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A P P E N D I X A

DETAILS OF LATTICES

In the present Appendix we collect all details and relevant definitions pertaining to

the four lattices that have been treated in the main text. These include explicit expres-

sions for lattice vectors, reciprocal lattice vectors, special ordering momenta, and the

Hamiltonians for lattice fermions hopping on the respective lattices. We first give the

details of the square lattice and then present details of the hexagonal lattices. In case

of the triangular and honeycomb lattices we include expressions for the mean field

orbital momentum basis functions. For both the honeycomb and kagome lattices we

also provide a more detailed derivation of the lattice symmetries of Dirac matrices,

the results of which are used in the main text. In case of the kagome lattice we pro-

vide more details on explicit expressions for density wave states discussed in main

text.

Before we come to the individual lattices, let us list a number of general defini-

tions applicable to all lattives in order to avoid repetition. In Section 9.1.1 the lattice

basis vectors were defined as ~x1 and ~x2. In expressions for Hamiltonians in momen-

tum space it is convenient to abbreviate the inner products ~k · ~xi as ki and we will

consistently do so. In addition, we write Ti for the exponentials Ti ≡ ei
~k·~xi .
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Figure A.1: Schematic picture of two of the four lattices considered in this work.

(left) the square lattice, (right) triangular lattice. Lattice basis vectors are represented

as thick back arrows, the hexagonal lattices also show ~x3 = −~x1 − ~x2. The curved

dashed arrows indicate the fourfold (C4) and sixfold (C6) rotations of the square and

hexagonal lattices, respectively.

A.1 Square lattice

The square Bravais lattice is defined in terms of the lattice basis vectors

~x1 = a

[
1
0

]
, ~x2 = a

[
0
1

]
, (A.1)

which generate the translations T (~x1) and T (~x2). Here a is the lattice constant,

i.e. the distance between two nearest neighbors of the square lattice. The reciprocal

lattice is a square lattice in momentum space generated by the vectors

~G1 =
2π

a

[
1
0

]
, ~G2 =

2π

a

[
0
1

]
, (A.2)

A schematic picture of both the real space lattice and the reciprocal lattice is presented

in Figs. A.1 and A.3. As is shown in Fig. A.1, in this work we choose to place the

origin at the center of a square. We found this to be the most convenient choice,

in addition to being consistent with the (obvious) choices made for the hexagonal

lattices (see below). This choice does however have the consequence that the atomic

positions are displaced from the Bravais lattice vectors by an amount

~l =
a

2

[
1
−1

]
. (A.3)

Contrary to the convention of equating the atomic positions and Bravais lattice vec-

tors, the present choice implies that point group operations must be associated with a
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nontrivial lattice translation ~t when acting on an atomic position. For example, refer-

ring to Section 9.1.1, we have C4
~l = ~x2 + ~l where ~t = ~x2. This minor complication

notwithstanding, it is the most convenient and consistent convention.

The square lattice Hamiltonian Ĥ and corresponding electronic dispersion are

simply given by

Ĥ =
∑

~k

E(~k)ψ̂†(~k)ψ̂(~k), E(~k) = −2t

2∑

i=1

cos ki. (A.4)

A.2 Triangular lattice

The triangular Bravais lattice is generated by the two lattice basis vectors

~x1 =
a

2

[
1√
3

]
, ~x2 =

a

2

[
1

−
√
3

]
, (A.5)

and in addition to these we define for convenience the (linearly dependendent) lattice

vector ~x3 = −~x1−~x2. Again, a is the lattice constant. In case of the triangular lattice

we choose the origin to at one of the Bravais lattice points, as indicated in Fig. A.1

on the upper right.

The reciprocal lattice of a triangular lattice is a triangular lattice and the reciprocal

lattice vectors are given by

~G1 =
2π

a

[
1

1/
√
3

]
, ~G2 =

2π

a

[
1

−1/
√
3

]
. (A.6)

The corresponding first Brillouin zone is graphically shown in Fig. A.3. The M -

point ordering momenta ~Qµ are shown in Fig. A.3 by full red dots and their explicit

expressions are

~Q1,3 =
π

a
√
3

[
±
√
3

1

]
, ~Q2 =

2π

a
√
3

[
0
1

]
. (A.7)

The triangular lattice Hamiltonian Ĥ and corresponding electronic dispersion are

simply given by

Ĥ =
∑

~k

E(~k)ψ̂†(~k)ψ̂(~k), E(~k) = −2t

3∑

i=1

cos ki. (A.8)
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A.2.1 Mean field orbital momentum basis functions

In Section 9.2.3 we have discussed how to set up a triangular lattice spinful mean-field

theory anticipating translational symmetry breaking due to finite ~Qµ ordering vectors.

The nearest neighbor interaction Vij required a decomposition into the orbital mo-

mentum functions transforming as irreducible representations of the hexagonal point

group. Here we list these functions explicitly.

In general the orbital momentum functions λ(n,Ir)(~k) are labeled by n (n-th near-

est neighbor) and Ir (irreducible representation I and partner r). In case of the tri-

angular lattice we have only considered n = 1 and found that we need to sum over

four irreducible representations, two of them 1D and two of them 2D. The 1D rep-

resentation A1 and the 2D representation E2 functions are constructed from cosine

functions and take the form

λ(1,A1)(~k) =
1√
3
(cos k1 + cos k2 + cos k3)

~λ(1,E2)(~k) =
1√
2

[ 1√
3
(−2 cos k1 + cos k2 + cos k3)

cos k2 − cos k3

]
.

(A.9)

Instead, the 1D representation B1 and the 2D representation E1 functions are con-

structed from sine functions and read

λ(1,B1)(~k) =
1√
3
(sin k1 + sin k2 + sin k3)

~λ(1,E1)(~k) =
1√
2

[ 1√
3
(−2 sink1 + sin k2 + sin k3)

sink2 − sin k3

]
.

(A.10)

The triangular lattice function Γ(1)(~k − ~k′) can therefore be expanded in separable

functions λ(1,Ir)(~k) and λ(1,Ir)(~k′) as

Γ(1)(~k − ~k′) =
∑

I,r
λ(1,Ir)(~k)λ(1,Ir)(~k′) (A.11)

with I = A1, E2, B1, E1. Since all functions are real we have suppressed the com-

plex conjugation operation.

A.3 Honeycomb lattice

The Bravais lattice of the honeycomb lattice is a triangular lattice and the honeycomb

lattice unit cell contains two inequivalent atoms, which are labeled as the A and B
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Figure A.2: Schematic picture of two of the four lattices considered in this work.

(left) the honeycomb lattice, (right) kagome lattice. Lattice basis vectors are repre-

sented as thick back arrows, the hexagonal lattices also show ~x3 = −~x1 − ~x2. The

curved dashed arrows indicate the sixfold (C6) rotations of the hexagonal lattices.

sublattices. The unit vectors of the triangular Bravais lattice are taken to be the same

as in Eq. (A.5),

~x1 =
a

2

[
1√
3

]
, ~x2 =

a

2

[
1

−
√
3

]
, (A.12)

where a is again the lattice consant, which in case of the honeycomb lattice is not the

distance between nearest neighbors (i.e. the carbon-carbon distance in graphene). As

was the case for the triangular lattice, we define ~x3 ≡ −~x1 − ~x2. The origin is taken

to be the center of a hexagon and two vectors ~lA and ~lB , specifying the positions of

the A and B atoms in the unit cell with respect to the origin, are given by

~lA =
a

2

[
1

−1/
√
3

]
, ~lB =

a

2

[
1

1/
√
3

]
. (A.13)

Taking theA sublattice as a reference sublattice, we define the three nearest neighbor

vectors connecting the sublattices as

~δ1 = ~lB −~lA, ~δ2 = ~δ1 − ~x1, ~δ3 = ~δ1 + ~x2. (A.14)

The reciprocal lattice of a triangular lattice is a triangular lattice, as was noted previ-

ously, and in the case of the honeycomb lattice the reciprocal lattice vectors coincide

with those of the triangular lattice,

~G1 =
2π

a

[
1

1/
√
3

]
, ~G2 =

2π

a

[
1

−1/
√
3

]
. (A.15)
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The electronic honeycomb lattice Hamiltonian is given by

Ĥ =
∑

~k

ψ̂†
i (
~k)Hij(~k)ψ̂j(~k), (A.16)

where i, j label the sublattices and the ~k-dependent matrix takes the form

H(~k) = −t
[

0 1 + T2 + T ∗
1

1 + T ∗
2 + T1 0

]
(A.17)

with the Ti as defined at the beginning of this appendix. It is a very well-known

fact that the honeycomb band structure displays band touchings at the Brioullin zone

vertices ~K± which are given by

~K± =
4π

3

[
±1
0

]
. (A.18)

At these isolated band touchings, which are protected by lattice symmetries (c.f. sec-

tion A.3.1), the electronic bands disperse linearly, and the nodes are therefore referred

to as Dirac points, or K-points. These Dirac points are shown in Fig. A.3 on the left

side by large blue dots. In the main text we have discussed K-point ordering on the

honeycomb lattice.

The M -point ordering momenta are the same as for the triangular lattice (and

shown in Fig. A.3) and we quote them here again for completeness

~Q1,3 =
π

a
√
3

[
±
√
3

1

]
, ~Q2 =

2π

a
√
3

[
0
1

]
. (A.19)

A.3.1 Point group protection of honeycomb Dirac points

In the Brillouin zone of the honeycomb lattice (one may think of graphene), or any

other lattice with point group C6v such as triangular and kagome, there are special
~k points that are left invariant under certain point group operations. Of particular,

even profound, interest are the corners of the Brillouin zone hexagon given by ~K±
(see previous subsection), also called K-points or valleys. The terminology valley is

inspired by the fact that at these points H( ~K±) = 0, leading to a degeneracy in the

spectrum. The little cogroup of each ~K± isC3v and consists of the threefold rotations

C3 = C2
6 and C−1

3 = C4
6 of the honeycomb lattice and the three reflection bisecting

the bonds of the hexagon. These reflections exchange the A and B sublattice. The

group C3v admits a two dimensional irreducible representation, which is realized by
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Figure A.3: Depiction of the Brillouin zones of the hexagonal lattices (left) and the

square lattice (right). The reciprocal lattice vectors are denoted as ~G1 and ~G2. The

special commensurate ordering momenta are indicated. For both the square and the

hexagonal lattices there is a set ~Qµ (full dots), while in case of the hexagonal lattices

there is a second set of two ordering vectors ~K+ and ~K− (open dots).

the matrices UR of equation (9.6) with R ∈ C3v. Also note the remark following

equation (9.10). In fact, by working out these matrices we derive the representation

for ~K+ as

UI =
[
1 0
0 1

]
, UC3

=

[
ω 0
0 ω−1

]
, UC−1

3
=

[
ω−1 0
0 ω

]
,

Uσv1 =

[
0 1
1 0

]
, Uσv2 =

[
0 ω
ω−1 0

]
, Uσv3 =

[
0 ω−1

ω 0

]
. (A.20)

where we defined ω = e2πi/3. Strictly speaking, the representation for ~K− is ob-

tained by ω ↔ ω−1. These matrices act on the Hamiltonian at the K-points, i.e.

H( ~K±), which can be expanded in Pauli matrices τ i. As ~K± are invariant points

under R we have URH( ~K±)U†
R = H( ~K±), or [UR,H( ~K±)] = 0. We may take UC3

and Uσv1 to show that this mandates H( ~K±) = I and the degeneracy is therefore pro-

tected exactly at ~K± making it an essential degeneracy. To demontrate the vanishing

of the commutator we just have to observe that Uσv1 = τ1 and UC3
contains τ3. The

only matrix commuting with both is the unit matrix.

A.3.2 Symmetry of Dirac matrices

In this part we provide more details on the low-energy theory of the honeycomb

lattice at half filling, which is described by a 2D Dirac Lagrangian. For an extensive

discussion on the connection to 2 + 1D QED see [206]. Here we will be concerned
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with symmetries of the dicrete point groups C6v and C′′
6v and more specifically the

symmetry properties of low-energy spinor bilinears.

The low-energy theory in the vicinity of the two inequivalent valleys ~K± is ob-

tained by expanding the dispersion around these valleys ~K± in small momenta ~q.

One obtains the Dirac Hamiltonian

H(~q) = ~vF (qxν
3τ1 + qyτ

2) (A.21)

(where vF =
√
3ta/(2~)) acting on the spinor Φ(~q) which is given by

Φ̂(~q) =




ψ̂A( ~K+ + ~q)

ψ̂B( ~K+ + ~q)

ψ̂A( ~K− + ~q)

ψ̂B( ~K− + ~q)


 . (A.22)

The set of Pauli matrices νi acts on the valley degree of freedom and the τ i matrices

on the sublattice degre of freedom. Exchanging A and B sublattice for the ~K− by a

unitary transformation we obtain the chiral representation of the low-energy Hamil-

tonian

H(~q) = ~vF ν
3~q · ~τ . (A.23)

This chiral basis is the basis in which we will state the results. As the Dirac points

have been folded to Γ the effect of the generators of the space is found by making use

of equation (9.18). The generators may be used directly to generate all operations in

the space group. Note that

Φ̂ ≡ Φ̂(~0) =




χ̂A1(~0)

χ̂B1(~0)

χ̂A2(~0)

χ̂B2(~0)


 . (A.24)

With this it is straightforward to dedude that the translation operator T (~x1) acts as

T (~x1) →




ω
ω

ω−1

ω−1


 Φ̂, (A.25)
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(again ω = e2πi/3) while the six-fold rotation C6 acts as

C6 →




1
ω

1
ω−1


 Φ̂, (A.26)

note that this is diagonal in valley space as the six-fold rotation exchanges ~K±. The

reflection σv acts as

σv → τ1Φ̂. (A.27)

In addition to the space group generators it will be convenient to classify low-energy

bilinears based on their transformation property under time-reversal. Hence, time-

reversal is found to be represented by

T → Kν1Φ̂, (A.28)

where K denotes complex conjugation. Note that this implies that ν3τ1 and τ2 are

both odd, as they should be. They are coupled linearly to ~q, which is also odd.

The free Dirac Hamiltonian consists of the matrices ν3τ1 and τ2. Spectral gaps

are generated by Dirac matrices which anti-commute with these. It is a simple matter

to find the four matrices which have this property, and they are found to be τ3, ν3τ3,

ν1τ1 and ν2τ1. Using the action of time-reversal one easily sees that while ν3τ3 is

odd, the other three are even under time-reversal. The time-reversal invariant Dirac

matrices all anti-commute between themselves and together with ν3τ1 and τ2 they

constitute the set of maximally anti-commuting Hermitian 4 × 4-matrices. Based

on the action of the generators of the symmetry group, we can assign the masses to

representations of C′′′
6v and C6v . Taking the time-reversal invariant masses first, we

find that τ3 transforms as B2, while ν1τ1 and ν2τ1 are partners of the representation

E′
1. The latter can be decomposed intoA1⊕B1 and the following linear combinations

are found to correspond to this decomposition

A1 → cos θν1τ1 + sin θν2τ1

B1 → − sin θν1τ1 + cos θν2τ1, (A.29)

where θ = π/3 The time-reversal breaking mass term ν3τ3 is found to transform as

A2. There are three Dirac matrices which lift the degeneracy between the valleys,

but preserve the twofold degeneracy within each valley and since they distinguish the

valleys at ~K± which are related by time-reversal, all three are time-reversal symmetry

breaking. The three matrices are ν3, ν1τ2 and ν2τ2. The matrix ν3 can be shown
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Irreps of C′′
6v

Irreps of C6v A2 B1 B2 E1 E2

(standard) ν3τ3 ν3 τ3 ν3τ1, τ2 τ1, ν3τ2

(chiral) τ3 ν3 τ3τ3 ν3τ1, ν3τ2 τ1, τ2

E′
1 E′

2 G′

A1 ⊕B1 A2 ⊕B2 E1 ⊕ E2

ν1τ1, ν2τ1 ν1τ2 , ν2τ2 ν1 , ν2, ν1τ3 , ν2τ3

ν1, ν2 ν1τ3 , ν2τ3 ν1τ1 , ν2τ1, ν1τ2 , ν2τ2

Table A.1: This table summarizes the identification of low-energy fermion bilinears

as basis functions of irreducible representations of C′′′
6v . In addition we present the

irreducible representations of C6v contained in those of C′′
6v .

to transform according to B1, while ν1τ2 and ν2τ2 are partners of E′
2. They can be

written as basis functions transforming as A2 and B2 in the following way

A2 → sin θν1τ2 + cos θν2τ2

B2 → cos θν1τ2 − sin θν2τ2. (A.30)

Of the remaining six Dirac matrices, two are diagonal in valley space, while the

other four exchange valleys. The former are τ1 and ν3τ2, which are time-reversal

invariant and are partners of E2. Indeed, as they do not originate from a coupling of
~K± they should correspond to the translationally invariant content of the symmetry

classification. The set of matrices which do originate from coupling are ν1, ν2, ν1τ3

and ν2τ3, all of which are time-reversal invariant. Together they transform as G′ of

the group C′′′
6v .

A.3.3 Lifting of degeneracies at M ′ points

We now present the details of degeneracy protection and lifting at the M ′ points of

the reduced BZ corresponding to M -point order, i.e. order parameter components at
~Qµ. It was mentioned in Section 9.4.1, if the translations T (~xi) and the M ′-invariant

elements C2v are good symmetries then two-fold degeneracies at the M ′ points are

protected, while in case of C2v symmetry only, i.e. broken translations, there are no

symmetry protected degeneracies. Here we demonstrate this explicitly. The recipy is
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by now familiar and we write the state operator at ~M ′ = ~Q2/2 as.

Φ̂M′ =




ψ̂j( ~M
′)

ψ̂j( ~M
′ + ~Q1)

ψ̂j( ~M
′ + ~Q2)

ψ̂j( ~M
′ + ~Q3)


 . (A.31)

The action of the translations T (~x1) and T (~x2) (up to global U(1) phases) is easily

derived to be

T (~x1) →




1
−1

−1
1


 ≡ ρ3ν3 (A.32)

where the matrix entries should be understood as 2×2 unit matrices (τ0) and we have

introduced another set of Pauli matrices ρi to generate the 8× 8 representation. Then

T (~x2) is given by ρ3. For the C2 element we derive

C2 →




τ1

−τ1
τ1

τ1


 ≡ ρ1ν3τ1. (A.33)

Symmetry dictates that the Hamiltonian at M ′ must commute with these elements.

Taking just these translation and the inversion we simply see that the only allowed

terms are ν3τ1 and ν3. This observation already completes the task of proving that

two-fold degeneracies must exist, since any linear combination of these two terms

will be proportional to ρ0. Hence, all eigenvalues of must appear twice. We check

whether the two reflections σv and C2σv give any additional constraints. For σv we

find

σv →




τ1

τ1

τ1

τ1


 ≡ ρ1ν3τ1, (A.34)

and we may use the expression for C2 to derive the action of the other reflection. We

find no further symmetry constraints on the energy levels at M ′.
Breaking the translations leads to the symmetry group C2v , which does not have

any 2D irreducible representation and therefore cannot protect degeneracies. Ignor-

ing the constraints coming from the translation above, one observes that more terms

are allowed on the Hamiltonian which in general will lift the degeneracies.



268 Details of lattices

A.3.4 Mean-field momentum functions

In the same way as for the triangular lattice in Section A.2.1 we present the explicit

orbital momentum fucntions which are used to decompose the nearest neighbor or

next-nearest neighbor interactions. In Section 9.2.3 the basic structure of a mean

field theory for both K-point and M -point order on the honeycomb lattice was dis-

cussed. Here we give explicit expressions for orbital momentum functions λ
(n,Ir)
ij (~k)

corresponding to Γ
(1)
ij (~k − ~k′) and Γ

(2)
ij (~k − ~k′).

The decomposition of the nearest neighbor interaction function Γ
(1)
ij (~k− ~k′) con-

sists of two irreducible representations. The first, A1, is 1D and the second, E2, 2D.

The orbital momentum functions are given by

λ
(1,A1)
AB (~k) =

1√
3
(1 + e−ik1 + eik2)

~λ
(1,E2)
AB (~k) =

1√
2

[ 1√
3
(−2 + e−ik1 + eik2)

e−ik1 − eik2

]
. (A.35)

Note that we would have λ
(1,A1)
BA = λ

(1,A1)∗
AB and the formula for the decomposition

is given in Eq. (9.52).

The Bravais lattice of the honeycomb lattice is a triangular lattice and we can

therefore directly infer the orbital momentum functions which decompose the next-

nearest neighbor function Γ
(2)
ij (~k − ~k′) from the triangular lattice case. Note that

we can write λ
(n,Ir)
AA = λ

(n,Ir)
BB = λ(n,Ir). The orbital momentum functions read

explicitly

λ(2,A1)(~k) =
1√
3
(cos k1 + cos k2 + cos k3)

~λ(2,E2)(~k) =
1√
2

[ 1√
3
(−2 cos k1 + cos k2 + cos k3)

cos k2 − cos k3

]

λ(2,B1)(~k) =
1√
3
(sin k1 + sin k2 + sin k3)

~λ(2,E1)(~k) =
1√
2

[ 1√
3
(−2 sink1 + sin k2 + sin k3)

sink2 − sin k3

]
,

(A.36)

i.e. there are the same four irreducible representations as in the triangular lattice

nearest neighbor case.
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A.4 Kagome lattice

The kagome lattice is another lattice with hexagonal symmetry, meaning that the

Bravais lattice is triangular. However, the kagome lattice unit cell contains three

inequivalent atoms, which are labeled by their sublattice index A, B and C. We

choose the generators of lattice translations as

~x1 = a

[
1√
3

]
, ~x2 = a

[
1

−
√
3

]
, (A.37)

where a is taken as the length of a bond, i.e. the distance between nearest neigh-

bors. In terms of a these vectors are half of the triangular and honeycomb lattice

vectors. Hence, the reciprocal lattice vectors are twice as large as was the case for the

triangular lattice, and are given by

~G1 =
π

a

[
1

1/
√
3

]
, ~G2 =

π

a

[
1

−1/
√
3

]
. (A.38)

We take the origin to be the center of a hexagon of the kagome lattice and three vectors
~lA, ~lB and ~lC specifying the positions of the atoms in the unit cell with respect to the

origin are given by

~lA =
a

2

[
1

−
√
3

]
, ~lB =

a

2

[
3

−
√
3

]
, ~lC = a

[
1
0

]
. (A.39)

Taking theA sublattice as a reference sublattice, we define the three nearest neighbor

vectors connecting the sublattices as

~δ1 = ~lB −~lA, ~δ2 = ~lC −~lB, ~δ3 = ~lA −~lC . (A.40)

In addition to these vectors we also define the vectors connecting next-nearest neigh-

bors on the kagome lattice. They are given by

~δ′1 = ~lC − 2~lA, ~δ′2 = −2~lC +~lA, ~δ′3 = ~lA + 2~lC . (A.41)

The momentum dependent Hamiltonian of electrons hopping between nearest

neighbors on the kagome lattice then takes the form

H(~k) = −t




0 1 + T ∗
1 T

∗
2 1 + T ∗

1

1 + T1T2 0 1 + T2
1 + T1 1 + T ∗

2 0


 (A.42)

with the familiar definition of Ti. It is not uncommon in the context of the kagome lat-

tice to take into account hopping between next-nearest neighbors in the tight-binding
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Hamiltonian. This removes the perfect flatness of the top band. The momentum de-

pendent Hamiltonian matrix H′(~k) corresponding to next-nearest neighbor hopping

reads

H′(~k) = −t′



0 T ∗

1 + T ∗
2 T2 + T ∗

1 T
∗
2

T1 + T2 0 T ∗
1 + T1T2

T ∗
2 + T1T2 T1 + T ∗

1 T
∗
2 0



 . (A.43)

In Section 9.4.2 we have intruced the matrix functions Λi which act on the sublat-

tice degree of freedom and which are generalizations of the Pauli-matrices τ i. They

are 3× 3 matrices and constitute the set of matrices spanning the space of Hermitian

matrices, known as the Gell-Mann matices. Explicitly they read

Λ1a =




0 1 0
1 0 0
0 0 0



 , Λ2a =




0 0 0
0 0 1
0 1 0



 , Λ3a =




0 0 1
0 0 0
1 0 0





Λ1b =




0 −i 0
i 0 0
0 0 0



 , Λ2b =




0 0 0
0 0 −i
0 i 0



 , Λ3b =




0 0 i
0 0 0
−i 0 0





Λ1c =
1√
3




1 0 0
0 1 0
0 0 −2



 , Λ2c =




1 0 0
0 −1 0
0 0 0



 . (A.44)

The first two sets, ~Λa and ~Λb correspond to bond ordered states as they connect

different sublattices, while the third set ~Λc represents nontrivial charge order. Their

symmetry properties are summarized and discussed in Section 9.4.2.

A.4.1 Low-energy theory and symmetry of Dirac matrices

The kagome lattice allows for two different types of low-energy description, de-

pending on filling. As was mentioned in the main text (see Section 9.4.2), at filling

n = 1/3 the spectrum is equivalent to that of the honeycomb lattice with conic de-

generacies at the Dirac points ~K±. These isolated band touchings can be described

by a Dirac theory fully analogous to the honeycomb lattice by projecting the linearly

expanded Hamiltonian onto the eigenstates at ~K±, which we denote as |+, j〉 and

|−, j〉 (j = 1, 2) for ~K+ and ~K−, respectively. Then, in the basis

Φ̂(~q) =




ψ̂1( ~K+ + ~q)

ψ̂2( ~K+ + ~q)

ψ̂1( ~K− + ~q)

ψ̂2( ~K− + ~q)


 . (A.45)
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one can obtain the same low-energy Hamiltonian as the one corresponding to the

honeycomb lattice Dirac points,

H(~q) = ~vF ν
3~q · ~τ , (A.46)

of course for a proper choice of |±, j〉. Here the set of Pauli matrices νi acts on

the valley degree (±) of freedom and the τ i matrices on the “sublattice” degree of

freedom labeled by j. Note that vF =
√
3at/~.

We now proceed to derive the lattice symmetry transformation properties of the

low-energy Dirac matrices. To this end, we first derive the action of the generators of

the group C′′′
6v on the spinor

χ̂ ≡
[
χ̂j1
χ̂j2

]
=

[
ψ̂j( ~K+)

ψ̂j( ~K−)

]
, (A.47)

and then project that action into the low-energy subspace. Following the standard

recepy described in Section 9.1, it is straightforward to dedude that the translation

operator T (~x1) acts as

T (~x1) →




ω
ω

ω
ω−1

ω−1

ω−1



χ̂, (A.48)

(again ω = e2πi/3) while the six-fold rotation C6 acts as

C6 →




1
ω−1

ω
1

ω
ω−1



χ̂, (A.49)

note that this is diagonal in valley space as the six-fold rotation exchanges ~K±. The

reflection σv acts as

σv →




ω−1

ω
1

ω
ω−1

1



χ̂. (A.50)
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In order to evaluate the symmetry properties of the Dirac matrices νiτ j we need

to project the 6 × 6 matrices given above into the low-energy subspace spanned by

|±, j〉. IfU± are the matrices that contain the eigenvectors of H( ~K±) in their column,

we construct the matrixU = Diag(U+, U−) and evaluateU †V U , where V is a matrix

of equation (A.51) and (A.53). Reading off the low-energy blocks fromU †V U yields

for the translation

T (~x1) →




ω
ω

ω−1

ω−1


 Φ̂, (A.51)

while the six-fold rotation C6 takes the form

C6 →




1
ω−1

ω
1


 Φ̂, (A.52)

note that this is off-diagonal in valley space as the six-fold rotation exchanges ~K±.

The reflection σv acts as

σv → τ1χ̂. (A.53)

Time-reversal only exchanges ~K+ ↔ ~K− and is thus easily seen to be represented in

the low-energy subspace as

T → Kν1Φ̂, (A.54)

where K denotes complex conjugation.

This representation is very similar to and for some operations coincides with the

representation of the extended point group derived for the honeucomb lattice. This

is not all that surprising since the lattices are closely related. A consequence of the

similarity of the representations is that we find the transformation properties of the

Dirac matrices precisely coincide with those of honeycomb lattice in the chiral repre-

sentation. These were summarized in Table A.1 and we refer the reader to the second

of the two rows. The chiral representation is applicable here since we have chosen the

eigenstates |±, j〉 accordingly. This concludes the discussion of the transformation

properties of Dirac matrices in case of the kagome lattice.



A P P E N D I X B

LATTICE FERMIONS IN MAGNETIC

FIELDS

B.1 Magnetic translation algebra on the lattice

In this appendix we present some details of lattice fermions models in a magnetic

field. We specify the lattice sites of the square lattice by ~n = (nx, ny) ∈ Z
2. The

Hamiltonian for the triangular lattice in a square geometry is given by

Ĥ = T̂x + T̂y + T̂x+y + hc, (B.1)

where the translation operators T̂i are given by

T̂i =
∑

~n

ψ̂†(~n+ ~ui)e
iθi(~n)ψ̂(~n). (B.2)

The presence of the compact lattice vector potential θi(~n) represents the magnetic

field. In lattice gauge theory these (exponentiated) objects are sometimes referred to

as link variables, i.e. Uij = eiaij . We choose to work with the representation θi(~n),

which is related to the continuum vector potential ~A as

θi(~n) =
e

~

∫ ~n+~ui

~n

~A · d~l. (B.3)
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One may observe the identification a~n+~ui,~n = θi(~n). Note that we write ~ui to indi-

cate a unit vector in the i-direction. The lattice field strength for a square plaquette is

give by

∇~n × θ = θx(~n) + θy(~n+ ~ux)− θx(~n+ ~uy)− θy(~n) = 2πφ. (B.4)

Calculating the field strength for the elementary triangles allows for an expression of

θx+y(~n) in terms of θx(~n) and θy(~n),

πφ = θx(~n) + θy(~n+ ~ux)− θx+y(~n)

= θx+y(~n)− θx(~n+ ~uy)− θy(~n), (B.5)

from which one immediately obtains

θx+y(~n) = θx(~n) + θy(~n+ ~ux)− πφ

= θx(~n+ ~uy) + θy(~n) + πφ (B.6)

It is a straightforward matter to show that T̂x and T̂y do not commute, but in fact

satisfy

T̂yT̂x = ei2πφT̂xT̂y. (B.7)

The is the lattice analog of the noncommutative nature of translation operators in

the continuum which is discussed in Chapter 1. Neither T̂x nor T̂y commute with

the Hamiltonian and we wish to find translation operators that do commute with the

Hamiltonian, generally given by

T x =
∑

~n

ψ̂†(~n+ ~ux)e
iχx(~n)ψ̂(~n)

T y =
∑

~n

ψ̂†(~n+ ~uy)e
iχy(~n)ψ̂(~n). (B.8)

By explicitly demanding that the following commutators vanish

[T x, T̂x] = [T x, T̂y] = [T x, T̂x+y] = 0, (B.9)

one obtains expressions for χi(~n) as

χx(~n) = θx(~n) + 2πφny

χy(~n) = θy(~n)− 2πφnx. (B.10)
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Even though these translation operators commute with the Hamiltonian, the do not

commute between themselves,

[T x, T y] 6= 0. (B.11)

One finds that instead they obey (in the Landau gauge, see below)

T xT y = ei2πφT yT x. (B.12)

If the flux φ is rational and given by p/q, p and q being relatively prime, then one

finds

T
q

xT y = ei2qπφT yT
q

x = T yT
q

x. (B.13)

(note that the asymmetry of T x and T x in this expression is due to the gauge choice).

Hence, the operators T
q

x and T x commute between themselves and the Hamiltonian

and can acquire quantum numbers under the Hamiltonian.

B.2 Diagonalization of the Hamiltonian

In order to diagonalize the Hamiltonian we first need to specify a gauge. Two gauge

choices will be discussed here, the Landau gauge, often the gauge of choice in the

continuum, and the symmetric gauge. The Landau gauge, in the continuum and its

lattice equivalent, is written as

~A = Bx~uy, θx(~n) = 0, θy(~n) = 2πφnx, (B.14)

whereas the symmetric gauge takes the form

~A =
B

2
(x~uy − y~ux), θx(~n) = −πφny, θy(~n) = πφnx (B.15)

We treat the Landau gauge first. Fourier transforming yields

ψ̂(~p) =
1√
NxNy

∑

~n

e−i(pxnx+pyny)ψ̂(~n). (B.16)

whereNi is the number of lattice sites in the i direction and ~p is the lattice momentum.

The momentum is defined as Nipi ∈ [0, 2π, 4π, . . . , Ni2π). The Hamiltonian in the

Landau gauge takes the form

Ĥ = −t
∑

~n, ~n′

ψ̂†(~n′)M~n′~nψ̂(~n) + hc (B.17)
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with the matrix M~n′~n defined as

M~n′~n = δ~n′,~n+~ux
+ δ~n′,~n+~uy

ei2πφnx + δ~n′,~n+~ux+~uy
ei2πφ(nx+1/2) (B.18)

which becomes in momentum space

Ĥ = −t
∑

~p,~p′

ψ̂†(~p′)M~p′~pψ̂(~p) + hc (B.19)

with the momentum space matrix M~p′~p defined as

M~p′~p = e−ipxδ~p′,~p + (e−ipy + eiπφe−i(px+py))δp′x,px+2πφδp′y,py . (B.20)

It is clear the Fourier transforming does not diagonalize the Hamitonian, as different

momentum sectors are still coupled due to δp′x,px+2πφ. Remembering that φ = p/q
we can remedy this by defining (kx + 2πφj, ky) = (px, py) with j = 0, . . . , q − 1

and at the same time make ψ̂(kx + 2πφj, ky) ≡ ψ̂j(kx, ky) = ψ̂j(~k). This amounts

to making the Brillouin zone q times smaller in the x direction, while making the real

space unit cell q times larger. We note is passing that this only works if and only if

p and q are relatively prime, as only in this case the prescription (kx + 2πφj, ky) =
(px, py) allows to access the full range 0 ≤ px < 2π. The M matrix is rewritten as

Mj′j
~k′~k

= Mj′jδ~k′,~k

Mj′j = e−i(kx+2πφj)δj′,j + (e−iky + eiπφ(1−2j)e−i(kx+ky))δj′,j+1 (B.21)

with Hamiltonian

Ĥ = −t
∑

~k,j,j′

ψ̂†
j′(
~k)Mj′jψ̂j(~k) + hc ≡ −t

∑

~k,j,j′

ψ̂†
j′(
~k)Hj′j(~k)ψ̂j(~k) (B.22)

At this point we particularize to the situation φ = 1/2, which is the relevant case for

the Chern insulator model discussed in this thesis. We have values j = 0, 1 and it is

a simple matter to show that in this basis one has

H(~k) = −2t coskxτ
3 − 2t coskyτ

1 + 2t cos(kx + ky)τ
2 (B.23)

In general, the magnetic Brillouin zone is restricted to 0 ≤ kx < 2π/q as a conse-

quence of the folding expressed in (kx + 2πφj, ky) = (px, py), meaning that the re-

ciprocal lattice vector in the x direction is ~G1 = (2π/q, 0). The example of φ = 1/2

shows that the Hamiltonian as written in B.23 does not satisfy H(~k + ~G1) = H(~k).
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This is easy to understand by looking at how the field operators respond to a shift by
~G1 in momentum space.

ψ̂j(~k + ~G1) = ψ̂(kx + 2π/q + 2πφj, ky)

= ψ̂(kx + 2π(pj + 1)/q, ky)

= ψ̂(kx + 2πφj′, ky) (B.24)

where j′ and j are related by (pj+1)mod q = pj′ mod q, or p(j′− j)−1 = 0mod q.

An example is illustrative and we take φ = p/q = 3/5. It may be verified that j = 0
is mapped to j = 2, j = 1 to j = 3, j = 2 to j = 4, j = 3 to j = 0 and j = 4 to

j = 1. Collecting the ψ̂j(~k) in the vector operator Ψ̂(~k), we have the general relation

Ψ̂(~k + ~G1) = U †Ψ̂(~k). (B.25)

The matrix U † effectively operates as a translation operator of the index j by an

amount j∆ given by the solution of pj∆ − 1 = 0mod q. Note that periodic boundary

conditions apply. The eigenvalues of a translation operator are given by ei2πj∆l/q ,

with l ∈ [0, 1, . . . , q−1). If V is the matrix that diagonalizesU † such that V †U †V =
D with D a diagonal matrix with the eigenvalues on the diagonal, then we have the

relation

Φ̂(~k + ~G1) = DΦ̂(~k) (B.26)

where Φ̂(~k) = V †Ψ̂(~k), which is the first part of the gauge transformation on the

state operators. The second part is achieved by defining a new matrix D(~k) =

Diag(d1, . . . , dq), with dl = eikxl. We observe that D(~G1) = D, which we use

to define D†(~k)Φ̂(~k), which is invariant under ~k → ~k + ~G1. Hence, we obtain a

Hamiltonian obeying H̃(~k + ~G1) = H̃(~k) by defining

H̃(~k) = D†(~k)V †H(~k)V D(~k) (B.27)

For the particular case of φ = 1/2 this amounts to

V = e−iπτ
2/4, D(~k) =

[
1

eikx

]
, (B.28)

which yields V †τ1V = τ3, V †τ2V = τ2 and V †τ3V = −τ1. It is straightforward

to use these relations to obtain the transformed Hamiltonian.

We proceed to discuss the case of the symmetric gauge in a similar fashion. Again

we write the Hamiltonian using the matrix M and obtain

M~n′~n = δ~n′,~n+~ux
e−iπφny + δ~n′,~n+~uy

eiπφnx + δ~n′,~n+~ux+~uy
eiπφ(nx−ny) (B.29)
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Using the same Fourier transform as before one derives in momentum space

Ĥ = −t
∑

~p,~p′

ψ̂†(~p′)M~p′~pψ̂(~p) + hc (B.30)

with the momentum space matrix M~p′~p defined as

M~p′~p = e−ipxδp′x,pxδp′y ,py−πφ + e−ipyδp′x,px+πφδp′y,py

+e−i(px+py)δp′x,px+πφδp′y,py−πφ. (B.31)

Since we still have φ = p/q we are forced to fold the Brillouin zone according to the

rule (kx+πφjx, ky+πφjy) = (px, py), which amounts to a magentic Brillouin zone

given by 0 ≤ kx < π/q and 0 ≤ ky < π/q. Substituting the definition of these new

momenta into the matrix of equation (B.2), we derive

Mj′j
~k′~k

= Mj′jδ~k′~k = δ~k′~k

(
e−ikxe−iπφjxδj′x,jxδj′y,jy−1+

e−ikye−iπφjyδj′x,jx+1δj′y,jy + e−i(kx+ky)e−iπφ(jx+jy)δj′x,jx+1δj′y,jy−1

)
, (B.32)

where we have written j to denote the double index (jx, jy). The label j takes values

in j ∈ [0, 1, . . . , 2q × 2q − 1), which means that we have considerably increased the

dimensionality of the of the state operator Ψ̂(~k) = ψ̂j(~k) as compared to the Landau

gauge.
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BASIC ELEMENTS OF GROUP THEORY

The purpose of this appendix is to collect and summarize all the basic elements of

group theory required to follow and understand the symmetry analysis presented in

the main text. The following brief overview is therefore far from exhaustive, but it

serves to introduce notation and the main concepts, in particular the extended point

groups.

The group of all symmetry operations leaving a given Bravais lattice invariant is

the space group S. It consists of all translations T , an Abelian subgroup of S, and

the point group G. The point group can be viewed as the factor group of the space

group, i.e. G = S/T . Throughout this work we denote general point group elements

by R, meaning that R ∈ G. Translations over a lattice vector ~x [see equation (??)]

are written as T (~x). The translation subgroup T is generated by two elements, which

are T (~x1) and T (~x2) corresponding to the two lattice vectors ~x1 and ~x2. The point

group G, which for our purposes is always Cnv with n generally beig either 4 or 6,

is generated by two elements. These are the n-fold rotation Cn and the reflection

σv . The relfection σv is always taken as the operations which reflects in the x-axis,

i.e. (x, y) → (x,−y). Any element R ∈ G can then be written as R = Cm1
n σm2

v .

Consequently, the space groupS is generated by lements T (~x2)
m4T (~x1)

m3Cm2

6 σm1
v .

Note that point group operations and translations do not commute, but instead satisfy

T (~x)R = RT (R~x).
In the main text we exclusively talk about the point groups Cnv . For spinless

particles in 2D these groups are exactly equivalent toDn, which are groups generated
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by the n-fold rotation Cn and a non-commuting two-fold rotation C′
2 around the x-

axis. Hence, C′
2 takes the place of σv , leaving all algebraic relations invariant. Below

we comment on the distinction between Cnv and D6 in the presence of the electron

spin.

C.1 Translational symmetry breaking and “extended”

point groups

The central theme of this work is interaction-induced translational symmetry break-

ing. In particular we have classified translational symmetry broken site, bond and

flux ordered states based on lattice symmetries. Translational symmetry breaking

removes a subset of translations from the full group of translations T , leading to re-

duced group of invariant translations which we denote as T̃ . Having estabslished this

new group of invariant translations (which is smaller than T ), we can take the space

group and again calculate the point by G̃ = S/T̃ . The point group G̃ is larger than

G, as it contains elements of T no longer part of T̃ . In particular, if t1 ≡ T (~x1) is no

longer part of T̃ , it belongs to the extended point group G̃.

Both for the case of the square and the hexagonal Bravais lattice we consider

translational symmetry breaking such that T̃ is generated by T (2~x1) and T (2~x2).
This means that T (~x1) = t1, T (~x2) = t2 and T (~x1 + ~x2) = t3 are added to the

point group. To illustrate this more clearly, let us take the hexagonal group C6v as an

example. This group has 12 elements, but the group C′′′
6v (three primes indicate three

broken elmentary translations), which also contains t1,2,3, contains 48 elements, i.e.

48 = 12 + 3 × 12. Algebraic properties of these elements can be worked out using

T (~x)R = RT (R~x) and the fact that titj = |ǫijk|tk. In particular, the conjugacy

classes of the group C′′′
6v can be calculated and the character table can be obtained

in the standard way. As the point group C6v is a proper subgroup of C′′′
6v all irre-

ducible representations of C6v will also appear as irreducible representations of C′′′
6v ,

in addition to new irreducible representations originating from the nontrivial transla-

tions. The character tables of the groupsC′′′
6v (hexagonal) and C′′′

4v (square) are given

in Table C.6 and Table C.7, respectively. They can the used in the standard way to

decompose any representation into irreducible representations.

A distinct extended point group is obtained if we anticipate translational sym-

metry breaking of a hexagonal lattice which triples the unit cell. In that case the

translations T (~x1) = t1, T (~x1 + ~x2) = t2 (redefining the ti) are added to the point

group, leading to the group C′′
6v . The procedure for obtaining the character table is

exactly the same, however one should be careful to implement the correct algebraic

relations between these t1 and t2. Specifically, they are each others inverse. The
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Point group C2v I C2 σv σ′
v

x2 + y2, z2 z A1 1 1 1 1
xy Lz A2 1 1 −1 −1
xz Ry, x B1 1 −1 1 −1
yz Rx, y B2 1 −1 −1 1

Table C.1: Character table of the point group C2v .

character table of C′′
6v is given in Table C.5.

C.2 The point groups C4v and C6v

In the main text we discuss square and hexagonal lattice systems. The square lattice

systems have symmetry group C4v , while the hexagonal lattices have point group

C6v . We have already mentioned that each of these groups can be generated by two

elements. In case of C4v these are C4 and σv . All other point group operations can

be written in terms of these generators as follows

C2 = C2
4 , C−1

4 = C3
4 ,

σv1 = σv, σv2 = C2σv σd1 = C4σv, σd2 = C−1
4 σv. (C.1)

These operations are graphically shown on the left side of Fig. C.1.

In case of C6v the generators of the group are C6 and σv . The other point group

operations can be written in terms of them as

C3 = C2
6 , C2 = C3

6 , C−1
3 = C4

6 , C−1
6 = C5

6 ,

σv1 = σv, σv2 = C3σv σv3 = C−1
3 σv,

σd1 = C6σv, σd2 = C2σv σd3 = C−1
6 σv. (C.2)

These operations are shown in Fig. C.1 as well, on the right side.

We note again that if we exchange σv and C′
2, i.e. a rotation of π around the x-

axis instead of a reflection, but keep the algebraic structure of group elements defined

in (C.1) and (C.2) then we obtain the (dihedral) groups D4 and D6. The irreduble

representations ofC4v andC6v are listed in the character tables of Table C.1, C.1, C.3,

and C.4.
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Point group C4v I C2 2C4 2σv 2σd

x2 + y2, z2 z A1 1 1 1 1 1
Lz A2 1 1 1 −1 −1

x2 − y2 B1 1 1 −1 1 −1
xy B2 1 1 −1 −1 1

(xz, yz)
(x, y)

(Lx, Ly)

}
E 2 −2 0 0 0

Table C.2: Character table of the point group C4v .

σd1

σd2

σd3

σv3 σv2

σv = σv1 σv = σv1

σv2

σd1

σd2

Figure C.1: Graphical representation of the point group symmetries of 2D square

lattices (left) and hexagonal lattices (right). The reflections are given in terms of the

generatorsC4,6 and σv in the text of the present appendix.

C.2.1 M -point representation of hexagonal symmetry operations

In Section 9.4.1 we have introduced a particular representation of the hexagonal sym-

metry groups which proved very helpful in deriving condensate functions transform-

ing as irreducible representations. Here we come back to this representations and

provide some additional details, such as commutation relations for various elements.

The representation is defined by the actions of the rotations, reflections, and trans-

lations on the the linearly independent functions cos( ~Qµ · ~x), where ~Qµ (µ = 1, 2, 3)

are the three M -point vectors. The are collected in the 3-dimensional vector ~ξ =
ξµ(~x) = cos( ~Qµ · ~x). As was shown in Section 9.4.1, we can obtain a repre-

sentation of the lattice symmetry group by considering the effect of all lattice op-

erations on the vector ~ξ. Taking the translations, the effect of which is given by

ξµ(~x + ~xj), we find three matrices Gj (j = 1, 2, 3) corresponding to ~xj , such that
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Point group C3v I 2C3 3σv

x2 + y2, z2 z A1 1 1 1
Lz A2 1 1 −1

(xz, yz)
(x2 − y2, xy)

}
(x, y)

(Lx, Ly)

}
E 2 −1 0

Table C.3: Character table of the point group C3v .

Point group C6v I C2 2C3 2C6 3σd 3σv

x2 + y2, z2 z A1 1 1 1 1 1 1
Lz A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 −1 1
B2 1 −1 1 −1 1 −1

(xz, yz)
(x, y)

(Lx, Ly)

}
E1 2 −2 −1 1 0 0

(x2 − y2, xy) E2 2 2 −1 −1 0 0

Table C.4: Character table of the point group C6v .

ξµ(~x+ ~xj) = [Gj ]µνξν(~x). Hence, for a given translation the effect on ~ξ is given by

Gj , i.e. Gj~ξ. The three matrices take the form

G1 =



−1

−1
1


 , G2 =



1

−1
−1


 , G3 = G1G2. (C.3)

Not surprisingly, all the Gj commute, square to one, and multiplying two of them

gives the third. This follows from the M -point vectors, which have the same proper-

ties under addition. Another way of understanding this is to say that M -point order

implies a quadrupled real space unit cell, meaning that an even number of elementary

translations must always leave the system invariant.

Regarding the point group operations, we only need the actions of the generators

C6 and σv on the vector ξ. In the main text we defined the matrix X to correspond to

the permutation of ξµ as a consequence of C6, i.e.

~ξ(C6~x) = X~ξ(~x), X =




0 0 1
1 0 0
0 1 0



 (C.4)
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Note that X has the property X3 = 1 and thus X−1 = X2. In addition the relation

X−1 = XT holds, where XT is the transpose. For the reflection σv we had defined

an element Y such that

~ξ(σv~x) = Y ~ξ(~x), Y =



0 0 1
0 1 0
1 0 0


 (C.5)

With the explicit matrix expression at hand it is a simple matter to show that (XY )2 =
1, from which all algebraic relations between X and Y follow.

We now proceed to list some helpful algebraic commutation properties of the Gj
and X . It is a simple matter to derive or check that

G2X = XG1, G1X
−1 = X−1G2

G1X = XG3, G3X
−1 = X−1G1

G3X = XG2, G2X
−1 = X−1G3. (C.6)

In the same way we have for the Gj and Y

G2Y = Y G1

G1Y = Y G2

G3Y = Y G3. (C.7)

We close by mentioning that the representation of C6v in terms of X and Y is

reducible and the decomposition is given by A1 ⊕E2. However, the elements Gj , X
and Y generate a representation of C′′′

6v , which is irreducible and equal to F1.

C.3 Symmetry properties with spin

Chapter 10 deals with spinful condensates or triplet condensates. The description of

these condensates requires taking into account the point (or space) group respresena-

tions acting on the spinor degree of freedom. In terms of equation (9.6) of the main

text, one needs to consider the matrix U o
R acting on the spinor degree af freedom. It

is a matrix belonging to SU(2).
As was already mentioned before, for spinless particles the groups Cnv and Dn

may be considered identical, as indeed both send (x, y) → (x,−y) under the reflec-

tion (Cnv) in the x − z plane or the twofold rotation about the x-axis (Dn). In the

spinful case, there is a difference however, since reflections and rotations act in dif-

ferent ways. The transformation properties for the n-fold rotation about the z-axis are
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Conjugacy class C′′
1 C′′

2 C′′
3 C′′

4 C′′
5 C′′

6 C′′
7 C′′

8 C′′
9

Representative I t1 C2 C3 t1C3 C6 σv t1σv σd

A1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 −1 −1 −1
B1 1 1 −1 1 1 −1 1 1 −1
B2 1 1 −1 1 1 −1 −1 −1 1
E1 2 2 −2 −1 −1 1 0 0 0
E2 2 2 2 −1 −1 −1 0 0 0
E′

1 2 −1 0 2 −1 0 2 −1 0
E′

2 2 −1 0 2 −1 0 −2 1 0
G′ 4 −2 0 −2 1 0 0 0 0

Table C.5: Character table of the point groupC′′
6v . Translations t1 and t2 correspond

to T (~x1) and T (~x2), respectively. The irreducible representations that arise as a con-

sequence of the added translations areE′
1 (2D),E′

2 (2D) andG′ (4D). The conjugacy

classes consist of the elements: C′′
1 = {I}, C′′

2 = {t1, t2}, C′′
3 = {C2, tiC2}, C′′

4 =
{C3, C

−1
3 }, C′′

5 = {tiC3, tiC
−1
3 }, C′′

6 = {tiC6, tiC
−1
6 , C6, C

−1
6 }, C′′

7 = {3σv},

C′′
8 = {3t1σv, 3t2σv}, C′′

9 = {3σd, 3tiσd}.

straightforward to deduce, using the standard formula for SU(2) rotations. A rotation

about an axis n̂ by an angle θ is given by

U = e−iθn̂·~σ/2 = cos
θ

2
− i sin

θ

2
n̂ · ~σ (C.8)

Applying this formula to the n-fold rotations (where we take n = 4, 6 for definite-

ness), which are rotations about the z-axis, the rotation matrix becomes e−iπσ
3/n and

the Pauli matrices transform as

Cn : σ3 → σ3; σ± → e±i2π/nσ± (C.9)

This is true for bothCnv andD6. The distinction between the two groups comes from

the reflections (Cnv) or the two-fold rotations (D6). For the group Dn the two-fold

rotation is also simple to write down. A rotation of π about the x-axis is given by

−iσ1 and thus we have

C′
2 : σ2,3 → −σ2,3; σ1 → σ1 (C.10)

For the reflection on the other we need to take into account that a magnetic moment

like spin can be thought of as generated by a small current loop. A spin pointing in
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the x-direction may be thought of as a current loop in the z − y plane and hence a

reflection in the x − z plane changes the current direction. The spin will be rotated

by π. One observes that the only direction that does not change is a spin pointing in

the y-direction. The transformation properties follow:

σv : σ1,3 → −σ1,3; σ2 → σ2 (C.11)

We therefore observe that the transformation properties of the reflections and two-fold

rotations differ and therefore define distinct point groups.

Another way of understanding the difference between C6v is to view both C6v

and D6 as subgroups of Oh, i.e. the group of all symmetries of the cube. It is known

that all elements of Oh may be written as a product of a proper rotation and the

inversion operation. Rotations rotate pseusovectors such as angular momentum and

the electron spin, however, the inversion operation does nothing to a pseudovector.

Therefore, in order to find out what member of SU(2) corresponds to σv andC′
2, one

needs to find out what proper rotation make up these elements. In the first case it is a

rotation about the x-axis and in the second case it is a rotation about the y-axis.

We stress here again that while details do depend on this difference in the spin-

ful case the main conclusions reached in this work do not depend on whether the

symmetry group is C6v or D6.

C.3.1 Spinful M -point representation of hexagonal symmetry op-

erations

An important concept introduced in Chapter 10 is global rotation equivalence. For

spinful condensates point group operations and translations may need to be combined

with a global spin rotation in order to make them good symmetries. We have only

treated spinful condensates constructed from M -point vectors in hexagonal systems

and the connection between elements of C′′′
6v and global U(2) rotations (not SU(2))

is established via the 3 × 3 matrices Gj , X and Y (see Section C.2.1) acting on ~ξ.

This connection is explicitly expressed in equation (10.5) of the main text.

The mapping from the 3×3 representation, i.e. matrices which can be interpreted

as rotation matrices of O(3), to the space U(2) preserves the algebraic structure and

defines another representation, with the electron spin wavefunctions as basis func-

tions. It is straighforward to associate a U(2) matrix to an O(3) rotation matrix, by

determining the rotation axis and angle. For instance, the translation elementG1 cor-

responds to a rotation about the z-axis by π. Hence, the associated U(2) matrix is
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Conj. class C′′′
1 C′′′

2 C′′′
3 C′′′

4 C′′′
5 C′′′

6 C′′′
7 C′′′

8 C′′′
9 C′′′

10

Repres. t1 C2 t1C2 C3 C6 σv t1σv σd t1σd1

A1 1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 −1 −1 −1 −1
B1 1 1 −1 −1 1 −1 1 1 −1 −1
B2 1 1 −1 −1 1 −1 −1 −1 1 1
E1 2 2 −2 −2 −1 1 0 0 0 0
E2 2 2 2 2 −1 −1 0 0 0 0
F1 3 −1 3 −1 0 0 1 −1 1 −1
F2 3 −1 3 −1 0 0 −1 1 −1 1
F3 3 −1 −3 1 0 0 1 −1 −1 1
F4 3 −1 −3 1 0 0 −1 1 1 −1

Table C.6: The point group C′′′
6v . Translations t1 and t2 correspond to T (~x1)

and T (~x2), respectively. t3 = T (~x1 + ~x2). The irreducible representations

that arise as a consequence of the added translations are F1, F2, F3 and F4, all

three-dimensional. The conjugacy classes consist of the elements: C′′′
1 = {I},

C′′′
2 = {t1, t2, t3}, C′′′

3 = {C2}, C′′′
4 = {tiC2}, C′′′

5 = {tiC3, tiC
−1
3 , C3, C

−1
3 },

C′′′
6 = {tiC6, tiC

−1
6 , C6, C

−1
6 }, C′′′

7 = {3σv, t1σv2, t2σv3, t3σv1}, C′′′
8 =

{t1σv, t2σv, t2σv2, t3σv2, t1σv3, t3σv3}, C′′′
9 = {3σd, t2σd1, t3σd2, t1σv3}, C′′′

10 =
{t1σd1, t3σd1, t1σd2, t2σd2, t2σd3, t3σd3}.

−iσ3. We simply find for all translations.

G1 → e−iπσ
3/2 = −iσ3

G2 → e−iπσ
1/2 = −iσ1

G3 → e−iπσ
2/2 = −iσ2. (C.12)

The matrixX , interpreted as rotation matrix, corresponds to a rotation by 2π/3 about

the axis n̂ = (1, 1, 1)/
√
3. We can decompose it into two separate rotations about the

z and y-axes (Euler rotations) and obtain the SU(2) matrices

X → e−iπσ
2/4e−iπσ

3/4

XT → eiπσ
3/4eiπσ

2/4. (C.13)

Note that these are elements of SU(2) since X and XT are proper rotations. This is

different for Y , which has determinant −1. Therefore −Y is a proper rotation which
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can be identified with an element of SU(2). One finds that

−Y → eiπσ
2/4e−iπσ

3/2 = −ieiπσ2/4σ3, (C.14)

which completes the mapping ofGj ,X and Y ontoU(2) matrices. This mapping is at

the heart of analyzing symmetry properties of spinful condensates. In particular, the

appearance of an extra minus sign for Y is what causes some reflections to constitute

good symmetries in the presence of spin, as explained in Chapter 10.
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Conjugacy class C′′′
1 C′′′

2 C′′′
3 C′′′

4 C′′′
5 C′′′

6 C′′′
7 C′′′

8 C′′′
9 C′′′

10 C′′′
11 C′′′

12 C′′′
13 C′′′

14

Representative I t1 t3 C2 t1C2 t3C2 C4 t1C4 σv t3σv t1σv t2σv σd1 t1σd1

A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
B1 1 1 1 1 1 1 −1 −1 1 1 1 1 −1 −1
B2 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1
E1 2 2 2 −2 −2 −2 0 0 0 0 0 0 0 0
A′

1 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 1 −1
A′

2 1 −1 1 1 −1 1 1 −1 −1 1 1 −1 −1 1
B′

1 1 −1 1 1 −1 1 −1 1 1 −1 −1 1 −1 1
B′

2 1 −1 1 1 −1 1 −1 1 −1 1 1 −1 1 −1
E′

1 2 −2 2 −2 2 −2 0 0 0 0 0 0 0 0
E2 2 0 −2 2 0 −2 0 0 −2 0 0 2 0 0
E3 2 0 −2 2 0 −2 0 0 2 0 0 −2 0 0
E4 2 0 −2 −2 0 2 0 0 0 2 −2 0 0 0
E5 2 0 −2 −2 0 2 0 0 0 −2 2 0 0 0

Table C.7: Character table of the point group C′′′
6v . Translations t1 and t2 correspond to T (~x1) and T (~x2), respectively.

t3 = T (~x1 + ~x2). The conjugacy classes consist of the elements: C′′′
1 = {I}, C′′′

2 = {t1, t2}, C′′′
3 = {t3}, C′′′

4 = {C2},

C′′′
5 = {t1C2, t2C2}, C′′′

6 = {t3C2}, C′′′
7 = {C4, C

−1
4 , t3C4, t3C

−1
4 }, C′′′

8 = {t1C4, t1C
−1
4 , t2C4, t2C

−1
4 }, C′′′

9 =
{σv1, σv2}, C′′′

10 = {t3σv1, t3σv2}, C′′′
11 = {t1σv1, t2σv2}, C′′′

12 = {t2σv1, t1σv2}, C′′′
13 = {σd1, σd2, t3σd1, t3σd2} and

C′′′
14 = {t1σd1, t1σd2, t2σd1, t2σd2}.
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