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C H A P T E R 6

t2g TRIANGULAR LATTICE SYSTEMS

6.1 Introduction

The Integer Quantum Hall (IQH) effect [75] is a prime example of an electronic

state that cannot be classified within the traditional framework of symmetry break-

ing, but is instead characterized by a topological invariant [16]. It is by now theo-

retically well established that an external magnetic field is in principle not needed

and that states within the same topological class as IQH states can be realized in

lattice models, if time-reversal symmetry is broken by other mechanisms, e.g., by

complex electron hoppings [76]. Related topologically nontrivial Quantum Spin-Hall

(QSH) states even occur in systems where time-reversal symmetry is not broken at

all [1, 3, 4, 72, 127], see Refs. [12, 111] for reviews. At present, many intriguing fea-

tures intrinsic to topologically non-trivial states have been observed in the absence

of magnetic fields, such as the metallic Dirac cones at the surface of a topological

insulator [74, 128], or the QSH effect in quantum wells [6, 112].

Fractional Quantum Hall (FQH) states [10] are topological states that can be seen

as composed of quasi-particles carrying an exact fraction of the elementary electronic

charge [114]. Apart from the fundamental interest in observing a quasi-particle that

behaves in many ways like a fraction of an electron, some FQH states also have

properties relevant to fault-tolerant quantum computation [129]. Very recently [87,
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Figure 6.1: Triangular perovskite lattice and t2g orbitals. Oxygen octahedra are indi-

cated by lines, with black lines illustrating the front facets. Thick dotted (dashed,

solid) lines indicate nearest-neighbor bonds along lattice vector a1 (a2, a3). (a)

Shows two dxy orbitals (top) and one dxz and dyz orbital (bottom). In (b), the orbitals

reflecting the three-fold lattice symmetry are shown: The two e′g orbitals (bottom),

which differ by their complex phases, will turn out to be half filled, while the a1g
orbital (pointing out of the plane, see top) forms nearly flat bands with non-trivial

topological character that can support spontaneous FQH states.

108, 113], it was suggested that lattice-FQH states [115] may similarly arise without

a magnetic field, in fractionally filled topologically nontrivial bands.

In contrast to the IQH and QSH effects, which can be fully understood in terms

of non-(or weakly-)interacting electrons, interactions are an essential requirement for

FQH states, which places demanding restrictions on candidate systems: One needs a

topologically nontrivial band that must be nearly flat – similar to the highly degener-

ate Landau levels – so that the electron-electron interaction can at the same time be

large compared to the band width and small compared to the gap separating it from

other bands [87,108,113]. If the requirements can be fulfilled, however, the tempera-

ture scale of the FQH state is set by the energy scale of the interaction. This can allow

temperatures considerably higher than the sub-Kelvin range of the conventional FQH

effect, which would be extremely desirable in view of potential quantum-computing

applications.

In all recently proposed model Hamiltonians [87, 106, 108, 113, 130, 131], the

topological nature of the bands was introduced by hand and model parameters were

carefully tuned to obtain very flat bands. On the other hand, topologically nontrivial

bands can in principle emerge spontaneously in interacting electron systems [84],

e.g., for charge-ordered systems [132] or for electrons coupling to spins in a non-

coplanar magnetic order [78, 133]. We demonstrate here that such a scenario indeed

arises in a Hubbard model describing electrons with a t2g orbital degree of freedom

on a triangular lattice: a ground state with topologically nontrivial and nearly flat

bands is stabilized by onsite Coulomb interactions, and upon doping the flat bands,

longer-range Coulomb repulsion induces a FQH state.
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6.2 t2g orbitals on the triangular lattice

The building blocks of our system are oxygen octahedra with a transition-metal (TM)

ion in the center, the most common building block in the large and versatile mate-

rial class of TM oxides. In this case the local symmetry around a TM ion is cubic,

with ligand oxygens forming an octahedron, as depicted in Fig. 6.2(a). This splits

the degeneracy between the d levels, because the two eg orbitals point toward the

negatively charged oxygens, while the three t2g levels have their lobes in between.

Consequently, the energy of eg levels is higher. Depending on the total electron fill-

ing, the valence states may be found in either manifold. We are here discussing the

situation where the three t2g levels share 2.5 to 3 electrons and the eg levels are empty.

Furthermore, we consider the case of a layered triangular lattice, as can be realized in

compounds of the form ABO2.

In this geometry, the octahedra are edge sharing and electrons (or holes) can

hop from one TM ion to its neighbor either through direct overlap or via the lig-

and oxygens. The hopping symmetries can be most easily worked out using the

usual basis functions for the t2g states, |xz〉, |yz〉, and |xy〉 [124, 125] and following

Refs. [134,135]. Considering hopping for bonds along the ~a1 direction and choosing

the local coordinate system such that this corresponds to the (1, 1) direction in the

x-y plane, one finds that direct hopping td is only relevant for the xy orbital and con-

serves orbital flavor. Due to the 90◦ angle of the TM-O-TM bond, oxygen-mediated

hopping t0 is, on the other hand, mostly via the oxygen-pz orbital and mediates pro-

cesses between xz and yz states, thereby always changing orbital flavor. Hoppings

along the other two, symmetry-related, directions ~a2 and ~a3 are obtained by symme-

try transformations.

These hoppings can then be expressed in orbital- and direction- dependent matrix

elements tα,β~aj
, where α and β denote orbitals (xz, yz, and xy) and ~aj the direction.

They are given by

T̂~a1 =




tdd 0 0
0 0 t0
0 t0 0



 , T̂~a2 =




0 0 t0
0 tdd 0
t0 0 0



 ,

T̂~a3 =




0 t0 0
t0 0 0
0 0 tdd



 (6.1)

for NN bonds along the three directions ~a1, ~a2, ~a3. The two hopping processes are

expected to be of comparable strength, but with |td| . |t0| for 3d elements, and will

typically have opposite sign. [125]

If the width of a triangular layer made of octahedra is compressed (extended),

the energy of the highly symmetric orbital state |a1g〉 = (|xz〉+ |yz〉+ |xy〉)/
√
3 is
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raised (lowered) with respect to the remaining orbital doublet (e′g), see Fig. 6.2(b) for

illustration. This energy shift can be written as

ĤJT = −∆JT(n̂eg+ + n̂eg− − 2n̂a1g )/3 (6.2)

and depends on the Jahn-Teller effect as well as on the lattice. [125] Especially for

large splitting between a1g and e′g states, which may also be enhanced through on-

site Coulomb interactions, see Section 6.3 and also 7.2, it is more appropriate to

use a basis that reflects the triangular lattice symmetry. We thus go over into the

(a1g, e
′
g,1, e

′
g,2) basis, which is done via [125]




a1g
e′g,1
e′g,2



 = Û




xz
yz
xy



 =
1√
3




1 1 1
1 ei2π/3 e−i2π/3

1 ei4π/3 e−i4π/3








xz
yz
xy



 . (6.3)

The transformed hopping matrices T̃~ai are then obtained from Eq. (6.1) as

T̃~a1 = Û †T̂~a1Û =
1

3




3t0 + δt δt δt
δt δt 3t0 + δt
δt 3t0 + δt δt



 ,

T̃~a2 = Û †T̂~a2Û =
1

3




3t0 + δt δt ω δt ω−1

δt ω−1 δt (3t0 + δt)ω
δt ω (3t0 + δt)ω−1 δt



 ,

T̃~a3 = Û †T̂~a3Û =
1

3




3t0 + δt δt ω−1 δt ω
δt ω δt (3t0 + δt)ω−1

δt ω−1 (3t0 + δt)ω δt



 , (6.4)

where δt = tdd − t0 and ω = ei2π/3. Observe that the intra-orbital hopping of the

a1g state is the same in all three lattice directions, as expected for a1g symmetry.

However, we also see that hopping elements mix all three orbitals. We set here n < 3
and choose t > 0 [125] as unit of energy, but analogous results hold for n > 3, t < 0,

and tdd → −tdd, ∆JT → −∆JT due to particle-hole symmetry.

6.3 Multi-orbital interacting model

In TM oxides, Coulomb interaction is substantial compared to the kinetic energy of

t2g orbitals and spin-orbital physics induced by correlations are known to be rich in

t2g systems on triangular lattices [124, 136]. We take into account the onsite inter-

action including Coulomb repulsion U (intra-orbital) and U ′ (interorbital) as well as
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(a) (b)

Figure 6.2: (a) Illustration of a triangular-lattice plane built of edge-sharing oxygen

octahedra. (b) The five d orbitals of the transition-metal ion in the center are split

into an eg doublet and a t2g triplet due to the local cubic symmetry; the latter is

further split into one a1g state and an e′g doublet. (The splitting between the latter is

exaggerated here for visibility.)

Hund’s-rule coupling J . The Hamiltonian corresponding to the kinetic energy of the

t2g electrons is given by

Ĥint =
∑

ij,αβ

tαβij ψ̂
†
iασψ̂jβσ + hc (6.5)

where the matrix tαβij depends on the direction and orbital flavor and is constructed

from the previously explicitly defined T̃~ai . The full Coulomb interaction interaction

for equivalent t2g orbitals reads

Ĥint = U
∑

i,α

n̂iα↑n̂iα↓ + (U ′ − J/2)
∑

i,α<β

n̂iαn̂iβ − 2J
∑

i,α<β

~siα · ~siβ

+J ′
∑

i,α<β

(
ψ̂†
iα↑ψ̂

†
iα↓ψ̂iβ↓ψ̂iβ↑ + hc

)
(6.6)

where U = U ′+2J and J ′ = J holds in the case of equivalent t2g orbitals. The spin

operators ~siα are defined as

~siα = ψ̂†
iασ~σσσ′ ψ̂iασ′ . (6.7)

We concentrate on the regime of interest, where the a1g orbital is separated from the

eg doublet by a sizable ∆JT and does not have to be equivalent. As long as intraor-
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bital interaction (controlled by U ) and Hund’s rule coupling (controlled by J) dom-

inate over interorbital interaction (U ′ − J/2) and crystal-field splitting (∆), doubly

occupied orbitals will be suppressed and the last term in Eq. (6.3) will consequently

not be important and hence neglected.

To study the magnetic and ordbital ordering of these t2g orbitals on the triangular

lattice we employ a mean-field approximation with a decoupling into expectation

values of densities 〈n̂iασ〉 = 〈ψ̂†
iασψ̂iασ〉 for site i, orbital α, and spin σ [30,137]. For

the interacting term ~siα ·~siβ the fact that we only keep densities has the consequence

that

−2J
∑

i,α<β

~siα · ~siβ → −2J
∑

i,α<β

ŝziαŝ
z
iβ . (6.8)

This apparent breaking of SU(2) invariance can be restored by defining the spin

quantization axis locally. The fact that the spin-quantization axis is not the same at

all sites implies that the hopping no longer conserves the new spin. Instead, hopping

acquires as spin-dependent factor tαβij → tαβσσ
′

ij = tαβij u
σσ′

ij , [28] with

u↑↑ij = cicj + sisje
−i(φi−φj), (6.9)

u↓↓ij = cicj + sisje
i(φi−φj), (6.10)

uσσ̄ij = σ(cisje
−iσφj − cjsie

−iσφi),

where σ̄ = −σ and ci = cos θi/2, si = sin θi/2 and the set of angles {θi} and

{φi} are the polar and azimuthal angles corresponding to {~si}, respectively. As one

can see, these effective hoppings can become complex, and it has been shown that

non-coplanar spin configurations can endow the electronic bands with a nontrivial

topology. [30,85] Additionally, the itinerant electrons mediate an interaction between

the localized spins, which typically competes with antiferromagnetic spin-spin inter-

actions; on frustrated lattices, this competition can resolve itself in non-coplanar –

and thus topologically nontrivial – phases [30–32, 100]. There is no reason for spins

in different orbitals, but on the same site, to point in different directions, as the only

interactions between spins are FM, i.e., we can use the same local quantization axis

for all orbitals, which is why we decomposed tαβij → tαβij u
σσ′

ij . In the case of doubly

occupied orbitals, one spin can be seen as lying antiparallel and from now on “↑”

(“↓”) denotes a spin parallel (antiparallel) to the local quantization axis.
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The mean-field decoupling then takes the specific form

U
∑

i,α

n̂iα↑n̂iα↓ → U
∑

i,α

〈n̂iα↑〉n̂iα↓ + n̂iα↑〈n̂iα↓〉 − 〈n̂iα↑〉〈n̂iα↓〉

(U ′ − J

2
)
∑

i,α<β

n̂iαn̂iβ → (U ′ − J

2
)
∑

i,α<β

〈n̂iα〉n̂iβ + n̂iα〈n̂iβ〉 − 〈n̂iα〉〈n̂iβ〉

−2J
∑

i,α<β

ŝziαŝ
z
iβ → −2J

∑

i,α<β

〈ŝziα〉ŝsiβ + ŝziα〈ŝziβ〉 − 〈ŝziα〉〈ŝziβ〉 (6.11)

Due to the last term Eq. (6.3), an electron in orbital β feels a FM coupling to a “clas-

sical localized spin” with length
∑

α6=β〈ŝiα〉 that points along the local quantization

axis.

6.4 Mean field phase diagram

We use numerical optimization routines to find the spin pattern with the lowest en-

ergy among all orderings with unit cells of up to four sites, including all patterns

considered in Ref. [31] of the main text. We search for mean-field solutions which

break translational symmetry such that the unit cell is either tripled or quadrupled. In

each step, the mean-field energy is calculated self-consistently for a lattice of 16× 16
(four-site unit cell) or 24 × 16 (three-site unit cell). (For selected points in param-

eter space, we also used larger lattices and did not find a significant difference.) In

order to minimize the impact of our approximations on the symmetries of the orbital

degrees of freedom, we perform the mean-field decoupling in the {a1g, e′g+, e′g−} ba-

sis, where the symmetry between the half-filled e′g+ and the quarter-filled a1g orbitals

(for the fillings discussed here) is already broken by the crystal field. We verified that

decoupling directly in the {xy, xz, yz} basis, where all three orbitals have the same

electronic density, leads to qualitatively identical and quantitatively very similar re-

sults.

For simplicity, we present here results for J/U = 1/4 and the relation U ′ =
U − 2J between the Kanamori parameters was used, but we have verified that the

results presented remain robust for other choices.

For wide parameter ranges (see below), the ground state is the non-coplanar spin-

chiral phase illustrated in Fig. 6.4(a,b). As demonstrated in the context of the Kondo-

lattice model [30, 31], this magnetic order leads to topologically nontrivial bands,

which can also be seen in the one-particle bands shown in Fig. 6.4(c). The chemical

potential lies within the a1g states of the lower Hubbard band, where the electron spin

is mostly parallel (labelled by ↑) to the direction defined by the spin-chiral pattern.
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Figure 6.3: Stability of the spin-chiral phase and flatness of the topological bands

depending on parameters of the Hamiltonian. In (a), shaded areas in the tdd-∆JT

plane indicate a spin-chiral ground state Fig. 6.4(a,b) for U/t = 12, white areas have

a different ground state. Shading indicates the figure of merit M for the flatness of

the upper chiral subband, bright thick lines bound the region with M ≥ 10. (b)

shows M depending on tdd for selected sets of U and ∆JT. Where the “Mott gap”,

which separates the flat topologically non-trivial band from the upper Hubbard band,

becomes very small, M is determined by the minimal gap separating the band of

interest from other bands. J = U/4 and t = 1 were used in all cases.

Dashed and dotted lines decorate states living on the top and bottom edges of a cylin-

der, they cross the chiral gap exactly once as one left- and one right-moving edge

mode, indicating the different Chern numbers associated with the two bands directly

above and below the chemical potential.

Figure 6.4(c) also indicates that the upper chiral subband has a very small width,

∼ 14 times smaller than the chiral gap. One can quantify the band flatness by a figure

of merit M given by the ratio of the gap to the band width. Its dependence on various

parameters of the Hamiltonian is shown in Fig. 6.3. It peaks at M > 40, but the

more striking observation is that it is above 5 or even 10 for wide ranges of U , ∆JT

and tdd, in contrast to many other proposals that require carefully fine-tuned parame-

ters [87, 104, 106, 108, 113, 130, 131]. Nearly flat chiral bands are thus very robust in

this system and both their topological character and their flat dispersion emerge spon-

taneously with purely onsite interaction and short-range hopping, without spin-orbit
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Figure 6.4: (Color online) Spin-chiral magnetic phase with topologically nontrivial

bands stabilized by onsite Coulomb interactions in t2g electrons on a triangular lat-

tice. (a) Chiral magnetic order, the sites of the unit cell are labeled by 1 to 4. (b) The

spins on the four sites can be seen as pointing to the corners of a tetrahedron, i.e., the

pattern is non-coplanar. (c) One-particle energies on a cylinder (periodic boundary

conditions along x) in the mean-field ground state of the t2g multiorbital Hubbard

model, which is given by the pattern shown in (a). States drawn in black (grey) have

more (less) than 33% a1g character, dashed and dotted lines indicates edge states with

more than 33% of their weight on the top (bottom) row of sites. The arrows ↑ (↓) in-

dicate states with electron spin mostly (anti-)parallel to the local quantization axis,

which can be seen as the lower (upper) Hubbard band. The filling is 2.5 electrons per

site, slightly less than half filling. Parameters used were t = 1, tdd = 0, U/t = 12,

J/t = 3, ∆JT/t = −6. The figure of merit M , which is given by the ratio of the gap

separating the two a1g subbands of the lower Hubbard band and the band width of

the highest subband of the lower Hubbard band, is M ≈ 14.
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coupling or any explicit breaking of time-reversal symmetry.

In order to understand the origin of the spin-chiral state, it is helpful to look at the

one-band Kondo-lattice model (KLM), which describes itinerant electrons coupled to

localized spins. The KLM supports spin-chiral phases because of frustration between

ferromagnetism (driven by double exchange, i.e., the kinetic energy of the electrons)

and antiferromagnetism (driven by superexchange between the localized spins) on

many frustrated lattices like the triangular [30–32, 100], pyrochlore [33], and face-

centered cubic [29] lattices. Our model can be related to the KLM by noting that the

half-filled e′g levels are far from the chemical potential and act as a localized spin to

which the electrons in the a1g orbital are coupled via Hund’s rule coupling. The anti-

ferromagnetic superexchange arises through excitations into the upper Hubbard band.

Consequently, it is suppressed by a larger Mott gap and the ground state becomes fer-

romagnetic for U & 24|t|, as in the KLM with a large Kondo gap [31,100]. In a large

window 6 . U/|t| . 24, the balance of kinetic energy and superexchange stabilizes

a spin-chiral ground state and flat bands with M > 5 are found for a window of

8 . U/|t| . 20.

Finally, we note that the fact that onsite interactions U and J are only large, but

not infinite, is important for the spin-chiral ground state: For very large U and J ,

the ground state becomes a ferromagnet. [107] This can be related to the fact that

the Kondo-lattice model requires either finite JKondo [31] or additional AFM inter-site

superexchange [32] to support a spin-chiral instead of a FM state. At finite onsite in-

teractions, virtual excitations with doubly occupied e′g orbitals are possible and lead

to second-order processes that are similar to the effective longer-range hoppings dis-

cussed above. In such a process, an e′g electron hops into an occupied e′g state at a

NN site, creating a (virtual) intermediate state with energy ∝ U + J ≈ U ′ +3J , and

hops back in the next step. Such a process yields an energy gain ∝ t2e′g/(U + J) and

is only possible if the spins of the two involved electrons, which occupy the same or-

bital in the intermediate state, are opposite. The mechanism thus effectively provides

the needed AFM intersite superexchange and the spin-chiral state becomes stable for

wide parameter regimes, including ranges supporting nearly flat upper chiral sub-

bands. [107]

6.5 Conclusions

The possibility of a spontaneous FQH effect without a magnetic field is currently

intensly discussed, and various models have been suggested [87, 104, 106, 108, 113,

130, 131]. In these proposals, the necessary topological character of the bands was

introduced by hand, the flatness of the bands needed fine-tuning and the underlying

lattices were often rather exotic; an experimental realization appears therefore chal-
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lenging. We have shown here that in strongly correlated t2g orbitals on a triangular

lattice, bands with the desired properties emerge spontaneously for wide parameter

ranges and support FQH ground states. Both t2g systems and triangular lattices occur

in various TM oxides, and signatures of the unconventional integer QH state have

been reported for a triangular-lattice palladium-chromium oxide [80]. This harbors

the prospect that a suitable material can be synthesized in this highly versatile ma-

terial class. As such a material is by default strongly correlated, one also naturally

expects an inter-site Coulomb repulsion that is strong enough to stabilize spontaneous

FQH states in the absence of a magnetic field.
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