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C H A P T E R 1

INTRODUCTION

The subject of this thesis is unconventional phases of matter in strongly correlated

materials.

1.1 Strong correlations and topological states of mat-

ter

In the course of the past decade or so, a new and exciting field of condensed matter

physics has opened up and expanded rapidly. It is the field of topological states of

matter, which is centered around a material class called the topological insulators.

The birth and subsequent development of this field was precipitated by a simple yet

profound question: does the existance of an energy gap uniquely define the insulating

state? It was believed that in a way, the atomic insulator (where electrons are uniquely

associated to an atomic site and do not move), the band insulator (where an integer

number of Bloch bands are filled and separated from empty bands by an energy gap)

and, for instance, the vacuum essentially define the same insulating state in the sense

that it takes a finite amount of energy to create an excitation in the ground state.

However, as was shown in a series of seminal papers [1–5], the mere existance of an

energy gap does not uniquely define the insulating state. It turns out that insulating

states may be classified according to a global poperty, that for a given Hamiltonian
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describing the insulating system, is obtained from the mapping from the Brillouin

zone to the space of occupied energy bands corresponding to the Hamiltonian.

This classification is rather different from the way in which we are used to think

about distinguishing phases of matter. The traditional way to distinguish phases of

matter is due to Landau and assumes the presence of a local order parameter which

represents the breaking of a symmetry. For instance, the crystalline solid breaks

the translational symmetry of the underlying quantum Hamiltonian, while the longe-

range magnetic order breaks rotational symmetry. The broken symmetry in a super-

conductor is related to the more subtle concept of gauge invariance. Hence, distinct

phases break different symmetries. In contrast, the additional quantum numbers insu-

lators may acquire in their ground state are given by a topological invariant, a global

quantity. This invariant does not change when the system is smoothly deformed. The

qualification smooth here pertains to the energy gap, which has to remain finite during

deformation.

As such, the quantum numbers connected to the topological invariant of the sys-

tem are insensitive to microscopic details, and the physical properties associated to

these quantum numbers are uniquely robust. The fundamental property of a topo-

logical insulator material is the presence of gapless boundary or edge excitations at

interfaces with topologically distinct systems, such as the vacuum itself. As the topo-

logical character cannot change without closing the energy gap, there must be gapless

states precisely at the interface between electronic systems with different topology.

Examples of this bulk-edge correspondence, which have been famously confirmed

in experiment, include the spin-filtered one-dimensional edge states of the Quantum

Spin Hall effect [6, 7] and the Dirac cone surface states of three dimensional time-

reversal invariant topological insulators [8, 9]. While these two examples, and many

others, can be understood from the theory of non-interacting electron band structure,

topological states of matter are by no means restricted to non-interacting or weakly

interacting systems. An increasing amount of attention is given to material systems

where interactions are important. Even more, topology and strong interaction have a

long and rich history. Indeed, the fractional quantum Hall effect [10] is a consequence

of electron-electron interaction and the quantum Hall liquids hosting this effect are

said to be topologically ordered [11]. The work reflected in this thesis is part of

the general effort to study and understand the role and consequence of topology in

(strongly) correlated materials.

In what follows, the very basis physics of topological states of matter is introduced

with a focus on aspects that are relevant to the remainder of this thesis.
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1.1.1 Integer and Fractional Quantum Hall effects

In this part of the introduction we review the basics of electrons in a (strong) magnetic

field with two purposes in mind. As the second part of this thesis deals explicitly with

lattice versions of both integer and fractional quantum Hall effects, some details of

the continuum versions will be helpful. In subsequent chapters an understanding will

then be developed of how they may be realized in a crystalline solid without external

fields. In addition, the quantum Hall effects, in particular the Integer one, are a good

starting point to uncover and explain the key role played by topology in electronic

structure theory [12].

Previously in this introductory chapter, we have noted that lattice fermion model

will be employed to describe electrons in solids. Here we briefly depart from that and

consider free electrons subject to a magnetic field without any reference to a periodic

crystal lattice. In fact, one of the questions addressed in this thesis is how and in

what form do the Integer and in particular the Fractional Quantum Hall effects of the

continuum description carry over to the crystal lattice description.

The Hamiltonian for free fermions in two dimensions is simply given by the ki-

netic energy term as

Ĥ =
1

2m

∑

α

p̂2α, (1.1)

where p̂α is the momentum operator canonically conjugate to the position operator

r̂α, α = x, y. In a magnetic field given by the vector potential Aα(r̂) we make the

Peierls substitution, which amounts to

Π̂α = p̂α − eAα(r̂) = −i~∂α + |e|Aα(r̂). (1.2)

This changes the Hamiltonian to simply to Ĥ =
∑

α Π̂
2
α/2m. Due to the presence

of the vector potential, the operators Π̂j do not commute between themselves but

instead are found to obey the canonical commutation relation

[Π̂α, Π̂β ] = [p̂α + |e|Aα(r̂), p̂β + |e|Aβ(r̂)]
= −i~|e|Fαβ (1.3)

where Fαβ = ∂αAβ−∂βAα is the field strength. We are interested in the situation of

a uniform magnetic field B perpendicular to the plane in which the electrons live, i.e.

the ẑ direction. In general the magnetic field is given by Bλ = ǫλµνFµν/2, meaning

that Fµν = ǫµνλBλ. In particular this implies for a uniform field Bz ≡ B in the

ẑ direction that [Π̂α, Π̂β ] = −i~|e|Bǫαβz. Defining the fundamental characteristic

length scale in the system, the magnetic length, as l =
√
~/(|e|B), we can write

[Π̂α, Π̂β ] = −i~2ǫαβz/l2. (1.4)
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Figure 1.1: (left) Schematic illustration of the (classical) electronic cyclotron orbits

in the presence of a magnetic field pointing in the z-direction. (right) Schematic il-

lustration of the electronic Landau levels, i.e. the equidistant quantized energy levels,

in the presence of a magnetic field.

Since Hamiltonian consists of the quadrature of operators obeying a canonical

commutation relation one can diagonlize the Hamiltonian in the same way as the

harmonic oscillator. We define the raising and lowering operators as

â† =
l√
2~

(Π̂x + iΠ̂y), â =
l√
2~

(Π̂x − iΠ̂y), (1.5)

which obay [â, â†] = 1, we simple derive that the Hamiltonian takes the form Ĥ =
~ωc(â

†â + 1
2 ) with ωc = |e|B/m the corresponding frequency. We have thus

achieved the diagonalization of the single-particle Hamiltonian, yielding energies

En = ~ωc(n + 1
2 ). Here n labels the energy levels, which are generally referred

to as Landau levels, n = 0 corresponding to the lowest Landau level (LLL).

However, to fully characterize the quantum problem and account for all degen-

eracies, it is helpful to quickly revisit the classical cyclotron orbits. Classicaly, the

position of a particle and its velocity in a circular orbit are given by

~r = ~R+ r0(cos(ωct), sin(ωct), 0),

~v = r0ωc(− sin(ωct), cos(ωct), 0) (1.6)

where ~R denotes the coordinates of the center of the orbit and r0 is the radius of

the orbit. Here ωc is the cyclotron frequency of the orbit, which is equal to one

used above. Classically momentum and velocity are related by me~v = ~p. Using
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equation (1.6) we may identify

px
meωc

= −r0 sin(ωct) =
l2Bpx
~

,

py
meωc

= r0 cos(ωct) =
l2Bpy
~

(1.7)

which has the consequence of Eq. (1.6) taking the simply form

~R = ~r − l2

~
(~p× ẑ). (1.8)

This relation between classical variables leads to the definition of the so-called guid-

ing center operators R̂x and R̂y in the quantum case as

R̂α = r̂α − l2

~
(~Π× ẑ)α = r̂α − l2B

~
ǫαβzΠ̂β . (1.9)

These guiding center operators obey the commutation relation

[R̂α, R̂β ] = il2ǫαβz (1.10)

In addition, it is a simple matter to demonstrate that the dynamical momentum oper-

ators and guiding center operators commute with one another

[R̂α, Π̂β ] = [r̂α − l2

~
ǫαµzΠ̂µ, Π̂β ] = i~δαβ + i~ǫαµzǫµβz = 0 (1.11)

This has the consequence that the guiding center operators commute with the Hamil-

tonian. One can construct momentum operators canonically conjugate to the guiding

center operators, which are defined as

K̂α = Π̂α − ~

l2
(ẑ × ~̂r)α = Π̂α − ~

l2
ǫαzβ r̂β . (1.12)

which are easily found to satisfy [R̂α, K̂β] = i~δαβ . In addition, in the same way as

above, the commutator with the dynamical momentum vanishes, [Π̂α, K̂β] = 0.

To summarize this brief exposition, the single-particle Hamiltonian may be diag-

onalized by constructing raising and lowering operators frmo the dynamical momenta

and both the guiding center operators and their canonically conjugate momenta com-

mute with the Hamiltonian. For electrons in a uniform magnetic field we expect

translational invariance to hold. When constructing operators that implement these

translations we cannot use the dynamical momenta as generators, since they do not
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commute with the Hamiltonian, i.e. [Π̂α, Π̂β ] = −i~2ǫαβz/l2. The momenta K̂α do

however commute with the Hamiltonian and the operator that implements a transla-

tion of a single particle by ~a is

T̂ (~a) = eiaαK̂α/~. (1.13)

The momenta K̂α do not commute between themselves, which has the profound con-

sequence that different translations do not commute with each other

[T̂ (~a), T̂ (~b)] = −2 sin

(
1

2l2
ẑ · (~a×~b)

)
T̂ (~a+~b). (1.14)

This commutation relation is known as the magnetic translation algebra or Girvin-

MacDonald-Platzman (GMP) algebra [13] and lies as the heart of Quantum Hall and

Fractional Quantum Hall physics [14]. In particular, it is precisely this relation that

is responsible for the Aharonov-Bohm phase electrons pick up when encircling mag-

netic flux.

The GMP algebra can be recast in a different form by first defining a density

operator based on the guiding center operators

ρ̂(~q) = eiqαR̂α , (1.15)

and since the guiding center operators are related to their conjugate momenta by the

relation

R̂α =
l2

~
ǫαzβK̂β (1.16)

one may easily verify that the density operators thus defined satisfy an algebra equiv-

alent to the one for the translation operators, given specifically by

[ρ̂(~q), ρ̂(~q′)] = −2 sin

(
1

2l2
ẑ · (~q × ~q′)

)
ρ̂(~q + ~q′). (1.17)

Hence, the GMP algebra is also satisfied by density operators constructed from the

guiding center operators. Why these play a crucial role in particular for the fractional

quantum Hall physics in the presence of interactions may be seen by considering the

electron density operators ρ̄(~p) = exp(ipαr̂α) projected into the lowest Landau level.

If P̂ is the projector into the LLL, it is a simple matter to verify that

P̂ eipαr̂α P̂ = e−q
2l2/4ρ̂(~q). (1.18)

We thus draw the consequential conclusion that the GMP algebra is obeyed by density

operators when they are projected to the lowest Landau level. It may be argued in a
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similar way that this holds for any Landau level labeled by n, however the LLL is the

most prominent one, in which the fractional quantum Hall effect is observed.

The GMP algebra is of great importance for the physics of both the integer and

the fractional Quantum Hall effect. Neglecting the interactions between electrons we

may express the contribution of Landau level n to off-diagonal Hall conductivity in

the form of the Kubo formula as [15]

σnxy =
e2~

im2
e

1

2πl2Nφ

∑

n′ 6=n

∑

m,m′

〈n,m|Π̂x|n′,m′〉〈n′,m′|Π̂y|n,m〉 − (x↔ y)

(En − En′)2
,

(1.19)

and using the relation Π̂α = ime[Ĥ, r̂α]/~ together with P r̂αP = R̂α for any Lan-

dau level, one can derive

σnxy = − ie2

2πl2Nφ~

∑

m

〈n,m|[R̂x, R̂y]|n,m〉 = e2

h
. (1.20)

We conclude that each filled Landau level contributes one quantum of e2/h to the Hall

conductivity [16]. This is a direct consequence of the underlying noncommutative

GMP algebra.

There is another way in which the GMP algebra is of crucial importance, which

concerns the physics of the fractional quantum Hall effect, i.e. the explicit inclusion

of Coulomb interactions. An electron-electron interaction of the form V (~ri − ~rj)
translates into a Hamiltonian term

∑

i6=j
V (~ri − ~rj) ∼

∑

~q

V (~q)
∑

i<j

ei~q·(~ri−~rj) (1.21)

where we have taken the system to live on torus geometry, the reciprocal lattice vec-

tors ~q being related to the generators of the torus. The fractional quantum Hall effect

is most clearly observed for rather large magnetic fields, in which case the degeneracy

of a single Landau level is huge and one may restrict the Hilbert space to the lowest

Landau level. The interaction takes the form

∑

~q

∑

i<j

V (~q)ρ̂i(~q)ρ̂j(−~q)e−q
2l2/2, (1.22)

with ρ̂i(~q) the aforementioned projected density operators. As the Hamiltonian is

purely expressed in terms of these density operators, it is certainly not surprising that

their algebraic properties and the organization of Hilbert space following from them

are fundamental to the physics of the fractional quantum Hall effect. The algebra ex-

pressed in equation (1.17) is therefore at the heart of bringing the fractional Quantum
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Hall effect from the continuum (electrons in a strong magnetic field) to the lattice

(electrons in a periodic crystal with a band structure), which is the subject of part II

of this thesis.

1.1.2 Chern Insulators and their generalizations

A key feature of Landau levels that was highlighted above is their contribution to

the quantized Hall conductivity σxy = e2/h, when a Landau level is completely

filled [16]. Focusing on a single Landau level for the moment, we may express this

property in a response equation given by

Ji = σHǫ
ijEj , (1.23)

where Ji is the current in the i-direction and Ei the i-th electric field component.

This can actually be generalized to include the time t component, which gives the

response equation

Jµ = σHǫ
µνλ∂νAλ. (1.24)

One may functionally integrate this to obtain an effective action of the form

S[Aµ] =
σH
2π

∫
d2~rdt ǫµνλAµ∂νAλ. (1.25)

This action describes the fundamental low-energy electromagnetic field theory of the

quantum Hall state [17].

One way – perhaps an unsual way – to make a connection to general topological

states of matter is to ask the question: are there more states of matter that have an

action of this form as their low-energy effective theory? Or, to reformulate this ques-

tion, are there other insulators that have the same electromagnetic response equation?

The answer to this question is “yes”, and this affirmative answer is the first step to-

wards a much broader class of distinct insulating states that cannot be adiabatically

connected to the trivial atomic insulator.

Imagine we are given a material system governed by the Hamiltonian Ĥ =∑
k Ψ̂

†(~k)H(~k)Ψ̂(~k) (suppressing orbital and spin indices for convenience), and we

are told that this defines an insulator. Then we may first obtain its Green’s function

G, given by

G(ω,~k) = [ω + iδ −H(~k)]−1, (1.26)

and proceed to calculate the following quantity [18]

C =
1

4π

∫

BZ

d2kdω ǫµνλTr [G∂µG−1G∂νG−1G∂λG−1], (1.27)
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where ∂µ ≡ ∂/∂kµ. It can be proven that C is necessarily an integer [16, 18] and

in addition is it clearly a “global” object, as it involves integration over the whole

Brillouin zone (BZ). What does C have to do with equation (1.25)? The answer to

that question can be expressed in a simple yet profound equation (setting ~ = e = 1
for the moment),

σH =
C

2π
, (1.28)

or in words, the integer C is the constant coefficient that multiplies the action and

consquently determines the physical response, i.e. the Hall conductivity. As C is

restricted to be integer, the Hall conductivity is quantized. For the Quantum Hall

state induced by an external magnetic we have σH = C = 1, while in general it may

be any number. For ordinary insulators one has C = 0.

For the sake of clarity and definiteness we may particularize to the situation of a

two-band Hamiltonian, which can be expanded in the space Pauli matrices ~τ as

H(~k) = ε(~k)I2 + ~d(~k) · ~τ . (1.29)

This Hamiltonian has energies E±(~k) = ε(~k) ± |~d(~k)|, which we assume to corre-

spond to an insulator (minE+(~k) > maxE−(~k), ~k ∈ BZ), and since ε(~k) multiplies

the (2 × 2) identity matrix I2, the eigenstate structure only depends on ~d. Indeed,
~d(~k) contains the information on the topological character of the electronic ground

state of the system. Taking the Hamiltonian of equation (1.29) and substituting it into

equation (1.27) yields an expression of C in terms of ~d(~k)

C =
1

4π

∫
d2k ǫαβγ d̃α∂xd̃

β∂yd̃
γ . (1.30)

Here d̃α(~k) = dα(~k)/|~d(~k)| is the normalized ~d vector. The normalized vector d̃α(~k)
has unit length and thus lives on a sphere, which means we may interpret it as a

mapping from the Brillouin zone, a 2-torus T 2, to the sphere S2. The integrand

in equation (1.30) is nothing but the Jacobian of this mapping, which implies that C
counts the number of times the image of the mapping wraps around the sphere, which

is clearly an integer and cannot change under smooth deformation of the mapping

given by
~̃
d(~k). This establishesC as a topological invariant [18]. The integer invariant

C is generally referred to as the Chern number, a term borrowed from mathematics.

It has become customary to refer to insulators with nonzero C as Chern insulators.

Chern insulators are systems in the same universality class as the quantum Hall state,

and thus fundamentally distinct from “ordinary”, or atomic insulators.

As a spoiler for chapter 7, an example of a Chern insulator having C 6= 0 is

H(~k) = cos k1τ
x + cos k2τ

y + cos k3τ
z . (1.31)
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Figure 1.2: The two different topological sectors of the 1D Peierls chain discussed

in the text. Left, the situation t′ < t in which case the d-vector does not wrap around

the circle as one traces the 1D Brillouin zone (equivalent to a circle). Right, on the

other hand, the situation t′ > t, in which case the d-vector wraps around the circle

once.

Here ki = ~k · ~xi (i = 1, 2, 3) and ~xi are lattice vectors of length a making an angle

2π/3 with each other. It corresponds to electrons hopping on the triangular lattice

with a flux of φ = π/2 threading each triangle. Using equation (1.30) one finds that

for this Hamiltonian the insulating round state is characterized by C = 1.

At this point a few comments with regard to equation (1.25) are in order. First,

by looking at the integrations we notice that this action applies to a two-dimensional

(2D) system. Consequently, all considerations above apply to 2D systems. Second,

it can be checked by looking at the transformation of the electromagnetic fieldAµ un-

der time-reversal, that the actions represents a time-reversal symmetry broken state.

These observations are a manifestation of the crucial importance of both symmetry

and dimensionality in classifying topological phases. The class of systems defined

by nonzero C must live in 2D and do not require any symmetry. Other topological

phases, which can exist in for instance one or three dimensions and have distinct phys-

ical properties, often require the presence of a symmetry. To illustrate this we briefly

review a famous example in 1D, the Peierls chain realized in polyacetylene [19].

Imagine a 1D chain of atoms with alternating hopping integral t and t′, where one

is weaker and one is stronger t > t′ (or t < t′). This is graphically shown in Fig. 1.2,

where the two different cases are shown on the right (left) side. The alternation of

stronger and weaker bonds mandates a two-site unit cell, with atoms A and B, and

the Hamiltonian describing this system can again be expanded in Pauli matrices, now

representing the sublattice degree of freedom,

H(k) = ~d(k) · ~τ, ~d(k) = (t+ t′ cos k, sink, 0) (1.32)
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Crucially, since hopping takes place only between A and B atoms, we have dz(k) =

0. This forces the ~d vector to be in the x− y plane and it defines a mapping from the

1D Brillouin zone, i.e. the circle, to the 2D plane. It is easy to check that for t 6= t′

the system is insulating. The topological nature of this insulating state is revealed by

taking a closer look that the mapping from the circle to the x− y plane defined by ~d.

The loop mapped out in the x − y plane either encircles the origin or it does not. In

Fig. 1.2, for both t < t′ and t > t′, the lower left square shows the red loop traced

out by the ~d-vector as function of ~k. The origin is special because there ~d = 0 and the

insulating gap would vanish. If the loop does not enclose the origin, such as in the

left of Fig. 1.2, we can smoothly deform it to a single point, representing the atomic

insulator, without closing the energy gap. However, if ~d(k) does enclose the origin,

see right side of Fig. 1.2, we cannot do so, and this situation defines a topologically

distinct state. In essence, since we must exclude the origin from the plane; we are

classifying mappings from the circle to the circle, which are known to come with an

integer index: the number of times the image wraps around the target circle. This is

schematically depicted in the lower right boxes of Fig. 1.2, where the red “circles” are

mapped to the black circles and either wrap around the black circle once (right) or not

at all (left). For the Peierls Hamiltonian expressed in equation (1.32) the topological

winding number is therefore 1.

How do symmetry and dimensionality manifest themselves? A symmetry con-

strains the Hamiltonian so that the ~d-vector cannot have a z-component. The symme-

try is a chiral symmetry and expressed as an anti-commutation relation

{H, τz} = 0. (1.33)

This relations forces dz(k) = 0 and it furthermore ensures that every state |ψ〉 of en-

ergyE has a partner τz at energy −E. If dz(k) was not forced to be zero, but allowed

to take arbitrary values, then our argument for distinguishing loops would not hold

anymore. Any loop could be smoothly contracted to a point by using the z-component

of the ~d-vector. In other words, instead of classifying mappings from a circle to a cir-

cle, we would be classifying mappings from the circle to the sphere. Mappings of

the latter kind are all trivial, as they can always be continuously deformed to a single

point on the sphere [20].

Symmetry and dimensionality are fundamental. One of most prominent symme-

tries permitting a topological classification of insulators in 2D and in 3D is time-

reversal symmetry [1–5, 21, 22]. Up until now, we have discussed topological clas-

sifications based on integers. The Chern number C can take any integer value, and

the [dx(k), dy(k)] vector may in principle encircle the origin any number of times,

depending on the form of the Hamiltonian.

Time-reversal symmetry, however, leads to a Z2 classification, which is to say that

there are only two flavors, trivial and nontrivial – topological and non-topological [1–
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5]. Real materials belonging to the class of nontrivial systems are then generally

refered to as time-reversal invariant topological insulators. Dimensionality is again

important. In two dimensions a time-reversal invariant topological state is referred to

as the Quantum Spin Hall state [1, 23]. The physical manifestation of the topolog-

ical nature of the electronic state is the existance of an odd number of spin-filtered

counterpropagating edge state pairs. The locking of propagation direction and spin

polarization implies the requirement of spin-rotation symmetry breaking, at least par-

tially. Not surprisingly, strong spin-orbit coupling plays a key role in the field of

topological insulators. In chapter 10 we will see examples of precisely such two-

dimensional Quantum Spin Hall states, where the spin-rotation symmetry breaking

comes from electronic interactions. In three dimensions spin-rotation symmetry must

be completely broken in order for an insulator to be a topological insulator. The phys-

ical consequence of non-trivial topology in three dimensions is the presence of an odd

number of two-dimensional Dirac fermions at a sample surface. This is forbidden in a

genuinely two-dimensional electronic system [24]. In both two and three dimensions

we see that odd and even (edge or surface states) are clearly distinguished when it

comes to the physical manifestation of non-trivial topology, which essentially defines

the Z2 classification of time-reversal invariant topological insulators.

Other symmetries giving rise to topologically insulating systems with robust phys-

ical properties mandated by their topological character are particle-hole symmetry

and the product of time-reversal and particle-hole symmetry, often called sublattice

symmetry or chiral symmetry. The robustness follows from the fact that disorder may

respect these symmetries and therefore cannot harm the physical consequences of the

topological nature of a quantum state. A complete classification based on these three

symmetries has been achieved and has resulted in the “periodic table” of topological

insulators [21, 22].

1.2 Strongly correlated electrons and electronic degrees

of freedom

Generally speaking there are two points of departure for describing electrons in solids.

One is to start from the free electron gas and subject the electrons to a weak periodic

potential originating from the crystal lattice. Wave functions obtained by solving

Schrödinger’s equation are perturbed and modified by the periodic potential, which

results in the typical band structure of crystalline solids. The other is to picture the

electrons as still associated to the atoms of the crystal and construct the electron wave

function from corresponding atomic orbital functions. Due to the periodic array of

atoms, the atomic wave functions overlap and electrons may tunnel, or “hop”, from
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atom to atom. The latter approach is referred to as the tight-binding description of

electrons, as they are considered to be tightly bound to the atomic sites of the lattice.

Which perspective to adopt depends to a large extent on what objective one has

set out to achieve. In this thesis we will work with the tight-binding description,

or alternatively called lattice fermion model, as it is the method of preference for

addressing materials with strong correlations between electrons from a model Hamil-

tonian perspective. The prototype of such a model Hamiltonian, designed to capture

the essential physics of strongly correlated electrons, is the famous Hubbard model.

The Hubbard model is given by the following equation

ĤHM =
∑

ij

tijψ̂
†
iσψ̂jσ − µ

∑

i

n̂i + U
∑

i

n̂i↑n̂i↓ Hubbard Model (1.34)

and here ψ̂†
iσ (ψ̂jσ) are second-quantized operators which create (annihilate) an elec-

tron at lattice site i with spin σ, where σ can take the values “↑” and “↓”. The matrix

tij represents the overlap integral of atomic wave functions on site i and site j. In the

most simple cases one only considers finite overlap between nearest neighbor sites

which is taken to be uniform, i.e. tij → t. In general however the most important

assumption is translational invariance tij = t−i+j . The chemical potential µ controls

the particle number, as n̂i =
∑
σ ψ̂

†
iσψ̂iσ is the number operator.

The third term represents the repulsive Coulomb interaction between electrons

and assigns an energy penalty of U to two electrons sitting on the same atomic site.

Fermi statistics require these electrons to have opposite spin. This form of the inter-

action term is a substantial simplification as it only takes into account the Coulomb

interaction of electrons at the same site. In general, for electrons in close proximity

yet different atomic sites there is a repulsive Coulomb force as well, however the

screening effect causes the longe-range part of the Coulomb interaction to be weak,

which justifies the retaining of only on-site repulsion.

Despite its apparent simplicity, the above Hamiltonian is notoriously hard to

solve. Nevertheless, advanced and often involved numerical as well as analytical

techniques have achieved considerable progress in applying the Hubbard model to

the physical phenomena in real materials. One general approach is to focus on the

regime of very strong interaction, i.e. U ≫ t. In this strong coupling regime doubly

occupancy of the same site is very strongly disfavored. In particular at half filling

Hilbert space is most conveniently organized by the number of doubly occupancies.

The lowest energy sector is the one with no doubly occupied sites. As charge excita-

tions are very expensive in terms of energy, the proper picture of this sector of Hilbert

space is that of localized spins. The effective interaction between these localized
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Figure 1.3: Illustration of spin configurations that represent the classical ground state

of the Heisenberg spin model on the square lattice (left) and the triangular lattice

(right). On the square lattice spins are anti-parallel on neighboring sites, realizing the

collinear anti-ferromagnet. Due to frustration of the triangular lattice the spins do not

order in a anti-parallel collinear pattern, but make an angle of 2π/3 with one another.

spins is captured by the Heisenberg Hamiltonian which takes the form

ĤHB =
∑

ij

Jij~si · ~sj Heisenberg Hamiltonian (1.35)

where the spin operators ~si are given in terms of fermions as

~si = ψ̂†
iσ~σσσ′ ψ̂iσ′ , (1.36)

where the the vector ~σ represents the spin Pauli matrices, i.e. ~σ = (σx, σy, σz). That

the effective interaction between spins should have this form may be understood by

considering virtual processes out of and back into the singly occupied subspace. If

electrons on neighboring sites occupy opposite spin states, virtual processes with am-

plitude ∼ t2/U ≃ J are allowed by the Pauli principle and electrons can lower their

energy in this way. Hence, in the general case one has Jij = J = +|J | and the

effective interaction is anti-ferromagnetic. A virtual process of this kind is also re-

ferred to as a superexchange process, and the Heisenberg Hamiltonian is alternatively

named superexchange Hamiltonian. In strong coupling and at half filling the system

is an insulator, as there are no charge excitations, and the Heisenberg Hamiltonian

pertains solely to the magnetic state of the system. The canonical approach that leads
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to an understanding of the magnetic ground state is to consider the electron spin ~si
as a very large spin, i.e. |~si| ≫ 1, and treat it a classical spin. The latter means that

we disregard for the moment that it actually represents an operator acting on a finite

dimensional Hilbert space, but instead picture it as a classical O(3) vector pointing in

any direction in space. Particularizing to the simple square crystal lattice, and keep-

ing only nearest neighbor magnetic interactions (J
∑ ~Si · ~Sj), it is straightforward

to deduce that the (classical) energy on each bond is minimized by anti-parallel spin,

i.e. J ~Si · ~Sj = −JS2 if ~Si = −~Sj , S being the magnitude of the spin. On the square

this leads to the anti-ferromagnetic spin state, as depicted in Fig. 1.3.

The situation is different for a different crystal lattice, the triangular lattice (see

Fig. 1.3). Due to lattice connectedness it is not possible to have spins on all neigh-

boring sites aligned anti-parallel consistently. This is an example of frustration: the

energy cannot be simultaneously minimized on each and every bond. The solution to

this problem is for the spins to arrange so as to optimally relieve the frustration, in

this particular case by making angles of 2π/3 with each other. This noncollinear but

coplanar order is thus a consequence of frustration.

The example of the triangular lattice already hints at the key role the crystal struc-

ture plays in the manifestation of magnetism in real materials. Even more compli-

cated behaviour is expected and observed for kagome lattice compounds, or com-

pounds which approximately realize a kagome structure. The kagome lattice consists

of corner sharing triangles, which directly results in a macroscopic degeneracy of

(classical) magnetic ground states. From the triangular lattice we learned that on

each triangle the spins are coplanar but make an angle of 2π/3. For corner sharing

triangles this does not fix all spins and a huge number of configurations satisfying the

energetic constraints exist. This is reflected in thermodynamic quantities and leads to

exotic phenomena such as spin-liquid behaviour.

Even though the pictorial representation of spins as classical arrows such as in

Fig. 3.3 provides an intuitive understanding of the magnetism observed in materials,

one should not forget that the electron spin is a quintessentially quantum mechanical

object. The assumption of large spin, |~si| ≫ 1, is not at all justified for the elec-

tron spin, which has length 1/2. Quantum corrections need to be taken into account

and the general recepy to do that is spin-wave analysis. Spin-waves are collective

excitations on top of the ordered classical state, in the same way as lattice distortions

(phonons) are collective modes corresponding to the ordered crystal. Depending on

the lattice structure, quantum fluctuations may either give corrections to the classical

state, or completely invalidate the classical description and necessitate new physical

concepts. Away from half filling, when one cannot think of all sites as being occupied

by precisely a single electron, hopping processes become possible again, as their will

be empty sites (for either electrons or holes). In this case the Heisenberg Hamiltonian
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needs to be supplemented with a hopping term

ĤDLU =
∑

ij

tijP̂ ψ̂
†
iσψ̂jσP̂ + ĤHB, Doped Large U Model (1.37)

and the projection operators P̂ make sure that doubly occupied sites are excluded.

The most drastic simplification of the Hubbard model given in equation 1.34 is its

single-band nature. Orbital degeneracy is however ubiquitous in real materials and

neglecting the orbital degree of freedom of electron wave-functions can be a major

distortion of reality. In some cases that may be legitimate and sufficient to capture

the essential features, as for instance in many cuprates, where only the dx2−y2 or-

bital is close to the Fermi level. In many cases however, in particular widely studied

d-electron systems, orbital degeneracy is an unavoidable source of complicated be-

haviour.

A prime example of the relevance of orbital physics are the Mn and Co ions. The

Mn may exist in a Mn4+ or Mn3+ valence state. In the latter case the t2g orbital

manifold contains three electrons and is separated from the the eg orbitals by a cubic

crystal field originating from the local octahedral oxygen environment. Hund’s rule

coupling aligns the three spins in the t2g sector, effectively creating a larger S = 3/2
localized “core” spin, and putting the remaining electron in an eg orbital. The splitting

between eg and t2g is generally large, justifying the assumption of localized t2g spins.

This particular physical picture will reappear many times in the remainder of this

thesis. Figure 1.4 schematically summarizes these considerations for d-electrons in a

cubic environment.

A simple model Hamtiltonian that captures the essentials of an eg electron inter-

acting with a large localized spin is given by the Kondo-Lattice or Double-Exchange

Hamiltonian,

ĤKLM =
∑

ij

tijψ̂
†
iσψ̂jσ + JKondo

∑

i

~Si · ~si, Kondo Lattice Model (1.38)

which explicitly couples an electron spin ~si to a “core” spin ~Si on every site i. Even

though this simplified version does not even take into account the orbital flavor of itin-

erant electron, it certainly derives from orbtal physics. This double-exchange model

has proven very successful in particular in describing Mn based materials, where

large JKondo leads to wide range of ferromagnetic metal in the phase diagram. The

ferromagnetic tendency build into this model, as opposed to the anti-ferromagnetic

interaction of the Heisenberg model, and the corresponding transition to a ferromag-

netic metal is intimitely related to the observed colossal negative magnetoresistance

in these materials. The Kondo-Lattice model of equation (1.38) is at the heart of Part

I of thesis. In Chapter 2 the Kondo-Lattice model will be discussed in more details
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Figure 1.4: Illustration of the significance of electronic orbital degrees of freedom.

The five-fold degenerate d-levels are split by the crystal field with cubic symmetry

into an Eg and a T2g manifold, two-fold and three-fold degenerate, respectively. In a

manganese ion, three electrons occupy the T2g manifold, with their spins aligned by

Hund’s coupling. The itinerant electron(s) in theEg manifold effectively “see” a spin

of length 3/2, as is shown on the right in the red box. Depending on the strength of the

coupling to this localized spin, the itinerant electrons can be either both aligned and

anti-aligned, the latter costing energy, or can only be aligned (very strong coupling).

and different approaches to apply and study it in specific cases will be presented.

Then, in Chapters 3 and 4 the Kondo-Lattice model and its derivative version, the

Double-Exchange model will be the starting point for addressing the physics of in-

teracting local moments and itinerant electons on the honeycomb and checkerboard

lattice, respectively. It will be demonstrated how lattice topology and competing or-

dering tendencies (ferromagnetic vs. antiferromagntic) lead to a rich magnetic and

electronic phase diagram.

Increasing the degree of complexity and taking full account of orbital degeneracy

leads to an involved Hamiltonian with a number of distinct interaction terms. It is

precisely such a Hamiltonian that will be the object of study in Part II of this thesis.

Due to the spatial anisotropy of p- and d-orbitals, the overlap integrals between them

depend both on the orbital and the direction of hopping, contrary to the s-orbitals.

Hopping between a dxz and a dxy orbital is different in the x-direction than it is in

the z-direction. Even more, electrons may also hop from one dxz state to a dxy state

via ligand oxygen orbitals. Hence, the kinetic part of the Hamiltonian is now given
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by

ĤMOK =
∑

ij

tγγ
′

ij ψ̂†
iγσψ̂jγ′σ, Multi Oribtal Kinetic Hamiltonian (1.39)

(summation of Greek indices implied), where γ (γ′) denote the orbital degree of

freedom. Taking the simple cubic lattice as an example, and assuming only nearest

neighbor hopping, we must distinguish three different matrices, tγγ
′

x̂ , tγγ
′

ŷ and tγγ
′

ẑ .

They represent hopping in the x, y and z directions, respectively, and are generally

all different yet related by symmetry.

The repulsive on-site Coulomb interactions can be expressed by the following

Hamiltonian

ĤC = U
∑

i

n̂iγ↑n̂iγ↓ + (U ′ − J/2)
∑

i,γ<γ′

n̂iγn̂iγ′ − 2J
∑

i,γ<γ′

~siγ · ~siγ′

+ J ′
∑

i,γ<γ′

(
ψ̂†
iγ↑ψ̂

†
iγ↓ψ̂iγ′↓ψ̂iγ′↑ + hc

)
Coulomb Hamiltonian (1.40)

The various terms represent (i) the intra-orbital Coulomb repulsion, given by a Hub-

bard U , energetically penalizing two electrons occupying the same orbital with op-

posite spin quantum numbers, (ii) the inter-orbital Coulomb repulsion, given by U ′−
J/2, energetically penalizing two electrons on the same site but in different orbitals,

(iii) Hund’s rule coulpling, given by J , favoring alignment of electron spins occupy-

ing different orbitals, and (iv) the pair hopping term, given by J ′, changing the orbital

flavor of a doubly occupied orbital.

Together with the kinetic term this interaction Hamiltonian constitutes a rather

involved model of interacting electrons in solids. One may again assume very strong

coupling and diagonalize the interaction Hamiltonian first, after which perturbatively

including the hopping Hamiltonian generally yields a spin-orbital superexchange

Hamiltonian. The latter will be SU(2) invariant in the spin sector, but will depend

in a non-symmetric way in the orbital degree of freedom, which is consequence of

the intrinsic spatial anisotropy of the orbitals. An alternative approach is to employ

a mean-field decoupling of the Coulomb Hamiltonian. This is the method of choice

used in Part II of this thesis.

1.3 This thesis

Based on this general introduction to two important concepts, i.e. strong electron

correlations and topology, we give a brief overview of the content of this thesis.
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Part I of this thesis reports on a study of the Kondo-Lattice model, i.e. the model

that describes interacting spins and electrons, on the honeycomb (chapter 3) and

checkerboard (chapter 4) lattices. The honeycomb lattice is a two-dimensional bi-

partite lattice, while the checkerboard lattice is two-dimensional spin-ice lattice and

hence frustrated.

Part II deals with the question whether coupling between localized magnetic mo-

ments and itinerant electrons can lead to lattice Quantum Hall effects. The specific

focus will be on looking into model systems which can exhibit Fractional Quantum

Hall effects and the importance of electronic orbital degrees of freedom will be ad-

dressed.

Part III provides a symmetry classification of density wave orders emerging from

electronic interactions, with the aim of obtaining insight into the possibilities of re-

alizing interaction-induced topological states of matter. Chapter 8 will introduce the

subject and will summarize the main results and conclusions of chapters 9 and 10.

Chapter 11 summarizes once again from a slightly different perspective.
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