of AdS5. In addition, we make the quantities
w, q dimensionless, by measuring these in units of d̂: w = ωd̂, q = qd̂.
We also denote for shortness of notation

ζ = 1 + (1 + b2)z4 (2.38)

Then the action (2.36) becomes written as

S=

ˆ
dz

1+b2z4

(
−ζ3/2a′20 +ζ

1/2a′22 −ζ1/2(∂0a2−∂2a0)
2+ζ−1/2(∂2a1)

2

− ζ1/2(∂0a1)
2+ζ1/2a′21 −2bz4(∂2a1a

′
0−∂0a1a

′
2+(∂0a2−∂2a0)a

′
1)
)

,
(2.39)

5We thank J. Shock for comments on this action.
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where we have omitted bars for simplicity of notation, and prime denotes
differentiation w.r.t. z. In momentum representation

S =

ˆ
dz

1 + b2z4

(
−ζ3/2a′0(ω, q)a′0(−ω, −q) + ζ1/2a′2(ω, q)a′2(−ω, −q)]

+ ζ1/2E(ω, q)E(−ω, −q) + ζ−1/2q2a1(ω, q)a1(−ω, −q)
− ζ1/2ω2a1(ω, q)a1(−ω, −q) + ζ1/2a′1(ω, q)a′1(−ω, −q) (2.40)
+ 2ibz4(qa1(−ω, −q)a′0(ω, q) + ωa1(−ω, −q)a′2(ω, q)
+ E(ω, q)a′1(−ω, −q))) ,

where we have omitted tildes for simplicity of notation and introduced the
gauge-invariant electric field strength [43],

E(ω, q) = ωa2(ω, q) + qa0(ω, q) . (2.41)

In addition we have Gauss’s law 6

ωζ3/2a′0(ω, q) + qζ1/2a′2(ω, q) = 0 (2.42)

Together with
E′(ω, q) = ωa′2(ω, q) + qa′0(ω, q) , (2.43)

eq. (2.42) gives
a′0(ω, q) = q

q2 − ζω2E
′ , (2.44)

a′2(ω, q) = ωζ

ω2ζ − q2E
′ . (2.45)

Plugging these expressions into the action (2.40), we obtain

S =

ˆ
dz

1 + b2z4

(
q2 − ζω2

ζ1/2 a2
1 − ζ3/2 E′2

ζω2 − q2 + ζ1/2E2 + ζ1/2a′21

+ 2ibz4(Ea1)
′
)

. (2.46)

6This is an equation of motion for az . To derive it replace

a′
2 → a′

2 − ∂2az , a′
0 → a′

0 − ∂0az

in the Lagrangian (2.39) and leave only terms linear in derivatives of az , because only
these will survive when we consider the equation of motion for az in the az = 0 gauge.
Then use the Fourier transform (2.37).
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Corresponding fluctuation equations are

E′′+

(
ω2− q2

1+(1+b2)z4

)
E−4ibz3(ω2(1+(1+b2)z4)−q2)a1

(1+b2z4)(1+(1+b2)z4)3/2 (2.47)

+
2
z

(
1

1+((1+b2)z4)−1+2
(

1
1+b2z4−

1−(q/ω)2(1+(1+b2)z4)−2

1−(q/ω)2(1+(1+b2)z4)−1

))
E′ = 0 ,

a′′1 + 2z3
(

1 + b2

1 + (1 + b2)z4 −
2b2

1 + b2z4

)
a′1 +

(
ω2 − q2

1 + (1 + b2)z4

)
a1

+
4ibz3E

(1 + b2z4)(1 + (1 + b2)z4)1/2 = 0 . (2.48)

Vanishing magnetic field

In this subsection we set the magnetic field to zero. Fluctuations of E
and a1 fields then decouple, and we can consider separately transverse
and longitudinal responses,

E′′ +
2
z

(
1

1 + z−4 + 2
(

1− 1− (q/ω)2(1 + z4)−2

1− (q/ω)2(1 + z4)−1

))
E′

+ (ω2 − q2(1 + z4)−1)E = 0 , (2.49)

a′′1 +
2z3

1 + z4a
′
1 +

(
ω2 − q2

1 + z4

)
a1 = 0 . (2.50)

Let us first study the longitudinal response. In the near-horizon z � 1
region eq. (2.49) becomes:

E′′ +
2
z
E′ + ω2E = 0 , (2.51)

The general solution of (2.51) is a linear combination of e±iωz/z. We
choose the solution with the incoming near-horizon behavior, since it cor-
responds to retarded propagator in the dual field theory [44]:

E = C
eiωz

z
. (2.52)

The constant C is undetermined, because the fluctuation equation is lin-
ear. When ωz � 1, we obtain

E = C

(1
z
+ iω

)
. (2.53)
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Condition (2.52) together with the boundary condition E(0) = 0 (im-
posed to get normalizable solutions) defines an eigenvalue problem for the
fluctuation equation (2.49). In the limit ωz, qz � 1, (2.49) reduces to,

E′′ +
2
z

(
1

1 + z−4 + 2
(

1− 1− (q/ω)2(1 + z4)−2

1− (q/ω)2(1 + z4)−1

))
E′ = 0 , (2.54)

having as general solution,

E(z) = C1 +C2(q
2 − 2ω2)

√
iF
(
i sinh−1(

√
iz)| − 1

)
− C2q

2z√
1 + z4

, (2.55)

where F (z) is an elliptic integral of the first kind. In the limit z → ∞ it
has an expansion

√
iF
(
i sinh−1(

√
iz)| − 1

)
→ −K(1/2) + 1

z
+O

( 1
z5

)
, (2.56)

where K(z) is the complete elliptic integral of the first kind. The solution
(2.55) becomes in this limit

E(z) = C1 −C2K(1/2)(q2 − 2ω2)− 2C2
z
ω2. (2.57)

Now we compare (2.53) and (2.57), and obtain as result

C1 =

(
iω− (q2 − 2ω2)K(1/2)

2ω2

)
C , C2 = − C

2ω2 (2.58)

Recalling the boundary condition E(0) = 0, we deduce from (2.55) that
C1 = 0, and consequently(

1 + iω

K(1/2)

)−1
=

2ω2

q2 , (2.59)

which in the limit of small q, ω is solved by the considering leading orders
in momentum q,

ω = ± q√
2
− iq2

4K(1/2) . (2.60)

This excitation has been identified before, and is called [16] holographic
zero sound. In the d = 2 + 1 dimensional system this mode has been
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observed in [23]. Note that the speed of sound does not depend on dimen-
sionality p of a probe brane and for any value of p is equal to the speed of
the usual sound in the hydrodynamic regime [45]. In Section IV we will
study current-current two-point functions, and the peak in the spectral
function, corresponding to zero sound mode, will also be observed in the
numerics.

Now, let us consider the fluctuation equation (2.50) for the transverse
gauge field component, in the limit ω, q � 1. Then eq. (2.50) becomes

a′′1 +
2z3

1 + z4a
′
1 = 0 , (2.61)

with an exact solution being

a1(z) = C1 +C2
√
iF
(
i sinh−1(

√
iz)| − 1

)
. (2.62)

In the near-horizon z →∞ limit it is expanded as

a1(z) ' C1 −C2K(1/2) +C2/z . (2.63)

Comparing it with the incoming-wave solution (2.114), one obtains

C1 = (iω+K(1/2))C , C2 = C . (2.64)

Then, near-boundary z � 1 expansion of (2.62) is given by

a1(z) ' A+Bz , (2.65)

where
A = (iω+K(1/2))C , B = −C . (2.66)

Therefore one may find the current two-point function 〈J1J1〉 = B
A . In

particular, its imaginary part is given by

Im〈J1J1〉 ' ω

[K(1/2)]2 . (2.67)

We provide numerical results for the transverse fluctuations in Section IV.
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Non-vanishing magnetic field

In this subsection we are going to study the case of small magnetic field,
b� 1, which will allow us to achieve some simplifications. Let us rewrite
the action (2.46) as

S =

ˆ
dz
(
GEE′2 + UEE2 + Gaa′21 + Uaa2

1 + C(1)(Ea1)
′
)

, (2.68)

where we have denoted

GE=−
(1+(1+b2)z4)1/2

(1+b2z4)
(
ω2− q2

1+(1+b2)z4

) , UE=
(1+(1+b2)z4)1/2

1+b2z4 , (2.69)

C(1) = 2ibz4

1 + b2z4 , Ua=−
(1+(1+b2)z4)1/2

(
ω2− q2

1+(1+b2)z4

)
1+b2z4 , (2.70)

Ga=
(1+(1+b2)z4)1/2

1+b2z4 . (2.71)

In the case of b� 1, we can approximate

GE = − (1 + z4)1/2

(1 + b2z4)
(
ω2 − q2

1+z4

) , UE =
(1 + z4)1/2

1 + b2z4 , (2.72)

Ga =
(1 + z4)1/2

1 + b2z4 , Ua = −
(1 + z4)1/2

(
ω2 − q2

1+z4

)
1 + b2z4 , (2.73)

C(1) = 2ibz4

1 + b2z4 . (2.74)

In the near-horizon limit, for ω > 0, integrating the C(1) term by parts,
we arrive at

S=

ˆ
dz z2

1+b2z4

(
−E

′2

ω2 +E2+a′21 −(ω2−b2q2)a2
1−8ibEa1

z

1+b2z4

)
. (2.75)

Moreover, for z � 1/
√
b and z3 � 1/(b(ω2− b2q2)1/2), we actually obtain

decoupled system of equations

E′′ − 2
z
E′ + ω2E = 0 ⇒ E = C̃1(1− iωz)eiωz , (2.76)
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a′′1−
2
z
a′1+(ω2−b2q2)a1=0 ⇒ a1=C̃2(1−i

√
ω2−b2q2z)ei

√
ω2−b2q2z .

(2.77)
Now, assume that ω2 � b2q2, and perform the linear transformation in
(2.75)

E = iω(χ1Ẽ + χ2ã1) , a1 = χ1Ẽ − χ2ã1 , (2.78)

with arbitrary constant coefficients χ1, χ2, which brings the action to the
form

S =

ˆ 2dz z2

1 + b2z4

(
χ2

1

(
Ẽ′2 − ω2

(
1− 4bz

ω(1 + b2z4)

)
Ẽ2
)

+ χ2
2

(
ã′21 − ω2

(
1 + 4bz

ω(1 + b2z4)

)
ã2

1

))
. (2.79)

Corresponding equations of motion are

Ẽ′′ +
2
z

1− b2z4

1 + b2z4 Ẽ
′ + ω2

(
1− 4bz

ω(1 + b2z4)

)
Ẽ = 0 , (2.80)

ã′′1 +
2
z

1− b2z4

1 + b2z4 ã
′
1 + ω2

(
1 + 4bz

ω(1 + b2z4)

)
ã1 = 0 . (2.81)

The solutions are

Ẽ =
e±iωz

z
+
b

ω
(1∓ iωz)e±iωz , (2.82)

ã1 =
e±iωz

z
− b

ω
(1∓ iωz)e±iωz . (2.83)

We impose the incoming-wave behavior,

E = iω

(
χ1 + χ2

z
+ (χ1 − χ2)

b

ω
(1− iωz)

)
eiωz , (2.84)

a1 =

(
χ1 − χ2

z
+ (χ1 + χ2)

b

ω
(1− iωz)

)
eiωz , (2.85)

which leaves us with two constant of integration χ1 ± χ2.

When ω ∼ q � 1, we can consider fluctuation equations (2.49), (2.50),
as for the case of vanishing magnetic field. Then we perform computa-
tions along the lines of the previous subsection, using now near-horizon
boundary conditions (2.84) and (2.85).
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First, we match (2.84) in ωz � 1 limit,

E = i(b(χ1 − χ2) + iω2(χ1 + χ2)) + iω
χ1 + χ2

z
(2.86)

with eq. (2.57). Requiring that C1 = 0, we arrive at

q2 − 2ω2 − 2
K(1/2)

(
ωb
χ1 − χ2
χ1 + χ2

+ iω3
)
= 0 . (2.87)

Then, we match (2.85) in ωz � 1 limit,

a1 = iω(χ1 − χ2) + (χ1 + χ2)
b

ω
+
χ1 − χ2

z
(2.88)

with eq. (2.63). Again, imposing normalizability condition C1 = 0, we
obtain

ω+
1

K(1/2)

(
b
χ1 + χ2
χ1 − χ2

+ iω2
)
= 0 . (2.89)

Solving (2.87) together with (2.89), we get 7

q2 − 2ω2 +
2b2

[K(1/2)]2 +
iω

K(1/2) (q
2 − 4ω2) = 0 . (2.90)

We see that in the presence of a magnetic field b zero sound mode develops
a gap ωc in the spectrum,

ωc =
b

K(1/2) . (2.91)

2.4.2 Effective theory for the sound mode

Zero sound may also be studied in the framework of Ref. [37]. First, one
introduces a hypersurface z = zΛ in the bulk, integrating out degrees of
freedom in the UV region 0 ≤ z ≤ zΛ. The UV physics is then effectively
encoded in the action by,

S =
1
2

ˆ
d3x(f2

0 (∂0φ−W0 +w0)
2 − f2

2 (∂2φ−W2 +w2)
2) , (2.92)

7Equivalently, we can obtain this result requiring that (2.87) and (2.89) have a non-
trivial solution for χ1 ± χ2.
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where Wµ = aµ(z = 0), wµ = aµ(z = zΛ), and the “Godstone boson” φ
corresponds to breaking of the U(1) symmetry with a gauge fieldWµ−wµ.
The zero sound mode may be interpreted in such a framework as a mode
coming from an excitation of the field φ, and therefore the speed of zero
sound is given by the expression v = f2/f0. Let us now compare the
effective field theory action for the UV degrees of freedom with the bulk
DBI action. To render the relation between bulk and boundary to be
precise, we specify the zero boundary condition Wµ = 0, putting the
Goldstone boson φ to zero:

S =
1
2

ˆ
d3x(f2

0w
2
0 − f2

2w
2
2) (2.93)

Let us consider all fields to be only z-dependent, in which case transverse
fluctuations decouple, and we can put these to zero. Then we can rewrite
the bulk theory action (2.39) in a form

S ' 1
2

ˆ
d3x

dz

1 + b2z4 (h
3(z)ã′20 − h(z)ã′22 ) , (2.94)

where we have defined h(z) =
√

1 + (1 + b2)z4. The solutions of the
equations of motion on ã0, ã2, satisfying zero boundary condition at the
AdS boundary, while being defined on the hypersurface z = zΛ, are now
given by:

w0 = C0

ˆ zΛ

0

dz(1 + b2z4)

h3(z)
, w2 = C2

ˆ zΛ

0

dz(1 + b2z4)

h(z)
. (2.95)

To match the bulk action and the boundary theory (2.93), we evaluate
the action (2.94) on the solution of the EOM, which leaves us with the
boundary terms at z = zΛ only

S ' 1
2

ˆ
d3x(C0w0 −C2w2) , (2.96)

which in turn with the help of (2.95), may be rewritten as (2.93) with

f−2
0 =

ˆ zΛ

0

dz(1 + b2z4)

h3(z)
, f−2

2 =

ˆ zΛ

0

dz(1 + b2z4)

h(z)
. (2.97)

Therefore the speed of zero sound is given by

u2
0 =

ˆ zΛ

0

dz(1 + b2z4)

h3(z)

(ˆ zΛ

0

dz(1 + b2z4)

h(z)

)−1

. (2.98)
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When b� 1, one obtains

u2
0 '

1
2 + 8π1/2

3Γ[1/4]2 b
2z3

Λ

, (2.99)

and therefore for b2z3
Λ � 1 one recovers the value of the speed of zero

sound in vanishing b-field, u0 = 1/
√

2, while for b2z3
Λ � 1 the speed

of zero sound approaches zero. In this regime the description of the low
energy physics by the effective action (2.92) presumably breaks down;
it would be interesting to write the low energy description that would
account for the gap in the spectrum.

2.4.3 Thermodynamic properties of trivial embeddings

We will study the thermodynamics of the trivial Dp brane embedding,
to obtain as a result the value of the speed of the usual first (hydrody-
namic) sound. We consider here the D3/Dp system with a 2 + 1 dimen-
sional intersection, and in the Appendix we will study the supersymmetric
D3/D7 system with a 3 + 1 dimensional intersection, in the presence of
a non-vanishing magnetic field.

The total prefactor of the action is irrelevant for the computation of
the speed of first sound. The grand canonical potential is given by the
equation

Ξ = −S =

ˆ
dρ(ρ4 + B̄2)(ρ4 + B̄2 + d̂4)−1/2 = a

2B̄2 − d̂4

(B̄2 + d̂4)1/4 , (2.100)

where a = Γ(1/4)2/(12
√
π). Using (2.35) one may calculate the charge

density as,

ρ̂ = − ∂Ξ
∂µ̄ch

, (2.101)

to find the energy density, being at zero temperature equal to the free
energy,

ε = Ξ + µ̄chρ̂ = 2a(B̄2 + d̂4)3/4 . (2.102)

Consequently, the speed of sound is given by

u2 =
∂P

∂ε
= −∂Ξ

∂ε
=

1
2

1 + 2b2

1 + b2 . (2.103)
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Notice that this result is independent of p, which agrees with [45]. Observe
that when the magnetic field vanishes we retrieve the value u2 = 1/2,
which we observed before in the dispersion relation (2.60).

Notice also that all the steps performed in the above may be combined
into one expression (use ∂S/∂µ̄ch = d̂2):

u2 =
∂S/∂µ̄ch

µ̄ch∂2S/∂µ̄2
ch

=
1
2
∂ log µ̄ch
∂ log d̂

. (2.104)

2.5 Holographic current-current correlators at fi-
nite frequency and momentum

In the previous section we have shown that a propagating mode (zero
sound) develops a gap in the presence of the magnetic field. In this section
we compute numerically the two-point function of the U(1) currents. First
we set magnetic field to zero. We identify the holographic zero sound as a
peak in the spectral function. We start by computing the density-density
correlator 〈J0J0〉 using the linearized DBI action. We then proceed to
computing the transverse correlator 〈J1J1〉. After that we proceed to the
case of non-vanishing magnetic field and show that the gap in the zero
sound spectrum shows itself on the numeric graphs.

2.5.1 Fluctuations of electric field strength E

Consider the fluctuation equation (2.47), near the boundary z = 0 for any
value of magnetic field:

E′′ − (q2 − ω2)E = 0 . (2.105)

Its general solution is of the form,

E = AEFI + BEFII , (2.106)

where we have denoted the two independent solutions as

FI = 1 + q2 − ω2

2 z2 +
(q2 − ω2)2

24 z4 + · · · , (2.107)

FII = z +
q2 − ω2

6 z3 + · · · . (2.108)
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The on-shell action is therefore given by

Son−shell' lim
ε→0

ˆ
dωdqAE(ω, q)AE(−ω,−q) 1

q2 − ω2
BE(ω, q)
AE(ω, q) |z=ε .

(2.109)
Non-vanishing Green functions are

〈J0(ω, q)J0(−ω,−q)〉 = lim
ε→0

δ2Son−shell
δa0(z = ε,ω, q)δa0(z = ε,−ω,−q)

= lim
ε→0

δ2Son−shell
δE(z = ε,ω, q)δE(z = ε,−ω,−q)

× δE(ω, q, z)
δa0(ω, q, z)

δE(−ω,−q, z)
δa0(−ω,−q, z) = (2.110)

= − q2

q2 − ω2
BE(ω, q)
AE(ω, q) ,

〈J2(ω, q)J2(−ω,−q)〉 = lim
ε→0

δ2Son−shell
δa2(z = ε,ω, q)δa2(z = ε,−ω,−q) =

= lim
ε→0

δ2Son−shell
δE(z = ε,ω, q)δE(z = ε,−ω,−q)

× δE(ω, q, z)
δa2(ω, q, z)

δE(−ω,−q, z)
δa2(−ω,−q, z) = (2.111)

= − ω2

q2 − ω2
BE(ω, q)
AE(ω, q) ,

〈J0(ω, q)J2(−ω,−q)〉 = lim
ε→0

δ2Son−shell
δa2(z = ε,ω, q)δa0(z = ε,−ω,−q) =

= lim
ε→0

δ2Son−shell
δE(z = ε,ω, q)δE(z = ε,−ω,−q)

× δE(ω, q, z)
δa2(ω, q, z)

δE(−ω,−q, z)
δa0(−ω,−q, z) = (2.112)

= − ωq

q2 − ω2
BE(ω, q)
AE(ω, q) .

Note that these expression agree with the Ward identity for the U(1)
conserved current Jµ,

ω〈J0(ω, q)J0(−ω,−q)〉 − q〈J0(ω, q)J2(−ω,−q)〉 = 0 . (2.113)

We evaluate numerically the ratio BE/AE on the solution of equation
(2.47) with incoming-wave near horizon behavior (2.52). In Fig. 2.3 we
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present numerical results for the real and imaginary parts of the BE/AE
for different values of ω, q in the case of b = 0. The holographic zero
sound corresponds to the peak in the spectral density.

2.5.2 Fluctuations of the transverse component of the gauge
field

In this subsection we will compute numerically the holographic two-point
function for the transverse current 〈J1(x)J1(y)〉. Let us put b = 0.

In the near horizon regime z →∞ the bulk solution, corresponding to
the retarded current-current propagator in the dual field theory, takes the
incoming-wave form

a1 = C
eiωz

z
, (2.114)

and in the vicinity of the boundary, the equation of motion becomes

a′′1 − (q2 − ω2)a1 = 0 , (2.115)

with a general solution being a combination of FI and FII (2.107), (2.108),

a1 = AaFI + BaFII . (2.116)

The results of numerical evaluations of the holographic two-point func-
tion 〈J1(q)J1(−q)〉 = Ba

Aa are presented in Fig. 2.4. We see that it does
not reveal any structure.

2.5.3 Non-vanishing magnetic field

In the case of b 6= 0 fluctuations of the longitudinal E(x0, x2, z) and trans-
verse a1(x0, x2, z) components of the gauge field are no longer decoupled8.
They are described by the action (2.68), which can be written as

S =

ˆ
dz

((
−(GEE′)′ + UEE −

1
2 (C

(1))′a1

)
E+

+

(
−(Gaa′1)′ + Uaa1 −

1
2 (C

(1))′E

)
a1

)
+

+ [GEEE′ + Gaa1a
′
1 + C(1)Ea1]

z=∞
z=0 . (2.117)

8We thank R. Davison for pointing this out to us.
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Figure 2.3. Real and imaginary parts of the BE/AE in the D3/Dp system with
d = 2 + 1 dimensional intersection. The spectrum of excitations is exhausted by
the holographic zero sound mode with the speed of sound u0 = 1√

2 , and the
attenuation Γq ' q2.
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Figure 2.4. Real and imaginary parts of the correlation function 〈J1(−q)J1(q)〉
in the D3/D7 system with d = 2 + 1 dimensional intersection. No non-
trivial collective excitation modes are observed. For small frequencies and mo-
menta ω, q � 1, the imaginary part of the correlation function behaves as
Im[〈J1(−q)J1(q)〉] ∼ ω, independently of a particular value of q.
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The first two lines vanish on shell. In the last line the cross term does not
contribute to the variation of the on-shell action by the boundary z = 0
values of the fields E and a1, because

C(1)|z=0 = 0 . (2.118)

The on-shell action is then given by the boundary term

Son−shell ' lim
ε→0

ˆ
dωdq

( 1
q2 − ω2EE

′ + a1a
′
1

)
z=ε

. (2.119)

Near the boundary the solutions to equations of motion are given by

E = AEFI + BEFII , a1 = AaFI + BaFII , (2.120)

where FI, II are defined by (2.107), (2.108).
To compute current-current two-point function numerically, we follow

[46], where general system of coupled equations in the bulk is studied.
For arbitrary two independent solutions Φ(1), Φ(2) of the coupled sys-
tem of fluctuation equations (2.47), (2.48), we define the matrix H =(

Φ(1), Φ(2)

)
. Near the boundary it is expanded as

H = AFI + BFII . (2.121)

On-shell action (2.119) may be rewritten as

Son−shell '
ˆ
dωdqΦT M Φ′ , (2.122)

where

M =

( 1
q2−ω2

0
0
1

)
. (2.123)

The matrix of correlation functions is then given by (see eq. (2.34) in [46])

G 'MBA−1 . (2.124)

In such a form the current-current correlation matrix G is explicitly inde-
pendent of a linear change of fields

Φ(1) → r1Φ(1)+r2Φ(2) , Φ(2) → r3Φ(1)+r4Φ(2) ⇒ H → HR , (2.125)
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where R =
(
r1
r2

r3
r4

)
is some arbitrary non-degenerate matrix. If Φ(1),(2) =(

E(1),(2)

a
(1),(2)
1

)
are some arbitrary independent solutions, then due to (2.121)

we get

A =

A(1)
E

A(1)
a

A(2)
E

A(2)
a

 , B =

B(1)E

B(1)a

B(2)E

B(2)a

 , (2.126)

and therefore using (2.124) we obtain

G ' 1
A(1)
E A

(2)
a −A(1)

a A(2)
E

 B(1)E A
(2)
a −B

(2)
E A

(1)
a

q2−ω2

B(1)a A(2)
a −B(2)a A(1)

a

B(2)E A
(1)
E −B

(1)
E A

(2)
E

q2−ω2

A(1)
E B

(2)
a −B(1)a A(2)

E

 ,

(2.127)
Near-horizon solutions are given by (2.76), (2.77), which we can write

as a linear combination of two independent solutions

Φ̃(1) =

(
(1− iωz)eiωz

(1− i
√
ω2 − b2q2z)ei

√
ω2−b2q2z

)
, (2.128)

Φ̃(2) =

(
(1− iωz)eiωz

−(1− i
√
ω2 − b2q2z)ei

√
ω2−b2q2z

)
(2.129)

Arbitrary near-horizon behavior, with the most general form (up to simul-
taneous rescaling of all fields by the same factor) may therefore be written
as a linear combination of these two solutions,

Φ =

(
(1− iωz)eiωz

c(1− i
√
ω2 − b2q2z)ei

√
ω2−b2q2z

)
=

1 + c

2 Φ̃(1) +
1− c

2 Φ̃(2) .

(2.130)
On the other hand, fluctuation equations may be rewritten as

Ω1Φ′′ + Ω2Φ′ + ΩΦ = 0 , (2.131)

with matrices Ω1,2,3, being determined from (2.47), (2.48). Therefore lin-
ear combination of near-horizon solutions (2.129) results in the same linear
combination of the solutions near the boundary. Recall that the matrix
correlation function (2.127) is the same for any such a non-degenerate
linear combination.

We therefore fix two arbitrary near-horizon conditions, say (2.129),
determine corresponding coefficients A(1),(2)

E , A(1),(2)
a and B(1),(2)E , B(1),(2)a
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by integrating numerically fluctuation equations (2.47), (2.48) up to the
boundary and matching corresponding solutions with (2.120), and com-
pute the correlation matrix (2.127). Each of the four components of the
correlation matrix shows a gapped zero sound mode.

In figure 2.5 we plot the real and imaginary parts of the G22 compo-
nent, for b = 0.001. We see the gapped zero sound mode, with the gap
which scales as ωc ∼ b, in agreement with analytic result ωc = b

K(1/2) of
the previous section.

2.6 Discussion

In this chapter we have studied current-current two-point functions at
strong coupling. We have considered the current-current correlators at
finite momenta, but did not observe any nontrivial structure in the spectral
function, other than the zero sound9.

It is instructive to compare the holographic density-density correlator
with the form expected from the random phase approximation and re-
viewed in Section II. Within RPA the zero sound mode presents itself as a
smeared delta-function like peak in Fig. 1, the Lindhard particle-hole con-
tinuum starts at q ' w/υF and sharply ends at q ' 2qF . The absence of
the Lindhard continuum in the holographic computations can be explained
by parametrically large values of the Landau parameters. The key point
is eq. (2.11) which implies that since the zero sound velocity that we ob-
serve is O(1), the value of Fermi velocity scales like υF ∼ 1/

√
F0F1. The

regime of validity of our calculations is limited to w ∼ q, and therefore the
Lindhard continuum cannot be observed for parametrically large values
of the Landau parameters. In the following we offer some speculations on
how such a scenario can play out.

We can argue that the Fermi velocity is parametrically small. Recall
that q ' q

√
λ/µ. Hence, eq. (2.60) implies that the zero sound attenua-

tion is α ∼ w2√λ/µ. According to [47] this can be expressed in terms of
the quasi-particle lifetime as

α ' 1
τ

m∗

µ
υ2
FF

2
2 ∼

w2

µ
F 2

0F
2
2 (2.132)

9Note that our models are different from those studied in [7, 8], where poles at
finite momenta were observed in the holographic two-point functions of operators with
nonvanishing charge under global U(1).
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Figure 2.5. Real and imaginary parts of the component G22 of the correlation
matrix (2.124) in the D3/D7 system with d = 2 + 1 dimensional intersection,
for the magnetic field b = 0.001. The spectrum of excitations is exhausted by a
gapped zero sound mode, with the value of the gap ωc ∼ b.
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To derive the second approximate equality we used the Fermi liquid es-
timate 1/τ ∼ w2m∗F0

2/q2
F ∼ w2F 2

0 /E∗F . Eq. (2.132) implies that the
Landau parameters are indeed parametrically large, F 2

0F
2
2 ∼
√
λ.

We have analyzed the system in the presence of magnetic field and
observed a gap in the excitation spectrum wc. We derived a scaling re-
lation wc ' B/µ. Note that the gap in the spectrum of non relativistic
fermions scales linearly with B, while the relativistic fermions obey

√
B

scaling; Kohn’s theorem implies that the gap in the spectrum of excita-
tions is not changed when the pairwise interaction is turned on. In our
setup charged fermions interact and can exchange momentum with N = 4
SYM degrees of freedom; the linear scaling of the gap with the magnetic
field is consistent with the assumption that the effective degrees of freedom
have an effective mass m∗ ' µ. [According to eq. (2.10) this implies that
F1 = O(1); a scenario consistent with the discussion above may involve
a parametrically large F0 ∼ λ1/4 but finite Fn, n > 0.] We do not quite
understand the mechanism of dynamical mass generation at finite density
– it is clearly very different from dynamical mass generation in a strongly
interacting fermion system at zero density10.

We already emphasized that a priori the very existence of zero sound is
nontrivial, given the interaction of the charged matter with the uncharged
superconformal degrees of freedom. It would be interesting to make this
picture more precise and to see whether there is any relation to the recent
studies of fermions in magnetic fields in the context of holography [48–
50, 52, 51]. It would also be interesting to compare our results with the
correlators computed in the charged magnetic brane background [53].

At this point it is worth recalling the relation between the charge den-
sity and the value of the chemical potential, given by (2.35). As usual,
the value of the charge density is proportional to d̂, ρ ' Ncλ

(p−5)/4d̂ and
the proportionality coefficient strongly depends on the dimensionality of
the probe brane. The incompressibility ∂d̂/∂µ is a smooth non-vanishing
function of µ, b. This implies that we cannot rule out the existence of gap-
less modes in our system11. Indeed, the analysis that led to the existence
of the zero sound implicitly assumed ω ∼ q ∼ b, and can be shown to break
down for |ω| < bq. We leave the search for gapless quasi normal modes
for future work. Let us also note that a smooth compressibility is not

10The holographic dual of the latter involves repulsion of the probe brane from the
bulk of of the AdS space; see e.g. [41] for a recent discussion.

11We thank D. Son for pointing this out to us.
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compatible with the existence of Landau levels for the effective fermions.
Appendix is devoted to the subject of higher derivative corrections to

the DBI action for the probe Dp brane. The possibility of breakdown of
the DBI description in the extreme infrared (very close to the horizon) was
pointed out in [54]. Two possible causes were identified in the presence
of the electric flux on the brane: strong back-reaction and vanishing of
the effective string tension. The strength of back-reaction from the flavor
branes is governed by the ratio Nf/Nc. We did not investigate 1/Nc cor-
rections in this chapter, although it is a very interesting problem. Instead,
we explored the effects of the breakdown of the DBI description due to the
vanishing of the effective string tension near the horizon. The strength
of this effect is controlled by an inverse power of ’t Hooft coupling. In
principle, such effects can be described by going to higher orders in the
α′ expansion of the effective action for open strings, which corresponds to
adding higher derivative terms to the DBI Lagrangian. Unfortunately we
are not aware of the precise structure of higher derivative corrections to
DBI in the presence of the worldvolume electric field. However we were
able to model this situation by writing generic higher derivative terms
which become important near the horizon and completely change the ef-
fective metric for fluctuations there.

The effect of such terms is confined to a very small region (which
scales as an inverse power of ’t Hooft coupling in suitable units); outside
of this region the second order differential equations derived from the DBI
are applicable. In principle, one can solve the higher order fluctuation
equation outwards from the horizon, and then feed the resulting solution
into the second order equation. From the point of view of the latter, this
amounts to modifying the boundary conditions: an outgoing wave (with
a small coefficient) is added to the incoming wave near the horizon. We
verify that this does not introduce any qualitative new features in the
two-point functions.

2.7 Appendix: Higher-derivative corrections to
LDBI(a1)

The DBI description might break down in the near-horizon region [54],
and therefore higher derivative corrections become essential in that region.
Consider higher derivative correction to the DBI Lagrangian of the form
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[55, 56]
ε

2
√
−ggµλgνρgαβ(∇αFλρ)(∇βFµν) , (2.133)

Alternatively, using the Bianchi identity, one may rewrite it as

ε̃
√
−ggµν∇λF λµ∇σF σν . (2.134)

Here ε ∼ `2s ∼ 1√
λ
.

In this section we put L = 1. The induced AdS4 × S4 metric on the
trivially embedded Dp brane world-volume then takes the form

ds2 = ρ2(−(dx0)2 + (dx1)2 + (dx2)2) +
dρ2

ρ2 + dΩ2
4 , (2.135)

This corresponds to non-vanishing Christoffel symbols in the AdS sub-
space,

Γρρρ = −
1
ρ

, Γρij = −ρ
3ηij , Γiρj =

1
ρ
δij , (2.136)

where η00 = −1, η11 = η22 = 1. We fix the background value of A′0(ρ)
(2.34) (with B̄ = 0) and study the dynamics of the fluctuation field
a1(ρ,x0,x2). Consequently, the non-vanishing components of the field
strength tensor covariant derivatives

∇αFµν = ∂αFµν − ΓταµFτν − ΓτανFµτ (2.137)

are given by

∇1F0ρ = −
1
ρ
F01 , ∇ρF0ρ = ∂ρF0ρ , ∇ρF01 = ∂ρF01 −

2
ρ
F01 , (2.138)

∇1F01 = ρ3F0ρ , ∇2F01 = ∂2F01 , ∇0F01 = ∂0F01 − ρ3Fρ1 , (2.139)

∇2F12 = ∂2F12 + ρ3F1ρ , ∇0F12 = ∂0F12 , ∇ρF12 = ∂ρF12 −
2
ρ
F12 ,
(2.140)

∇2Fρ1 = ∂2Fρ1 −
1
ρ
F21 , ∇0Fρ1 = ∂0Fρ1 −

1
ρ
F01 , ∇ρFρ1 = ∂ρFρ1 .

(2.141)
Let us now substitute the quantities (2.138)-(2.141) into the Lagrangian

(2.133), which becomes in momentum representation,

∆L = ε[−ρ2(∂ρA0)
2 − ρ4(∂2

ρA0)
2 +

1
ρ2

(
(q2 − ω2)2

ρ2 + 5q2 − 6ω2
)
a2

1

+ 2(ρ2 + q2 − ω2)(∂ρa1)
2 + ρ4(∂2

ρa1)
2+

4(ω2 − q2)

ρ
a1 ∂ρa1] . (2.142)
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To obtain the corrected equation of motion of the background field ∂ρA0,
we put the a1 fluctuations to zero and write the total, DBI + corrections,
Lagrangian as

L = ρ2
√

1− (∂ρA0)2 − ε[ρ2(∂ρA0)
2 + ρ2(∂2

ρA0)
2] . (2.143)

The corresponding equation of motion

ρ2∂ρA0√
1− (∂ρA0)2

+ 2ε[ρ2 ∂ρA0 − ∂ρ
(
ρ4 ∂2

ρA0
)
] = d̂2 (2.144)

is solved to first order in ε by

∂ρA0 =
d̂2√
ρ4 + d̂4

+ δ ∂ρA0 , (2.145)

where we have denoted the correction to the background as

δ ∂ρA0 = −2d̂2ερ6(d̂8 + 16d̂4ρ4 + 3ρ8)

(ρ4 + d̂4)4 . (2.146)

Note that (2.146) approaches zero as O(ρ6), near the horizon ρ = 0.
Therefore the correction to the behavior of the background potential ∂ρA0
does not substantially affect the near-horizon physics. Using the z = 1/ρ
radial coordinate, and considering the near horizon limit ωz � 1, we
obtain from (2.142) the correction to the near-horizon DBI Lagrangian

∆L = ε
(
(q2 − ω2)z2(2a′21 + (q2 − ω2)a2

1) + (2a′1 + za′′1)
2
)

. (2.147)

This is to be added to the quadratic DBI near-horizon Lagrangian,

LDBI = z2(a′21 − ω2a2
1) . (2.148)

As a result we obtain the following near-horizon Lagrangian:

L =
((

1 + 2ε(q2 − ω2)
)
z2 + 2ε

)
a′21 +

(
−ω2 + ε(q2 − ω2)2

)
z2a2

1

+ 2ε(za′21 )′ + εz2(a′′1)
2 . (2.149)

Up to a total derivative term12 and O(ε) modification of the DBI behavior,
this Lagrangian therefore may be rewritten as

L = z2(a′21 − ω2a2
1) + εz2(a′′1)

2 , (2.150)
12Corresponding boundary terms 2εza′2

1 , evaluated on non-perturbed solution eiωz/z,
vanish when z � 1.
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with associated equation of motion

a′′1 +
2
z
a′1 + ω2a− ε

(
a′′′′1 +

4
z
a′′′1

)
= 0 . (2.151)

To estimate the relative significance of the correction and DBI terms,
let us compare terms a′′1 and ε

(
a′′′′1 + 4

za
′′′
1

)
, when evaluated on the non-

perturbed near-horizon solution eiωz/z:

a′′1 '
1 + (ωz)2

z3 , ε

(
a′′′′1 +

4
z
a′′′1

)
' εω

4

z
. (2.152)

We observe that this correction is negligible.
Unfortunately we are not aware of the exact form of the higher deriva-

tive corrections to the DBI action in the presence of the electric field on
the world-volume of the probe Dp brane. In the following we will simply
assume a particular expression for the higher derivative corrections to the
Lagrangian for the transverse fluctuations:

L = z2(a′21 − ω2a2
1) + εz2+ν(a′′1)

2 , (2.153)

with ν > 0. To estimate the significance of the correction term we need
to compare contributions to the equation of motion from the terms O(1)

a′′1 '
1 + (ωz)2

z3 (2.154)

and O(ε)

ε
(
zνa′′′′1 +2(ν+2)zν−1a′′′1 +(ν+1)(ν+2)zν−2a′′1

)
' εzν−5(1+(ωz)4) .

(2.155)
Therefore, if 0 < ν ≤ 2, the correction becomes significant when z �

1
(εω2)1/ν (see the hierarchy of scales in Fig. 2.6). If ν > 2, considering
modes with sufficiently low frequency ω < ε1/(ν−2) the correction becomes
significant when z � ε1/(2−ν) (see Fig. 2.7). Finally, if ν > 2 and ω >
ε1/(ν−2), the Fig. 2.6 is applicable, and the correction is significant when
z � 1

(εω2)1/ν . Hence, in the region z � 1
(εω2)1/ν the DBI description

is valid, provided that 0 < ν ≤ 2 or ν > 2, ω > ε1/(ν−2). The DBI
description is valid in the region z � ε1/(2−ν) for ν > 2, ω < ε1/(ν−2).

The behavior of a1 in the limit z � 1 where the DBI description is
valid, is different from the incoming-wave (2.114): it has a qualitative form
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Figure 2.6. Hierarchy of scales in the near-horizon region for 0 < ν ≤ 2.

Figure 2.7. Hierarchy of scales in the near-horizon region for ν > 2 and ω <
ε1/(ν−2).

of “incoming wave” + O(ε) “outgoing wave”. It is worth noting that the
effect of higher derivative corrections on the current-current correlation
function is essentially the same as an effect of non-zero b-field. We verified
that such a modification does not lead to any nontrivial structure in the
spectral density.
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