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C H A P T E R 11

SUMMARY AND CONCLUSIONS

In this final section we give an account of the main results and conclusions that follow

from this work. We summarize and discuss the key results of our work point by point.

(i) In this work we presented a detailed discussion of 2D particle-hole conden-

sates from a symmetry perspective. For the square lattice and three representative

hexagonal lattices we have decomposed all possible density waves for specified trans-

lational symmetry breaking based on lattice symmetries, yielding an arganization of

these density waves in terms of basis functions of irreducible representations of the

extended and bare points groups. Differentiating between site order (charge density

waves), bond order (time-reversal preserving bond density waves), and flux order

(imaginary bond density waves) has allowed for a gauge invariant classification of all

distinct density waves just using a group theory toolkit.

(ii) The organization of density waves in terms lattice symmetries provided the

framework to identify topological states of matter induced by interactions. In two

dimensions there are two main classes of topological states: the QAH states which

break time-reversal symmetry, and the QSH states which preserve time-reversal sym-

metry but must break spin rotation symmetry at least partially. When looking for

candidate QAH states it is therefore sufficient to consider flux ordered states and

spin density waves as these are time-reversal breaking states. Furthermore – and

this is where the symmetry organization proves very powerful – only density wave

formation breaking all reflection symmetries of the system can lead to QAH states,
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meaning that only states transforming as A2 allow for Chern insulators. Such states

are straightforwardly identified within the group theoretical scheme producing a list

of all possible flux ordered states of a given lattice and a given set of broken transla-

tions. We have demonstrated how known and well-studied flux ordered QAH states

on for instance the honeycomb and kagome lattices (Haldane state [76] and chiral

spin state [85]) follow directly from deriving and constructing flux states with proper

symmetry.

In addition to these well-known QAH states, all of which do not break trans-

lational symmetry, we have shown the existance of a new class of QAH states of

lattices with hexagonal symmetry, i.e. the flux ordered density waves. Guided purely

by symmetry arguments we have identified flux density waves with M -point order-

ing vectors transforming as A2 and leading to an insulating condensate ground state.

Another class of M -point modulated QAH states on hexagonal lattices is given by

the noncoplanar chiral spin density waves discussed in Section 10. The existence of

such chiral states and their spontaneous QAH effects was shown for the triangular

and honeycomb lattices in the context of local moment Kondo-Lattice [30, 40] and

interacting single-band Hubbard models [160]. In the present work we show how

these particular examples are part of a fundamental sequence of M -point hexagonal

lattice spin density waves with a A2 symmetry that do not break translational sym-

metry in spite of finite wave vector condensation. We refer to these states as part of

a fundamental sequence since they all follow from the same underlying symmetry

principle. Applying this principle to the kagome lattice, we identify a kagome lattice

spin density wave with exactly the same properties.

In the context of interaction-driven topological insulating states the numerous

possibilities arising from M -point order are particularly interesting as precisely the

M -point vectors nest the Fermi surface of hexagonal lattices at the van Hove fillings

where the density of states diverges. This inpsires hope that even infinitesimal inter-

actions induce such states due to dominant instabilities towards such states. In fact,

such an argument was put forward in case of triangular and honeycomb lattice spin

density waves [160]. In contrast, interaction-induced topological states originating

from low-energy Dirac fermions becoming massive, for instance within a mean field

treatment of the honeycomb [84, 168], square [167] and kagome lattices [169, 170],

require finite and large interaction strengths as a consequence of the linearly vanish-

ing density of states at the Dirac points. This makes the scenario of spontaneously

gapping out Dirac cones problematic, as recently shown in Refs. [211], because quan-

tum fluctuations prevent the QAH state from fully developing.

The two sequences of hexagonal symmetry M -point ordered QAH states, i.e.

flux order and spin density wave order, are of great significance for the second kind

of topological states in 2D, i.e. the QSH states. In this work we have explained how

QSH states are trivially obtained from QAH states by constructing two copies of the



251

latter for each of the two spin species with a relative sign difference. In that case

the condensate function is proportional to ~N · ~σ, with ~N the vector order parameter

in spin space. This implies spin rotation symmetry around ~N is not broken, leading

to a quantized spin Hall conductance. Full breaking of spin rotation symmetry, for

instance by Rashba-type terms, does not immediately destroy the QSH state, but is

generally harmful to its existence, as is signaled by the spin Hall conductance being

no longer quantized [1]. In this work we propose a class of hexagonal spin triplet

condensates which constitute QSH phases characterized by a matrix order parameter

R instead of a vector ~N and fully break spin rotation symmmetry. They derive from

a combination of spin and flux ordering with M -point ordering vectors.

(iii) In this work we have demonstrated how interaction-induced semimetallic

states are protected by lattice symmetries and the anti-unitary time-reversal sym-

metry. We have focused on two types of semimetallic states in 2D, which are the

Weyl semimetals (alternatively referred to as Dirac semimetal) and the QBC points.

Both are characterized by topological winding numbers which rely on the presence

of symmetries to make their definition and use meaningful. Our symmetry analysis

of density waves provides a comprehensive and systematic framework to determine

the symmetries which protect isolated degeneracies definining the semimetal. Both

translations and global spin rotations can act as degeneracy protecting operations in

combination point group elements.

In case of the square lattice the two density waves which are semimetals, dx2−y2
(Weyl or Dirac semimetal) and dxy (QBC), transform as 1D representations of the

extended point group and one may therefore select symmetries thereof to prove the

spectral degeneracy at high symmetry points of the Brillouin zone. For square lat-

tice systems combinations of (bare) point group operations and translations can form

good symmetries protecting degeracies. This is different in case of hexagonal lattice

systems, where we found global spin rotations to have the potential to protect degen-

eracies for spinful M -point ordered condensates. In particular, we have seen how

the chiral spin density waves are in fact translationally invariant states regardless of

finite ordering vector condensation, which is a consequence of global spin rotations

compensating the translation. Perhaps most remarkably, we have demonstrated how

M -point modulated spin-flux density waves become symmetry protected semimetal-

lic states and the protection crucially relies on global spin rotation equivalence.

In the presence of these spin-flux density waves, the nested hexagonal Fermi sur-

face at van Hove fillings is gapped out except for the protected degeneracies located

located at each of the inequivalent M ′ points of the reduced BZ (see Fig. 9.7). De-

generacies at the M ′ points are only protected if none of the lattice symmetries are

broken. Indeed, we found in Section 9.4.1 that the degeneracy at M ′ is generally

lifted by translational symmetry breaking. For the spin-flux density waves transla-

tions combined with (unitary) global spin rotations are symmetries and key in pro-
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tecting the degeneracy. The spin-flux density waves only break spin rotation sym-

metry and preserve all lattice symmetries. The low-energy description around the

degeneracy points at M ′ takes the form of a Dirac theory, but instead of the common

double-node theory, it is a six-node theory, i.e. two nodes for each inequivalent M ′

point. As such the spin-flux density waves constitute a new 2D semimetallic state.

Interestingly, it is possible to superimpose a spin rotation and time-reversal invariant

density wave on this Dirac semital with the result of gappig out the Dirac nodes yield-

ing an insulating QSH ground state. This is contrary to the canonical example of a

spin-orbit coupling-induced Dirac mass in the spin-rotation invariant low-energy the-

ory of graphene [1, 23]. In the latter case it is the breaking of spin rotation symmetry

which induces a QSH mass gap.

In addition to these time-reversal invariant semimetallic states with six Dirac

nodes, we have shown the emergence of another distinct semitallic state from time-

reversal breaking spin density wave formation. Both the honeycomb and kagome

lattices allow for translationally invariant M -point spin density waves with B1 sym-

metry. The mean field spectrum of such a state is allowed to have Dirac nodes only

at the K ′
+ points of the reduced BZ, but not at the K ′

−. We have found precisely

this situation to occur for the B1 M -point ordered spin density waves: two Dirac

nodes at the equivalent K ′
+ points (and none at K ′

−) for commensurate electron fill-

ings, which are however not equal to the van Hove fillings. As such, representing

a time-reversal broken state, these density waves would appear to be similar to the

square lattice dx2−y2 state. It is however a truly distinct state, as it manifestly breaks

time-reversal, instead of preserving a combination of time-reversal and translation. It

therefore constitutes another new semimetallic state of hexagonal lattice systems.

We have seen examples of the second type of semimetals, the QBC points, in the

context of both the square and hexagonal lattices. As noted, in case of the square

lattice the dxy state gives rise to a QBC point which is protected by a fourfold rota-

tion and time-reversal symmetry. We have demonstrated that a QBC point can occur

in hexagonal lattice systems for various cases of M -point ordering, as long as the

system has C3v symmetry. In particular, we have identified the occurance of QBC

points as one of two possibilities in case of such M -ordering with C3v symmetry

within a low-energy description at the Γ point of the reduced BZ. Such a low-energy

description is independent of the specific lattice. Generically QBC points can be de-

stroyed by breaking the symmetries that protect it. Specifically, the opening of a gap

is intrinsically connected to time-reversal symmetry breaking and it was shown re-

cently [163] how the QBC of a uniaxial A1 M -point ordered spin density wave is

gapped out by developing a finite scalar spin chirality, reducing the symmetry to A2.

In the present work we embed this result in a general low-energy theory for M -point

ordering in hexagonal lattices based on symmetry.

(iv) We have established a robust connection between the symmetry of density
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waves and their low-energy interpretation within the framework of a Dirac theory.

The back bone of this connection is the rule which assigns density waves transforming

as 1D representations the meaning of generalized masses, either gapping out the

spectrum or making the two valleys inequivalent. In turn, density waves transforming

as 2D representations have the interpretation of gauge field components in the low-

energy Dirac theory, shifting the Dirac nodes in momentum space. We have shown in

case of the kagome lattice, where we apply this rule, how decomposing site, bond and

flux order using group theory is sufficient to determine the nature of their electronic

properties.

In particular, the symmetry organization of density waves provides a straightfor-

ward way to find density waves states which enter as gauge field components in the

Dirac theory. Such states may arise as a consequence of electronic interactions, but

could alternatively be induced by application of external fields such as strain or mod-

ulated substrate potentials [180]. Knowledge of which states correspond to gauge

fields allows to assess in which systems such gauge fields may be generated by ei-

ther one of those mechanisms. This opens up the possibility to address and study the

physics of non-Abelian SU(2) fields in a condensed matter setting in a general way.

(v) The organization of density waves as basis functions of irreducible represen-

tations of extended point groups reveals their degeneracies. Density waves which are

partners belonging to a larger dimensional extended point group representation will

be energetically degenerate. If there is a dominant electronic instability towards the

formation of such a state, then it applies to all partners in the representation. An il-

lustrative example of such kind of partnership is given by the two independent hexag-

onal lattice K-point density waves corresponding Kekule masses (see Sections 9.4.1

and 9.4.2). Both for the honeycomb and kagome lattices these transform as E′
1, a 2D

representation of C′′
6v . This is reflected in the low-energy theory as they correspond

to compatible Dirac mass gaps, making them energetically equivalent.

For hexagonal lattice M -point ordering the irreducible representations of the ex-

tended point groupC′′′
6v are all three-dimensional, a consequence of the three inequiv-

alent M -points. The three partners of such a representation are energetically equiv-

alent from an electronic instability point of view. If the system gains condensation

energy by the formation of one of such states in the triplet, then it will gain energy

linearly and independently by forming the other partners as well. This is why our con-

vention of decomposing these 3D representations into sums of representations of the

bare group is particularly useful and relevant. Each of those triplets is decomposed as

the sum of a 1D and a 2D representation and the 1D representation corresponds to a

state which is the most symmetric superposition of the partners which transform into

each other under rotations (in other words behave as the ~Qµ vectors). We therefore

expect these states, i.e. states transforming as 1D bare point group representations, to

develop from electronic instabilities favoring the given triplet representation. Hence,
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the symmetry organization gives insight into condensation energetics.

(vi) A large part of this work is devoted to hexagonal lattice density waves. We

have discussed three prominent examples of hexagonal lattices and have found re-

markable similarities. Again focusing on the case of M -point ordering, we have

shown explicitly that density waves of the same symmetry have the same physical

properties, independent of the lattice considered. To give an example, the uniaxial

spin density waves of A1 symmetry, which exist for all three lattices considered, are

topological semimetals with a QBC point in either the spin-up or spin-down sector.

The chiral spin density waves with A2 symmetry, which are closely related to the

uniaxial A1 spin density waves, are all gapped for appropriate filling and correspond

to a Chern insulating state. In addition, for both the honeycomb and kagome lattices

there is a noncoplanar spin density wave with B1 symmetry which induces Dirac

points at the K ′
+ (or K ′

−) points for commensurate fillings (n = 1/8 for honeycomb,

n = 1/12 for kagome). All of these key electronic characteristics are connected to

the symmetry of the (spin) density wave and transcend the lattice specific setting. The

same is true for the time-reversal invariant spin-flux density waves. We have explic-

itly shown the equivalent electronic properties for such a state on the triangular and

honeycomb lattices. We found these particular density waves to break no other sym-

metry than spin-rotation symmetry, leading to a new kind of 2D semimetallic state

not specific to a lattice structure.

The importance of symmetry rather than lattice structure also manifests itself in

the context of K-point ordering. For instance, both for the honeycomb and kagome

lattices, we found that anyE′
1 doublet corresponds to two independent yet compatible

Dirac masses. In case of the honeycomb lattice there only exists such a bond order

doublet, while for the kagome lattice there is a site and bond order doublet. In the

same way any E′
2 doublet leads to a Dirac valley inequivalence, separating the Dirac

nodes in energy but not in momentum.

These examples mentioned here highlight the general conclusion that density

waves with the same symmetry affect the electronic properties in the same way if

the low-energy description of the electronic degrees of freedom is equivalent. In-

deed, all the hexagonal lattices have an M -point nested Fermi surface at van Hove

fillings and both the kagome and honeycomb spectra exhibit Dirac nodes. It is the

symmetry of the density waves which is decides what happens to the electrons close

to the Fermi surface or Fermi points.


