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Part I

Magnetism and the

Double-Exchange Model
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C H A P T E R 2

INTRODUCTION

2.1 Interacting electrons and spins

The Kondo lattice model (KLM) is probably the most celebrated starting point for

the investigation of the interplay between localized spins and itinerant electrons [25].

It provides the canonical explanation for the Kondo effect and for the heavy-fermion

behaviour observed in many materials [26]. Furthermore, the KLM and its cousin,

the double-exchange (DE) model, have proven very powerful in understanding and

explaining the properties of manganese-based oxides. The abundance of relevant

literature on this subject is nicely summarized in [27,28]. The manganese ion Mn3+

provides perhaps the best example of a (large) local spin interacting with an itinerant

conduction electron, which is a consquence of the orbital degeneracy present in 3d
systems and the particular valence of Mn3+.

Motivated by the search for topologically non-trivial states of matter, several

groups have studied the itinerant KLM on frustrated lattices, such as the triangular

or the pyrochlore one, and have shown that due to the strong geometrical frustration

scalar-chiral types of magnetic ordering emerge [29–33]. In addition, the KLM has

rather recently come into focus as a good framework to address unusual transport

phenomena in spin ice pyrochlores [34–37].

All these distinct examples highlight the broad relevance and applicability of the

KLM to a wide range of material classes.
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2.2 Kondo Lattice and Double Exchange models

As already briefly introduced in chapter 1, the simplest Hamiltonian that captures the

interaction of itinerant electrons and spins is given by

Ĥ =
∑

ij

tijψ̂
†
iσψ̂jσ + JKondo

∑

i

~Si · ~si, (2.1)

where ~si is the spin of the itinerant electron and ~Si represents the localized spin.

The coupling may be anti-ferromagnetic (AFM) if JKondo > 0 or ferromagnetic (FM)

if JKondo < 0. Writing the electron spin in terms of the creation and annihilation

operators we arrive at the Hamiltonian

Ĥ =
∑

ij

tij ψ̂
†
iσψ̂jσ + JKondo

∑

i

ψ̂†
iσ
~Si · ~σσσ′ ψ̂iσ′ , (2.2)

which we may call the quantum Kondo Lattice model. In some cases it is important

to include an explicit AFM coupling of the localized spins , i.e. JAFM

∑
ij
~Si · ~Sj , in

order to capture a strong AFM tendency caused by superexchange processes.

Generally, the electron spin will be coupled to a localized spin of arbitrary length

S. In case S becomes large, it makes sense to approximate the local spin degree of

freedom by a classical spin variable. The assumption of classical spins is justified in

Mn based compounds, for instance, where the electron spin is coupled to a local spin

of length S = 3/2, consisting of three t2g spins perfectly aligned. In the rest of this

chapter we will work from this assumption as well, but just for the moment we keep

the theory general and write the combined action of electrons and spins as

S[ ~S, ψ̂†, ψ̂] = Ss[ ~S] + Se[ ~S, ψ̂†, ψ̂]. (2.3)

In this expression, the variables ~S , ψ̂† and ψ̂ should be understood as spin and fermion

coherent states. Ss[ ~S] is the Berry phase term of the spin coherent state path integral,

encoding its quantum nature. Its specific form is irrelevant for our purposes as we

will proceed to neglect quantum effects of the local spins. The electronic action is

simply given by Se =
∫ β
0
dτ [

∑
ψ̂†(∂τ − µ)ψ̂ + Ĥ], with β the inverse temperature.

With this action the partition function reads

Z =

∫
D[ ~S]

∫
D[ψ̂†, ψ̂] e−Ss−Se (2.4)

Indeed, for large spins S it is justified to neglect the time depedence of the spin field

and the Berry phase term Ss, and one is left with a bilinear fermionic action coupled
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to a classical time-independent field. Such an action is similar in its structure to

a Hubbard-Stratonovich decoupled Hubbard model with space-time dependent spin

quantization axis [38, 39], and as a result may be used to describe a very broad class

of phenomena. In the present case, where we model the interaction of electrons and

spins, we can use the bilinearity of the action to calculate the fermionic trace exactly,

Ze =

∫
D[ψ̂†, ψ̂]e−

∑
x,x′ ψ̄(x)Ĝ

−1(x,x′)ψ(x′) = Det [Ĝ−1]. (2.5)

The determinant still depends on the spin fields and the full partition function requires

an integration over the spin variables. For brevity we have collected all indices in the

variable x. The full fermionic Green’s function can be decomposed as

Ĝ−1(x, x′) = Ĝ−1
0 (x, x′) + K̂(x, x′), (2.6)

where Ĝ−1
0 (x, x′) denotes the free electron Green’s function (when they are not inter-

acting with the classical spins), and K̂(x, x′) denotes the Kondo coupling controlled

by JKondo.

Calculating the full partition function is still a difficult problem, even though we

can evaluate the fermionic trace in principle. In order to extract information from

the partition function and calcualte observables it is necessary to employ approxi-

mation schemes. In the following we discuss two limits that will play a key role in

the next two chapters. The first is the limit of weak-coupling, where we suppose

that JKondo/t ≪ 1. In this limit we may expand the fermionic determinant in the

Kondo coupling and obtain an effective free energy for the spins. In the other limit,

t/JKondo ≪ 1, allows for a perturbative expansion in the inverse of the Kondo cou-

pling, yielding an effectively spinless Hamiltonian, which depends on the classical

spin variables. The latter can be studied by numerical Monto Carlo simulations. We

note here that in the case of classical spins the sign of the Kondo coupling is immate-

rial.

2.2.1 Perturbation in JKondo/t

In case of weakly coupled conduction electrons and spins, JKondo/t ≪ 1, we can

expand the determinant Det [Ĝ−1] in powers of the small parameter JKondo/t. An

effective action, or free energy F , for the spins can be defined as e−βF = Det [Ĝ−1],
from which it easily follows that

F = − 1

β
lnDet [Ĝ−1] = − 1

β
Tr [ln Ĝ−1]. (2.7)
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Expanding this in the Kondo coupling strength and subtracting the bare electronic

part one obtains the general expression

F − F0 = F (2) + F (4) +O(J6
H). (2.8)

The second order term represents the conduction electron mediated spin-spin inter-

action and is generally refered to as the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction. Its explicit form is given by

F (2) = − 1

β
Tr [Ĝ0K̂Ĝ0K̂] = −J2

Kondo

∑

~p

χ0(~p) ~S(~p) · ~S(−~p) (2.9)

where the sum is over all momenta and

χ0(~p) =
∑

k,iω

Ĝ0(iω,~k + ~p)Ĝ0(iω,~k)/(βN) (2.10)

is the susceptibility, with N the number of lattice sites. Since we are dealing with

classical spins at this stage, the saddle-point of the spin effective action is simply

given by the maximum (or degenerate maxima) of the susceptibility.

In case the non-interacting electronic Fermi surface exhibits special structure,

such as nesting at a particular wave-vector ~Q, then this will be reflected in the sus-

ceptibility. A very illustrative example is the triangular lattice at filling n = 3/4,

where the bare Fermi surface is hexagon inscribed in the Brillouin zone hexagon [30].

The Fermi surface is nested by three inequivalent momentum vectors which lead to

logarithmically diverging susceptibility as function of temperature. The system gains

the most energy by using all three degenerate order parameter components equally,

as this fully gaps out the Fermi surface. In fact, the divergent susceptibility suggests

that electrons will self-organize spontaneously into a spin-density wave composed of

the three ordering vectors as a consequence of interactions. A mean-field decoupling

of an interacting Hubbard model, where the mean field takes the place of the local

moments, can be employed to test this hypothesis, which has indeed been confirmed

in case of the triangular and hexagonal lattices [30, 40].

2.2.2 Perturbation in t/JKondo

If the coupling between conduction electrons and spins is very strong then it makes

sense to focus on this Kondo coupling first and then proceed to ask how the itineracy

of the electrons alters the picture. It is straightforward to convince oneself that the

Kondo term mandates all electronic spins to be perfectly aligned with the local spins.

As the sign of the Kondo coupling does not matter for classical spins, we focus on

perfect alignment only without loss of generality.
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The assumption of perfect alignment of spins is accounted for in a convenient

way by defining the spin quantization axis locally on every site. For each site we

then has the spin states | ↑, (θi, φi)〉 and | ↓, (θi, φi)〉, where θi and φi are the polar

and azimuthal angles representing the spin ~Si. Transforming to the local quanti-

zation is achieved by the SU(2) representation of a rotation of the z axis to ~n =
(cosφi sin θi, sinφi sin θi, cos θi), which takes the form

U(θi, φi) = e−iφiσ
z/2e−iθiσ

y/2. (2.11)

By construction this rotation operator diagonalizes the spin-conduction electron in-

teractions,

U(θ, φ)σzU †(θ, φ) = ~S(θ, φ) · ~σ, (2.12)

at the cost of making the hopping processes spin-dependent in terms of the local

quantization. Explicit expressions of the matrix U and the spin-conduction electron

interaction ~S(θ, φ) · ~σ in terms of the angles (θi, φi) are

~S(θ, φ) · ~σ =

[
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

]
,

U(θ, φ) =

[
cos θ2 e−iϕ sin θ

2

eiϕ sin θ
2 − cos θ2

]
. (2.13)

With these explicit expression we can evaluate the hopping term in terms of the angles

{θi, φi}. The spin-dependent hopping matrix tσσ
′

ij , where σ and σ′ label spin-up and

spin-down in the local basis, becomes

tσσ
′

ij = tiju
σσ′

ij = tij
(
U †(θi, φi)U(θj , φj)

)
, (2.14)

where the angle-dependence is contained in the uσσ
′

ij functions, which can be read off

from the matrix product as

uσσij = cos
θi
2
cos

θj
2

+ sin
θi
2
sin

θi
2
eiσ(φj−φi)

uσσij = σ

(
cos

θi
2
sin

θj
2
e−iσφj − sin

θi
2
cos

θi
2
e−iσφi

)
. (2.15)

So far we have not made any approximations but just rewritten the problem in

terms of basis states obtained from diagonalizing the spin-conduction electron inter-

action. Under the assumption that JKondo/t is very large, we can integrate out the

spin-down states, as excitations into the spin-down sector of Hilbert space will be
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heavily penalized energetically. Integrating out the spin-down or anti-aligned states

yields an effectively spinless Hamtiltonian which reads

Ĥ =
∑

ij

tij(θij , φij)ψ̂
†
i ψ̂j + JAFM

∑

i,j

~Si · ~Sj , (2.16)

where

tij(θij , φij) ≡ tiju
↑↑
ij = tij(cos

θi
2
cos

θj
2

+ sin
θi
2
sin

θi
2
ei(φj−φi)). (2.17)

An AFM interaction between the localized spins is perturbatively generated at order

∼ t2/JKondo. This Hamiltonian, given in equation 2.16 is generally refered to as the

Double-Exchange (DE) model. It describes electrons strongly interacting with local-

ized spins in such a way that their spin is always tied to the local spin. The kinetic

part favors FM alignment of the local spins, as the electrons gain kinetic energy, in

such spin configuration. The AFM interaction, which generically models a perturba-

tively generated interactions between spins, or an intrinsic AFM interaction driven by

superexchange, obviously favors anti-ferromagnetism. It is the competition between

these two tendencies that is at the heart of the rich and sometimes unexpected physics

observed and predicted for systems with spin-electron interactions.

The DE Hamiltonian still depends parametrically on the spins and in order to

determine the spin-electron ground state or calcualte correlation functions, one must

still integrate over all spin configurations in the partition function. For classical spins

the path integral measure is simply an integration over the spin variables {θi, φi}, i.e.

∫
D[ ~S] =

N∏

i

(∫ π

0

dθi sin θi

∫ 2π

0

dφi

)
(2.18)

Calculating the partition function or correlation functions exactly or even analytically

is impossible and one must resort to numerical routines to extract information from

the system. The method of choice is classical Monte Carlo where the spin config-

uration space is sampled according to standard Monte Carlo techniques [27, 28]. In

these Monte Carlo simulations, the fermionic problem is diagolized exactly on a finite

cluster, which amounts to calculating the fermionic trace in the path integral exactly.

The fermionic trace then enters as a weight factor for the sampling of classical spin

configurations.


