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C H A P T E R 10

INTRODUCTION TO TRIPLET STATES:

SPIN-DENSITY WAVES

10.1 General considerations

The purpose of the present section is to provide more insight into triplet particle-

hole condensates, i.e. density wave states which break spin rotation symmetry. Up

until this point spin triplet states have been mentioned only occasionally and briefly,

such as QSH effects obtained from QAH effects (see for instance section 9.3.1), or

uniaxial spin density waves obtained from charge order (see section 9.4.1). All of

these examples have in common that they constitute the simplest class of spin triplet

states, more or less trivially obtained from spinless states. Indeed, in essence they

can be thought of as two copies of spinless states, one for each spin species, but with

opposite sign for the two species. To put this more succinctly, they are obtained from

the singlet states by replacing all δσσ′ with σ3
σσ′ .

In quite a number of cases, such as the QSH effects, these triplet states are de-

generate with the singlet states on a mean field level, precisely because the former

comprise two copies of the latter. A notable exception are the uniaxial spin density

waves of section 9.4.1, where the relative sign difference of the two copies is reflected

in a different energy spectrum for the two species. Spinful condensates proportional

to σ3 break spin rotation symmetry partially, and for this reason are certainly proper
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triplet states. However, the unbroken generator of spin rotations σ3 signals that they

far from exhaust the possible triplet condensates. Therefore, we take a closer look

at spin triplet states in this section. We stress that we have no intention of being

complete, but merely wish to present some of the general aspects of spinful conden-

sates which go beyond the partial breaking of spin rotation reflected in the exchange

δσσ′ ↔ σ3
σσ′ . We will do so with the help of selected lattices and example con-

densates. We will restrict ourselves to lattices with hexagonal symmetry and focus

exclusively on ordering at the M -points. This will serve the purpose of demonstrat-

ing the most salient features characteristic of nontrivial triplet states. Specifically, the

focus will be on two main concepts connected to the full breaking of spin rotation

symmetry. The first is the possibility to dress lattice symmetries which are broken

in the condensed state with a unitary global spin rotation, restoring them as symme-

tries. The second is the existance of time-reversal invariant spin-bond density waves,

which will be introduced as a novel class of candidate interaction-induced topological

insulators as well as topological semimetals. Both of these concepts will be shown

to illustrate how the symmetry structure of spin density waves can be lifted from the

spinless (spin rotation invariant) density waves.

In section 9.2.2 the foundations for a spinful mean field theory were presented,

providing a possible context for the emergence of spinful density waves from elec-

tronic correlations in the same way as for spinless (or spin rotation invariant) case.

Indeed, the triplet condensates may be taken as candidate ground states for mean

field treatments, or considered variational states in the context of other approaches.

In this section we repeatedly seek to establish a connection between a systematic de-

velopment of spin rotation symmetry broken density waves and results from recent

literature, which has reported a number of such density waves as dominant electronic

instabilities or mean field ground states.

When it comes to lattice symmetries in two dimensions, the symmetry groupsDn

and Cnv are distinct in the presence of spin degrees of freedom. In section 9.1.1 we

have mentioned this distinction briefly and referred to the Appendix for details. As

the differences do not significantly alter the observations and conclusions to come, we

do the same here and content ourselves with focusing on the main features of lattice

symmetries in the presence of spin, which are shared between the groups Dn and

Cnv . Lattice symmetries act in spin space as a unitary SU(2) matrix associated to

the SO(3) element acting on spatial coordinates. In addition, time-reversal symmetry

now takes the form T = eiπσ
2/2K, which has important the property T 2 = −1.

Triplet condensates therefore necessarily break time-reversal invariance, as all the

three Pauli matrices σi are odd under time-reversal. Notice however that in case of the

uniaxial density waves, i.e. ∼ σ3, applying a global spin rotation after time-reversal

(a rotation of π around for instance the x axis) brings the state back to itself. Hence,
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the time-reversed mean field Hamiltonian is unitarily equivalent to itself, effectively

restoring time-reversal symmetry.

This brings us to the broader principle of spin rotation equivalence, which we

take some time to introduce here before zooming in on specific lattices and particular

states. For any spinful condensate a global spin rotation cannot change the spectrum

or the free energy as the interacting Hamiltonian is SU(2) invariant. For the mean

field Hamiltonian this means that a global spin rotation yields a unitarily equiva-

lent Hamiltonian which necessarily has the same spectrum. When considering lattice

symmetries such as rotation, reflection and translation, global spin rotation equiv-

alence comes into play in an important and consequential way. There are spinful

density waves which have the property that the application of a lattice operation can

be compensated by a global spin rotation. To put it in a different way, application of

a lattice operation may result in a physical state which is related to the initial state by

a global spin rotation. Let us make this statement more specific and tangible. We are

going to study condensates of hexagonal lattices with M -point ordering only, and we

therefore recall that the real space M -point modulation functions have been defined

as ~ζ ·~ξ(~x) and fully specify a given type ofM -point order. A general spinful ordering

needs three of these functions, one for each spin direction. Instead of a vector ~ζ it

therefore makes sense to use a matrix M = Miµ to encode the degrees of freedom

for spinful M -point order, where i = 1, 2, 3 corresponding to σi, i.e.

σiMiµξµ(~x), (10.1)

which can alternatively and more concisely written as ~σ · ~M(~x) = ~σ · ~Mµξµ(~x).

Lattice symmetries can be represented by their action on ~ξ. For instance, we have seen

thatX~ξ(C3~x) = ~ξ(~x) andG1
~ξ(~x+~x1) = ~ξ(~x). In particular translational symmetry

was always broken for M -point modulations. To see how global spin rotations can

come to the rescue, let us take such a translation, i.e. T (~x1), as an example. The

effect of the translation on the spin order is

~σ · ~M(~x+ ~x1) = σiMiµ[G1]µνξν(~x). (10.2)

We would like this to be equal to a global spin rotation R (depending on G1) of the

form

~σ · R ~M(~x). (10.3)

Therefore, the translation T (~x1) can be compensated by a global spin rotation if and

only if the following relation is satisfied

σiMiµ[G1]µνξν(~x) = σiRijMjµξµ(~x). (10.4)
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This relation expresses the condition that the action on ~ξ can be carried over to ~M
and therefore to ~σ. In other words, the translation can be compensated by a global

rotation if G1 acting on M from the right is identical to some O(3) matrix G̃1 acting

on M from the left, i.e. on its spin indices. Suppose for instance we have M11 =
M22 = M33 = 1 and all other elements zero. Then M is simply the identity andG1

commutes with it so that R = G1. The translation can be compensated by a rotation

of π around the z-axis, as this is the interpretation of G1 as an element of O(3). This

follows from the fact that a general O(3) matrix R acting on M gives ~σ · R ~M(~x),
and we can associate an SU(2) matrix U with R such that

~σ · ~M = U †~σ · (R ~M)U. (10.5)

In contrast, had we chosen instead M31 = M32 = M33 = 1 and all other elements

zero, the condition of equation (10.4) cannot be fulfilled and translational symmetry is

manifestly broken. The physical significance of these two seemingly arbitrary choices

for M will be clarified below when discussing the triangular lattice.

The concept of global spin rotation equivalence and its connection to lattice sym-

metries has appeared before in the context of classical spin models [208]. There it

was employed to derive classical spin states which are invariant under all lattice op-

erations, modulo a global spin rotation. Since translations are a subset of the lattice

operations, these “classical spin liquids” must necessarily have a uniform spin length

at every site. In the present case, where we study electronic density wave states, we

find these fully symmetric spin density waves as a subset of a larger class of spinful

density waves, which also includes spin-bond density waves and translational sym-

metry broken spin density waves, the uniaxial spin density waves being an example

of the latter.

A key difference between the classical spin liquids of [208], i.e. classical spin

states invariant under all lattice operations up to an O(3) rotation, and electronic

spinful density waves is the treatment of improper global rotations needed to pro-

mote lattice operations to symmetries. Elements ofO(3) are divided into two groups,

the proper and improper rotations, which are distinguished by their determinant, i.e.

Det [R] = ±1. Improper elements can always be written as the product of a proper

rotation R′ ∈ SO(3) and the inversion operations, R = −R′. The relevance if this

distinction follows from the need to associate an SU(2) matrix U with R, which is

only possible for proper R. In particular this means that if R is improper, the state is

odd under the operations corresponding to R, i.e.

~σ · (R ~M) → −~σ · (R′ ~M) = −U~σ · ~MU †, (10.6)

where the matrix U is the SU(2) equivalent of R′. In case of hexagonal lattice M -

point we already observed in Section 9.4.1 that an O(3) representation of the group
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of lattice symmetries is generated by their action on ~ξ(~x). The generators of this

representation areGi,X ,XT and Y . Equation (10.4) states that it is these generators

which determine R. Only the element Y is improper, implying that all reflections are

associated with an improper rotation. Below we will illustrate in specific cases how

this affects the electronic symmetries of given density waves.

10.2 Triangular lattice triplet states

Spin density waves in hexagonal lattice systems modulated by the M -piont vectors

are currently attracting much attention, with the triangular lattice being one of the

most prominent represenatives of lattices with hexagonal symmetry. One of the first

examples of such a novel spin density wave state, proposed in the context of pre-

formed classical local moments coupled to electrons, has been a noncoplanar chi-

ral spin state [30]. It was shown in [30] that this state can also be thought of as a

proper density wave spontaneously formed by onsite Hubbard-like interactions, in

the same spirit which is at the heart of the present framework. The chiral spin den-

sity wave gaps out the electronic spectrum and leads to a Quantum Anomalous Hall

ground state. In later works, the problem of spin density wave physics was revis-

ited in a broader setting, pertaining to more general lattices with hexagonal lattices

with hexagonal symmetry [160], but taking the honeycomb lattice as an example.

Already briefly mentioned in section 9.4.1, the main result of this work and subse-

quent studies [162,163] was the prediction of a thermal phase transition to a uniaxial

translational symmetry broken spin density wave. In all of the hexagonal lattices we

consider in this work, both types of spin density wave states, the uniaxial and the chi-

ral density waves, fit into the scheme of lifting particle-hole triplet condensates with

specific symmetry from the corresponding spinless site ordered states. More specifi-

cally, they can be understood by consering a single root state, the A1 symmetric site

ordered state for each of the lattices. This is most easily demonstrated for the case of

the triangular lattice.

10.2.1 Spin density wave states

The A1 symmetric site ordered state was given in equation (9.234). There are two

rather straightforward ways to take this as a root state and make it spinful. One is

obvious: just create two copies for both spin species and give them a relative minus

sign. This yields

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′ (~k)〉 = 1√

3
∆uniax σ

3
σσ′ , (10.7)
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and it exactly corresponds to the uniaxial spin density wave. It represents a manifestly

translational symmetry broken state, preserving however C6v (or alternatively D6)

symmetry, up to global rotation. In real space we can denote it as

σ3M3µξµ(~x), M31 = M32 = M33 = 1. (10.8)

Following equation (10.4) we have already discussed this possibility as a case where

translations cannot be saved by global spin rotations. This is different for the second

way of incorporatig the spin degree of freedom, which is

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′(~k)〉 = 1√

3
∆chiral σ

µ
σσ′ . (10.9)

Each of the order parameter components ~Qµ is associated with a different spin Pauli

matrix, and in real space this can be represented as

σiMiµξµ(~x), M = I, (10.10)

where I is the unit matrix. Now translations can be compensated by global spin rota-

tions and the point group operations must be combined with global spin rotations as

well to leave the spin density wave invariant. In particular, the effect of reflections on
~ξ always contains the element Y , which we have mentioned to be an improper ele-

ment ofO(3). Indeed, −Y is a rotation of π around the z-axis, followed by a rotation

of −π/2 around the y-axis. Hence, the chiral spin density wave state is odd under

all reflections, indeed a necessary condition to host a QAH effect which is a property

well-established for this particular spin density wave [30] and its generalizations to

other hexagonal lattices [40, 209, 210].

10.2.2 Spin-flux ordered states

As a second class of spinful condensates on the triangular lattice, we now focus on

a particularly interesting combination of spin and flux ordered states. Spin density

waves break time-reversal symmetry and so does flux order. Above we have seen that

the chiral spin density waveof equation (10.9) causes a spectral gap and leads to a

QAH effect. The same is true for the flux ordered state contained in the decomposi-

tion (9.232) and explicitly defined in equation (9.239). This motivates the question

whether symmetric combinations of spin and flux order exist, which are possibly en-

ergetically favorable and host nontrivial physical effects. Since both constituents of

such spinful flux ordered states, i.e. the spin part and the flux part, are time-reversal

odd, the combination of the two should be time-reversal symmetric. Even more strik-

ingly, not only are such states be time-reversal invariant, lattice symmetries such as
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reflections and translations which are broken by the constituent orders may be resur-

rected, as global spin rotations can be employed to bring the mean field Hamiltonian

back to itself. We will now demonstrate this using two examples on the triangular

lattice, which however easily generalize to other well-known hexagonal lattices, i.e.

the honeycomb and kagome lattices.

In case the triangular lattice we have derived a flux ordered state transforming as

A1 and given in equation (9.239). Translational symmetry is manifestly broken in this

state. To see how appropriate spinful versions of this state can be constructed which

recover (part of) the broken lattice symmetries, it is most convenient to adopt the

real space perspective [see also equation (9.238)]. This requires three matrices Mi,

one for each bond direction, in the same way as three ~ζj are required for any bond

order including flux order. Following equation (9.238) it was shown that flux order

is specified by ~ζ1 = ~ζ , ~ζ2 = X~ζ and ~ζ3 = XT ~ζ with ~ζ = [1,−1, 0]T . Spin-bond

ordered states are then generically specified by

σi[Mj ]iµξµ(~x), (10.11)

and here we construct them explicitly by embedding the ~ζj in the matrices Mj .

One such embedding yields a highly symmetric electronic state and it is obtained

by putting the ~ζj on the diagonal of the corresponding Mj , with all off-diagonal

elements zero. As both the Mj matrices and the Gj matrices representating the

translations only have diagonal elements, they commute, having the consequence that

translations can be compensated by global proper spin rotations. Mathematically this

embedding can be concisely written as

[Mj ]iµ = ζµj δiµ. (10.12)

The flux ordered state of equations (9.238) and (9.239) is odd under all reflections.

In the presence of spin structure global spin rotations can recover these symmetries.

Taking the reflection σv as an example, we have that

~σ ·Mj · ~ξ(~x) → ~σ ·Mj · Y ~ξ(~x), (10.13)

where it is important to note that the reflection exchanges j = 1 and j = 2 and maps

j = 3 to itself. We then find that M3Y = −YM3 and M1Y = −YM2, which

proves that the proper rotation −Y compensates for the reflection, reinstitating it as a

symmetry. Hence, the only symmetry broken by this particular density wave state is

spin-rotation symmetry.

A second natural embedding of the ~ζj is to associate each of the ~ζj with a differ-

ent direction in spin space, i.e. to choose a different spin projection for each bond

direction ~xj . This can be concisely captured by the expression

[Mj ]iµ = ζµj δij , (10.14)
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where δij associates the spin label i with the bond label j. This however has the

consequence that the matrices Mj are not diagonal, which precludes the recovery

of translational invariance. Even though translational invariance is now manifestly

broken, we can recover the reflections as M3Y = −YM3 and M1Y = −YM2

still holds. We conclude that this embedding yields a spin-rotation symmetry and

translational symmetry broken state, which preserves the C6v (or D6) operations.

The real space perspective is perhaps the most convenient in highlighting the sym-

metry properties. Transforming to momentum space gives the condensate functions

given by

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′ (~k)〉 = i∆Diracζ

µ
j cos kj σ

µ
σσ′ , (10.15)

(no summation over µ on the right hand side) in case of the first embedding, and

〈ψ̂†
σ(
~k + ~Qµ)ψ̂σ′(~k)〉 = i∆QSH

∑

j

ζµj cos kj σ
j
σσ′ , (10.16)

in case of the second embedding. The spectral properties of the mean field Hamil-

tonian corresponding to these spin-flux (or spin-bond) ordered states turn out to be

rather intriguing. We now discuss them in more detail, which will explain the labeling

∆Dirac and ∆QSH. We start with the highly symmetric state given in equation 10.15.

The mean field spectrum of the highly symmetric state given in equation (10.15)

is presented in Fig. 10.4. We observe that the spectrum consists of four bands, which

is a consequence of a combined time-reversal symmetry and inversion symmetry,

mandating a two-fold degeneracy for each energy level at every ~k. The high sym-

metry of this state leads to additional spectral degeneracies, the most notable being

the four-fold degeneracy at all the M ′ points. The nested Fermi surface at filling

n = 3/4 is gapped out except for these isolated remaining degeneracies at the M ′

points, which we soon show follows from the fact that all lattice symmetries are es-

sentially preserved. In that sense, the remaining degeneracies are very similar to

the isolated degeneracies of the staggered flux order on the square lattice [see equa-

tion (9.100) and Section 9.3.2]. In the latter case, degeneracies at isolated points in

the reduced Brillouin zone define Dirac nodes, i.e. in the vicinity of these points the

dispersion is linear. The same is true in the present case. At each of the three M ′

points of the low-energy excitations are described a pair of Dirac nodes transform-

ing into each other under the time-reversal operation, which is the reason we have

denoted the state as ∆Dirac. The square lattice staggered flux state breaks some lat-

tice symmetries, in addition to time-reversal symmetry, but preserves spin rotation

symmetry. The present spin-flux ordered state does not break any lattice symmetries

and preserves time-reversal, but it breaks spin rotation symmetry. Furthermore, the

low-energy theory of the staggered flux state consists of two Dirac nodes instead of
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Figure 10.1: (a) Energy bands of the triangular lattice in the presence of the triplet

density wave state given in equation (10.15). At the ~M ′ points in the reduced Bril-

louin zone the red circles point to the Dirac nodes. (b) Mean field spectrum of the

equivalent state on the honeycomb lattice.
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six (two for each of the three M ′ points). In that respect, the spin-flux ordered state

is reminiscent of the three dimensional spin-orbit coupled diamond lattice model [3],

which at half filling gives rise to a low-energy 3D Dirac theory at three inquivalent

points in the 3D Brillouin zone. We come back to this reminiscence below.

We first show explicitly that the Dirac nodes at the ~M ′ points are protected by

the symmetries which leave them invariant. Crucially, this includes the translations

combined with global spin rotations and we use the relation between lattice opera-

tions and spin rotations establsihed in Appendix C.3. For the sake of definiteness we

choose ~M ′
2 to demonstrate the degeneracy. The basis state at the ~M ′

2 point takes the

form

Φ̂ ~M ′ =




ψ̂σ( ~M
′
2)

ψ̂σ( ~M
′
2 +

~Q1)

ψ̂σ( ~M
′
2 +

~Q2)

ψ̂σ( ~M
′
3 +

~Q3)


 , (10.17)

where σ labels the spin degree of freedom. In order to analyse the effect of lattice

symmetries we choose a set of Pauli matrices σi to act on the spin degree of freedom,

a set of matrices τ i to act within the blocks ( ~M ′
2, ~M

′
2+ ~Q1) and ( ~M ′

2+ ~Q2, ~M
′
2+ ~Q3),

and a set matrices νi to act on the block degree of freedom. It turn out to be convenient

to start with the inversion C2, which has the effect

C2 →




ψ̂σ(− ~M ′
2)

ψ̂σ(− ~M ′
2 + ~Q1)

ψ̂σ(− ~M ′
2 +

~Q2)

ψ̂σ(− ~M ′
3 +

~Q3)


 = ν1Φ̂ ~M ′

. (10.18)

From this we conclude that the Hamiltonian at ~M ′
2 can only have terms σiτ j or

σiτ jν1, where it is understood that i, j = 0, 1, 2, 3. The translation T (~x2) is asso-

ciated with G2 and can be compensated by a rotation around the x-axis by π, which

gives

T (~x2) → −iσ1ν3Φ̂ ~M ′ . (10.19)

This leaves us with allowed terms τ j , σ1τ j , σ2τ jν1 and σ3τ jν1. The translation

T (~x3) is associated with G3 and a rotation by π around the y-axis will make it a

symmetry. The action on the basis state is

T (~x3) → −iσ2τ3Φ̂ ~M ′ , (10.20)
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which leaves us with the following allowed terms

τ3, σ1τ1, σ1τ2, σ2ν1, σ2τ3ν1,

σ3τ1ν1, σ3τ2ν1. (10.21)

What is left to consider is the two reflections which leave ~M ′
2 invariant. We consider

C2σv , which leads to

C2σv → −ieiπσ2/4σ3




1
1

1
1


 Φ̂ ~M ′ . (10.22)

The spin rotation −ieiπσ2/4σ3 is the global spin rotation necessary to compensate Y .

This transformation leads to the immediate exclusion of the terms σ2τ3ν1 and σ2ν1.

The term τ3 is clearly left invariant. The other four terms must be combined in order

to represent invariant terms, and the final terms which are allowed by symmetry are

τ3, τ1(σ1 − σ3ν1), τ2(σ1 − σ3ν1). (10.23)

Subjecting them to a basis transformation e−iπσ
1ν1/4eiπσ

3/8 brings them into a very

simple form, and we obtain σ1τ1, σ1τ2 and τ3. These three matrices anti-commute

between each other and this leads to the conclusion that the most general symmetry

allowed Hamiltonian at the ~M ′-points, H = m1σ
1τ1 + m2σ

1τ2 + m3τ
3, has two

eigenvalues ±
√
m2

1 +m2
2 +m2

3, with each eigenvalue being fourfould degenerate.

This proves that the fourfold degeneracy at the ~M ′ points is in fact symmetry

protected. As we have already shown in quite a number of cases before, such as the

square lattice π-flux state in Section 9.3.2, one can take the low-energy Dirac de-

scription of this spin-flux state as a starting point for studying the effect of additional

symmetry breaking. We recall that in case of the square lattice π-flux state all lattice

symmetries were left unbroken, because a gauge transformation could be employed

to bring the Hamiltonian back to itself. In the present case a global spin rotation acts

as the unitary operation bringing the Hamiltonian back to itself, and in the same way

as was presented in Section 9.3.2 we can list the effect of lattice symmetry breaking

in terms of the Dirac language. A key aspect of the lattice symmetric spin-flux state

is the need to be careful to account for the spin rotation symmetry breaking and the

nontrivial spin structure of the Dirac spinors. We leave such a detailed account of the

low-energy Dirac theory following from the spin-fux state for future study.

Let us now come to the second spin-flux state given in equation (10.16) and in

equation (10.14). We had already observed that translational symmetry is broken
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density wave state given in equation (10.16). The black (red) spectrum corresponds

to the density wave strength ∆QSH = −0.4 (∆QSH = 0.4). An energy gap emerges in

case of ∆QSH < 0 at the ~M ′ points in the reduced Brillouin zone and an evaluation

of the inversion eigenvalues (C2 eigenvalues) at these ~M ′ shows that the insulating

ground state is a QSH state. Note that all bands are doubly degenerate due to the

presence of both time-reversal and inversion symmetry. Inset shows the path through

the reduced BZ.
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in this state and we therefore do not a priori expect any degeneracies at the M ′-
points other than the ones required by the presence of both time-reversal and inversion

symmetry. The mean field energy bands are presented in Fig. 10.2, where we show

two different spectra corresponding to positive and negative sign of the density wave

strength. The spectra show that indeed no additional degeneracies exist and in case of

∆QSH < 0 a full energy gap is emerges, which is however second order in the density

wave strength. For the resulting insulating state we can calculate the Z2 topological

invariant written in equation (9.42) and we find that this state is a non-trivial QSH

state.

This shows that embedding flux order in a spinful setting can lead to two distinct

time-reversal invariant topological states of matter: a 2D symmetry protected Weyl

semimetal and an insulating QSH state. Both of these spinful density waves preserve

all point group symmetries, but they differ with respect to translations. The 2D Weyl

semimetal preserves all translations, which is the origin of its symmetry protection.

10.3 Honeycomb lattice

In order to inspire confidence in the general applicability of the results on M -point

ordered triplet density waves in systems with hexagonal symmetry, which we have

presented with the help of the triangular lattice above, we briefly show how these

results carry over to the honeycomb lattice. Specifically, we will discuss the honey-

comb lattice realizations of the uniaxial and chiral spin density waves, as they have

generated considerable interest recently [40, 160, 162, 163]. In addition, we show

explicitly that the fully symmetric spin-flux ordered state exists on the honeycomb

lattice as well and has the same key properties as on the triangular lattice.

In the same way as for the triangular lattice, the starting point for the spin density

waves are the expressions for the site ordered states derived in Section 9.4.1. Site or-

dered states transforming as irreducible representations of the lattice symmetry group

were specified by two vectors, i.e. ~ζA and ~ζB [see equations (9.169) and (9.170)], and

the job here is to embed them in two matrices MA and MB representing the spin

order. With this sublattice degree of freedom taken into account, the general spin

ordered state is written as

σi[Mj ]iµξµ, (10.24)

and using that general form we can write the uniaxial spin density waves obtained

from the site order expressions as

[MA]3µ = ζµA, [MB]3µ = ±ζµB. (10.25)
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We had found two site ordered states transforming as 1D representations of C6v , an

A1 state and a B2, which are distinguished by the relative sign between the sublat-

tices. In case of uniaxial spin density wave order, this is captured by the overall sign

of MB , as equation (10.25) shows. The specific uniaxial spin density wave reported

in [160, 162, 163] is corresponds to the choice [MB]3µ = +ζµB and breaks transla-

tional symmetry but preserves the rotations and reflections. The mean field spectral

properties, in particular the emergence of a QBC point at Γ [163], have been men-

tioned already in Section 9.4.1, as they follow straightforwardly from considering the

two spin species separately.

The second choice for embedding the ~ζj in the matrices Mj is to put the vectors

on the diagonal of the corresponding matrices. This can be simply written as

[MA]iµ = ζµAδiµ, [MB]iµ = ±ζµBδiµ. (10.26)

As we have already observed in case of the triangular lattice spin density waves,

the fact that the matrices Mj only have diagonal entries has the consequence that

the effects of lattice translations can be compensated by global spin rotations. Both

spin states (distinguished by ±) are therefore translationally invariant. The state con-

structed from the A1 site ordered state, i.e. the + choice, still preserves all rotations,

but breaks all reflections as they can only be compensated by improper elements of

O(3) and therefore this spin density wave has lower symmetry then its site ordered

parent state (A2 instead ofA1). The other spin density wave, coming from theB2 site

ordered state, becomes a B1-symmetric state. The broken reflections become good

symmetries again, as the improper O(3) rotation necessary to bring the state back

to itself provides an additional minus sign. In turn, the minus sign coming from the

improper rotation is respondible for the breaking of the σd reflections.

The spin density wave transforming as A2 first appeared in the literature as the

honeycomb lattice generalization of the chiral triangular lattice spin density wave [40].

Indeed, it has the same symmetry properties and since it breaks all reflections in ad-

dition to time-reversal, it can host a Quantum Anomalous Hall effect. In [40] it was

demonstrated that the formation of this noncoplanar spin density wave gaps out the

Fermi surface at the van Hove singularities and the the insulating ground state is in-

deed a Chern insulator. Furthermore, it was shown in [163] that the emergence of the

noncoplanar electronically insulating spin density wave at very low temperatures can

be understood starting from the uniaxial spin density wave. The low-energy theory

of the electronic degrees of freedom takes the form of a QBC point, as was noted in

Section 9.4.1, and when the uniaxial spin density wave starts to develop noncopla-

nar components at low temperatures [160] this introduces a time-reversal breaking

mass in the low-energy description. A gapped QBC point necessarily leads to a QAH

ground state. Hence, we see how the spin density waves we simply obtained from
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site ordered states transforming as 1D representations of the point group, are related

to each other and are found to be the lowest energy states in both a mean-field treat-

ment [40] and a Ginsburg-Landau free energy approach [160].

It is interesting to note another property of the noncoplanar spin density waves

specified by equation 10.26 and which transform as A2 and B1 under rotations and

reflections. As was mentioned, these spin density waves are translationally invariant

up to global spin rotations. In fact, if one considers them as classical spin states,

they are invariant under all lattice symmetries, as the proper or improrer nature of

the O(3) rotation needed to compensate a given lattice operation is immaterial. As

such, these two spin states are examples of what has been named regular magnetic

orders [208], i.e. classical spin states which preserve all lattice symmetries up to a

global spin rotation. In [208] all regular magnetic orders were derived for the trian-

gular, honeycomb and kagome lattices and it is a simple matter to check that all spin

states with a quadrupled unit cell, meaning ordering at the M -points, coincide with

the spin density waves we construct from site-order by embedding them in a trans-

lationally invariant way. The formalism developed and presented in Section 9.4.1

to find the ordered M -point states thus systematically yields the specific subset of

regular magnetic orders modulated by M -point vectors.

We conclude this brief overview of honeycomb lattice spin triplet density waves

by commenting on the honeycomb lattice version of the spin-flux state which we

introduced above for the triangular lattice. We simlpy start from the M -point or-

dered flux state which transforms as A2, which was obtained from triplet F2 in Sec-

tion 9.4.1. The spinful version of this state, which preserves all lattice symmetries and

time-reversal symmetry, is straightforwardly obtained by associating each ~Qµ with a

different σµ, giving

〈ψ̂†
iσ(
~k + ~Qµ)ψ̂jσ′ (~k)〉 = [∆̂µ(~k)]ijσ

µ
σσ′ , (10.27)

(no sum implied on the RHS). The explicit expression of the ∆̂µ(~k) have been given

in 9.4.1 following equation 9.186 and can just be taken from there. The mean field

energy bands of the honeycomb spin-flux ordered state are presented in Fig. 10.4(b),

which immediately shows the resemblance between the honeycomb and triangular

lattice spectra. In fact, the main point we wish to stress here is that the key features of

the electronic symmetries and spectra are shared between these hexagonal symmetry

spin-flux orders. While spin-rotation symmetry is broken, lattice symmetries are all

preserved up to global spin rotation and time-reversal symmetry is recovered by com-

bining flux and spin type order. At the same time, the low-energy theory is in both

cases (in all cases in fact) governed by a Dirac equation at each of the M ′-points.
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10.4 Common features of condensates with M -point

order

To conclude this section on M -point spin triplet density waves with hexagonal sym-

metry, we the take the opportunity to summarize and review some of the key features

of such density waves.

The exposition of spinful density waves presented above has made it clear how

spin density waves with specific symmetry, i.e. transforming according to irreducible

representations of the lattice symmetry group, can be obtained from corresponding

spinless density waves. In case of the pure spin density waves (no bond or flux order),

we have demonstrated both for the triangular and the honeycomb lattices that site

ordered states can be taken as “parent” states, by embedding them in a spinful setting.

Site ordered states with M -point ordering vectors on the triangular lattice transform

according to the representation F1 = A1 ⊕E2 (see Section 9.4.3), while honeycomb

lattice site order was shown to be decomposed as F1⊕ = A1 ⊕ B2 ⊕ E1 ⊕ E2

(see Section 9.4.1). Only focusing on the 1D representations (it would work in the

same way for 2D representations), i.e. the two A1 states and the B2 state, we have

outlined two ways of constructing spin density waves of dinstinct symmetry. The first

may be referred to as the uniaxial scheme, in which the spin density waves inherit

the symmetry from the site ordered states, i.e. they are also A1 and B2 states but

break spin-rotation invariance partially. The second would be chiral scheme, in which

the symmetry of the spin density waves changes from A1 to A2 and B2 to B1 (=
B2⊗A2) as compared to the parent site order. In the chiral scheme the resulting spin

density wave states are non-coplanar. These schemes can be directly applied to the

kagome lattice, for which we derived the 1D site order representations A1, B1 and

B2. From these we can construct a set of uniaxial spin density waves of the same

symmetry (A1, B1 andB2), or a set of chiral spin density waves with representations

obtained from multiplication by A2 (A2, B2 and B1).

Let us take a closer look at the unaxial A1 and chiral A2 spin density waves on

each of these three lattices. The spin density waves are graphically represented in

Fig. 10.3. On the left side of (a)-(c) we show the uniaxial A1 states, from which we

see that while on the triangular and honeycomb lattices the spin lengths are not equal,

the spin moments of the kagome lattice state are of equal length. The spin length of all

the states on the right side of Fig. 10.3(a)-(c) is necessarily equal due to translational

invariance. We observe a deep connection between the three unaxialA1 and chiralA2

spin density waves, as we find that they not only have the same symmetry, but also the

same electronic properties. The uniaxial spin density waves (see also Section 9.4.1)

all share the same low-energy description at Γ of the reduced (folded) Brillouin zone.

Specifically, for appropriate fillings these are semimetallic states with a QBC point for
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(a)

(b)

(c)

(d)

Figure 10.3: Spin density waves of hexagonal lattices with A1 and A2 symmetry

obtained from embedding site order in a spinful setting (a) A1 (left) and A2 (right)

density waves of the triangular lattice, and the same for (b) the honeycomb lattice

and (c) the kahome lattice. (d) shows the non-coplanar spins of the A2 states of the

triangular and honeycomb lattices (left), and the kagome lattice (right).



244 Introduction to triplet states: spin-density waves

E
n

e
rg

y
 (

t)

Γ K ′

+
K

′

−
M

′
Γ

M
′

1

M
′

2 K
′

−

K
′

+

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

 0.0

Figure 10.4: Honeycomb lattice energy bands for the B1 chiral spin density wave.

Thin dashed lines correspond to the free honeycomb band structure, solid thin lines to

a weakly developedB1 spin density wave and thick solid lines to a density wave with

considerable strength. Between the lowest two bands a (doubly degenerate) Dirac

node appears at K ′
+.

one of the spin species, also referred to as half metallic states [160], while excitations

involving the other spin species are gapped. Instead, the chiral spin density waves are

all gapped for appropriate fillings and the insulating ground state is a QAH state. As

was pointed out in [163], the A1 and A2 spin density waves are closely related in the

sense that a smooth interpolation from theA1 state to the gappedA2 exists, which has

the low-energy interpretation of gapping out the QBC point by a manifest breaking

of time-reversal symmetry. The symmetry perspective developed in this work reveals

and formalizes both the deep connection between the A1 and A2 density waves and

the lattice independence of their (low-energy) electronic properties.

Interestingly, not only the A1 and A2 spin density waves have properties which

transcend the lattice specific setting, but also the two chiral B1 spin density waves on

the honeycomb and kagome lattices. Incidentally, such a state does not exist for the

triangular lattice. At the van Hove fillings these states lead to a change in shape of the

Fermi surface that is schematically captured by the lower left part of Fig. 9.7. This is

in agreement with symmetry, as time-reversal symmetry is broken by the spin density

wave and B1 symmetry implies that the reflection planes bisecting the vertices of the

BZ are still good reflection planes, while the other set of reflections is broken. The

most important feature of the mean field spectrum corresponding to these states, both
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on the hobeycomb and the kagome lattice, is the appearance of Dirac nodes at K ′
+

(or K ′
−, depending on the sign of the order parameter) in the form isolated touchings

between the lowest two bands. That they should appear only at one of the two valleys

which are each others time-reversal partners is again in agreement with the breaking

of this symmetry.

A different class of spinful density waves is derived from spin rotation invariant

bond ordered states, or, more specifically flux ordered states. The structure of this

derivation is essentially the same as for the pure spin density waves. Starting from

the A2 flux ordered states, which exist for all three hexagonal lattices considered in

this work and come from the F2 representation, we have discussed three schemes of

constructing spin rotation symmetry breaking density waves. The first is straightfor-

ward and involves the global exhange of δσσ′ and σ3
σσ′ (the “two copies with opposite

sign” scenario), creating an insulating time-reversal invariant density wave with the

same mean field spectrum for up and down electrons, but opposite Chern numbers

C↑ −C↓ 6= 0. The second scheme amounts to assigning a different spin Pauli matrix

σi to each of the three hopping directions of a hexagonal lattice, i.e. ~xi. This spin-

flux ordered state fully breaks spin rotation symmetry, and translational symmetry,

while preserving all point group operations. The mean field spectrum is gapped and

corresponds to a QSH state. In the third scheme one assigns a different Pauli matrix

σi to each of the three M -point ordering momenta ~Qµ. For the triangular lattice we

showed in detail how such an embedding preserved all lattice symmetries, including

the translations that are broken in the M -point flux ordered state. As a consequence

of this high degree of symmetry there are protected degeneracies at the M ′ points of

the reduced Brillouin zone, in addition the Kramers degeneracy mandated by time-

reversal symmetry. The spectrum disperses linearly in all directions around these

M ′ points making this particular spin-flux ordered state a Dirac semimetal. Time-

reversal symmetry requires two degenerate Dirac nodes per M ′ point. To summarize

these three schemes, all of them yield time-reversal invariant yet spin rotation sym-

metry broken density waves. In case of the first two, they transform as A1 but break

translational symmetry. The third scheme of constructing spinful bond density waves

results in a fully lattice symmetric state. Again, these statements apply to all three

lattices and should be considered a property of the hexagonal symmetry class more

than of particular lattices.

The highly symmetric nature of the Dirac semimetal is a result of the embedding

of theA2 flux ordered state in a spinful setting. It allows for translations to be dressed

with global spin rotation to be become good symmetries again, inspite of the underly-

ing M -point order. Furthermore, the reflections broken in the flux state become good

symmetries again, because they come dressed with improper rotations restoring the

them as symmetries. The protection of the Dirac semital at the M ′ critically relies

on the presence of translational symmetry, as we have seen in Section 9.4.1. This not
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Figure 10.5: (left) Schematic representation of the double Dirac nodes at the three

inequivalentM ′-points of the reduced hexagonal Brillouin zone in the presence of the

spin-flux density wave. (right) Schematic representation of the double Dirac nodes at

the three equivalent K ′
+-points in the presence of B1 symmetric spin density wave

order on for instance the honeycomb or kagome lattice.

only illustrates the principle of global spin rotation equivalenceitself, i.e. applying

lattice operations yields a unitarily equivalent Hamiltonian, but it also exemplifies its

importance for protecting topological semimetals.

The fully lattice symmetric spin-flux density wave states and the B1 spin density

wave states are two examples of classes of states for which translational symmetry

is preserved. In both cases translational invariance plays a role in the protection

of the semimetallic Dirac points and their twofold degeneracy. Both semimetallic

states constitute new symmetry-protected topological semimetals. One breaks time-

reversal symmetry the other preserves it. The two Dirac theories are schematically

summarized in Fig. 10.5. In case of the time-reversal symmetric spin-flux state the

low-energy Dirac theory consists of six Dirac nodes, two for each inequivalent M ′

point. Instead, the B1 symmetric time-reversal breaking states have a double node at

the K ′
+ (or K ′

−) point.

The concept of global spin rotation equivalence in relation to lattice symmetries

was introduced for classical spin models in [208], which coined the notion of clas-

sical spin liquids. They are defined as classical spin states which do not break any

lattice symmetries, up to a global O(3) spin rotation. In [208] a projective symmetry

group analysis was employed to systematically derive spin states which satisfy this

condition for selected lattices. For hexagonal lattices, a subset of these classical spin

liquids is build from M -point ordering vectors. This subset of classical spin liquids

is automatically generated as a by-product of the symmetry organization of density
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waves detailed in this work. To see this, let us go back again to spin density waves

obtained from site order. In the second scheme of embedding, i.e. the chiral scheme,

we put the vectors specifying site order ~ζi (i labeling the sublattice) on the diagonal

of the corresponding matrix Mi, which restores translational invariance. If instead

of constructing a an electronic spin density wave, i.e. ~σ · ~Mi, for the which the Z2

content of O(3) = Z2 × SO(3) matters, we construct a classical spin state ~Sj(~x) of

the form

~Sj(~x) = ~Mj(~x) = [ ~Mj ]µξµ(~x), (10.28)

we have obtained a classical spin liquid. To put it differently, if we interpret the chiral

spin density waves as classical spin states, they satisfy the criteria for a classical spin

liquid. Take for instance the kagome lattice. The kagome lattice allows for three M -

point ordered classical spin liquids [208], which are immediately obtained from the

three site ordered states A1, B1 andB2 by putting the vectors ~ζi (see Section ) on the

diagonal of Mi. We therefore close by mentioning that classical spin liquids may be

obtained in straightforward manner by taking the 1D site order representations and

embedding appropriately in spin space. Of course this requires specifying M -point

order ahead of time.
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