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C H A P T E R 3

THE HONEYCOMB LATTICE MAGNET

3.1 Introduction

The physics of the KLM on non-frustrated lattices, such as the square and cubic one,

has been studied extensively. In particular the limit of strong coupling and large

localized moments, where the KLM goes over into the double-exchange (DE) model,

is directly relevant to the colossal magnetoresistance effect in perovskite manganites

[28,41–45]. In such cases, the competition between DE and antiferromagnetic (AFM)

superexchange can lead to canted spin states or phase separation [28]. Although the

honeycomb lattice is also bi-partite, it has the smallest possible coordination number

for proper 2D lattices. That the honeycomb lattice can support physical phenomena

fundamentally different from square lattices, is illustrated by recent Quantum Monte

Carlo calculations [46], which identify a novel spin-liquid phase for the Hubbard

model on the honeycomb lattice, a finding supported by analytical studies [47–49].

In this chapter, we investigate the consequences of the competition between AFM

superexchange and ferromagnetic (FM) DE on the honeycomb lattice. We find that

two exotic ground states exist between the trivial, fully FM and AFM phases. In the

first, nearer to the FM state, the spins self-organize into FM hexagons that are coupled

antiferromagnetically. Since the hexagonal rings form a frustrated triangular lattice,

their order is reminiscent of the Yafet-Kittel state [50]. The competition between
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isotropic magnetic interactions thus causes geometric frustration to emerge in a non-

frustrated lattice.

For slightly stronger AFM interactions, we find the exact groundstate to consist

of independent FM dimers containing one electron each. Apart from the require-

ment that the alignment of adjacent dimers be AFM, they are independent. The

groundstate of this N -spin system therefore has a high degeneracy ∝ 2
√
N . While

the macroscopic degeneracy ∝ eαN in (spin) ice is caused by the local symmetry

of the frustrated tetrahedra [51, 52], our
√
N exponent indicates the presence of an

‘intermediate’ symmetry – a symmetry between local and global [53]. It is remark-

able that this highly degenerate groundstate manifold arises as an emergent effect in

a Hamiltonian that itself does not have such a symmetry.

In many materials, the essence of the electronic structure is captured by inter-

acting spins and electrons on a honeycomb lattice. Interactions between impurity

magnetic moments on the honeycomb lattice of graphene have been intensely stud-

ied in a Ruderman-Kittel-Kasuya-Yosida (RKKY) framework [54–56] and using the

KLM [57]. Going beyond RKKY is even more important in transition metal oxides,

e.g., Bi3Mn4O12(NO3) [58–62] or Li2MnO3 [63], with Mn ions on a honeycomb

lattice.

3.2 Model and method

The Hamiltonian corresponding to the one-band DE model in the presence of com-

peting AFM superexchange interactions on a honeycomb lattice is

H = −
∑

〈ij〉
tij(ψ̂

†
i ψ̂j +H.c.) + JAF

∑

〈ij〉

~Si · ~Sj , (3.1)

where ψ̂†
i and ψ̂i are the fermionic creation and annihilation operators, respectively.

In accordance with the DE scheme these fermions have their spin aligned with the on-

site spins ~Si. The on-site core spins are treated as classical spins with |~Si| = 1 and

thus can be specified by their polar and azimuthal angles (θi, φi). Both sums are over

nearest neighbors. Due to the alignment of electron spin to the core spins, the hopping

amplitude depends on the direction of the core spins, tij = t0[cos(θi/2) cos(θj/2)+
sin(θi/2) sin(θj/2)e

−i(φi−φj)] [28]. The strength of the AFM super-exchange is

given by JAF and all energies are in units of the hopping amplitude t0. To guar-

antee an unbiased search for groundstate candidates, we employ a well-established

hybrid method of exact diagonalization (ED) for the bilinear fermionic part of the

Hamiltonian and Monte Carlo (MC) for the classical spins [28]. Each MC config-

uration is defined by a given core spin texture and Markov chains are generated by
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Figure 3.1: Schematic view of (a) the honeycomb lattice and (b) the brick-wall

lattice having the same topology.

diagonalizing the fermionic problem for each configuration update. We also make

use of the travelling cluster approximation (TCA), which has proven its validity and

success in earlier studies on a similar class of models [43–45], to go to larger lattice

sizes. We report here results based on calculations on anN = 122 honeycomb lattice,

using a cluster of size Nc = 62. In the MC routine we use ∼ 104 steps for equilibra-

tion and the same number of steps for thermal averaging. We focus on the case of a

half-filled band, which refers to 1/2 an electron per site, equivalent to quarter-filling

in the spinful problem. For selected parameter values, the MC procedure was further

refined by an optimization routine that diminishes thermal fluctuations [64].

To identify the magnetically ordered states, we calculate the spin structure factor

S(~q) =
1

4N2

∑

i,j

〈~Si · ~Sj〉ei~q·(~ri−~rj), (3.2)

where 〈. . .〉 is a thermal average and ~ri is the position space vector of site i. For a

clear understanding of the real-space structure of the magnetic states it is helpful to

look at S(~q) on a square geometry [see Fig. 3.1(b)]. A specific long-range ordering

is expressed as the point in the Brillouin zone where the structure factor shows a

peak. To analyze the electronic properties we compute the density of states (DOS) as

D(ω) = 〈 1
N

∑
k δ(ω− ǫk)〉 and approximate the delta-function by a Lorentzian with

broadening γ.

3.3 Results

In the absence of super-exchange interaction (JAF = 0), the spins order ferromagnet-

ically, as expected from the DE mechanism. The fermionic problem is then equivalent
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to non-interacting spinless electrons on a honeycomb lattice, giving rise to a disper-

sion and DOS that is well-known from graphene [see Fig. 4.2(a)]. Introducing a

small JAF still leads to a FM ground state. At JAF ≈ 0.14, the FM state becomes

unstable and gives way to a state with S(~q) peaked at 2
3 (π, 0) (and the points related

to it by symmetry). and with the peculiar four-peak DOS shown in Fig. 4.2(b). Real-

space snapshots show that a superlattice formed of hexagons emerges at low temper-

atures T , as depicted in Fig. 3.3(a). This result was corroborated by zero-temperature

optimization of the spin pattern. Spins within one hexagon are almost FM, the al-

lowed energies for electrons moving on a six-site ring are −2t0 cos 0 = −2t0 and

−2t0 cosπ/3 = −t0, with twice as many states at −t0, which gives precisely the

DOS seen in Fig. 4.2(b). Coupling between the hexagons is AF, but since they oc-

cupy a frustrated triangular lattice, see Fig. 3.3(a), perfect AFM order is not possible.

The hexagons instead are at an angle of ≈ 2π/3, corresponding to the Yafet-Kittel

state [50] well known for the triangular lattice, leading to the signals at 2
3 (π, 0) in

S(~q). Thus a geometrically frustrated triangular lattice emerges spontaneously from

isotropic, competing interactions on the non-frustrated honeycomb lattice.

For 0.18 ≤ JAF . 0.25, we find a state consisting of classical dimers. The dimers

each consist of two spins aligned in parallel, they cover the lattice in such a way that

the neighboring dimers are anti-parallel with respect to each other. In Fig. 3.3(b) and

3.3(c) we show two possible dimer configurations. In this spin texture, the electron

kinetic energy reduces to that of uncoupled two-level problems, having only two

eigenenergies ±t0. The DOS is therefore given by D(ω) = δ(ω − t0)/2 + δ(ω +
t0)/2, in excellent agreement with MC calculations [see Fig. 4.2(c)]. The dimer state

can be understood as a trade-off between the FM ordering and the AFM ordering:

the electrons are allowed to populate all the −t0 levels (which is more favorable

compared to AFM) and the spins are anti-parallel with respect to two of their nearest

neighbors (which is more favorable compared to FM).

Interestingly, the dimer ground state of this quantum system has a macroscopic

degeneracy, i.e., there is a macroscopically large number of ways to cover the lattice

by dimers such that the neighboring dimers are anti-parallel. One way to see the de-

generacy is to start covering lattice rows in Fig. 3.1(b) by dimers. It is easy to see

that having fixed the dimer pattern in the 1st row, there are two independent ways of

covering each subsequent row, giving 2
√
N−1 states for a N -site lattice. The fact that

there is thus no long-range order along the y direction of the brick-wall is reflected

in S(~q), which becomes finite along lines in momentum space, as in compass mod-

els [65–68]. In the 2D compass model, different degenerate configurations can be

reached by flipping a row of spins. The corresponding
√
N operators commute with

the compass Hamiltonian and thus define an intermediate symmetry, i.e., between a

local, gauge-like (∝ eN ) symmetry and global one (independent of N ) [53]. The
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Figure 3.2: (a)-(d) DOS at low, intermediate and high temperatures for different

values of JAF (γ = 0.04). In (a) the T = 0.001 curve shows the DOS of free

fermions on a honeycomb lattice in the thermodynamic limit. In (d) the T = 0.001
curve represents a gapped insulating phase, the seemingly finite DOS at EF being a

broadening effect. Except for the FM phase, all ground states are gapped.

magnetic order parameter that obeys the intermediate symmetry is consequently of

nematic type. In the dimer state, the minimal symmetry operations involves transla-

tion of all spins in two adjacent zig-zag rows by one lattice spacing, σij 7→ σij+1

[σij is the spin at site (i, j)]. An example for two dimer configurations connected

by such an operation is given in Figs. 3.3(b) and 3.3(c), where the second and third

rows were shifted. However, this operator does not commute with the Hamiltonian

Eq. (4.1), and the intermediate symmetry is thus rather a property that emerges in

the system’s ground state, similar to the case of striped phases at fractional filling in

the regime of narrow bandwidth and small Jahn-Teller coupling in a model used for

manganites [69]. This intermediate macroscopic degeneracy should lead to a large

specific heat at low temperature.

For strong super-exchange coupling, there is a continuous way in which the dimer

state can approach the AFM ordered state, captured by a canting angle θ [see Fig.
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Figure 3.3: (a) Snapshot from MC simulations supplemented by optimization rou-

tines showing an emergent triangular lattice (black circles) formed by FM hexagons

at JAF = 0.14. Spins within each hexagon are almost FM, a small canting angle

between groups of three is illustrated by shading. The colored spins illustrate the

2π/3-angle order of the Yafet-Kittel state. Schematic view of, (b)-(c) two dimer

states related by a translational symmetry (see text), and (d) a canted dimer state.

3.3(d)], which is the angle between the two spins forming a dimer in the pure dimer

phase. The spins remain antiparallel to those of the neighboring canted dimers.

In this way, the two-level dimer systems remain uncoupled. The hopping ampli-

tude between the two spins in the dimer is renormalized by the DE mechanism to

t0 cos(θ/2). The DOS for a canted dimer state is consequently given by D(ω) =
δ(ω − t0 cos(θ/2))/2 + δ(ω + t0 cos(θ/2))/2, as can indeed be observed in the

DOS for JAF = 0.50 shown in Fig. 4.2(d). The canted-dimer groundstate has a gap

∝ cos(θ/2) at the chemical potential, which shrinks as θ approaches π for JAF → ∞.

At finite T , the two peaks widen and merge due to thermal spin fluctuations, leading

to a metal with reduced band width, see Fig. 4.2(d). This canted state retains the

macroscopic degeneracy inherent to the AFM dimer state discussed above – also this

ordering is therefore of nematic type.
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Figure 3.4: (a) T -JAF phase diagram at half-filling obtained by MC for a 12 × 12
lattice. (b) The energy of the various states: “alm. FM” refers to a spiral with the

longest wavelength supported by the lattice, converging to FM in the thermodynamic

limit. Similar finite-size effects are reported in doped 1D and 2D lattices [70]. “Hex”

denotes the emergent Yafet-Kittel order between hexagons depicted in Fig. 3.3(a),

the energy was optimized with respect to the canting angle within the hexagons.

“Dimers” and “C. Dim” are the highly degenerate FM and canted dimer states, and

“AFM” denotes perfectly AFM order. The black crosses are energies obtained by

unbiased MC and a subsequent energy optimization.

3.4 Discussion

Our results are in good agreement with elementary energy considerations. The energy

per site varies as 3JAF /2 and −JAF /2 for the FM and the dimer states, respectively.

This would imply a phase transition at JAF ≈ 0.15, the FM state is indeed stable for

JAF . 0.14 and the dimers for JAF & 0.18. In between, the emergent Yafet-Kittel

state, with a more complex energy dependence, is favorable, see Fig. 3.4(b). The

energy per site for the canted dimer state is −(2JAF − cos(θ)JAF + t0 cos(θ/2))/2.

By differentiating with respect to the canting angle θ, one easily obtains that canting

becomes favorable for JAF ≥ 0.25 and that the optimal energy is then given by

−3JAF /2−t20/(16JAF ). This is reflected in the behavior of the ordering temperature

for the dimer state, which starts decreasing at JAF = 0.25 [see Fig. 3.4(a)].

The results are summarized in Fig. 3.4. In the finite-T phase diagram Fig. 3.4(a),

phase boundaries for the FM and quasi-AFM regions are obtained by determining the

inflection point in the 〈M〉(T ) and 〈M〉(T ) (M denotes staggered magnetization)

curves. The onset of dimer and other phases is determined by tracking the temperature
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dependence of the spin structure factor and the characteristic features in the DOS.

Figure 3.4(b) compares the ground-state energies of the various phases and perfectly

agrees with the unbiased numerical data, indicating that we have identified the ground

states correctly.

In a full quantum treatment of the spin system additional quantum fluctuations

can affect the stability of these ordered phases. Here one anticipates the FM building

blocks (hexagons and dimers) to be robust as they are stabilized by a substantial DE

energy, and the FM state remains an eigenstate of the hexagon (dimer) for quantum

spins. The Yafet-Kittel ordering between the large total spins of the hexagons is ex-

pected to be more classical, and thus robust, than for S = 1/2, where it is found

for T → 0 [71]. If one can describe the magnetism of a dimer state by an effec-

tive NN AFM Heisenberg model, then this model remains the same if one performs

the operation illustrated in Fig. 3.3. The emergent symmetry would thus commute

with the effective low-energy Hamiltonian so that the corresponding degeneracies are

preserved.

3.5 Conclusions

We conclude that the isotropic double-exchangemodel with competing super-exchange

interactions on the non-frustrated honeycomb lattice has an unexpectedly rich phase

diagram with exotic magnetic phases. In one of these, FM rings become the essential

building blocks, which form a frustrated triangular lattice and are antiferromagneti-

cally coupled. The stabilization of such frustrated spin states on a bipartite honey-

comb lattice, without explicit frustration, is so far unique and an example of geomet-

rical frustration emerging from competing interactions. Another novel phase consists

of FM dimers ordered antiferromagnetically and has a 2
√
N degeneracy. This is remi-

niscent of compass models, but in the present case the corresponding symmetry is not

a property of the Hamiltonian given a priori, but rather a property that emerges in the

systems ground state [65–69]. These phenomena are not only relevant in a theoretical

context, immediately raising the question which other models share such features and

how further residual interactions might affect the degeneracy, but pertains in partic-

ular to honeycomb manganese oxides, which form a promising class of materials to

realize these novel types of highly frustrated states harboring macroscopic degenera-

cies.


