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C H A P T E R 7

TRIANGULAR LATTICE FRACTIONAL

CHERN INSULATOR MODEL

7.1 Introduction

The Fractional Quantum Hall effect is one of the most peculiar and intriguing states

of matter. Discovered in 1982 [10], not very long after the Integer Quantum Hall

effect [75], it has continued to fascinate condensed matter physicists until the present

day. The key experimental characteristic of the integer quantum Hall effect is the

emergence of quantum Hall plateaus, plateaus in the off diagonal Hall conductivity

σxy as function of magnetic field at integer multiples of the quantum of conductance

e2/h, while the longitudinal conductivity vanishes. At particularly strong magetic

fields, plateau structures are observed at non-integer, i.e. fractional (for the purpose

of this chapter we will assume rational, p/q) values and these are known as the Frac-

tional Quantum Hall effect. While the integer effect can be understood purely in

terms of single-particle state physics (see also Chapter 1), its fractional counterpart

is a consequence of electron-electron interaction. Even more, as the degeneracy of a

magnetic Landau level scales with the magnetic field, in a very strong magnetic field

all electrons will be in the lowest Landau level (LLL) and the repulsive Coulomb

interaction will be the only remaining energy scale. Hence, even though superfi-

cially similar judging from their experimental signature, the integer and fractional
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Quantum Hall effect are fundamentally distinct, with the fractional QHE presenting

a much more difficult problem due to its quartic Hamiltonian structure.

The fascination with the Fractional Quantum Hall effect derives from its special

features as a rather exotic quantum state of matter. The fractional Quantum Hall state

constitutes an incompressible liquid, which sets it apart from states of matter that

are classified according to broken symmetries represented by a local order parame-

ter. An example of the latter, which naturally competes with the fractional Quantum

Hall state in the presence of strong electron repulsion, is the Wigner crystal, a charge

ordered state. The fractional Quantum Hall ground state is topologically ordered,

implying a ground state degeneracy which depends on the topology of the manifold

on wich it lives (torus, sphere, ect.). The FQH effective field theory is therefore

not of Ginzburg-Landau type, but is instead a topological Chern-Simons field theory

accounting phenomenologically for its physical characterics. In addition, the quasi-

particles of these states have fractional charge and obey anyonic statistics, [138, 139]

which can be either Abelian or non-Abelian, the latter fulfilling an essential condition

for fault-tolerant quantum computation. [129]. In particular these quasiparticle prop-

erties have attracted a great deal of attention and have triggered considerbable effort

in uncovering the deep physics of the FQHE.

As a consequence of the recent and tremendous surge in interest in topological

states of matter, caused by the discovery of topological insulators [12,111], new direc-

tions in fractional quantum Hall physics have been explored. In particular, since the

topological insulators can be regarded as generalizations of the quantum anomalous

Hall insulator, which belongs to the IQH universality class, the following question

presented itself: can the FQHE be generalized to situations where external magnetic

fields are absent and lattice effects cannot be ignored? This question was first ad-

dressed by [87,108,113]. In case of the continuum FQHE, Hilbert space is organized

according to the Landau level spectrum which originates from the magnetic field.

Adding interactions to the LLL yields the FQHE. In case of a lattice model described

by a tight-binding hamiltonian Ĥ the first prerequisite for any hope of a possible

generalized FQHE is the presence of isolated bands with nontrivial topology. Or,

in other words, the band structure corresponding to Ĥ needs consist of a band with

nonzero Chern numberC (see Chapter 1), separated from other bands by a full energy

gap. That such Hamiltonians exist in principle has been demonstrated already long

ago by Haldane in 1988 [76], but the past decade has witnessed an impressive effort

in devising proposals for realizing such a Hamiltonian in experimentally accessible

conditions. One such realization may be found in strongly spin-orbit coupled semi-

conductor materials that are ferromagnetically ordered [77, 82]. Another possibility

arises through the coupling of itinerant electrons to localized magnetic moments [85],

for example the Kondo-lattice model on the triangular lattice supports a non-trivial

magnetic texture, which induces an integer-quantized Hall conductivity of the itin-
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erant electrons [30]. Note that nonzero Chern number C immediately implies the

breaking of time-reversal symmetry, which is reassuring, as the uniform magnetic

field breaks time-reversal in the continuum.

While the above is unambiguously sufficient to generalize integer quantum Hall

physics to lattice systems without fields, fractional quantum Hall physics puts more

restrictions on potential generalization schemes. If we focus on a band that has

nonzero Chern number (is has become custom to call such a band Chern band), and

compare it more closely to a Landau level, we observe that the Chern band is gener-

ally dispersive, a Landau level however is perfectly flat, i.e. all single-particle states

have the same energy. This is of considerable significance, as it renders the interac-

tions to be the only energy scale of the problem en thus by definition the dominant

one. The interactions select the fractional quantum Hall liquid out of the macroscop-

ically degenerate manifold of single-particle states. Adding interactions to a Chern

band would seem to lead to a competition between kinetic and interaction energy

scales, which potentially spoils the emergence of a liquid state. Hence, in order for

the Chern band to mimick the Landau level as much as possible, one should require

the former to have a very small bandwidthW as compared to the interaction strength

V . To put it differently, minimally dispersive or flat Chern bands are expected to be

the best candidates for hosting a lattice FQHE. Furthermore, the ordinary FQHE is

most clearly observed in a strong magnetic field, which causes a large energy gap be-

tween Landau levels and concentrates all electrons in the LLL. Landau level mixing

is negligible. It would consequently seem natural to demand that that band gap ∆
which separates the Chern band from any other band is much larger than the interac-

tion energy scale V . Summarizing, the following hierarchy of energy scales would

need to be fulfilled to provide proper conditions for fractional quantum Hall physics

confined to a Chern band

∆ ≫ V ≫ W, F ≡ ∆/W ≫ 1. (7.1)

With this perspective in mind, the first studies of FQH generalization were un-

dertaken [87, 104, 105, 108, 113, 131, 140]. Chern insulator models with the correct

energy scale hierarchy were identified and first signatures of fractional quantum Hall

type physics were obtained with numerical methods. Starting from a Chern insulator

given by the non-interacting Hamiltonian

ĤCI =
∑

~K

ψ̂†
α(
~k)Hαβ(~k)ψ̂β(~k), (7.2)

interactions were added by including

Ĥint =
∑

ij

V αβij n̂iαn̂jα =
∑

~q

V αβ(~q)ρ̂α(~q)ρ̂β(−~q), (7.3)
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and the standard approach has been to isolate the Chern band explicitly and project

the interactions into that band. This requires normal ordering first and then pro-

jecting onto band n with corresponding energy En(~k), obtained afterdiagonalization

of the Bloch Hamiltonian H(~k). The eigenstates are |~k, n〉 = γ̂†n(~k)|0〉. The nor-

mal mode operators and orbital operators are related by a matrix U(~k) that contains

the eigenvectors of the matrix H(~k) in its columns, γ̂†n(~k) = ψ̂†
α(
~k)Uαn(~k) with

Hαβ(~k)Uβn(~k) = En(~k)Uαn(~k). The interaction becomes

Ĥint =
1

N

∑

~k,~k′

∑

~q

V αβ(~q)ψ̂†
α(
~k + ~q)ψ̂†

β(
~k′ − ~q)ψ̂β(~k

′)ψ̂α(~k)

=
1

N

∑

~k,~k′

∑

~q

V n1n2n3n4(~q,~k,~k′)γ̂†n1
(~k + ~q)γ̂†n2

(~k′ − ~q)γ̂n3
(~k′)γ̂n4

(~k) (7.4)

with

V n1n2n3n4(~q,~k,~k′) =
∑

α,β

V αβ(~q)U †
n1α(

~k + ~q)U †
n2β

(~k′ − ~q)Uβn3
(~k′)Uαn4

(~k). (7.5)

From the general form of this expression it is clear that the interaction contains in-

terband scattering events. With the separation of energy scales properly in place it

has become common practice to focus exclusively on the given Chern band n, ne-

glecting the its dispersion, i.e. En(~k) → En and keeping only the terms n1 = n2 =
n3 = n4 = n. This approach, which then lends itself to exact diagonalization (ED)

studies is in contrast to the method explained later in this chapter and implemented

in [107, 141]. In the final section of this chapter we discuss the numerical signatures

of FQH physics in these Chern insulators in somewhat more detail.

In the wake of these first steps towards a lattice generalization of the FQHE –

quickly dubbed the Fractional Chern Insulator (FCI) – the question of what consti-

tutes good Chern bands has been addressed in more detail. Is it just the hierarchy

of energy scales in a Chern insulator, or can and should one identify constraints of

an entirely different quality? This specific question was first considered by [142]

and soon after reconsidered by [143–145]. The central results of these works is the

derivation of constraint on Berry curvature fluctuations of the Chern insulator model.

The key idea is that in the continuum the density operators projected onto the LLL

satisfy the GMP algebra (see again Chapter 1) and in order to keep the analogy with

the LLL upright, the density operators of a Chern insulator projected into the (nearly

flat) Chern band, should obey an equivalent algebraic relation. The orbital dependent
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density operator is given by

ρ̂α(~q) =
1√
N

∑

~k

ψ̂†
α(
~k + ~q)ψ̂α(~k), (7.6)

and projecting this into the Chern band labeled by n, summing over α, gives

ρ̃(~q) ≡ P̂nρ̂(~q)P̂n =
1√
N

∑

~k,α

U †
nα(

~k + ~q)Uαn(~k)γ̂
†
n(
~k + ~q)γ̂n(~k) (7.7)

The central result obtained from aforementioned investigation of the algebraic rela-

tions of projected density operators is that in the long wave-length limit, i.e. ~q, ~w
small, and in cases when the Berry curvature may be approximated by its average,

the ρ̃(~q) satisfy

[ρ̃(~q), ρ̃(~w)] ≈ −i(~q × ~w) · ẑ 2πC

(2π/a)2
ρ̃(~q + ~w). (7.8)

This is identical to the long wave-length limit of the GMP algebra obeyed by pro-

jected density operators in the LLL. The crucial insight that the algebra of density

operators reveals, is that once the GMP is valid in the Chern band for long wave-

lengths, one may assume it to be valid at all wave-lengths in the thermodynamic

limit, thereby establishing an a posteriori correspondence between the FCI and the

FQH physics [142, 143].

Having discussed in considerable detail the prerequisites for FCI physics in Chern

insulators, we state the purpose and content of this chapter. Previous chapters have

demonstrated how nearly flat topological bands can arise in multi-orbital models of

correlated oxides. In this chapter we map the multi-orbital model onto an effective

single-orbital model, which nevertheless captures the essential features of the Chern

insulator and subsequently can be used for detailed numerical study into possible FCI

signatures. It will be argued that obtained triangular lattice Chern insulator shows

robust features of FCI physics.

7.2 Multi-orbital nearly flat band model

In previous chapters it was shown that both eg and t2g orbital manifolds in octahe-

dral coordination can reduce the bandwidth of topologically nontrivial bands. For a

schematic illustration of orbital degeneracy in d-electron systems see Fig. 6.2. In par-

ticular, this was discussed for the spin-chiral phase arising in Kondo-lattice models

on the triangular lattice at quarter and three-quarter fillings. While the flat band of
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interest mixes both the 3z2 − r2 and the x2 − y2 orbitals in the eg case, it is domi-

nated by a particular orbital state in the t2g manifold, the a1g state. We recall that the

trigonal crystal field splits the t2g manifold in an e′g-doublet and the nondegenerate

a1g level. The fact that the flat mean-field Chern band of the multi-orbital model has

predominantly a1g character suggests that one may capture the essential physics. The

program of this chapter is to systematically arrive at a simple Chern insulator model

that may be used for extensive numerical calculations probing its suitability as host

of FCI states. We will start from realistic multi-orbital models, in particular the band

structure obtained from the mean-field treatment of local Coulomb interaction terms,

as detailed in the previous chapter.

We focus exclusively on the t2g triangular lattice model. In addition to an orbital

degree of freedom, we consider coupling to a localized spin ~Si, modelled by a Kondo-

lattice model, where the kinetic energy is given by hopping elements tαβij taken from

the matrices Eq. (6.1) or Eq. (6.4). This situation is described by

Ĥ =
∑

〈i,j〉,σ
tαβij ψ̂

†
iσαψ̂jσβ − JKondo

∑

i,α

~Si · ~̂siα (7.9)

where α and β are orbital indices, ψ̂iσα (ψ̂†
iσα) annihilates (creates) an electron with

spin σ in orbital α at site i, and ~̂siα is the corresponding vector of orbital electronic

spin operators. JKondo couples the itinerant electrons to a generic localized spin ~Si, the

origin of which is left unspecified for the moment, but will be discussed extensively

later. (It will turn out to be the spin degree of freedom of the t2g electrons themselves,

as may be expected from 6). The coupling is assumed to be FM, as one would expect

from Hund’s-rule coupling. However, we are furthermore going to consider ~Si as a

classical spin, in which case AFM coupling to ~Si would lead to the equivalent results.

7.2.1 Integrating out the spin-degree of freedom

For classical spins and large JKondo, it is convenient to go over to a local spin-

quantization axis, where “↑” (“↓”) refers to parallel (antiparallel) orientation of the

electron’s spin to the local axis. This simplifies the Kondo term to

ĤKondo = −JKondo

∑

i,α

~Si · ~̂si,α = −JKondo

2

∑

i,α

(n̂α↑ − n̂α↓) , (7.10)

where n̂↑
α (n̂↓

α) is the electron density at site i in orbital α with spin (anti-) parallel to

the localized spin. This local spin definition is particularly convenient when going to

the limit of large JKondo, where one immediately finds the low-energy states as given

by only “↑” electrons.
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On the other hand, the fact that the spin-quantization axis is not the same at all

sites implies that the hopping no longer conserves the new spin. Instead, hopping

acquires as spin-dependent factor tαβij → tαβσσ
′

ij = tαβij u
σσ′

ij , [28] with

u↑↑ij = cicj + sisje
−i(φi−φj), (7.11)

u↓↓ij = cicj + sisje
i(φi−φj), (7.12)

uσσ̄ij = σ(cisje
−iσφj − cjsie

−iσφi),

where σ̄ = −σ and ci = cos θi/2, si = sin θi/2 and the set of angles {θi} and

{φi} are the polar and azimuthal angles corresponding to {~Si}, respectively. As one

can see, these effective hoppings can become complex, and it has been shown that

non-coplanar spin configurations can endow the electronic bands with a nontrivial

topology [30, 85].

In line with the approach extensive outlined elsewhere in this thesis, we may

assume strong coupling between the local moments and the itinerant electrons and

take the limit of infinite Hund’s rule coupling. In this case, one only keeps the ↑
electrons parallel to the local spin-quantization axis and electrons effectively become

spinless fermions. For the chiral spin pattern in Fig. 6.4, which has been found as

the ground state of triangular Kondo-lattice models [30–32, 100], the Berry phases

between the four sites of the magnetic unit cell can be parametrized as

u↑↑1,2 = u↑↑3,4 =
1√
3
, u↑↑1,3 = −u↑↑2,4 =

1√
3

(7.13)

u↑↑2,3 = u↑↑4,1 = −u↑↑3,2 = −u↑↑1,4 =
i√
3
.

Constructing the tight-binding hopping Hamiltonian from these effective hoppings of

the now effectively spinless fermions (which still have an orbital degree of freedom)

reveals that even though the unit cell corresponding to the spin configuration contains

four sites, the unit cell of the fermions can be reduced to two sites.

Combining the phases Eq. (7.13) with the hoppings given by Eqs. (6.1) or (6.4)

and the crystal-field splitting Eq. (6.2) still gives a non-interacting model that can be

easily solved in momentum space. One finds that large |∆JT|, see Eq. (6.2), strongly

reduces the dispersion of one subband. This can also be seen in Fig. 7.1(a), which

shows the one-particle energies obtained on a cylinder. Figure 7.1(a) also reveals the

edge states crossing some gaps, indicating the topologically nontrivial nature of these

bands. Calculating Chern numbersC corroborates this and gives C = ±1. The band

flatness can be expressed in terms of a figure of merit

F =
min(∆JT,∆c)

W
, (7.14)
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Figure 7.1: Flat lower chiral subband in the Kondo-lattice model with infinite Hund’s

rule coupling (double-exchange model). (a) Shows the one-particle energies of three

t2g orbitals coupled to localized spins, where the latter form a spin-chiral phase on

a triangular lattice, [30–32, 100] see Fig. 6.4. The system is a cylinder, i.e., periodic

boundary conditions along y-direction and open boundaries along x. The horizontal

axis is the momentum in the direction with periodic boundaries. The gaps ∆JT and

∆c denote the gaps due to crystal-field splitting EJT and to the chiral spin state. (b)

shows the figure of meritM , see Eq. (7.14), for the lower a1g subband. The curves for

crystal-field splittings EJT = 4, 4.5, and 5 were already given in Fig. 3(b) of Ref. [?]

and are repeated here for convenience.
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where ∆JT and ∆c are the two gaps separating the narrow band of interest from

the other orbitals and from the subband with opposite Chern number and W is the

width of the narrow band. As was pointed out in chapter 5, the lower subband can

here become very flat, and as can be seen in Fig. 7.1(b), the flatness can be further

improved by going to larger crystal fields and reaches values M ≈ 28.

7.2.2 Integrating out the orbital degree of freedom

As these very flat bands can be achieved for large separation EJT between the a1g
and e′g states and as the band of interest then has almost purely a1g character, it is

natural to assume that one should be able to capture the most relevant processes with

an effective a1g model. (This is in contrast to the situation starting from eg orbitals,

where one finds intermediateEJT to be optimal. In that case, the nearly flat bands can

only be obtained if both orbitals contribute weight and one cannot easily reduce the

situation to a one-band system.)

The impact of the e′g levels on the effective a1g dispersion can be taken into

account in second-order perturbation theory. This includes processes where a hole

hops from the a1g orbital at site i to an e′g state at j and back again to an a1g state

at a third site i′, which may or may not be the same as i. The denominator of these

terms is the crystal-filed energy EJT and the numerator is obtained from the products

T̃ abi T̃ baj + T̃ aci T̃ caj (with a designating a1g and b, c the e′g states). In order to evaluate

the second-order hopping between sites i and i′, these orbital hoppings have to be

multiplied by the product of the Berry phases u↑↑i,j and u↑↑j,i′ from Eq. (7.13) for all

paths connecting i and i′ via one intermediate site j 6= i, i′. Due to destructive

interference, processes connecting NN and next-nearest neighbor (NNN) sites cancel

while effective third-neighbor hopping, where there is only one path, remains. Since

third-neighbor spins in the chiral phase are always parallel, the total Berry phase

of this process is 1 in all directions, however, the hopping via a spin of different

orientation in the middle reduces the hopping amplitude by |u↑↑|2 = 1/3, leading to

t3 = −2(t0 − tdd)
2

27∆JT

. (7.15)

A third-neighbor hopping ∝ ∑
i cos 2

~k · ~ai turns out to have almost the same dis-

persion as the chiral subbands and can consequently almost cancel it in one subband.

As its strength can be tuned by tdd and ∆JT, very flat subbands can be achieved, see

Fig. 7.1(b).
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Figure 7.2: Figure of merit M , see Eq. (7.14), for finite Hund’s-rule coupling

JKondo/t0 and EJT = 6to. The bands designated as “upper” and “lower” refer to

the two subbands of the a1g states with spin parallel to the localized spin, which are

separated by the gap opening in the spin-chiral phase, see Fig. 7.1(a).

7.2.3 Mapping the mean-field solution to a Chern insulator

While the previous section has illustrated how one can understand the occurrence of

nearly flat bands in a three-orbital double-exchange model, i.e., for infinite Hund’s

rule coupling to some localized spins, this section will discuss finite Hund’s rule

and take the single-particle spectrum obtained from the mean-field calculation as a

starting point for deriving an effective hopping model. Figure 7.2 shows the figure

of merit for the band flatness Eq. (7.14) for a few sets of hopping parameters and

for ∆JT = 6t0 depending on Hund’s rule coupling JKondo to the localized spin, see

Eq. (7.10). As can be seen in Fig. 7.2, the upper subband of the a1g sector can

now become nearly flat. (For JKondo ≫ |∆JT|, one can of course still find flat lower

subbands, as discussed above.)

The flatness of the upper subband can be explained by similar effective longer-

range hoppings in second-order perturbation theory, this time also taking into account

intermediate states with an electron in the upper Kondo band, i.e. with antiparallel

spin. These additional terms can go either via the a1g or via the e′g orbitals and involve

combined Berry phases of the form u↑↓ij u
↓↑
ji′ . Again, one has to sum over all possible
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intermediate sites j and finds

t1 =
3t+ δt

3
+ 2

(3t+ δt)2

9

1

E2
− 2

δt2

9

1

E3
, (7.16)

t2 = 2
(3t+ δt)2

9

1

E2
− 2

δt2

9

1

E3
, (7.17)

t3 = 2
(3t+ δt)2

27

1

E2
+ 4

δt2

27

1

E3
+ 2

δt2

27

1

E1
. (7.18)

The NN, NNN and third-neighbor hoppings are here denoted by t1, t2, and t3. E1 =
∆JT, E2 = JKondo, and E3 = JKondo − ∆JT give the excitation energies of the in-

termediate states with (i) a hole in the e′g states with spin parallel, (ii) an electron in

the a1g states with spin anti-parallel and (iii) an electron in an e′g state with spin anti-

parallel. Like the bare NN hopping, these effective hopping-matrix elements acquire

an additional Berry phase u↑↑ii′ in the Hamiltonian, which only depends on the relative

orientation of spins on the initial and final sites. NNN hopping t2 via the upper Kondo

band does not drop out, and NN hopping becomes renormalized.

The flat chiral subbands that have been observed in a three-orbital t2g Hubbard

model on the triangular lattice [107] arise in situations similar to the finite-JKondo

scenario. Above we have shown that a mapping to the Kondo-lattice model can

be constructed and that the physics of the flat band is captured by taking the other

into account perturbatively. The key point of the mapping is the observation that

large crystal-field splitting ∆JT, see (6.2), leads to an orbital-selective Mott-insulator,

where the e′g levels are half-filled and far from the Fermi level, while the states near

the Fermi level have almost only a1g character. The orbital degree of freedom is

consequently quenched, because orbital occupations are already fully determined. A

charge degree of freedom remains, as the a1g orbital contains one electron per two

sites. Charge fluctuations of the half-filled eg levels, however, are suppressed due to

the large Mott gap between their occupied and empty states. They can thus be de-

scribed as a spin degrees of freedom, and the situation is further simplified, because

they form a total spin with S = 1 due to Hund’s rule. The a1g electron is likewise

coupled via FM Hund’s rule to this spin. This situation – mobile carriers coupled via

FM Hund’s rule to localized spin degrees of freedom – is well described by a FM

Kondo-lattice model.

7.3 Triangular lattice Chern Insulator

As we have discussed in the previous section, the most realistic route to nearly flat

bands with nontrivial topology on the triangular lattice arises at finite Hubbard/Kondo



104 Triangular lattice Fractional Chern Insulator model

1 1

1 1

2

2

3 34

1

2

3

4

π/2

π/2

π/2

π/2

π/2

π/2π/2

π/2

(a) (b) (c)

Figure 7.3: (a) Schematic illustration of the 4-site unit cell of the magnetic config-

uration on the triangular lattice where the the number labels correspond to the spins

represented in (b). (c) shows the effective single-orbital spinless model, which is that

of fermions hopping on the triangular lattice with each triangle threaded by a flux of

φ = π/2

coupling, where effective second-neighbor hopping is generated in addition to NN

and third-neighbor terms. However, the exposition in previous sections has demon-

strated that all essential features of the band structure can be captured by using just

NN and third-neighbor hoppings. As the purpose of this chapter was to arrive a sim-

ple Chern insulator model that both captures the essential features of a more realistic

multi-orbital model of correlated oxides, and meets all requirements for showing FCI

physics, we adopt the a1g model with NN and third-NN hopping for simplicity.

The essential ingredients for the triangular lattice Chern insulator model are spin-

less fermions coupled to an effective compact U(1) gauge field Aij . In other words,

the fermions hop in the presence of an effective flux threading the triangles. The

Hamiltonian of these fermions in momentum space is given by

HCI(~k) = 2t
∑

j

cos kj τ
j + 2t′

∑
τ0 cos 2kj , (7.19)

where~aj (j = 1, 2, 3) denote the unit vectors on the triangular lattice, kj ≡ ~k ·~aj , and

t and t′ are the NN and third-neighbor hopping, which can be related to Eqs. (7.13)

and (7.15) for the double-exchange scenario, to Eqs. (7.16) and (7.18) for finite onsite

interactions, or which can be taken as fit parameters. Pauli matrices σj and unit matrix

σ0 refer to the two sites of the electronic unit cell in the chiral state. The unit cell and

the topologically non-trivial bands are due to the symmetry breaking involved in the

underlying magnetic order. The dispersion of Eq. (7.19) is

E±(~k) = ±2t

√∑

j

cos2 kj + 2t′
∑

j

cos 2kj . (7.20)

Figure 7.3 shows pictorially how the lattice fermion model with fluxes is connected
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to the spin ordered state. As panel (c) indicates, the Berry phases coming from the

noncoplanar spins lead to a uniform flux arrangement that is equivalent to a uniform

magnetic field perpendicular to the lattice. This is in contrast to other Chern insulator

models which have a net flux of zero through the unit cell, while non-trivial fluxes

do thread the individual plaquettes. This distinction must be qualified with a note of

caution, however. On a lattice, the concept of “average” field is ill-defined, as one

may always thread elementary flux quanta through selected plaquettes, which cannot

change the physics, but does change the notion of net average field. In particular, in

the present case we may group the triangles in sets of four and thread a additional flux

of 2π through one of those four triangles, changing the plaquette flux to −3π/2 and

making the average field zero. With this remark in mind, we choose however to think

about this triangular Chern insulator model as fermions in a uniform magnetic field.

From this connection we may immediately deduce that the unit cell should contain

two atoms. The triangular lattice can be thought of as a square lattice with additional

diagonal hoppings. It is a well established fact for the square lattice that in a magnetic

field corresponding to flux φ = 2πφ̃, with φ̃ = p/q, the unit cell is q times larger. In

this case a square plaquatte (two triangles) has flux φ̃ = 1/4 + 1/4 = 1/2 and the

unit cell is doubled.

The Hamiltonian written in equation (7.19) is not in Bloch form, i.e. it does not

satisfy H(~k + ~G) = H(~k), where ~G is any reciprocal lattice vector. We wish to

bring our Hamiltonian to Bloch form in order to probe to what extent we may expect

this particular Chern insulator model to be a good candidate to host Fractional Chern

insulator states. The introductory section already provided ways to interrogate the

non-interacting Chern insulator model and will expand on that now. For convenience

we make use of the aforementioned equivalence between the present Chern insulator

model and lattice fermions on the square lattice in a magnetic field. The momentum

space Hamiltonian of such fermions can be written as

H(~k) = −t
[

2 cosky −i(TyTx + T ∗
y )− (1 + Tx)

i(T ∗
y T

∗
x + Ty)− (1 + T ∗

x ) −2 cosky

]
, (7.21)

with the definitions Tx = ei2kx and Ty = eiky . For details we refer the reader to

Appendix B, and to references [146,147]. As a consequence of the flux the reciprocal

lattice vectors of the magnetic Brillouin zone are ~G1 = (π, 0) and ~G2 = (0, 2π)
in units of the inverse lattice constant. By construction, see the Appendix B, this

Hamiltonian is in Bloch form.

In the introduction it was shown that fluctuations in the Berry curvature of the

band one wishes to address are expected to be critical for the potential emergence and

stability of FCI states resembles ordinary Fractional Quantum Hall states. We there-

fore calculate the Berry curvature of the occupied band of model expressed in 7.21.
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Figure 7.4: Plot of the Berry curvature in the rectified rectangular Brillouin zone of

the triangular lattice Chern insulator model given by Hamiltonian (7.21).

For a tight-binding approach such as in the present case, the most convenient way

to calculate the Berry curvature is borrowed from lattice gauge theory and was first

introduced in [148]. The great advantage is the manifest invariance under electron

wave function gauge transformations. This circumvents the cumbersome procedure

of dividing the Brillouin zone in patches and finding a smooth gauge on each patch.

If we take the lattice dimension in the i direction to beNy , then we define a Brillouin

zone grid ofNx×Ny. We let ~n ∈ ZNx ×ZNy represent a site on the grid correspond-

ing to momnetum ~k = (πnx/Nx, 2πny/Ny). Then we define the so-called U(1) link

variables as

Ai(~n) =
〈n, k~n|n, k~n+~ui

〉
|〈n, k~n|n, k~n+~ui

〉| , (7.22)

where i = x, y, ~ui is unit vector in the i direction and we write k~n to denote the

momentum ~k corresponding to the grid point ~n. The field strength, or the Berry

curvature, corresponding to these link variables is then expressed as

Fxy(~n) =
1

2π
Im ln Ax(~n)Ay(~n+ ~ux)A−1

x (~n+ ~uy)A−1
y (~n). (7.23)

One may for instance obtain the Chern number by performing a sum on ~n, i.e.

C =
∑
~n Fxy(~n), resembling the integral formula in the continuum. The Berry

curvature this obtained is presented in Fig. 7.4. The most prominent observation we

can make is that while there are fluctuations and the Berry curvature is not constant,

these fluctuations do not show any singular or sharp features. To qualify this state-

ment further we compare the Berry curvature of the triangular lattice CI to the Berry

curvature of a simple two-orbital square lattice CI model. The latter is captured by a
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Figure 7.5: Plot of the Berry curvature for the model in (7.24) for different masses

m: (a) m = 0.8, (b) m = 1.9

Hamiltonian

H(~k) = sin kxτ
1 + sin kyτ

2 + (cos kx + cos ky −m)τ3. (7.24)

Without discussing the physical content of this model in too much detail, we stress

that the parameter m, a mass parameter, controls a transition from a topologically

trivial regime to a topological regime with Chern number −sign(m). In particular,

at m = 2 the system is gapless and described by a low-energy Dirac theory. Close

to m = 2 m has the interpretation f a Dirac mass. For |m| > 2 the insulator is

trivial, i.e. C = 0, while for |m| < 2 the insulator has Chern number −sign(m). In

Fig. 7.5(a) and 7.5(b) we have plotted the Berry curvature for two different values of

m, namely m = 0.8 [7.5(a)] and m = 1.9 [7.5(b)]. The crucial observation to be

made here is the emergence of a singularity in the Berry curvature at the Dirac point

as the Dirac mass approaches zero (gapless state). Such behaviour would be expected

close to a topological phase transition and it is precisely such type of singular or

sharp behaviour that one wishes to avoid in a CI if it is to be a good candidate for FCI

physics. Indeed, atm = 0.8, far away from the Dirac regime the situation is similar to

our triangular lattice CI model, where deviations from constant curvature are present

yet smooth. In fact, all CI models that have come into view as good candidates for

FCI states on various lattices, have been shown to have Berry curvatures similar to

one shown in Fig. 7.4 [87,113,140]. One quantitative measure of the Berry curvature

fluctuations is to calculate the standard deviation of the Berry curvature, σFxy . We

find for the triangular lattice CI model σFxy = 0.061, which is very similar to values

reported for the by now highly popular kagome CI model, see for instance [149].

To conclude this section, we come to the energetics of the triangular lattice CI.

We return to the model expressed in equation (7.19) and we use the effective NN

hopping t as unit of energy; the band flatness can then be tuned by varying the ratio

t′/t.
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Figure 7.6: (a) Energy dispersion E(~k) for t′/t = 0.2. The inset shows the path

taken through the first Brillouin zone. (b) Flatness ratio M , see Eq. (7.14), as a

function of t′/t. The flatness ratio has been calculated from the dispersion along the

high-symmetry directions shown in the inset on the left.

The longer range hopping t′ determines the flatness of the bands of Hkin, which

can be expressed by the figure of merit M , see Eq. (7.14). Figure 7.6 shows M
depending on t′, and one sees that ratios M & 20 can be reached for t′ ≈ 0.2.

Such flatness ratios can reasonably be achieved in the low-energy bands of a strongly

correlated t2g system on a triangular lattice [107]. Changing the sign of t′ simply

mirrors the dispersion vertically, i.e. it is then the upper band that becomes nearly

flat. When going away from maximal M , the bands for smaller and larger t′ differ

qualitatively: For t′ < 0.2, the Fermi surface (FS) at some fillings is almost perfectly

nested.

7.4 Discussion and outlook

In the previous section we have developed and analyzed the triangular lattice Chern

Insulator model from a non-interacting perspective. We have addressed the question

to what extent this particular model fulfills the criteria for making a connection to the

continuum Landau level problem. In order to address the question whether ground

states of the CI model with interactions included actually resemble Fractional Quan-

tum Hall states one has to resort to numerical methods. The most prominent of such

numerical approaches is exact diagonalization (ED) of the Hamiltonian on a finite size

cluster. Another procedure in principle appropriate to study interacting CI models is

density-matrix renormalization group (DMRG) analysis, which to date has not been
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used extensively, however. In the introductory section we already mentioned that

to obtain FCI states the CI model is supplmented with density-density interactions,

which for the present triangular lattice CI may be taken simply as (see [107, 141])

Hint = V
∑

〈i,j〉
n̂in̂j . (7.25)

There are two basic implementations of ED which have been used to study FCI

states in lattice CI models. The most commen implementation uses single-particle

states labeled by momentum quantum number as basis states, whereas the other ap-

proach uses real space orbitals as basis states (see [149, 150] and references therein).

When using single-particle momentum eigenstates the kinetic part of the Hamilto-

nian is already diagonal and one needs to construct the interacting part in this basis

in order to diagonalize the Hamiltonian. As such it is analogous to ED studies of

the continuum problem, in which the single-particle Hilbert space consists of Lan-

dau orbitals labeled by angular momentum, and the Coulomb interaction is expanded

in this basis. Another approach is to use the real space orbitals corresponding to

the operators ψ̂i . In that case the interactions as given by equation (9.44) [or equa-

tion (7.3)] are diagonal and one needs to construct the kinetic part of the Hamiltonian

in this basis. The latter approach has been used in ED studies of the triangular lattice

CI [107,141]. A widely used simplification when working in single-particle momen-

tum space is to project out all but the flat band and in addition neglect the dispersion

of this band. Working in real space effectively forces to keep the full band structure

of the non-interacting CI and therefore allows to probe the interplay of energy scales.

In order to identify FCI states, i.e. states that are lattice analogs of the Fractional

Quantum Hall states, one looks for spectral features that are characteristic for the

Fractional Quantum Hall universality class. For instance, when the flat band is filled

with a filling fraction ν = 1/q, the ground state should be q-fold degenerate on the

torus. On the lattice this is necessarily a quasi-degeneracy, the splitting of the ground

state manifold should nevertheless vanish exponentially in the thermodynamic limit.

In addition, in this limit the gap to the excited state should remain finite. Another

probe of the FQH universality class is the response of the spectrum to a twist in

the boundary conditions. As this represents flux threading through the handles of

the torus, the ground state manifold should not be mixed with excited states upon

changing the twist angle. Quasi-degenerate ground states switch places as function of

inserted flux and are mapped back to themselves only after insertion of q elementary

flux quanta. As a specific example of these two probes of FCI states we present results

for the triangular lattice CI in Fig. 7.7 [107, 141]. The left panel, Fig. 7.7(a) shows

the energy spectrum as function of total momentum, which remains a good quantum

number in the presence of interactions. Three ground quasi-degenerate ground states
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Figure 7.7: FCI state induced by NN Coulomb repulsion V in the triangular lattice

CI model Eq. (7.19). (a) Energy depending on total momentum ~k for V/t = 1.0.

(b) Energy depending on a flux φy added whenever an electron goes once around the

whole lattice in y direction. Each addition of φ = 2π leads to an equivalent state,

6π to the same state. Lattice size is 4 × 6 sites (12 two-site unit cells), parameters

in Eq. (7.19) are t′/t = 0.2. The filling of the flat band is ν = 1/3. On the right a

pictorial representation of flux insertion by adding a phase eiφy/Ny or eiφx/Nx to the

hopping.

are clearly separated from the rest of the spectrum by an energy gap, as expected for a

filling of ν = 1/3. The right panel Fig. 7.7(b) shows the evolution of the ground state

energies as function of adiabatic flux insertion. The spectral flow, i.e. ground states

evolving into equivalent states after a single elementary flux quantum, only returning

to the same state after q = 3 flux quanta, is in agreement with the behaviour of FQH

states.

Yet another very powerful way to identify lattice analogs of FQH states is to

count zero modes (ground and quasi-hole states) per momentum sector [105, 143].

For FQH states the number of zero modes per momentum sector can be obtained

without diagonalizing the Hamtiltonian by just using the generalized Pauli princi-

ple applicable to the particular type of FQH state, e.g. Laughlin, composite fermion

(CF), Moore-Read, ect. If the ground and quasi-hole states found by diagonalizing

the FCI Hamiltonian are to be lattice analogs of the FQH states, they should obey

these counting rules, as they follow from universal principles. To illustrate how such

counting works for ground states we take the simplest case of a Laughlin state at fill-

ing ν = 1/3, system size Nx ×Ny = 4× 3 and number of electrons Ne = 4. There

are 12 total momenta and we organize them in a linear array with increasing jx, i.e.
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[(jx = 0, jy = 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), . . .]. The counting rule or

generalized Pauli principle applicable to this case dictates that no more than one elec-

tron can occupy three consecutive orbitals, respecting periodic boundary conditions

in j. There are three different ways of distributing 4 electrons over 12 orbitals re-

specting these rules. Summing the total momenta we obtain the three total momenta

(jx, jy) = (2, 0), (2, 1), (2, 2). Comparing this to the specific case of the triangular

lattice CI, such as presented in Fig. 7.7, which has the appropriate system size and

number of electrons, using that j = jx ·Ny + jy, we observe that the counting agrees

with numerical data.

We conclude this chapter by mentioning two features of Chern Insulator and Frac-

tional Chern Insulator models that clearly set them apart from the continuum Landau

level problem in an external magnetic field. In Chapter 1 it was demonstrated that

each filled Landau level contributes e2/h to the Hall conductivity and a Landau level

therefore has Chern number one. Chern insulators mimic this in the sense that an

electronic band has nonzero Chern number. While the Chern number of an elec-

tronic band in most CIs is indeed one, it is possible to construct a model in which

Chern bands have higher Chern number. These bands are topologically distinct from

Landau levels, as they differ in topological index. This allows for the possibility to

study Fractional Quantum Hall physics starting from a Chern band with higher Chern

number, a possibility which does not exist for magnetic field induced Landau levels.

A second intriguing generalization of ordinary Fractional Quantum Hall physics

is to consider Quantum Spin Hall insulators instead of Chern Insulators. For the

present purpose, a Quantum Spin Hall insulator may be thought of as two copies of

a Chern insulator, with opposite Chern character the spin-up and spin-down states

(assuming there is an invariant spin-rotation axis). Combining CIs in such a way

restores time-reversal invariance and adding interactions to a fractionally filled band

may lead to a time-reversal invariant analog of incompressible fractional quantum

Hall liquids.

These two examples of possible generalizations point to exciting potential of FCIs

to uncover new physics and lead to the discovery of new states of matter.



112 Triangular lattice Fractional Chern Insulator model


