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Chapter 1

Introduction

1.1 Preface

This thesis is devoted to applications of string theoretic methods of holog-
raphy to strongly coupled phases of quantum field theories. The general
definition of holography states that there is an exact equivalence between
a closed string theory on a manifold and a quantum field theory in the
asymptotic region (on the boundary) of this manifold. Usually the man-
ifold is an asymptotically Anti-de Sitter space, and the QFT lives on the
boundary of this asymptotically AdS space. In the original example of
the holographic correspondence, the QFT on the boundary is N = 4
supersymmetric conformal Yang-Mills theory. Due to this example, the
holographic duality is called the AdS/CFT correspondence.

If the gauge quantum field theory on the boundary of AdS is in a
strongly coupled phase then the dual sting theory in the bulk of AdS can
be approximated by its low-energy limit, supergravity. Moreover, when
the number of colors in the QFT is taken to infinity, the dual supergravity
in AdS is classical. Therefore the AdS/CFT correspondence facilitates a
powerful approach to difficult questions of infra-red physics of quantum
field theories, like confinement and chiral symmetry breaking in quantum
chromodynamics. In practice there are still technical limitations, as well
as principal restrictions, on the kinds of field theories which can be studied
holographically. As for now there exists no holographic description of real-
world QCD. However the systems which are qualitatively close to QCD
can be successfully dealt with by the methods of AdS/CFT. In fact, in
a large number of situations the AdS/CFT correspondence is the only
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available analytical tool.

Theoretical high-energy physics studies the structure of the world on
the fundamental, microscopic level. At high energies the gravitational
force becomes strongly coupled and quantum gravity effects cannot be
neglected. The scale at which quantum gravity effects become important is
known as the Planck scale. This is the scale at which the Standard Model
of particle physics and General Relativity break down. The theory which
incorporates SM and GR and provides a successful ultra-violet completion
of these theories is known as string theory (although as this thesis is being
written difficult phenomenological questions remain to be answered). The
UV completion of the theories of fundamental interactions is an important
and complicated research area.

A no less complicated set of problems exists in the opposite regime on
an energy scale, infra-red phases of quantum field theories. Consider, for
example, a QCD-like model. At high energies we have a system of weakly
coupled quarks and gluons interacting by an exchange of gluons and self-
interaction of gluons. It is described by a gauge-invariant matter action
and a non-abelian Yang-Mills action. The processes involving scattering
of quarks and gluons are described by Feynman diagrams, and since the
coupling constant is small we can get accurate predictions perturbatively,
by accounting for just the leading loop corrections. As we move towards
low energies, due to the renormalization group flow the gauge coupling
constant grows. In fact the IR phase can have a qualitatively different
interaction of quarks than the UV phase, as the Coulomb force of the
UV regime disappears and instead, in the IR, quarks are confined by the
flux tube, with the force growing proportionally to the separation between
quarks. The perturbative approach of Feynman diagrams is completely
useless for the description of these phenomena. In fact it is not even
correct to talk about quarks and gluons in the IR, the fundamental degrees
of freedom are glueballs, mesons and baryons, within which gluons and
quarks are confined.

This is where the tools of the AdS/CFT correspondence can become
useful. The IR phases of QCD-like systems at strong coupling and large
number of colors are dual to classical supergravity in an asymptotically
AdS space. Systems of condensed matter physics can also be qualitatively
described by the gravitational AdS physics. These are the kinds of models
which we have studied holographically in this thesis.

Asymptotically AdS space is not the only possible bulk geometry of a
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holographic dual to a quantum field theory. Another kind of holographic
correspondence which we have considered in this thesis is a duality be-
tween Little String Theory and a gauged Wess-Zumino-Witten model in
a charged black brane background. The advantage of this holographic
correspondence is that one does not have to resort to the limit of the
supergravity approximation, because string theory in this background is
exactly solvable. In this case, it means that the QFT can be taken at
finite number of degrees of freedom.

Such an example of holographic duality can be ascribed to the realm of
top-down holography. The term ‘top-down’ in general means that we know
the string origin of the bulk degrees of freedom we are dealing with, and the
their effective action appears as a low-energy limit of string theory. The
original example of the AdS/CFT correspondence, the duality between
type-IIB string theory on AdS5 × S5 and N = 4 SYM theory on the
boundary of AdS5, is another example of top-down holography. A different
way to apply holography is known as the bottom-up approach, and it
assumes a generic form of the action for some of the bulk fields. Its
advantage is that it allows one to get a quick perspective on properties of
the dual field theory. Its disadvantage is that such a model can turn out to
be outside of the realm of string theory and therefore become inconsistent.
Another disadvantage is that one does not know what the QFT degrees
of freedom dual to the bulk fields described by a bottom-up action are.
In this thesis we have used both top-down and bottom-up methods.

1.2 String theory

In this chapter we are going to review some basic string theory which will
be useful for this thesis. The entire content of this chapter is a review of
textbook material. String theoretic basics are presented for the purpose
of assisting the understanding of chapter 4. We refer the reader to the
references [1–4] for a more complete exposition of the topics discussed
here.

1.2.1 The Polyakov action and two-dimensional conformal
field theory

The basic object of string theory is an extended one-dimensional relativis-
tic string. As a string moves it sweeps a two-dimensional surface, which
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is called a world-sheet. Let us parametrize a world-sheet by a time-like
coordinate τ and a space-like coordinate σ. We are using the convention
σ ∈ [0,π]. String can be open or closed. An open string has two ends,
located at σ = 0 and σ = π. In the case of a closed string these two ends
are identified.

Consider the field Xµ(τ ,σ) which describes an embedding of a string
into a d-dimensional space-time, µ = 0, . . . , d− 1. It is called a target
space-time. The action for the field Xµ in a flat target space-time is the
Polyakov action

SP = − 1
4πα′

ˆ
d2σ
√
−hhαβ∂αXµ∂βXµ , (1.1)

where the index µ is lowered with the flat space-time metric ηµν . This
is the action of a free bosonic string theory. In (1.1) we have α′ = `2s/2,
where `s is the string length. In what follows we set `s = 1. A world-sheet
has a two-dimensional metric, hαβ, α,β = τ ,σ, with three independent
components. We can set it to the flat metric, ηαβ, by two-dimensional
diffeomorphism transformations, σα → σ′α(σβ), and a Weyl rescaling,
hαβ → e2ω(τ ,σ)hαβ. Both are symmetries of the action (1.1). The choice
hαβ = ηαβ for the world-sheet metric is called the conformal gauge.

Perform now a Wick rotation τ → −iτ and introduce a complex co-
ordinate z = eτ+iσ on an open string world-sheet, and z = e2(τ+iσ) on
a closed string world-sheet. The ends of an open string, σ = 0,π, are
then parametrized by z = eτ and z = −eτ . Now a world-sheet is a two-
dimensional Riemann surface with Euclidean signature. The Polyakov
action (1.1) in conformal gauge is then

SP =
1

2π

ˆ
d2z ∂Xµ∂̄Xµ , (1.2)

where ∂ denotes a derivative w.r.t. z and ∂̄ denotes a derivative w.r.t. z̄.
The classical wave equations of motion for the fields Xµ are

∂∂̄ Xµ(z, z̄) = 0 , (1.3)

and must be accompanied by boundary conditions. If the string is closed
then the boundary conditions are satisfied due to the periodicityXµ|σ=0 =
Xµ|σ=π. In the case of an open string we must impose the following
boundary conditions at the ends of the string,

δXµ (z̄∂̄ − z∂)Xµ|z=±eτ = 0 , (1.4)
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which can be resolved in two different ways. These are called Neumann
and Dirichlet boundary conditions:

Neumann : (z̄∂̄ − z∂)Xµ|z=±eτ = 0 ,
Dirichlet : δXµ|z=±eτ = 0 .

(1.5)

Neumann boundary conditions do not break the translational symmetry
of the flat target space-time: they are invariant under the replacement
Xµ → Xµ + aµ with any constant aµ. On the other hand, Dirichlet
boundary conditions mean that the end of the string is held at a fixed,
distinguished, point in a given space direction and it breaks translational
symmetry in that direction. The physical reason for such a boundary
condition is that the string ends on some object. This object, which is
heavy and which is localized at a certain value of the xµ coordinate, is
called aD-brane. The dynamics of open strings determine the fluctuations
of a D-branes. We will get back to D-branes later in this chapter.

Besides the equations of motion (1.3) and the boundary conditions
(1.5) one has to impose Virasoro constraints. These constraints origi-
nate as follows. Recall that the action (1.2) is written in the confor-
mal gauge, hαβ = δαβ. It is invariant under all two-dimensional coor-
dinate transformations which keep a flat world-sheet metric conformally
flat, hαβ = e2ω(z,z̄)δαβ, that is flat up to an overall factor e2ω(z,z̄). Such
transformations are called conformal transformations. They are generated
by the stress-energy tensor. In two dimensions, the stress-energy tensor
has three independent components. Due to conformal invariance, the
stress-energy tensor is classically traceless, and therefore two independent
components remain

T (z) = −∂Xµ(z)∂Xµ(z) , T̃ (z̄) = −∂̄Xµ(z̄)∂̄Xµ(z̄) . (1.6)

String theory is a two-dimensional conformal field theory. The classical
requirement of conformal invariance of states of a string boils down to
demanding the vanishing of the stress-energy tensor, T (z) = 0, T̃ (z̄) =
0. These conditions are refined in the quantum theory, and are called
Virasoro constraints.

Let us proceed to a first quantization of string theory. In chapter 4 we
are going to consider a string moving in a space which is a direct product
of flat space and coset space. In this section, for simplicity, let us refrain
to string moving in a flat space-time. Due to the translational invariance
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of flat space-time we have left-moving and right-moving currents,

jµ(z) = i
√

2 ∂Xµ(z) , j̃µ(z̄) = i
√

2 ∂̄Xµ(z̄) , (1.7)

which due to the equations of motion (1.3) are conserved separately. For
a classical string products like j(z1)j(z2) are non-singular for any z1− z2.
If we quantize the string, these become singular as z1 approaches z2:

jµ(z1)j
ν(z2) = : jµ(z1)j

ν(z2) : + 〈jµ(z1)j
ν(z2)〉 , (1.8)

and similarly for j̃µ(z̄1)j̃ν(z̄2). In (1.8), the : jµ(z1)jν(z2) : is regular
in the limit z1 → z2, and it is called a normal-ordered product of the
operators j(z1) and j(z2). If not specified otherwise, all the products of
world-sheet operators in this chapter are normal-ordered. The correlation
function 〈jµ(z1)jν(z2)〉 is singular when z1 → z2 and is defined by the
Polyakov path integral

〈jµ(z1)j
ν(z2)〉 =

ˆ
[dX ] (i

√
2 ∂Xµ(z1))(i

√
2 ∂Xν(z2))e

−SP [X ] . (1.9)

We obtain

〈jµ(z1)j
ν(z2)〉=ηµν

1
(z1 − z2)2 , 〈j̃µ(z̄1)j̃

ν(z̄2)〉=ηµν
1

(z̄1 − z̄2)2 . (1.10)

Let us focus on holomorphic fields; the conclusions are similar for anti-
holomorphic fields. The stress-energy tensor in terms of the currents jµ
is

T (z) =
1
2 : jµ(z)jµ(z) : . (1.11)

We have the operator product expansion (OPE)

T (z1)j
µ(z2) =

jµ(z2)

(z1 − z2)2 +
∂jµ(z2)

z1 − z2
+ . . . , (1.12)

where dots represent normal-ordered terms, regular in the limit z1 → z2.
We also have the OPE

T (z1)T (z2) =
c/2

(z1 − z2)4 +
2T (z2)

(z1 − z2)2 +
∂T (z2)

z1 − z2
+ . . . . (1.13)

Here c is a central charge, which is not present in the classical theory. For
the stress-energy tensor (1.11), it is equal to the dimension of the target
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space-time, d, where each component of jµ contributes central charge equal
to one. In bosonic string theory the central charge is c = d−26, where−26
comes from conformal ghost fields. In superstring theory (discussed below)
c = 3d/2 − 15, where each one of d world-sheet fermions contributes
1/2 and superconformal ghosts contribute −15. Non-vanishing central
charge signifies a world-sheet conformal anomaly: quantum violation of
the classical tracelessness of the stress-energy tensor.

The conformal anomaly in a consistent string theory should vanish.
This is necessary because conformal invariance of string theory ensures
that the negative-norm time-like component of the current j0 (and time-
like component of the fermion ψ0, in the case of superstring theory, where
conformal symmetry is extended to superconformal symmetry) decouples
from the spectrum of physical operators. In this chapter we always assume
that a bosonic string lives in 26-dimensional space-time, and a supersym-
metric string lives in 10-dimensional space-time, so that the central charge
vanishes.

Let us perform a Laurent series expansion

T (z) =
∑
n

Ln
zn+2 , jµ(z) =

∑
n

jµn
zn+1 , (1.14)

where L−n = (Ln)†, j−n = (jn)†. Therefore the OPE (1.10), and radial
ordering of operators on a complex world-sheet plane (if one considers
the operator product O(z1)O(z2) and z1 → z2, then the operator with
larger |z| is placed on the left of the operator with smaller |z|), give the
commutator

[jµm , jνn] = mηµν δm+n,0 . (1.15)

We see that jµ−n , n > 0 are the operators creating oscillatory string states
and jµn , n > 0 are the operators annihilating string states.

The OPE (1.12) gives the commutator

[Lm, jµ−n] = njµm−n , (1.16)

and the OPE (1.13) gives the Virasoro algebra commutation relation

[Lm, Ln] = (m− n)Lm+n +
c

12m(m2 − 1) . (1.17)

We also obtain
Ln =

1
2
∑
k

ηµνj
µ
−kj

ν
n+k , (1.18)
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where the operators are normal-ordered: creation operators jµ−m, m > 0
are always on the left of annihilation operators jµm, m > 0; due to (1.15)
this subtlety only arises when n = 0.

The classical physical state conditions, which demand that the stress-
energy tensor components (1.6) vanish, are replaced in the quantum theory
by the Virasoro conditions

Ln|phys〉 = 0 , n > 0 , (L0 − a)|phys〉 = 0 , (1.19)

where a is a normal ordering constant. For a bosonic string a = 1. We
will derive the value of a for superstring later in this chapter.

A general string state is

|state〉 = jµ1
−n1 . . . j

µk
−nk |0; p〉 , (1.20)

where the vacuum |0; p〉 is annihilated by all jµn with n > 0. The eigen-
values of jµ0 are values of the momentum pµ of the center of mass of a
string. If the state (1.20) satisfies the Virasoro constraints and has a
non-vanishing norm, it is called physical.

The L0 Virasoro constraint defines the mass-shell equation:

1
2M

2 =
∑
n>0

ηµνj
µ
−nj

ν
n − a , (1.21)

where we have used the equation −j2
0 = −p2 = M2. The −a term is

therefore the zero-point energy of a string.
Due to (1.19), the negative-norm states which are created by the op-

erators j0
−k, k > 0 are decoupled from the physical spectrum. We are

going to illustrate this now with a simple example. Recall that |p; 0〉 is
a string oscillatory vacuum state, with a center-of-mass momentum pµ,
satisfying Ln|p; 0〉 = 0 for n > 0. Consider the first excited string state,
|ψ〉 = eµj

µ
−1|p; 0〉, where the polarization vector eµ has d independent com-

ponents. The only non-trivial Virasoro constraint (besides the mass-shell
condition (1.21)) is L1|ψ〉 = 0, which due to (1.16), (1.18) gets re-written
as pµeµ = 0. The mass of this state, due to (1.21) and the fact that a = 1,
is zero.

Due to (1.18) and (1.21) the state |χ〉 = L−1|p; 0〉 = pµj
µ
−1|p; 0〉 also

has zero mass, as the state |ψ〉, and has a longitudinal polarization eµ =
pµ. The state |χ〉 is called spurious: it satisfies the Virasoro constraints but
it is decoupled from any physical state |ω〉, because 〈χ|ω〉 = 〈p; 0|L1|ω〉 =
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0. In particular its own norm is equal to zero. Any state |ψ〉 is therefore
defined up to a state t|χ〉, with an arbitrary parameter t.

Let us now choose p0 =
√
M2 + p2 = p, pd−1 = p, pi = 0 for i =

2, . . . , d− 2. The index i labels polarizations of the string states transverse
to the direction of motion of its center of mass. The L1 Virasoro constraint
is then

p e0 + p ed−1 = 0 , (1.22)

and the spurious state is

t|χ〉 = t(−p j0
−1 + p jd−1

−1 )|p; 0〉 . (1.23)

Due to (1.22), (1.23) we can fix e0 = ed−1 = 0, which means that the
states with time-like and longitudinal polarizations are decoupled from
the physical spectrum of a string.

The systematic application of such an approach to the construction of
the physical spectrum of a first-quantized string is called covariant quanti-
zation of a string. We adopt this method in chapter 4. Another covariant
(w.r.t. Lorentz symmetry in the target space-time) way to quantize a
(super)string is the BRST method, which requires the introduction of
(super)conformal ghosts, contributing to the central charge. The method
which we are going to use below in this chapter is light-cone quantization,
which breaks space-time Lorentz symmetry down to the rotation group
SO(d− 2), acting only on transverse physical polarizations.

1.2.2 Ramond-Neveu-Schwarz superstring

The Ramond-Neveu-Schwarz (RNS) superstring is one way to formulate
superstring theory. In the RNS superstring the dynamical fields on the
world-sheet are the bosons Xµ(z, z̄) and the fermions Ψµ(z, z̄). Both of
these fields have a target space-time vector index µ. The RNS superstring
action is a sum of the Polyakov action (1.2) and Dirac terms for the world-
sheet fermions,

S =
1

2π

ˆ
d2z

(
∂Xµ∂̄Xµ +

1
2ψ

µ∂̄ψµ +
1
2 ψ̃

µ∂ψ̃µ

)
. (1.24)

Here ψ and ψ̃ are Majorana-Weyl one-component two-dimensional spinors,
with the two-component Majorana spinor being Ψ = (ψ , ψ̃). The action
(1.24) possesses two-dimensional supersymmetry. The fermions ψ and ψ̃
are respectively the left-moving and the right-moving superpartners of the

9



currents j and j̃ defined by eq. (1.7). The equations of motion following
from the action (1.24) are

∂̄∂Xµ = 0 , ∂̄ψµ = 0 , ∂ψ̃µ = 0 . (1.25)

These equations must be accompanied by boundary conditions, which for
bosons Xµ are the same as in bosonic string theory, and for fermions are
to be chosen so thatˆ

dτ
[
ψµδψµ − ψ̃µδψ̃µ

]
σ=0
−
ˆ
dτ
[
ψµδψµ − ψ̃µδψ̃µ

]
σ=π

= 0 . (1.26)

Consider an open string. Suppose the bosons Xµ satisfy Neumann bound-
ary conditions. On the l.h.s. of (1.26) there are two square brackets, each
corresponding to one end of a string. We have to satisfy the boundary
conditions independently at each end, which means that we have to im-
pose ψ = ±ψ̃ at σ = 0,π. As a matter of convention we put ψ = ψ̃ at
σ = 0. The two options at the other end (σ = π) define two sectors of an
open string, the Neveu-Schwarz sector and the Ramond sector:

NS : ψµ|σ=π = −ψ̃µ|σ=π ,
R : ψµ|σ=π = ψ̃µ|σ=π .

(1.27)

The Laurent expansions of a general open string solution to (1.25) for
fermions with boundary conditions (1.27) are

NS : ψµ(z) =
∑

r∈Z+1/2

bµr
zr+1/2 , ψ̃µ(z̄) =

∑
r∈Z+1/2

bµr
z̄r+1/2 ,

R : ψµ(z) =
∑
n∈Z

dµn
zn+1/2 , ψ̃µ(z̄) =

∑
n∈Z

dµn
z̄n+1/2 ,

(1.28)

where n is integer-valued and r is half-integer-valued.
In the case of a closed string we have to impose (anti)periodic boundary

conditions separately for left- and right-moving states: ψ|σ=0 = ±ψ|σ=π
and ψ̃|σ=0 = ±ψ̃|σ=π. Each state belongs either to the NS sector and
is expanded in half-integer modes, or the R sector and is expanded in
integer modes. In total we can form four different combinations of left-
and right-movers.

The stress-energy tensor corresponding to the RNS action (1.24) is
given by

T (z) = −∂Xµ(z)∂Xµ(z)−
1
2ψ

µ(z)∂ψµ(z) , (1.29)
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and similarly for the anti-holomorphic (right-moving) component T̃ (z̄).
Furthermore, the action (1.24) is invariant underN = (1, 1) two-dimensional
supersymmetry transformations, generated by a supercurrent with the
components

J (z) = ψ(z)j(z) , J̃ (z̄) = ψ̃(z̄)j̃(z̄) . (1.30)

The stress-energy tensor T (z) and the supercurrent J (z) form a holomor-
phic superconformal world-sheet current algebra. The operators T̃ (z̄) and
J̃ (z̄) form an anti-holomorphic copy of this superconformal algebra.

In the NS sector the supercurrent is expanded in half-integer modes,
and in the R sector it is expanded in integer modes

JNS(z) =
∑

r∈Z+1/2

Gr
zr+3/2 , Gr =

∑
s∈Z+1/2

ηµνb
µ
s j
ν
r−s ,

JR(z) =
∑
m∈Z

Fm
zm+3/2 , Fm =

∑
n∈Z

ηµνd
µ
nj
ν
m−n .

(1.31)

and similarly for the anti-holomorphic sector. Notice that in (1.31) the
indices r − s, m− n of the modes of the current jµ are integer-valued.
This is a consequence of the Neumann boundary conditions for bosonsXµ.
Below we generalize our consideration to the case of Dirichlet boundary
condition, with the bosons expanded in half-integer modes, jµs , s ∈ Z +
1/2. Supersymmetry requires the coefficients Gr to have a half-integer-
valued index r, and the coefficients Fm to have an integer-valued index m.
Therefore, due to (1.31), the corresponding NS fermions must be expanded
in integer-valued modes, bµn , n ∈ Z, while the R fermionic modes, dµs must
have half-integer valued indices, s ∈ Z + 1/2.

As we first-quantize the theory with the action (1.24) we get the cor-
relation functions (1.10) for the bosonic fields jµ(z), j̃µ(z̄), and the cor-
relation functions

〈ψµ(z1)ψ
µ(z2)〉 = ηµν

1
z1 − z2

, 〈ψ̃µ(z̄1)ψ̃
µ(z̄2)〉 = ηµν

1
z̄1 − z̄2

(1.32)

for the fermions. Using (1.10) and (1.32) we find the operator product
expansions of the operators of the superconformal algebra (only terms
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singular in the z1 → z2 limit are written down)

T (z1)T (z2) =
c/2

(z1 − z2)4 +
2T (z2)

(z1 − z2)2 +
T (z2)

z1 − z2
+ . . . , (1.33)

T (z1)J (z2) =
(3/2)J (z2)

(z1 − z2)2 +
∂J (z2)

z1 − z2
+ . . . , (1.34)

J (z1)J (z2) =
2c/3

(z1 − z2)3 +
2T (z2)

z1 − z2
+ . . . . (1.35)

The supersymmetry transformations are defined by the OPEs

J (z1)j(z2) =
ψ(z2)

(z1 − z2)2 +
∂ψ(z2)

z1 − z2
+ . . . , (1.36)

J (z1)ψ(z2) =
j(z2)

z1 − z2
+ . . . . (1.37)

From (1.28), (1.32) we obtain the anti-commutation relations

{bµr , bνs} = ηµνδr+s,0 , {dµn, dνm} = ηµνδn+m,0 . (1.38)

Therefore the operators bµ−r , r > 0 and dµ−n , n > 0 create string states
and the operators bµr , r > 0 and dµn , n > 0 annihilate string states. We
also have creation and annihilation operators, respectively, jµ−n , n > 0,
and jµn , n > 0, as in bosonic string theory. The string vacuum state |0〉
vanishes when we act on it with any annihilation operator. The negative-
norm states, created by the time-like polarized operators j0

−n, d0
−m and

b0
−r (m,n, r > 0) are decoupled from the physical spectrum due to the
super-Virasoro constraints:

NS : (L0−aNS)|phys〉=0 , Ln|phys〉=0 , Gr|phys〉=0 , n, r > 0 ,
R : (L0−aR)|phys〉=0 , Ln|phys〉=0 , Fm|phys〉=0 , n > 0,m ≥ 0 .

(1.39)
In the next subsection we will prove that if we impose Neumann boundary
condition for all polarizations then aNS = 1/2. One can show that L0 =
F 2

0 in the R sector. Therefore, due to the supersymmetry constraint F0 =
0, we have to put aR = 0.

In the R sector we have operators dµ0 , which, due to (1.38), form a
Dirac algebra in d dimensions:

{Γµ , Γν} = 2 ηµν , Γµ =
√

2 dµ0 . (1.40)
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If the state |0〉R is the vacuum of the R sector then the state dµ0 |0〉R is also
a vacuum of the R sector. Consequently any state in the R sector lives in
spinor representation of the Dirac algebra Cd−1,1, and therefore is a target
space-time spinor. This should be compared to the fact that any state in
the NS sector is a space-time boson.

1.2.3 Open RNS superstring and zero-point energy

As was explained above, the end of an open string can be free so that the
bosons Xµ on its world-sheet satisfy Neumann boundary conditions, or it
can terminate on a D-brane giving rise to Dirichlet boundary conditions.
In total there are four possibilities for the two ends of an open string. We
denote them as

(NN) , (ND) , (DN) , (DD) . (1.41)

The first letter specifies the boundary condition at the σ = 0 (z = eτ )
end, the second letter does so for the σ = π (z = −eτ ) end.

For the possible boundary conditions (1.41), we have the following
solutions to the equation (1.3):

NN : Xµ(z, z̄) = xµ − ipµ√
2

log (zz̄) + i√
2
∑
m6=0

1
m
jµm (z−m + z̄−m) ,

DD : Xµ(z, z̄) = xµ − ip̃µ√
2

log
(
z

z̄

)
+

i√
2
∑
m 6=0

1
m
jµm(z

−m − z̄−m) ,

DN : Xµ(z, z̄) = xµ +
i√
2
∑
r 6=0

1
r
jµr (z

−r − z̄−r) , (1.42)

ND : Xµ(z, z̄) = xµ +
i√
2
∑
r 6=0

1
r
jµr (z

−r + z̄−r) .

Here the index m is integer-valued and the index r is half-integer-valued.
Let us solve the Virasoro constraints explicitly, so that we are left with

only d− 2 transverse polarizations in the target space-time. This method
is called light-cone quantization, and it is convenient for our current pur-
poses. The physical operators are bir , din , jin, i = 1, . . . , d− 2, and we do
not have to worry about the super-Virasoro constraints.

Assume first that the bosons Xµ satisfy either NN or DD boundary
conditions, and therefore are expanded in integer modes. Using (1.29) we
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derive

R : L0 =
1
2
∑
n∈Z

d−2∑
i=1

ji−nj
i
n +

1
2
∑
n∈Z

d−2∑
i=1

ndi−nd
i
n ,

NS : L0 =
1
2
∑
n∈Z

d−2∑
i=1

ji−nj
i
n +

1
2

∑
r∈Z+1/2

d−2∑
i=1

rbi−rb
i
r .

(1.43)

Let us perform normal ordering of the creation and annihilation operators
in (1.43), placing annihilation operators to the right of creation operators.
In the R sector we obtain

L0 =
∑
n>0

d−2∑
i=1

(ji−nj
i
n + ndi−nd

i
n) +

1
2j

2
0 +

1
2
∑
n>0

d−2∑
i=1

([jin, ji−n]− n{din, di−n})

=
∑
n>0

d−2∑
i=1

(ji−nj
i
n + ndi−nd

i
n) +

1
2j

2
0 , (1.44)

where we have used the commutators (1.15) and (1.38). We see from
(1.44) that the zero-point energy in the R sector is zero, aR = 0, as we
concluded at the end of the previous subsection from the point of view of
the super-Virasoro constraints. Similarly in the NS sector we obtain

L0 =
∑
n>0

d−2∑
i=1

ji−nj
i
n +

∑
r>0

d−2∑
i=1

rbi−rb
i
r +

1
2j

2
0

+
1
2
∑
n>0

d−2∑
i=1

[jin, ji−n]−
1
2
∑
r>0

d−2∑
i=1

r{bir, bi−r} . (1.45)

Therefore due to (1.15) and (1.38), the zero-point energy in the NS sector
is given by

−aNS =
d− 2

2

 ∞∑
n=1

n−
∞∑

r=1/2
r

 = −d− 2
16 . (1.46)

Inserting the superstring value d = 10 we obtain aNS = 1
2 . In the last

equality of (1.46) we used zeta-function regularization. We know that the
zeta-function

ζ(s) =
∞∑
n=1

1
ns

(1.47)
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can be analytically continued so that
∞∑
n=1

n = ζ(−1) = − 1
12 . (1.48)

Now, introduce the sum of even numbers, Seven =
∑
n>0(2n), and the sum

of odd numbers Sodd =
∑
n>0(2n+ 1). We have Seven = 2ζ(−1) = −1

6 ,
and Sodd = ζ(−1)−Seven = 1

12 . Therefore in (1.46) we have
∑
r>0 r =

1
24 .

There exist independent ways to derive the same results for zero-point
energies.

The bottom line is that for NN and DD bosons we have aNS = 1/2,
and aR = 0, and therefore the mass formulae are,

R :
1
2M

2 =
∑
n>0

d−2∑
i=1

ndi−nd
i
n +

∑
n>0

d−2∑
i=1

ji−nj
i
n , (1.49)

NS :
1
2M

2 =
∑
r>0

d−2∑
i=1

rbi−rb
i
r +

∑
n>0

d−2∑
i=1

ji−nj
i
n −

1
2 . (1.50)

Consider an open string with NN or DD boundary conditions. The
vacuum |0〉NS in the NS sector is defined by the conditions bir|0〉NS = 0,
jin|0〉NS = 0, for r,n > 0. This state is a tachyon with M2 = −1,
as follows from (1.50). The procedure called Gliozzi-Scherk-Olive (GSO)
projection eliminates |0〉NS from the spectrum of the NS sector of the RNS
superstring. The lowest NS string state, which survives GSO projection,
is the d− 2-component massless vector bi−1/2|0〉NS .

The lowest state in the R sector, the vacuum |0〉R with zero mass,
survives GSO projection. As we have noticed above, this state is a space-
time fermion. In d = 10 dimensions it is a 16-component Majorana-
Weyl massless fermion with eight physical d.o.f. (A general spinor in ten
dimensions has 32 complex-valued components; each condition of being a
Majorana and Weyl decreases the number of independent components by
a factor of two, and the super-Virasoro constraint F0 = 0 further reduces
the number of independent components by a factor of two.) Therefore the
lowest state of an open RNS superstring consists of eight bosonic and eight
fermionic massless degrees of freedom, which is a vector supermultiplet
field content of N = 1, d = 10 supersymmetric Yang-Mills theory.

This result has a deep reason behind it: the RNS superstring, which
by construction has two-dimensional world-sheet supersymmetry, is actu-
ally space-time supersymmetric. Superstring theory which contains open
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strings has N = 1 space-time supersymmetry (16 supercharges), super-
string theory without open strings has N = 2 space-time supersymme-
try (32 supercharges). A formulation of superstring theory with explicit
space-time supersymmetry is called the Green-Schwarz (GS) superstring.

Now let us consider the DN and ND boundary conditions. In general
we find the following contributions to the normal ordering constant a from
half-integer or integer bosonic and fermionic modes:

ab i =
1
24 , ab h = − 1

48 , af i = −
1
24 , af h =

1
48 , (1.51)

where b and f stand for bosons and fermions, and i and h stand for integer
and half-integer, respectively.

One requirement that should always be satisfied is that the zero-point
energy in the R sector is zero. Suppose therefore that among the d− 2
transverse polarizations, ν of them are either DN or ND, with half-integer
bosonic current modes. Therefore the contribution of the bosons to the
zero-point energy is − ν

48 + d−2−ν
24 = 2(d−2)−3ν

48 . Therefore fermions in the
R sector should contribute 3ν−2(d−2)

48 . The fermions which are polarized
along d− 2− ν NN or DD directions have integer modes and contribute
−d−2−ν

24 . The fermions which are polarized along ν DN or ND directions
therefore must have half-integer modes and contribute ν

48 , adding up to a
required quantity 3ν−2(d−2)

48 .
Now we are ready to compute the zero-point energy in the NS sector.

The NS fermions have opposite kind of modes to those of the R fermions.
Therefore the fermions in d− 2− ν NN or DD directions have half-integer
modes and contribute d−2−ν

48 , and fermions in ν DN or ND directions have
integer modes and contribute − ν

24 . The contribution from the bosons is of
course the same as in the R sector and is equal to 2(d−2)−3ν

48 . We conclude
that

aNS =
d− 2

16 − ν

8 =
1
2 −

ν

8 . (1.52)

Due to the fact that aR = 0, the ground state of the R sector of an open
string is always a massless fermion. In the case of ν = 4 we get aNS = 0,
and the mass of the lowest NS state is therefore M2 = −2aNS = 0. It is
not projected out by GSO, so that we have an equal number of massless
bosons and fermions, furnishing a vector supermultiplet.
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1.2.4 Closed RNS superstring and Ramond-Ramond fields

In the case of the closed string, to construct the spectrum of excitations
we have to build physical states of the holomorphic and anti-holomorphic
sectors separately, and then take a direct product of these states. As was
already mentioned above, the boundary conditions which must be imposed
on fermions of the closed string are ψ|σ=0 = ±ψ|σ=π, ψ̃|σ=0 = ±ψ̃|σ=π,
giving rise to the NS and R sectors of left-movers (holomorphic states) and
right-movers (anti-holomorphic states). The fermions of the NS sector are
expanded in half-integer modes, bµr , b̃µr , and the fermions of the R sector
are expanded in integer modes, dµn, d̃µn. After GSO projection, the massless
(anti)holomorphic states in the light-cone quantization are

left : bi−1/2|0〉NS , |0〉R left ,
right : b̃i−1/2|0〉NS , |0〉R right .

(1.53)

Here |0〉R is a space-time fermion with eight independent real-valued com-
ponents and definite chirality. Let us specify its chirality by introducing
the notation |+〉 and |−〉.

By forming the direct product of left-moving and right-moving states
(1.53) we obtain 128 bosonic states, NS-NS and R-R, and 128 fermionic
states, NS-R and R-NS. The equality of number of bosonic and fermionic
degrees of freedom is not accidental: as was mentioned above, the RNS
superstring is actually space-time supersymmetric. In fact, 128+128 is
the on-shell field content of d = 10 N = 2 supergravity.

In the case when both left- and right-moving R fermions |0〉R have
opposite chirality we get type-IIA supergravity. The corresponding string
theory is type-IIA superstring theory. In this case the 64 of R-R degrees
of freedom |+〉⊗ |−〉 are expanded in irreducible representations of SO(8)
as C1 ⊕ C3, where C1 is a 1-form with 8 d.o.f. and C3 is a 3-form with
56 d.o.f. Similarly the R-R fields |+〉 ⊗ |+〉 of type-IIB supergravity are
p-forms C0, C2 and C4, with 1, 28 and 35 d.o.f. respectively (there is
a subtlety with C4, requiring that F5 = dC4 is Hodge self-dual in ten
dimensions, F5 = ?F5, which reduces the number of d.o.f. of the C4 by a
factor of two).

1.2.5 D-branes

A D-brane is an extended object on which an open string can end. For
example, if all of the coordinates but X1 satisfy Neumann boundary con-

17



ditions, it means that there is D8-brane located at some point x1 = x1
0

and extended in the x2,3,...,9 directions. Similarly to a string having a two-
dimensional world-sheet, a D8-brane sweeps a nine-dimensional world-
volume as it moves in a space-time. If all coordinates of an open string
satisfy Neumann boundary conditions then we actually have a space-time
filling D9-brane, with its ten-dimensional world-volume being the entire
space-time.

In type-IIA superstring theory we can have Dp-branes with even-
valued p, and in type IIB superstring theory p must be odd-valued. The
reason for this selection originates in the stability of a Dp-brane, and is
tightly connected to the fact that a Dp-brane embedded in N = 2 su-
perstring theory is a Bogomol’nyi-Prasad-Sommerfield (BPS) object, pre-
serving 16 of the original 32 supercharges. We discuss this in more detail
in the next subsection.

Now, recall that a BPS object satisfies the conditionM = |Z|, withM
being a mass, and Z being (an appropriately defined) conserved charge.
It turns out that in the case of a Dp-brane, the role of the charge Z is
played by the charge w.r.t. the R-R field. The coupling of the Dp-brane
to the R-R field is described by the Chern-Simons action

SCS = TDp

ˆ
Cp+1 , (1.54)

where integration of the R-R p+ 1-form Cp+1 is performed over the p+ 1-
dimensional world-volume of the Dp-brane. In (1.54) the TDp ' 1

`p+1
s gs

is the tension of the Dp-brane, gs is the closed string coupling constant.
Notice that in the perturbative regime of small gs, aD-brane is very heavy.

A single Dp-brane is described by a supersymmetric theory on a p+ 1-
dimensional world-volume, with 16 conserved supercharges. The number
of on-shell fermionic d.o.f. is equal to eight. Due to supersymmetry, the
number of dynamical massless bosons on the world-volume must also add
up to eight.

An embedding of a Dp-brane into ten-dimensional target space-time is
described by ten fields Xµ(σa), µ = 0, 1, . . . , 10, where σa , a = 0, 1, . . . , p
are the world-volume coordinates. However, due to p + 1-dimensional
diffeomorphism symmetry, σa → σ′a(σb), we have only 9− p independent
bosonic d.o.f. Supersymmetry therefore requires the addition of p − 1
bosonic d.o.f. These come about as transverse polarizations of the U(1)
gauge field Aµ on the Dp-brane world-volume. In fact, the origin of this
massless vector supermultiplet on a Dp-brane world-volume is simple: its
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fields are the lowest modes of an open string attached to this Dp-brane
by both ends.

To summarize, the eight massless dynamical bosonic d.o.f. on a Dp-
brane world-volume are split into a gauge field Aµ with p− 1 physical
polarizations, and 9− p scalars ΦI , I = p+ 1, . . . 10, describing the em-
bedding of the Dp-brane into 10-dimensional target space-time.

Let us study the low-energy dynamics of a Dp-brane. Clasically we
can set the fermionic gaugino field to zero. Suppose the Dp-brane is
embedded in a space-time with a metric Gµν . It induces a metric gab,
a, b = 1, . . . , p+ 1, on the Dp-brane world-volume, such that

gab =
∂Xµ

∂σa
∂Xν

∂σb
Gµν . (1.55)

The total low-energy effective action of a Dp-brane consists of two terms.
One of them is a generalization of the Chern-Simons term (1.54),

SCS = TDp

ˆ [∑
p

Cpe
B+F

]
p+1

, (1.56)

where, on the r.h.s. of (1.56), B is the NS-NS two-form, and we introduced
the field strength F = dA, then we took the p+ 1-form part. The other
term, describing the low-energy Dp-brane dynamics, is the Dirac-Born-
Infeld (DBI) term,

SDBI = −TDp
ˆ
dp+1x

√
−det (g+B + F +GIJ∂ΦI∂ΦJ ) , (1.57)

where, on the r.h.s of (1.57), one takes the determinant of the matrix

||gab +Bab + Fab +GIJ∂aΦI∂bΦJ || . (1.58)

By varying the total action Stot = SDBI + SCS of the Dp-brane, one
obtains the equations of motion determining the embedding of the Dp-
brane into the target space-time, and the dynamics of the gauge field Aµ
on its world-volume.

1.2.6 T-duality and D-brane intersections

We have already discussed that a single Dp-brane embedded into a space-
time of type-II string theory breaks half of the original N = 2 super-
symmetry. Putting more Dp-branes which span various spatial directions
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generally breaks more supersymmetry, and in particular can result in a
non-supersymmetric theory. In this subsection we are going to discuss
how to count the number of supersymmetries which are preserved by the
given configuration of Dp-branes.

Let us start with type-IIB closed string theory. It has two 16-component
Majorana-Weyl conserved supercharges, Q1 and Q2, of the same chirality.
Now suppose we want to put an open string with Neumann boundary
conditions into the space-time. Open string boundary conditions are not
compatible with the N = 2 supersymmetry. The supersymmetry in fact
gets broken by a factor of two, the remaining conserved supercharge is
given by Q = Q1 +Q2. As we discussed above, the presence of an open
string with Neumann boundary conditions means the presence of a space-
time filling D9-brane. Therefore a D9-brane in type-IIB string theory
breaks N = 2 supersymmetry down to N = 1 supersymmetry with the
supercharge Q = Q1 +Q2.

The next question to ask is how many supersymmetries are preserved
by Dp-branes with p < 9. To answer it we are going to use T-duality of
superstring theory. Consider type-IIB superstring theory in a space-time
with the x9 coordinate compactified on a circle of radius R. It turn out
that the spectrum of superstring theory is left invariant if we perform the
T-duality transformation in the x9 direction, which amounts to replace-
ments of the compactification radius R→ 1/R and the anti-holomorphic
boson X̃9 → −X̃9. As can be seen from (1.42), T-duality transformation
interchanges the NN and DD boundary conditions in the x9 direction.
Therefore if in the type-IIB theory which we started with we had a space-
time filling D9-brane, which wrapped the x9 circle, then in the T-dual
theory we have a D8-brane which is localized at a certain point on the x9

circle, making the open string boundary condition along the x9 direction
be Dirichlet.

However we know that type-IIB string theory can only have Dp-branes
with odd-valued p. Therefore the T-dual string theory with a D8-brane
described above must be type-IIA string theory. Let us see what happens.
Due to the world-sheet supersymmetry the transformation of the boson
X̃9 → −X̃9 demands the transformation of the fermion ψ̃9 → −ψ̃9. In
particular the zero mode d̃9

0 of the anti-holomorphic fermion in the R sec-
tor reverses its sign. Consequently the Γ9 element of the anti-holomorphic
copy of the space-time Dirac algebra reverses its sign as well, and there-
fore so does the chirality operator Γ11 = Γ0Γ1 . . . Γ9. We conclude that
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the space-time supercharge Q2 changes chirality. In fact, supersymme-
try implies the T-duality transformation Q2 → Γ9Q2. The supercharge
preserved by the D8-brane localized at some point in the x9 direction is
therefore Q = Q1 + Γ9Q2.

We can generalize the procedure described above: an arbitrary Dp-
brane preserves a supercharge

Q = Q1 + Γk1 . . . Γk9−pQ2 , (1.59)

where indices k1, . . . , k9−p label 9− p directions, orthogonal to the Dp-
brane. In the case of type-IIA(-IIB) string theory p is even (odd), Q1 and
Q2 have opposite (the same) chiralities, and Q1 and Γk1 . . . Γk9−pQ2 have
the same chirality, and can be added to one another. Because Γ11Q2 =
±Q2 and due to the Dirac algebra anti-commutation relations, we can
re-write (1.59) as

Q = Q1 + Γ0 . . . ΓpQ2 , (1.60)

fixing an overall sign in front of the second term in the r.h.s. of (1.60) to
be plus as a matter of convention.

Now, as we know which supercharge is preserved by a single Dp-brane,
we can find the supercharge preserved by a configuration of several Dp-
branes. A simple observation is that several Dp-branes spanning the same
space directions but, in general, located at different points in the trans-
verse space, preserve the same supercharge as just one Dp-brane from this
set.

If we have several Dp-branes of various dimensions p and spanning
different space directions, the preserved supercharge, if any, is the one
which is preserved by each Dp-brane from the set. For concreteness and
following the needs of chapter 2, we are going to deal with the D3−Dp
system in type-IIB string theory. We are allowed to take any odd-valued
p. But we want the Dp-brane to have an intersection with the D3-brane in
three or four space-time dimensions. Therefore we can choose p = 3, 5, 7, 9.
The cases p = 3 and p = 9 are relatively trivial and not interesting
physically for the purposes of chapter 2, so we do not discuss them any
more.

We denote the directions spanned by the D3-brane as x0,1,2,3. The cor-
responding conserved supercharge is QD3 = Q1 + Γ0Γ1Γ2Γ3Q2. This can
be reformulated in the following way. Suppose ε1,2 are sixteen-component
spinor parameters of the supersymmetry transformation generated by the
operator εT1 Q1 + εT2 Q2. From the expression for QD3 we conclude that the
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D3-brane is only supersymmetric under transformations with arbitrary ε2
and ε1 completely determined by ε2 via the equation ε1 = Γ0Γ1Γ2Γ3ε2.
We have used the facts that ε1,2 are Majorana-Weyl real-valued spinors,
and the Γµ matrices are written in a Majorana real-valued representation,
with (Γa)T = Γa for a 6= 0, and (Γ0)T = −Γ0.

The Dp-brane is assumed to span the directions x0,1,2 or x0,1,2,3 along
with p − 2 or p − 3 directions in the six-dimensional space transverse
to the D3-brane. Let us be specific. We are considering the cases of
p = 5 and p = 7. Consider first a D5-brane which spans the directions
x0,1,2,3,4,5, therefore intersecting the D3-brane in the x0,1,2,3 directions.
Such a D5-brane preserves the supercharge QD5 = Q1 + Γ0Γ1 . . . Γ5Q2,
that is by itself invariant under supersymmetry transformations with ε1 =
Γ0Γ1 . . . Γ5ε2. Therefore, to make sure that the D3−D5 system is invari-
ant under supersymmetry transformations, we must satisfy the constraint
Γ4Γ5ε2 = ε2. Recall now that chirality in the (4, 5) plane is defined as
an eigenvalue of the operator S3 = iΓ4Γ5/2, which is equal to ±1/2.
Therefore Γ4Γ5ε2 = ±iε2, and the constraint Γ4Γ5ε2 = ε2 can never be
satisfied.

Consider now the D3 −D5 system with a three-dimensional inter-
section, that is consider a D5-brane, which spans directions x0,1,2,4,5,6.
We call it a D5′-brane, where prime is introduced as a short-hand no-
tation for this specific D5-brane. Supersymmetry is preserved by the
D5′-brane alone if the transformation parameters satisfy the constraint
ε1 = Γ0Γ1Γ2Γ4Γ5Γ6ε2. The D3−D5′ system therefore preserves super-
symmetry with parameter ε2, which satisfies Γ3Γ4Γ5Γ6ε2 = ε2. This con-
dition means that the chiralities of the spinor ε2 in, say, the (3, 4) and
(5, 6) planes are the same, which reduces the number of independent com-
ponents of ε2 by a factor of two. The D3−D5′ system therefore preserves
one-quarter of the original 32 supersymmetries.

In exactly the same way one can prove that the D3−D7 system with a
four-dimensional intersection is invariant under the action of eight super-
charges, while the D3−D7′ system with a three-dimensional intersection
breaks all the supersymmetries.

Notice that the fact that D3−D5 with a three-dimensional intersec-
tion, and D3−D7 with a four-dimensional intersection, are supersym-
metric is in agrement with the equation (1.52) (with ν = 4) for zero-point
energy, which gives aNS = 0 for both of these intersections. In both of
these cases we have a massless bosonic field in the spectrum of an open
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string stretched between D3-brane and Dp-brane.
For completeness it is worth underlying that one can also consider an

open string which starts and ends on the D3-brane and an open string
which starts and ends on the Dp-brane of the D3 −Dp system. The
massless modes of these strings comprise vector supermultiplets on the
world-volumes of the D3-brane and Dp-brane respectively.

1.2.7 Strings in a background; supergravity and supersym-
metric Yang-Mills theories

In the previous subsections we focused on strings and branes propagating
in a flat space-time, with no background fields turned on. We have also
found out that the massless modes of closed and open strings are fields of
supergravity and supersymmetric Yang-Mills, respectively. Therefore one
can consider a setup of strings creating a background with curved metric
and various non-vanishing fields, and other strings and branes moving in
this background as probe objects.

We are going to focus on classical string theory, with only bosonic
fields present. The bosonic field content of type-II supergravity consists
of NS-NS fields and R-R fields. The NS-NS fields are the same for type-IIA
and type-IIB supergravities, as well as for bosonic gravity. For simplicity
we will consider bosonic gravity. The field content is graviton Gµν , anti-
symmetric tensor Bµν , and dilaton Φ.

One can derive equations of motion for these fields from string theory
in the following way. Instead of the Polyakov action (1.2) we now have
the action

SP=
1

4πα′

ˆ
d2z

(
Gµν∂X

µ∂̄Xν+εαβBµν∂αX
µ∂βX

ν+α′ΦR(2)
)

, (1.61)

where R(2) denotes Ricci scalar on the world-sheet, εzz̄ = −εz̄z = 1, and
α,β = z, z̄ are world-sheet vector indices.

Let us perform a first quantization of a string described by the action
(1.61). It is defined by the Polyakov path integral, as in the case of a string
moving in the Minkowski background. However now due to non-trivial
background fields the situation is more complicated: the fields Gµν , Bµν
and Φ in the action (1.61) are themselves functions of the fields Xµ. The
way to proceed is to use string perturbation theory. In (1.61) we restored
the parameter α′ = `2s/2. In string perturbation theory one assumes that
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the string length `s is small (compared to a characteristic length scale in
a target space-time), and performs a perturbative expansion in α′.

The methodology is the same as in the case of usual perturbation
theory in quantum field theory. A path integral in interacting quantum
field theory accounts for high-energy modes in the low-energy effective La-
grangian by renormalizing the coupling constants and scaling dimensions.
Renormalization is described by beta-functions. String perturbation the-
ory also has beta-functions (with Gµν , Bµν and Φ in (1.61) playing the role
of coupling constants), and these beta-functions take into account string
loop corrections in the Polyakov path integral. In this thesis we only
consider classical string theory. To avoid possible confusion which may be
caused by the word ‘classical’ we remind the reader that in quantum string
field theory one also has to take into account vertices associated with the
string coupling constant gs, and loops of virtual particles between these
vertices.

The beta-functions for the ‘coupling constants’ Gµν , Bµν and Φ in
(1.61) are given by

βGµν = α′Rµν + 2α′∇µ∂νΦ− α′

4 HµλρH
λρ

ν +O(α′2) ,

βBµν = −
α′

2 ∇
λHλµν + α′∇λΦHλµν +O(α′2) ,

βΦ =
d− 26

6 − α′

2 ∇
2Φ + α′∇λΦ∇λΦ− α′

24HµνλH
µνλ +O(α′2) ,

(1.62)

where H = dB is the field strength of the two-form field Bµν . We have
seen above that for a bosonic string in a flat space-time the requirement
of conformal invariance on quantum level, which is a requirement of ab-
sence of Weyl anomaly, is a restriction d = 26 on the target space-time
dimension. Now, as the background fields are turned on, the require-
ment of conformal invariance is vanishing of the beta-functions (1.62). In
particular, when G = η, B = Φ = 0, it reduces to the d = 26 constraint.

We have outlined the derivation of equations of motion of bosonic grav-
ity. Up to the d− 26 central charge term in the last line of (1.62) these
are the same as the equations of motion for the NS-NS fields of type-II
supergravity (with gravitino, dilatino and R-R fields set to zero). These
equations do not provide a UV-complete description of gravity since the
derivation was made under the assumption of a smallness of the string
length `s =

√
2α′. At the string scale higher-order effects in the α′ ex-

pansion become essential, and the gravity approximation (1.62) becomes
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completely unreliable.
In a similar way one can derive the equations of supersymmetric Yang-

Mills theory from open string theory or from heterotic string theory. In
principle, systematically accounting for higher order corrections in α′, one
can derive precisely the higher-derivative terms which one needs to add
to the effective low-energy Einstein, Yang-Mills, etc., actions.

1.2.8 Wess-Zumino-Witten model

A particular case of a string moving in a non-trivial background is given
by a Wess-Zumino-Witten (WZW) model. It describes a string moving
on a group manifold or on a coset space; in the latter case it is called a
gauged Wess-Zumino-Witten (gWZW) model. Such a model is a central
element of chapter 4, so here we give an introduction to it.

Consider a string moving on the manifold of the group G with dimen-
sion dimG. Suppose g is an element of G. An embedding of the string
into the manifold G is then described by the field g(z, z̄). The action for
the bosonic string is the WZW action,

SWZW =
k

4π

[ˆ
d2zTr(g−1∂gg−1∂̄g)− 1

3

ˆ
B

Tr(g−1dg)3
]

, (1.63)

where the second term on the r.h.s. of (1.63), which is called the Wess-
Zumino (WZ) term, is an integral over a ball B , the boundary of which
is a world-sheet. Here k is called the level of the WZW model; for the WZ
term to be unambiguous the level k must be integer-valued. In the case
of a superstring one adds to this action the Dirac terms for dimG free
left-moving and right-moving Majorana-Weyl world-sheet fermions. For
simplicity we consider just a bosonic string in this subsection.

The Polyakov action (1.2) is conformally invariant. For the WZW
action (1.63) to describe a string, it must also be conformally invariant. In
the previous subsection we obtained that, for a string in background fields
to be conformally invariant, the background fields must satisfy effective
equations of motion in the target space-time. In the case of a WZW model
it turns out that an interplay between two terms in (1.63) is such that the
action SWZW is conformally invariant, and one only has to make sure that
the total central charge c of the theory vanishes.

Recall that a bosonic string in a flat space-time, described by the
Polyakov action (1.2), has conserved holomorphic (left-moving) and anti-
holomorphic (right-moving) currents (1.7). These currents originate as
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Noether charges from the translational invariance of a flat space-time (as
well as from the chirality of the Polyakov action, giving rise to two inde-
pendently conserved currents). For the action (1.63) to describe a string
it must also give rise to two independently conserved currents. The corre-
sponding symmetry transformation of the action (1.63) is the Kac-Moody
(KM) symmetry transformation, given by

g(z, z̄)→ g′(z, z̄) = Ω(z)g(z, z̄)Ω̃−1(z̄) . (1.64)

Correspondingly, for the WZW model at level k we have the conserved
currents

j(z) = jAt
A = −k2∂gg

−1 =
∑
n

jAn
zn+1 ,

j̃(z̄) = j̃At
A =

k

2g
−1∂̄g =

∑
n

j̃An
z̄n+1 .

(1.65)

The zero modes of the currents are generators of the algebra g of the
group G,

tA = jA0 , [tA, tB ] = ifABCtC . (1.66)

From the expression for currents (1.65), using (1.64) one can derive
the Kac-Moody transformations of the currents. For example, under a
holomorphic infinitesimal transformation Ω(z) = I − ω(z), we obtain

δj(z) = −[ω(z), j(z)] + k

2∂ω(z) , (1.67)

that is
δjA(z) = −ifABCωB(z)jC(z) +

k

2∂ω
A(z) . (1.68)

On the other hand, the KM of j with an infinitesimal parameter ω is
realized by the KM current itself:

δjA(z) =
1

2πi

˛
z
dw ωB(w)jB(w)j

A(z) , (1.69)

where the integral is taken over the contour around w = z. Matching
these two expressions, we obtain the current algebra OPE

jA(z)jB(w) =
k
2η

AB

(z −w)2 +
ifABC

z −w
jC(w) + . . . . (1.70)

Similar expressions are true for the anti-holomorphic current algebra.
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The holomorphic component of the stress-energy tensor is given by the
Sugawara expression

T (z) =
1
κ

: jA(z)jA(z) :=
1
κ

1
2πi

˛
z

dx

x− z
jA(x)jA(z) , (1.71)

where the index in the adjoint representation of the corresponding algebra
is defined as

cV δ
AB = fACDfBCD . (1.72)

In (1.71) we have used a simple expression for normal ordering. The
normalization constant κ will be fixed below.

The stress-energy tensor (1.71) satisfies the Virasoro OPE (1.13), with
the central charge given by

c =
k dimG

k+ cV
. (1.73)

For completeness notice that in the supersymmetric WZW model we also
have dimG free world-sheet fermions, each fermion contributes central
charge 1/2.

The infinitesimal conformal transformation δz = ε(z) acts on the cur-
rent as

δjA(z) = ∂ε(z)jA(z) + ε(z)∂jA(z) . (1.74)

On the other hand, this transformation is generated by the stress-energy
tensor (1.71) as

δjA(z) =
1

2πi

˛
z
dw ε(w)T (w)jA(z) . (1.75)

After some algebra, using (1.71), one finds the OPE

T (z)jA(w) =
k+ cV
κ

(
jA(w)

(z −w)2 +
∂jA(w)

z −w

)
, (1.76)

which therefore implies that the normalization constant is equal to

κ = k+ cV . (1.77)
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1.2.9 D-branes and black branes

One can perform a consistent truncation of type-II supergravity: set most
of the fields to zero in such a way that the equations of motion are satisfied.
Let us consider the following consistent truncation of type-IIB supergrav-
ity: the only non-vanishing fields are the metric gµν , the R-R field C4 with
field strength F5 = dC4, and the dilaton φ. The action is

S =
1

(2π)7`8s

ˆ
d10x
√
−g

[
e−2φ(R+ 4(∂φ)2)− 1

4 |F5|2
]

, (1.78)

where |F5|2 = 1
5!Fµ1...µ5F

µ1...µ5 .
Notice that the action is written for the string frame metric gµν , which

is related to the Einstein frame metric Gµν by gµν = eφ/2Gµν . The Ein-
stein frame is defined so that the Ricci scalar term in the action is not
multiplied by an exponent of the dilaton, L =

√
−GRG+ . . . . Suppose the

dilaton is constant. It defines a closed string coupling constant, gs = eφ.
In the string frame the dimensions are measured in units of the string
length, `s, and in the Einstein frame these are measured in the units of
the Planck length, `p. We conclude that 1/`2s = g1/2

s /`2p, and therefore

`p = g1/4
s `s . (1.79)

The supergravity equations of motion following from the action (1.78)
admit the 3-brane solution,

ds2 = −D+(r)D−(r)
−1/2dt2 +D−(r)

1/2(dx2 + dy2 + dz2)

+
dr2

D+(r)D−(r)
+ r2dΩ2

5 , (1.80)

D±(r) = 1−
(
r±
r

)4
, eφ = gs , F5 = Q(ω5 + ?ω5) ,

where gs is a constant, and ω5 is the volume form of the unit five-sphere
S5.

The metric (1.80) is a generalization of a black hole metric to a higher-
dimensional space. It describes a black brane, extended in R3 space with
(x, y, z) coordinates. This is generally a non-extremal black 3-brane, char-
acterized by two radii parameters r±. The condition of absence of a naked
singularity at r = 0 demands r+ ≥ r−.

We have two kinds of 3-branes now: the black 3-brane (1.80) and the
D3-brane. They both are coupled to the R-R field C4. The D3-brane is
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a supersymmetric BPS object: both its tension and R-R charge are equal
to TD3. While the black 3-brane (1.80) is generally not supersymmetric.
When the black 3-brane is supersymmetric it becomes equivalent to the
D3-brane. Let us see how the supersymmetry constraint on the black
3-brane comes about. The black 3-brane metric is supported by a flux
of F5 through the five-sphere surrounding the 3-brane in ten space-time
dimensions. We conclude that the 3-brane carries N units of charge of the
R-R field C4, with N = Q vol(S5). The mass and the R-R charge of the
black brane (1.80) per unit volume of R3 are given by

T3 =
1

4(2π)4g2
s`

8
sd3

(5r4
+ − r4

−) , N =
(r+r−)2

d3gs`4s
, (1.81)

where d3 is a numerical factor. The condition r+ ≥ r− therefore becomes

T3 ≥ NTD3 , TD3 =
1

(2π)3gs`4s
, (1.82)

where TD3 is the tension of the D3-brane. Equation (1.82) is precisely a
supersymmetry BPS constraint: a single 3-brane (with N = 1) is super-
symmetric if its tension T3 is equal to its R-R charge TD3.

We start the next section with a discussion of the extremal 3-brane
metric and its near-horizon limit. We will also return to the consideration
of the non-extremal 3-brane in the context of configurations with finite
temperature.

1.3 Holographic correspondence
In this section we are going to review the holographic AdS/CFT corre-
spondence: the equivalence between string theory on Anti-de Sitter (AdS)
space and gauge field theory on the boundary of AdS space. We are also
going to review the holographic correspondence between Little String The-
ory and closed string theory in the ‘cigar’ geometry.

1.3.1 The near-horizon limit

At the end of the previous section we derived the black three-brane solu-
tion (1.80) of type-IIB supergravity. Its metric has two horizons, and in
the case when the horizons coincide we obtain an extremal black three-
brane equivalent to the D3-brane of type-IIB superstring theory.
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Let us re-write the metric of the D3-brane in the following form,

ds2 = H−1/2ηµνdx
µdxν +H1/2(dr2 + r2dΩ2

5) , H(r) = 1 +
(
R

r

)4
,

(1.83)
with the horizon located at r = 0, and the scale parameter defined as

R4 = 4πgsNα′2 , (1.84)

where N is the R-R charge of the D3-brane, which is actually the number
of coincident D3-branes. In the near-horizon limit, r/R� 1, we obtain

ds2 =

(
r

R

)2
ηµνdx

µdxν +

(
R

r

)2
dr2 +R2dΩ2

5 . (1.85)

This is the metric of the AdS5 × S5 geometry.

1.3.2 AdS space and its symmetries

The AdS5 space can be described as a surface in a six-dimensional flat
space (with coordinates tµ), with (−,−,+,+,+,+) signature. The em-
bedding is given by the equation

−t21 − t22 + t23 + t24 + t25 + t26 = −R2 . (1.86)

The parameter R is called the AdS scale. The group of transformations
which leaves the surface (1.86) invariant is SO(2, 4).

Combining it with the symmetry group SO(6) of the five-sphere we
conclude that the subgroup of ten-dimensional diffeomorphisms which
leaves the AdS5×S5 invariant is SO(2, 4)×SO(6). Type-IIB superstring
theory in the AdS5 × S5 geometry is also invariant under 32 supersym-
metries, the same amount as in ten-dimensional Minkowski space-time.
The conserved supercharges split into (4, 4)⊕ (4̄, 4̄) under the covering
bosonic symmetry group SU(2, 2) × SU(4). The total supersymmetry
group is therefore PSU(2, 2|4).

Let us now focus more on AdS space. Consider AdSd+1 space embed-
ded into d+ 2-dimensional space,

−t21 − t22 +
d∑
i=1

y2
i = −R2 . (1.87)
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We can solve the equation (1.87) by d+ 1 independent coordinates, (x0,xa, z),

t2 = R
x0
z

, t1 =
z

2

(
R2

z2 + 1 + x2
a − x2

0
z2

)
,

ya = R
xa
z

, yd =
z

2

(
R2

z2 − 1− x2
a − x2

0
z2

)
.

(1.88)

The coordinates (x0,xa, z) parametrize half of the AdSd+1 space, known
as the Poincare patch. The boundary of AdS is located at z = 0. The
metric is given by

ds2 = R2−dx
2
0 + dx2

1 + · · ·+ dx2
d−1 + dz2

z2 . (1.89)

Notice the presence of the horizon, gtt|z=∞ = 0, at z = ∞. This is
the Poincare horizon originating from the choice of coordinates (1.88). To
compare with (1.85) we make a change of the radial coordinate, z = R2/r.

1.3.3 N = 4 supersymmetric Yang-Mills theory

The AdS5 × S5 geometry appeared as the near-horizon geometry of N
coincident D3-branes. Let us now look at the world-volume theory of the
D3-branes. In the previous section it was explained that the low-energy
theory of a Dp-brane is given by the DBI and CS actions for the U(1)
gauge field, scalars and fermions on the p+ 1-dimensional world-volume.
Keeping only the lowest order terms in the α′ expansion, we obtain the
Lagrangian of supersymmetric Yang-Mills theory with U(1) gauge group.
For the N coincident Dp-branes we obtain non-abelian supersymmetric
Yang-Mills theory with gauge group U(N).

In the case of D3-branes there are six scalars ΦI , I = 1, . . . , 6, de-
scribing the fluctuations of the D3-branes in the six-dimensional trans-
verse space. Together with the two transverse polarizations of the vector
field on the four-dimensional world-volume, the total number of physical
bosonic d.o.f. is therefore equal to eight and matches the number of phys-
ical d.o.f. of four fermions ψi, i = 1, 2, 3, 4 (recall that Weyl fermion in
4d has four independent components). All the fields live in the adjoint
representation of the gauge group U(N).

The U(1) subgroup decouples from the rest of the U(N) group. The
resulting low-energy theory on the world-volume of D3-branes is N = 4

31



supersymmetric SU(N) Yang-Mills theory (SYM), with the Lagrangian
schematically given by

LSYM=− 1
4g2
YM

Tr
(
FµνF

µν+DµΦIDµΦI+ψ̄iγµDµψ
i+[ΦI , ΦJ ]2+ . . .

)
,

(1.90)
where dots denote all extra interaction terms required by supersymmetry.
This is a maximally supersymmetric four-dimensional gauge theory.

In four dimensions gauge theory is classically conformally invariant.
Quantum corrections generally spoil conformal invariance creating renor-
malization group flow. However in the case of N = 4 SYM theory this
turns out not to be the case; the Lagrangian (1.90) is exactly confor-
mally invariant at quantum level. The conformal symmetry group in four
dimensional space-time is SO(2, 4).

The R-symmetry subgroup of the N = 4 supersymmetry group is
SU(4). The fermions ψi live in the fundamental representation 4 of
SU(4), and the six scalars ΦI are rotated by SO(6) ' SU(4). Therefore
the covering bosonic symmetry group of N = 4 SYM is SU(2, 2)×SU(4).
The fermionic symmetry generators consist of four supersymmetry gener-
ators and four super-conformal generators. The latter appear in commu-
tators of supersymmetry generators with special conformal generators. In
total there are 32 conserved fermionic charges. The supersymmetry group
is PSU(2, 2|4).

1.3.4 Large N limit

It turns out that when the number of colors N is sent to infinity, the
SU(N) gauge theory simplifies. We need to consider the ’t Hooft cou-
pling λ = g2

YMN instead of the Yang-Mills coupling gYM : as N is varied
gYM is varied accordingly so that λ remains unchanged. The reason for
such rearrangement is that we want to obtain a sensible large N limit of
Feynman diagrams. Consider for example the gluon one-loop correction
to the gluon propagator. Each of the two three-gluon vertices contributes
the factor of gYM , and the loop contributes the factor of N . The diagram
is therefore proportional to g2

YMN . It describes the lowest order term in
the renormalization group flow of the YM coupling,

dgYM
d log M = b0g

3
YMN + . . . ⇒ dλ

d log M = 2b0λ
2 + . . . . (1.91)
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and it has a smooth large N limit if we keep λ = g2
YMN fixed as N is sent

to infinity.
In the large N limit, non-planar Feynman diagrams, that is the dia-

grams which cannot be drawn on a plane (in the double-line notation),
become sub-leading [5]. We refer the reader to chapter 2 of [6] for a nice
review of the large-N limit of gauge theories.

In the large N limit, the low-energy gauge-singlet degrees of freedom
are decoupled from each other. This is usually referred to as large-N
factorization. The diagrams with two single-trace vertices can be either
connected, when the vertices are linked to each other by internal lines, or
disconnected, when the vertices are closed up on themselves. The latter
diagrams are leading in the large-N limit. Nevertheless the theory is still
non-trivial. For instance in the large-N QCD at low energies, one has free
mesons. But the spectrum of mesons as well as the scaling dimensions
of the meson operators are unknown, and the conventional derivation of
these quantities by QFT means dealing with strongly coupled (and con-
fining) dynamics of quarks within mesons. The spectrum of mesons can
be read off from the poles of the two-point functions of the baryon cur-
rent operators. In the large N limit the computation of such two-point
functions requires summation of planar diagrams, which is an ill-defined
procedure at strong coupling.

1.3.5 AdS/CFT correspondence

We have demonstrated in the previous subsections that the symmetry
group PSU(2, 2|4) of type-IIB superstring theory on AdS5 × S5 is the
same as the symmetry group of N = 4 SYM theory. It turns out that
this matching is not accidental. The N = 4 SYM theory is the low-energy
theory of massless modes of open strings attached with both ends to the
D3-branes. According to the AdS/CFT correspondence this theory is ex-
actly equivalent to the type-IIB superstring theory in the near-horizon
AdS5 × S5 background created by the D3-branes [7]. One can in fact
perform a reduction on the five-sphere S5. This correspondence is holo-
graphic: the N = 4 SYM theory lives in the four-dimensional Minkowski
space-time, while closed type-IIB strings live in the five-dimensional bulk
space, AdS5. The field theory can be referred to as living on the four-
dimensional boundary of the AdS5 space.

The bulk side of the duality is gravitational, since gravity fields are
the lowest (massless) modes of the closed string theory; the boundary
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side is non-gravitational, because gravity is not a part of the open string
spectrum. The gauge coupling constant, gYM , is the open string coupling
constant, related to the closed string coupling constant, gs, by the equation

g2
YM = 4πgs . (1.92)

Combining this equation with the equation (1.84) for the AdS scale
we obtain (in this section string length is defined as `s =

√
α′)

`s
R

=
1

λ1/4 . (1.93)

The closed string excitations in the AdS5 × S5 bulk can be neglected if

`s
R
� 1 ⇒ λ� 1 . (1.94)

If the condition (1.94) is satisfied then the the bulk dynamics is well ap-
proximated by type-IIB supergravity.

Due to the equation (1.79) for the relation between the string scale and
the Planck scale, we conclude that quantum gravity effects are negligible
provided

`p
R

=
1

(4πN)1/4 � 1 ⇒ N � 1 . (1.95)

This is a consequence of the fact that at fixed λ and large N the closed
string coupling constant gs is small, and the bulk theory is classical.

We conclude that the large-N limit of strongly coupled N = 4 SYM
theory is dual to classical supergravity theory in the AdS5 × S5 space.

1.3.6 Less supersymmetry, non-conformal field theories

We have reviewed the holographic duality between N = 4 SYM theory
and type-IIB string theory on AdS5×S5. The set of holographic dualities
is not exhausted by this example. One can break a fraction or all of super-
symmetries. One can consider holographic descriptions of non-conformal
field theories. For example, one can turn on a finite temperature and/or
chemical potential in the field theory, breaking supersymmetry and con-
formal invariance. The dual bulk geometry in this particular example is
a charged black hole in AdS.

In the following subsections of this chapter we are going to review the
holographic correspondence in the most general way, with a QFT on the
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boundary of asymptotically AdS space dual to a classical gravitational
theory in the bulk. Then we proceed to the holographic description of
Little String Theory.

1.3.7 Gubser-Klebanov-Polyakov-Witten formula

Consider quantum gauge field theory with the gauge-singlet operators
OI . For example, one can deal with a charge current, fermionic bi-linear
operator, baryon operator, glueball, stress-energy tensor, etc. Holographic
duality maps these boundary QFT operators to the fields φI defined in
the bulk of AdS space. One can ask a QFT question: what is the n-
point function 〈OI1 . . .OIn〉 equal to? In a strongly interacting system
this question is generally impossible to find an answer to by conventional
QFT means. One generally looks for a generating functional, W [JI ],
which depends on the sources JI . In the Euclidean set-up it is defined as

e−W [JI ] = 〈eJIOI 〉QFT , (1.96)

where on the r.h.s. of (1.96) we have a path integral of the QFT with the
operators OI sourced by the external currents JI . The n-point function
is then

〈OI1 . . .OIn〉 = ∂n

∂JI1 . . . ∂JIn
e−W [JI ] . (1.97)

The Gubser-Klebanov-Polyakov-Witten formula [8, 9] gives the holo-
graphic prescription for computation of the generating functional W ,

e−W [JI ] = Zstring|φI (z=0)=JI , (1.98)

where Zstring on the r.h.s. of (1.98) is the string partition function in
the bulk, with the bulk fields φI fixed at the boundary z = 0 to the
values of the sources JI of the dual QFT operators OI . When the QFT
is strongly coupled, due to (1.94), the string partition function can be
approximated by the supergravity partition function. If the number of
colors N is large supergravity is classical, see (1.95), and one can use a
saddle point approximation,

Zstring=Zsugra=e
−Ssugra ⇒ W [JI ] = Ssugra[φI(z=0)=JI ] . (1.99)

In (1.99) the supergravity action is evaluated on the classical solution to
the bulk equations of motion.
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1.3.8 Probe branes and flavor

Let us add matter fields living in the fundamental representation of the
gauge group. Ultimately it would be useful to apply holographic methods
to QCD-like models, and this is why we have to know how to add quarks
to the system. Quarks have a color and a flavor. These are realized as
open strings attached with one end to N coincident color D3-branes and
with the other end to F coincident flavor Dp-branes [10]. The lowest
excitation modes of such strings are quarks, and they live in the fun-
damental representation of the U(N) color group and the U(F ) flavor
group. Taking F/N � 1 one can consider flavor branes as probes in
the AdS5 × S5 background. World-volume U (F ) degrees of freedom on
the probe Dp-branes decouple from the U(N) adjoint gauge fields and
fundamental matter fields on the D3-branes.

Now we have a global flavor U(F ) symmetry on the field theory side
of the duality. According to the AdS/CFT correspondence, a global sym-
metry in the QFT is mapped to a local symmetry in the bulk. In the case
at hand the conserved U(F ) Noether currents are mapped to the U (F )
gauge d.o.f. on the Dp-brane world-volume.

In subsection 1.2.6 we discussed the system of intersecting branes and
concluded that the interesting non-trivial cases are D3/Dp-brane systems
with p = 5, 7, with three or four dimensional intersections. We also dis-
cussed the conditions for the non-broken supersymmetry in such systems.
We are going to use these results in chapter 2, where we study probe brane
matter at finite baryon density, strongly coupled to the N = 4 gauge d.o.f.
In that case the global (baryon) symmetry is represented holographically
by the U(1) gauge field on the world-volume of the probe brane. A finite
density of bound states of strongly coupled quarks is dual to a non-trivial
background U (1) gauge field. Fluctuations of density are represented by
fluctuations of this gauge field.

1.3.9 Finite temperature and chemical potential, thermo-
dynamics

Suppose we have a four-dimensional gauge theory. In the IR it is de-
scribed by the effective action, W , obtained in the Wilsonian framework
by path integration over the high-energy modes of the fields. In subsection
1.3.7 we described the prescription of the AdS/CFT correspondence for
computation of the effective action.
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Let us turn on a temperature, T . The effective action is then replaced
by the free energy, F = E − TS, where E is the energy and S is the
entropy. We proceed further and turn on chemical potentials for some of
the conserved charges. For example, we can consider a finite density of
baryon matter in the IR. Then the free energy is replaced by the grand
potential, Ω = E − TS − µN , where N is the number of baryons and µ
is the chemical potential. In this subsection we are going to focus on this
general case.

The AdS/CFT prescription for the grand potential of the field theory
at finite temperature and chemical potential is a straightforward general-
ization of the GKPW formula (1.98). First of all, the effective actionW is
replaced by the grand potential Ω. Now, as the temperature in the CFT
is turned on, the dual AdS5 geometry gets replaced with the Schwarzshild
black hole in AdS5 space [11] (which is a dominant solution when the
temperature is large enough). A finite chemical potential of a conserved
charge is described holographically by a non-trivial background profile of
the corresponding gauge field in the bulk. As a result we obtain a charged
black hole in AdS space.

Suppose the boundary field theory is strongly coupled and the number
of colors is large. We can use a saddle point approximation equating the
grand potential with the bulk on-shell classical regularized action S:

TSon−shell = E − TS − µN . (1.100)

1.3.10 Holographic description of Little String Theory

One way to introduce Little String Theory (LST) [12, 13] is to consider the
low-energy theory on the world-volume of N coincident NS5-branes at a
fixed energy scale and vanishing string coupling. Recall that NS5-branes
arise both in type-IIA and type-IIB superstring theory as electro-magnetic
duals of the superstring. A superstring couples electrically to the massless
NS-NS two-form field Bµν , see (1.61). In nine spatial dimensions, a string
is surrounded by seven-sphere. The charge of a string w.r.t. to the B
field is equal to the flux of the Hodge dual of the field strength H = dB
through the seven-sphere. As a consistency check notice that the Hodge
dual ?H in ten dimensions is a seven-form.

Similarly, recall that a Dp-brane couples electrically to the Cp+1 R-
R field and magnetically to the C7−p field. The object which couples
magnetically to the B field is an NS5-brane. It is surrounded by a three-

37



sphere, and its magnetic charge w.r.t. to the B-field is equal to the flux of
H through this three-sphere. In type-IIB superstring theory, fluctuations
of an NS5-brane are determined by a D1-brane attached to it by both
ends, in type-IIA superstring theory a D2-brane attaches to an NS5-
brane. S-duality between a string and a D1-brane is consistent with S-
duality between an NS5-brane and a D5-brane. The S-dual of a string
attached to aD5-brane is therefore aD1-brane attached to an NS5-brane.

The low-energy d.o.f. on an NS5-brane form a U(N) gauge supermul-
tiplet on a six-dimensional world-volume. The coupling constant is given
by g = `s; the theory is formulated at a fixed energy scale . Under the
RG flow, the coupling constant of the six-dimensional theory grows in the
UV. Of course in the UV more of the string d.o.f. should be added to the
theory.

One can study LST holographically. We refer the reader to [14] for an
extensive exposition of the subject and restrict here to a general outline.
The background created by N coincident NS5-branes has the geometry
R5,1×Rφ×S3. Here R5,1 is the world-volume of an NS5-brane, Rφ is the
radial (bulk) direction and S3 is the sphere surrounding the NS5-branes,
with N units of the B-field flux threading through it. The radius of the
three-sphere is R =

√
N`s, and therefore string excitations in the bulk are

suppressed when N is large. String theory on S3 is given by the SU(2)
WZW model at level N . There is a background dilaton field depending
linearly on the bulk radial coordinate φ.

The statement is that LST is holographically dual to closed string the-
ory in the background of N coincident NS5-branes. In the double scaling
limit this background is R5× SL(2,R)N

U(1) ×SU(2)N , where SL(2,R)N/U(1)
is a two-dimensional ‘cigar’ geometry with the linear dilaton [15]. The time
coordinate is periodic, the corresponding temperature is T = (2π

√
N)−1.

A string on SL(2,R)N/U(1) is described by the gauged WZW model on
this coset space.

In chapter 4 we generalize this set-up to the situation of a non-vanishing
charge density in the LST. To be precise, we do not know what is the field
theory side of the holographic duality presented in chapter 4. Instead we
study the bulk side of the duality, which is the gauged WZW model on
SL(2,R)N×U(1)

U(1) . The classical geometry is a two-dimensional charged black
hole, which is therefore dual to a field theory at finite charge density.

38



1.4 This thesis
Chapters 2, 3 and 4 of this thesis are based on the original research papers
[16], [17] and [18] respectively, which I have written in collaboration with
Dr. Andrei Parnachev and Prof. Dr. Jan Zaanen.

1.4.1 Chapter 2

In this chapter we study correlators of the global U(1) currents in holo-
graphic models which involve N = 4 SYM coupled to finite density matter
in the probe brane sector. We find the spectral density associated with
the longitudinal response to be exhausted by the zero sound pole and ar-
gue that this could be consistent with the behavior of a Fermi liquid with
vanishing Fermi velocity. However the transversal response shows an un-
usual momentum independent behavior. Inclusion of magnetic field leads
to a gap in the dispersion relation for the zero sound mode propagating
in the plane of magnetic field. For small values of the magnetic field B,
the gap in the spectrum scales linearly with B, which is consistent with
Kohn’s theorem for nonrelativistic fermions with pairwise interaction. We
do not find signatures of multiple Landau levels expected in Landau Fermi
liquid theory. We also consider the influence of generic higher derivative
corrections on the form of the spectral function.

1.4.2 Chapter 3

In this chapter we investigate some phenomenological aspects of the holo-
graphic models based on the tachyon Dirac-Born-Infeld action in the
AdS space-time. These holographic theories model strongly interacting
fermions and feature dynamical mass generation and symmetry breaking.
We show that they can be viewed as models of holographic walking tech-
nicolor and compute the Peskin-Takeuchi S-parameter and the masses of
the lightest technimesons for a variety of tachyon potentials. We also
investigate the phase structure at finite temperature and charge density.
Finally, we comment on the holographic Wilsonian RG in the context of
holographic tachyon DBI models.

1.4.3 Chapter 4

In this chapter we consider an exactly solvable worldsheet string theory
in the background of a black brane with a gauge field flux. Holograph-
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ically, such a system can be interpreted as a field theory with a finite
number of degrees of freedom at finite temperature and density. This is to
be contrasted with more conventional holographic models which involve
gravity in the bulk and possess infinite number of degrees of freedom and
mean field critical exponents. We construct closed string vertex operators
which holographically represent the U(1) gauge field and the stress en-
ergy tensor and compute their two-point functions. At finite temperature
and vanishing charge density the low energy excitations are described by
hydrodynamics. As the density is raised, the system behaves like a sum
of two noninteracting fluids. We find low-energy excitations in the shear
and sound channels of each fluid.
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