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Chapter 5 

The increasing role of metacognitive skills in math: 
A cross-sectional study from a developmental 
perspective
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Abstract

Both intelligence and metacognitive skillfulness have been regarded as important 

predictors of math performance. The role that metacognitive skills play in math, 

however, seems to be subjected to change over the early years of secondary education. 

Metacognitive skills seem to become more general (i.e., less domain-specifi c) by nature 

(Veenman & Spaans, 2005). Moreover, according to the monotonic development 

hypothesis (Alexander, Carr, & Schwanenfl ugel, 1995), metacognitive skills increase 

with age independent of intellectual development. This hypothesis was tested in a 

study with 29 second-year students (13 – 14 years) and 30 third-year students (14 – 15 

years) in secondary education. A standardized intelligence test was administered to all 

students. Participants solved math word problems with a diffi culty level adapted to their 

age group. Thinking-aloud protocols were collected and analyzed on the frequency 

and quality of metacognitive activities. Another series of math word problems served as 

post-test. Results show that the frequency of metacognitive activity, especially those of 

planning and evaluation, increased with age. Intelligence was a strong predictor of math 

performance in 13- to 14 year-olds, but it was less prominent in 14- to 15 year-olds. 

Although the quality of metacognitive skills appeared to predict math performance in 

both age groups, its predictive power was stronger in 14- to 15 year-olds, even on top of 

intelligence. It bears relevance to math education, as it shows the increasing relevance 

of metacognitive skills to math learning with age.
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5.1  Introduction 

Flavell (1976, 1979) considered metacognition as a very powerful predictor of learning 

performance. Based on a meta-review of studies, Wang, Haertel, and Walberg (1990) 

concluded that metacognition is the most important predictor of learning performance 

in general. At the initial stage of mathematical problem solving, metacognitive skills 

of orientation and planning play an important role in preventing students from a trial-

and-error approach and allow students to use prior knowledge in a strategic way by 

determining what information is given and what is asked for (Desoete & Veenman, 

2006). Metacognitive skills of monitoring and evaluation facilitate students to avoid or 

repair errors during the math problem-solving process, detect progression being made 

and compare the answer given against the problem statement (Veenman, Kok, & Blöte, 

2005). In fact, metacognition is omnipresent in mathematical problem solving.

 This cross-sectional study focuses on the development of metacognitive 

skillfulness during math problem solving. The following issues will be investigated: To 

what extent do metacognitive skills develop between the age of 13 and 15 years? Is there 

a difference in development between various components of metacognitive skillfulness? 

How do metacognitive skills relate to intellectual ability (IA) as predictors of math 

performance and, more importantly, how does this relationship develop? Answers to 

these questions could help us to understand when and how metacognitive skills develop 

and its educational consequences for math.

5.1.1  Metacognitive skillfulness
The distinction between metacognitive knowledge and metacognitive skills has been 

generally accepted. Metacognitive knowledge refers to the declarative knowledge 

one has about the interplay between personal characteristics, task characteristics, and 

available strategies in a learning performance (Flavell, 1979). This knowledge, however, 

is not always applied when necessary, even when people do have it at their disposal. 

Alexander, Carr, and Schwanenfl ugel (1995) found a discrepancy between children’s 

knowledge about monitoring and applying monitoring skills during task performance. 

Winne (1996) stated that knowledge has no effect on behavior until it is actually needed. 

So, it is quite possible that children may have knowledge of a certain strategy at their 

disposal, but still do not spontaneously produce those strategies (Barnett, 2000; Focant, 

Grégoire, & Desoete, 2006; Pressley, Yokoi, Van Meter, Van Etten, & Freebern, 1997). 

 Metacognitive skills, on the other hand, refer to the procedural knowledge that 

is required for the actual regulation of, and control over, one’s learning performance 
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(Brown & DeLoache, 1978; Veenman, Elshout, & Meijer, 1997). Metacognitive skills can 

be inferred from students’ overt behavior or utterances, i.e., from concrete metacognitive 

activities (see Table 5.1). Some of these activities occur at the onset of task performance 

(orientation), during task performance (planning, monitoring, evaluation), and at the end 

of task performance (refl ection and elaboration). 

Table 5.1 Examples of math-specifi c and general metacognitive activities

Math-specifi c General

Orientation

a. Activating prior knowledge

b. Goal setting

c. Estimating the answer

d. Making a sketch of the problem in 
order to represent the problem

Planning

a. Subgoaling

b. Time management

c. Designing a step-by-step action plan, 

instead of working by trial and error

d. Writing down calculations step by step

Evaluation

a. Expressing non-understanding

b. Comment on own activities

c. Monitoring action plan

d. Checking an answer by recalculating

Elaboration

a. Recapitulating and drawing conclusions

b. Relating the answer to the question or 

problem

c. Paraphrasing the problem

d. Drawing conclusions while referring to 

the problem statement

Metacognitive skills appear to be highly interdependent, also for math tasks (Veenman 

& Spaans, 2005). When orienting thoroughly on a task, a student probably will build a 

deeper representation of the problem. Consequently, the student will be able to work 

according to a detailed plan, which enables him/her to monitor and control the learning 
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process. Finally, such a clear trace of problem-solving activities, including repairs of 

errors made, provides an opportunity for learning through refl ection in future occasions.

Over the last few decades, several studies have focused on the use of metacognitive 

skills in general, while performing different tasks, for instance, reading comprehension 

(Markman, 1977, 1979; Pressley & Affl erbach, 1995; Veenman & Beishuizen, 2004) 

or problem solving (Carr & Jessup, 1995; Christoph, 2006; Mevarech & Fridkin, 2006; 

Schoenfeld, 1992; Veenman & Spaans, 2005; Veenman, Wilhelm, & Beishuizen, 2004). 

Others focused on one or more separate components of metacognitive skills, such as 

planning (Shore & Lazar, 1996; Focant et al., 2006) or monitoring skills (Mengelkamp 

& Bannert, 2008).

 This study, however, focused on all metacognitive skills prior to, during and after 

task performance in math. Hence, orientation, planning, monitoring as well as refl ection 

skills have been included in this study. 

5.1.2  Development of metacognitive skills
The fi rst objective of this study was to investigate the development of metacognitive 

skillfulness during math performance in particular. Flavell (1992) related the concept of 

metacognition to Piaget’s developmental stage of formal-operational thinking (Inhelder 

& Piaget, 1958). At this stage, children are capable of hypothetico-deductive reasoning, 

which requires metacognitive control. Flavell indicated that Piaget did not expect 

metacognition to show up before the stage of formal-operational thinking had been 

reached. More recent studies, however, show that, alongside with the “theory of mind”, 

i.e., understanding of one’s own and other people’s state of mind, (Wellman, 1990), 

young preschoolers already start to develop a metacognitive awareness (Blöte, Van 

Otterloo, Stevenson, & Veenman, 2004; Demitriou & Efklides, 1990; Kuhn, 1999). In later 

childhood, not only metacognitive knowledge, but also metacognitive skills develop. 

Although Whitebread et al. (2009) found some planning and monitoring activities in 

playful situations with youngsters as young as 5 years old, it is generally assumed that 

the development of metacognitive skills in educational contexts commences around the 

age of 8-10 years (Berk, 2006; Kuhn, 1999; Siegler, 1998; Veenman, Van Hout-Wolters, 

& Affl erbach, 2006). 

 From a developmental perspective, it is interesting to investigate the development 

of the aforementioned four components of metacognitive skillfulness in relation to each 

other. To be able to offer students an appropriate metacognitive instruction in math, it 

would be useful to understand more about the development of these specifi c skills, in 

particular, about the sequence in which they develop over the years. Focant et al. (2006) 
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found positive and signifi cant relations between planning and control activities, on the 

one hand, and school achievement, on the other. They also found that most children are 

able to correctly specify the goals of an arithmetical problem at the end of elementary 

school. On the other hand, they found that most children, although possessing suffi cient 

content knowledge, did not succeed in detecting their errors. Apparently, monitoring and 

evaluation are more abstract metacognitive skills that arise later in the developmental 

trajectory (Veenman et al., 2006).

 Studying the developmental trajectory of metacognitive skillfulness in math, 

two different measurement perspectives can be taken: The quantity and the quality of 

metacognitive skills. Quantity concerns the frequency of applying those skills, whereas 

quality concerns their level of adequate utilization. Using metacognitive skills more 

frequently does not automatically mean that the metacognitive skills have a higher 

level of quality. More is not always better. In a cross-sectional study concerning the 

quantity of metacognitive skills, Veenman et al., (2004) found a linear growth in the 

quantity of metacognitive skills between the age of 9 and young adults when performing 

a discovery-learning task. In another study (Veenman & Spaans, 2005), a signifi cant 

growth of the quality of students’ metacognitive skills (12 – 15 years) was found for both 

discovery-learning task and a problem-solving task. In a pilot study, Veenman (2006) 

found a similar growth in metacognitive quality for math between 12 and 15 years. 

In line with these results we expect metacognitive skills in mathematics to increase in 

frequency as well as in quality over the years.

 The second objective of this study was to investigate the relation between 

metacognitive skills, intellectual ability, and learning performance in math from a 

developmental perspective. Several researchers (Alexander et al., 1995; Borkowski & 

Peck, 1986; Cheng, 1993; Hannah & Shore, 1995; Schneider & Pressley, 1997; Span & 

Overtoom-Corsmit, 1986; Veenman, 2006; Veenman & Spaans, 2005; Veenman et al., 

2004; Zimmerman & Martinez-Pons, 1990) investigated metacognitive ability in relation 

to intellectual ability. In the next section, this relation will be discussed.

5.1.3  Relation between metacognitive ability, intellectual ability, and learning 
performance in math from a developmental perspective 
Veenman (Veenman et al., 1997, 2004; Veenman & Spaans, 2005) described three 

mutually exclusive models concerning the relation between intellectual ability and 

metacognitive skillfulness as predictors of learning performance. The intelligence model 

regards metacognitive skillfulness as an integral part of intellectual ability. In this model, 

metacognitive skillfulness does not contribute to learning performance independent 
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of intellectual ability. According to this model, metacognitive skills cannot have a 

predictive value for learning performance independent of intellectual ability. Sternberg 

(1990), for instance, advocates such an inclusive position of ‘metacomponents’ in his 

triarchic theory of intelligence. The second, contrasting model is the independency 

model, in which intellectual ability and metacognitive skillfulness are regarded as 

entirely independent predictors of learning performance. Finally, in the mixed model, 

intellectual ability and metacognitive skillfulness are correlated to a certain extent, 

but metacognition has its own, unique contribution to the prediction of learning 

performance, on top of intellectual ability. 

 Over the last decades, support has been found for each of these models by various 

researchers (for an overview, see Veenman & Spaans, 2005; Veenman et al., 2004). 

However, it is diffi cult to compare many studies, due to dissimilarities in the assessment 

method of metacognitive skillfulness (thinking aloud observations vs. questionnaires), 

in participants (age, educational background), and in tasks and domains. Moreover, 

the focus of some studies is restricted to the relation between intellectual ability and 

metacognitive skillfulness, thereby excluding the relation of both predictors with learning 

performance (Alexander et al., 1995; Berger & Reid, 1989; Span & Overtoom-Corsmit, 

1986; Shore & Dover, 1987; Stankov, 2000). The evidence found so far seems to be 

highly in favor of the mixed model. Many studies, however, deal with the metacognitive 

skillfulness of older secondary-school or university students. From the perspective of 

the development of metacognitive skills, it remains to be ascertained more thoroughly 

whether the mixed model can be generalized to younger students at the crucial point of 

developing initial metacognitive skills. Therefore, in the present study, the participants 

are young secondary-school students (aged 13 – 15 years) who are engaged in performing 

math school tasks. 

 From a developmental perspective, a relevant research question is whether the 

development of metacognitive skills is intelligence related or relatively intelligence 

independent according to the mixed model. Alexander et al. (1995) formulated three 

developmental hypotheses with regard to the relation between intellectual ability and 

the development of metacognition, though excluding the relation of both predictors with 

learning performance. The ceiling hypothesis assumes that the effects of intelligence 

on the development of metacognition diminish over time. The acceleration hypothesis, 

on the other hand, predicts that the impact of intelligence on the development of 

metacognition increases with age. The monotonic development hypothesis, fi nally, 

assumes that both intelligence and metacognition show a monotonic growth over age. 

When taking the relations of both predictors with learning performance into account, 
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the last hypothesis would be in line with the mixed model, as both intellectual ability 

and metacognition would have a substantial independent contribution to learning 

outcomes. Support for the intelligence model, on the other hand, would support the 

acceleration hypothesis as the infl uence of intellectual ability on metacognition would 

increase with age. Finally, the ceiling hypothesis predicts that the intelligence model 

will fi t less with age. The independency model fi ts none of Alexander’s hypotheses, since 

it predicts there is no relation between intelligence and metacognition at all. In their 

literature overview, Alexander et al. (1995) found support for the monotonic development 

of metacognitive knowledge. Gifted children showed a general superiority in their 

declarative metacognitive knowledge. Giftedness effects were persistent throughout 

childhood, with gifted early elementary school children showing a similar superiority 

in this knowledge as did junior high school students. With regard to metacognitive 

skills, however, the results were inconclusive. In a cross-sectional study, Veenman 

(2006) and Veenman and Spaans (2005) obtained evidence in favor of a monotonic 

development of metacognitive skills. They obtained support for a monotonic maturation 

effect of both intellectual ability and metacognitive skillfulness in students of 12 and 

15 years performing various problem-solving tasks. We hypothesize that metacognitive 

skillfulness develops alongside, but is not fully dependent on intellectual ability. 

Therefore, we expect to fi nd a parallel development of metacognitive skillfulness and 

intellectual ability as predictors of math learning performance in line with the mixed 

model and the monotonic development model. 

5.1.4  Research questions and hypotheses
The fi rst research question is whether metacognitive skills in math do develop over 

age. We expect these metacognitive skills to increase in frequency as well as in quality 

over the years. The second research question relates to the development of the relation 

between metacognitive skills, intellectual ability, and math performance. We expect to 

fi nd a parallel development of metacognitive skills and intellectual ability as predictors 

of math performance in line with the monotonic development hypothesis and the mixed 

model.
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5.2  Method

5.2.1  Participants
Twenty-nine second-year students (13 – 14 years; 11 boys and 18 girls) and 30 third-

year students (14 – 15 years; 12 boys and 18 girls) in secondary education participated 

in this study. They were recruited from three different tracks (pre-university education, 

higher general education and pre-vocational education) of two suburban schools 

in the Netherlands. Both schools are well known because of their large diversity of 

children, thus representing a broad educational level of the students, a broad range of 

social economic status of parents, and various ethnic backgrounds. Participants were 

distributed equally over the three tracks. Students with learning or conduct disorders 

(e.g., dyslexia or ADHD) were excluded from the study. Parental consent was requested 

and given for all participants. 

5.2.2  Metacognitive skillfulness
Thinking-aloud protocols were analyzed on spontaneous use of metacognitive skills 

according to the procedure of Veenman (Prins, Veenman, & Elshout, 2006; Van der Stel 

& Veenman, 2008; Veenman & Spaans, 2005; Veenman et al., 2004). Metacognitive 

skillfulness was divided into four subscales: orientation (O), planning and systematical 

orderliness (P), evaluation (Ev), and elaboration (El). In Table 5.1, examples of such 

activities are given for each subscale of metacognitive skillfulness. These activities are 

partly characteristic of metacognitive skillfulness, in general (Brown, 1978; Sternberg, 

1990; Veenman et al., 1997), and partly domain-specifi c for math (de Corte & 

Verschaffel, 1980; Gagné, Yekovich, & Yekovich, 1993; Schoenfeld, 1983). For example, 

goal setting is an activity independent of tasks and domains. Writing down calculations 

step-by-step, on the other hand, is related to a math task, whereas in a text-studying 

task, summarizing the text after each paragraph is considered as a planning activity. 

Note that some of the behavior in Table 5.1 may be considered as cognitive, but the 

purposeful application of such cognitive behavior at the appropriate moment results 

from metacognitive skillfulness. It refl ects the intention to get control over and regulate 

the cognitive task. For example, the recalculation of the answer itself is cognitive by 

nature, but it is the decision to check one’s outcomes at a particular point in time that 

constitutes the metacognitive nature of the activity. 

 The scoring method consisted of two steps for each protocol. First, an utterance 

was coded in the margin if belonging to one of the four subscales (O, P, Ev, or El). This 

resulted in a quantitative score obtained by counting the frequency of metacognitive 
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activities on each subscale (e.g., if a student checked the calculations fi ve times, the 

quantitative score for evaluation was fi ve). Secondly, for each subscale, the criteria that 

should be met to obtain a certain rate for the quality of metacognitive skillfulness were 

described. So, each subscale received a qualitative score according to the formulated 

criteria on a fi ve-point scale (ranging from 0 to 4). For example, a participant received a 

higher score for a ‘deeper’ orientation (e.g., making a sketch of the problem to represent 

the problem) than for a superfi cial one (e.g., only partly reading the problem statement). 

It is important to emphasize that the judges intentionally avoided confounding 

metacognition scores with the correctness or incorrectness of the content matter. A 

properly argued, yet incorrect, conclusion would yield a similar score for elaboration as 

a correct conclusion would.

 Two judges independently rated six protocols of both years. This resulted in an 

interrater reliability of 0.95 (second year) and 0.98 (third year) for the qualitative scores, 

and 0.94 (second year) and 0.86 (third year) for the quantitative scores. These correlations 

were computed on the summed scores over the four subscales of metacognition.

5.2.3  Intellectual ability
In two group sessions, the intellectual ability of 59 students (29 second and 30 third 

year) was assessed by a series of ability tests. Three subtests of the Groninger Intelligence 

test for Secondary Education (GIVO, standardized Dutch intelligence test; Van Dijk & 

Tellegen, 1994) were selected: Number Series, Verbal Analogies and Unfolding Figures. 

With these subtests three primary factors of intelligence (Carroll, 1993) were assessed: 

Inductive and deductive reasoning abilities, both verbal and numerical, and visuospatial 

ability. The GIVO, however, lacks a test for assessing memory abilities, another primary 

factor in Carroll’s (1993) model. Therefore, a fourth test (Names & Professions, requiring 

the memorization of word pairs; see Veenman & Beishuizen, 2004) was administered. 

A total score for intellectual ability was calculated by transforming the individual test 

score into z scores and then calculating an unweighted mean score for each participant.

5.2.4  Tasks
For each year, participants were administered math tasks with task demands suitable for 

their age. The tasks were piloted with appropriate age groups beforehand and teachers 

were consulted about the suitability of the tasks. 

 In an individual session of 50 minutes, the participants learned to solve 

mathematical word problems in 20 minutes. Six problems were presented in the 

second year and fi ve in the third. Several categories of problems were presented. In the 
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second year, the categories of the problems were content, surface area of a triangle, 

fraction, percentage, algebra. For instance, an algebraic problem was ‘In a village are 

two camping sites. At the fi rst one you pay for the rent of a caravan 20 euros cleaning 

costs plus 5 euros a day. At the second one you pay 40 euros cleaning costs and two 

euros a day. Which site would you choose if you wanted to stay eight days? Show 

your calculations’. In the third year, the categories of the problems were calculation 

of probability, quadratic equation, Pythagoras’ theorem, statistics, and formula with a 

square root. For instance, a problem was ‘In the center of a city the air pollution on one 

day is given by the formula V = -0.2t² + 3.1t + 1.7, where V = air pollution in grams 

per m³ and t = point in time in hours. A) Calculate V for 8.15 a.m. B) Calculate the 

percentage of difference in pollution between 7 and 11 a.m.’ Both tasks for second- 

and third-year students were composed of adaptations of math problems from one of 

the most frequently used Dutch schoolbooks for math (“Getal en Ruimte”; Vuijk et al., 

2003).

 Together with the assignments, participants received a sheet containing the 

answers and a brief stepwise explanation of how to solve the problems. Participants 

were free to consult this sheet whenever and as much as they liked. The fi rst 20 min of 

the session was considered as a learning-by-doing phase. Next, the participants handed 

in all materials and received another series of parallel problems, which had to be solved 

without any help in the remaining 30 min. This second part was considered as a post-

test assessment of learning performance (see Sect. 5.2.5). All problems had to be solved 

while thinking aloud.

5.2.5  Learning performance
After the learning-by-doing phase, the learning performance was assessed by the post-

tests, as was explained to the participants in advance. In both years, the post-test items 

were parallel to the items in the learning phase, i.e., the surface structure of the post-test 

items differed from the one in the learning task items, but the deep structure was the 

same. 

 In the second year, the post-test consisted of six math word problems. For each 

problem, an equal amount of ten points could be earned. According to a rating system, 

points were given for the steps that had to be made to come to a correct solution. So, the 

maximum obtainable score was 60 points. A total score was calculated and used as a 

measure of learning performance. Cronbach’s  was 0.66. In the third year, the post-test 

consisted of fi ve math word problems. The items were rated in the same way as in the 

2nd year. The maximum obtainable score was 50 points. Cronbach’s  was 0.67.
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5.2.6  Procedure
The intellectual ability test was administered during a group session of 100 min. The 

math tasks were presented in an individual thinking-aloud session of 50 min. Participants 

could make use of a pen, pencil, text highlighter, ruler, calculator, and blank sheets of 

paper for making notes and/or calculations. 

 All participants were instructed to think aloud during the individual session. The 

experimenter was not allowed to help the students in any way. To encourage the student 

to keep on thinking aloud, the experimenter used standard prompts (e.g., ‘please, keep 

on thinking aloud’) whenever the student fell silent. All the utterances of the participants 

were audio-taped, transcribed, and analyzed in relation to metacognitive skillfulness.

5.3  Results

5.3.1  Development of metacognitive and intellectual abilities
In order to establish a continuous growth in both metacognitive and intellectual abilities, 

the results of both age groups (second- and third-year students) were compared. First, 

MANOVAs were performed on the metacognition and intellectual ability scores with 

age as between-groups factor. Next, univariate tests were performed. Results of the 

MANOVA on the raw scores of intellectual ability revealed a signifi cant age effect 

[F(4,54) = 3.93, p < 0.01, ² = 0.23]. Third-year students had a higher intellectual ability 

score than second-year students. Results of the MANOVAs on both the quantitative 

[F(4,54) = 13.84, p < 0.001, ² = 0.51] and the qualitative [F(4,54) = 4.90, p < 0.005, 

² = 0.27] scores of metacognitive skills revealed a signifi cant age effect as well. So, 

third-year students had higher metacognition scores than second-year students. Thus, 

both intellectual and metacognitive abilities show an increase between the second and 

third year in secondary education.

 Results of the subsequent univariate tests on the subscales of intellectual ability 

and metacognition scores show a signifi cant growth over the years (see Table 5.2). With 

the exception of the quantity of orientation activities, results of the univariate tests show 

an increase in all the components of intellectual and metacognitive abilities.
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Table 5.2 Comparison of the results second and third year 

2nd year (N=29)
M (SD)

3rd year (N=30)
M (SD) F p ²

Quality of meta skills

Orientation 1.69 (.76) 1.93 (.94) 1.19 n.s. 0.02

Planning 1.83 (.80) 2.73 (1.11) 12.77 <0.005 0.18

Evaluation 1.14 (.88) 1.93 (1.14) 8.97 <0.005 0.14

Elaboration 0.83 (.85) 0.90 (1.19) 0.07 n.s. 0.00

Quantity of meta skills

Orientation 7.90 (1.54) 5.13 (3.20) 17.62 <0.001 0.24

Planning 5.31 (2.42) 8.83 (3.98) 16.76 <0.001 0.23

Evaluation 2.62 (2.47) 7.07 (4.30) 23.53 <0.001 0.29

Elaboration 0.83 (.90) 1.80 (2.19) 4.94 <0.05 0.08

Intellectual ability

Number series 17.28(4.42) 21.07(3.71) 12.77 <0.005 0.18

Verbal analogies 13.79(3.92) 16.07(3.45) 6.56 <0.05 0.10

Unfolding fi gures 13.79(3.92) 16.37(3.94) 6.31 <0.05 0.10

Memory 17.24(5.52) 19.17(6.12) 2.45 n.s. 0.04

Note: Because the total scores for Intellectual ability were transformed into z scores, the means and 
standard deviations for Intellectual ability are the scores for the subtests of the intelligence test and the 
memory test.

5.3.2  Development of the relation between intellectual and metacognitive 
abilities as predictors of math performance: Testing the mixed model and the 
monotonic development hypothesis
To be able to answer the question whether developmental processes affect the relation 

between intellectual ability, metacognitive skillfulness, and math performance, 

correlations between these three variables were calculated for both groups separately 

(see Table 5.3). In the correlational analyses, the subtest scores for intellectual ability 

were transformed into one total score. This IA score was obtained by transforming the 

raw scores on all subtests into z scores and then calculating the mean z score for second- 

and third-year students separately (see Sect. 5.2.3). The total score of the quantity of 

metacognitive skillfulness was obtained by adding the quantitative subscale scores 

of metacognition. The same procedure was repeated for the quality of metacognitive 

skillfulness.
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Table 5.3 Correlations between intellectual ability, metacognition, and math performance for 

both age groups separately

SECOND YEAR THIRD YEAR

Intellectual 
ability

MetaQL MetaQN Intellectual 
ability

MetaQL MetaQN

Math performance 0.79** 0.53** 0.29 0.46* 0.78** 0.40*

MetaQL 0.46** 0.37*

MetaQN 0.39* 0.73** 0.16 0.74**

MetaQL the total score on the quality of metacognition, MetaQN the total score on the quantity of 
metacognition * p < 0.05 ** p < 0.01 

Results show that nearly all correlations between intellectual ability, quantity and 

quality of metacognitive skillfulness, and math performance were signifi cant. The only 

exceptions were the correlation between the quantity of metacognitive skillfulness and 

math performance (second year) and the correlation between intellectual ability and the 

quantity of metacognitive skillfulness (third year).

 To test the mixed model, the semi-partial correlations for both groups (Nunnally, 

1967) were calculated by partialling metacognitive skillfulness from the correlations 

between intellectual ability and math performance (i.e., semi-part Intel) and partialling 

intellectual ability from the correlation between metacognitive skillfulness and math 

performance (i.e., semi-part Meta). These semi-partial correlations (see Table 5.4) are 

needed to calculate the unique contribution of metacognitive and intellectual abilities 

to math performance.

Table 5.4 Semi-partial correlations

Semi-part Intel 
second year

Semi-part Meta 
second year

Semi-part Intel 
third year

Semi-part Meta 
third year

QL QN QL QN QL QN QL QN

Math performance 
second year

0.58** 0.70** 0.21 0.00

Math performance 
third year

0.19 0.41** 0.65** 0.33*

QL qualitative metascores; QN quantitative metascores * p < 0.05 ** p < 0.01 

Using regression-analytic techniques (Pedhazur, 1982; Van der Stel & Veenman, 2008; 

Veenman & Spaans, 2005; Veenman et al., 2004), the unique and shared variances in the 
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math performance were distributed to metacognitive skillfulness and intellectual ability 

(see Table 5.5). The math data of the second-year students could be taken as an example. 

The squared multiple correlation of intellectual ability and metacognitive skillfulness 

for predicting the math performance was calculated from the correlations presented in 

Tables 5.3 and 5.4 (R² = the squared correlation between intellectual ability and math 

performance + the squared semi-partial correlation between metacognitive skillfulness 

and math performance with intellectual ability partialled out = 0.79² + 0.21² = 0.67). 

The unique contribution of intellectual ability to math performance was determined by 

calculating the squared semi-partial correlation between intellectual ability and math 

performance with metacognition partialled out from intellectual ability (r² = 0.336). 

Consequently, it was estimated that intellectual ability uniquely accounted for 33.6% 

of the variance in math performance, metacognitive skillfulness accounted for 4.3% of 

the variance, while both predictors had another 23.9% of variance in common. This 

procedure was applied for both age groups (see Table 5.5).

Table 5.5 Percentage of variance accounted for in math performance

Intel 
unique

 

Meta unique Shared Total

QL QN QL QN QL QN QL QN

Math performance 
second year

33.6 49.1  4.3 0 23.9 8.4 61.8 57.8

Math performance 
third year

 3.5 16.5 42.8 10.6 17.9 4.9 62.4 32.0

Intel unique the unique contribution of intellectual ability to math performance; Meta unique the unique 
contribution of metacognitive skillfulness to math performance; Shared the shared contribution of 
intellectual ability and metacognitive skillfulness to math performance. Total the total contribution of 
intellectual ability and metacognitive skillfulness to math performance. QL qualitative metacognition 
scores, QN quantitative metacognition scores

In both age groups, intellectual ability as well as the quality of metacognitive skillfulness 

have their own, unique contribution to the prediction of math performance. In the 

youngest group, however, there is no unique contribution of the quantity of metacognitive 

skillfulness to the prediction of math performance. Comparison of the unique 

contribution of the quality of metacognitive skillfulness in relation to the contribution of 

intellectual ability over the years shows that the roles have been turned around. In the 

youngest group, intellectual ability is the most important predictor of math performance, 
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whereas in the oldest group the contribution of the quality of metacognition outweighs 

the unique contribution of intellectual ability. 

5.4  Discussion

This study investigated the development of both the quantity and the quality of 

metacognitive skillfulness in math. According to the fi rst hypothesis, we expected a 

growth in metacognitive skills in math, both in frequency and in quality over the years. 

Results show an overall growth of quantitative and qualitative metacognitive skillfulness, 

indeed. Looking closer into the various components of metacognitive skillfulness 

(orientation, planning, evaluation, and elaboration), results show a signifi cant growth 

of both the quantity and the quality of planning and evaluation activities. It seems that 

not only the quantity of these activities increased signifi cantly between 13 and 15 years, 

but that also the quality of these activities developed in a positive way. The quantity of 

orientation activities, on the other hand, decreased signifi cantly, which decrease was 

not refl ected in the quality of orientation activities. Possibly, students become more 

selective in their orientation activities over the years, resulting in fewer, but perhaps 

better, orientation activities. Also, Mevarech and Amrany (2008) report about students 

who did not report to have attempted to comprehend a problem prior to solving it. 

Finally, the elaboration activities show a signifi cant growth in frequency, but not in 

quality. Although students increased the number of their elaboration activities between 

13 and 15 years, they seem to experience a problem in abstracting knowledge as a 

result of these activities. In conclusion, the fi rst hypothesis that the metacognitive skills 

in math would increase in frequency as well as in quality over the years is generally 

corroborated. However, results also show that the various components of metacognitive 

skillfulness differ in their developmental trajectory. “The ages on which strategies are 

acquired seem to depend largely on the strategy itself” (Focant et al., 2006, p. 61). 

 It seems that the metacognitive activities that are required during task performance 

(planning and evaluation) develop in an earlier phase than activities that play a role 

prior to (orientation) and after (elaboration) task performance. It might be that students 

experience the activities during task performance as more concrete and, therefore, 

easier. Maybe teachers pay more attention to overt activities during task performance 

than to less obvious activities prior to or after task performance. 

 From an instructional perspective, it would be interesting to learn more about the 

development of specifi c components of metacognitive skillfulness and, in particular, the 
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sequence and the pace in which they develop over a longer period of time (Veenman, 

Van Hout-Wolters, & Affl erbach, 2006). This would require longitudinal research over 

an extended period of time.

 The second hypothesis concerned the relation between metacognitive skillfulness 

and intellectual ability as predictors of math performance over the years. The results for 

both age groups were in line with the mixed model as far as it concerned the qualitative 

scores for metacognition. As we expected, metacognitive skillfulness and intellectual 

ability were moderately correlated. Moreover, metacognitive skillfulness ability had 

its own, unique contribution to math performance in both age groups, on top of 

intellectual ability. These results are similar to those for older age groups performing 

different tasks (Veenman & Beishuizen, 2004; Veenman & Verheij, 2003; Veenman et 

al., 2004). Therefore, the mixed model can be generalized to younger students with 

less developed metacognitive skills performing everyday math school tasks. For the 

quantity of metacognitive skills, the mixed model could not be corroborated for the 

youngest group, as no unique contribution of the quantity of metacognition to math 

performance was obtained, contrary to the older group of students. On comparing both 

age groups, an interesting shift in the contribution to math performance occurs. The 

roles of metacognitive skills and intellectual ability as predictors of math performance 

have been turned around between 13 and 15 years. In the youngest group, intellectual 

ability is the most important predictor of math performance, whereas in the oldest group, 

the contribution of the quality of metacognition outweighs the unique contribution 

of intellectual ability. The correlation between both predictors of math performance, 

however, remains practically the same for both age groups. Evidently, it is the growth of 

metacognitive skills that demand a more prominent role in math performance of older 

students.

 A parallel development of metacognitive skillfulness and intellectual ability 

as predictors of math performance was found. This parallel growth is in line with the 

monotonic development hypothesis. Earlier, Alexander et al. (1995) found a different 

developmental pattern in the metacognition of gifted and non-gifted children. However, 

developmental patterns were not consistently found over the different components 

of metacognition. They obtained evidence in favor of a monotonic development of 

metacognitive knowledge, but their results were inconclusive on metacognitive skills. The 

results of our study point in the direction of a monotonic development in metacognitive 

skills as well: A continuous growth of metacognitive skills with age, alongside intellectual 

growth (Veenman et al., 2004), corroborating the second hypothesis. 
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This study focused on students with a normal cognitive development, without learning 

disabilities or conduct disorders. Participants did not receive any explicit training on 

metacognition prior to the experiments. Therefore, the growth in metacognitive skillfulness 

can be considered (partly) as a spontaneous development due to maturation. Testing 

the metacognitive skillfulness of third graders with mathematical learning disabilities, 

Desoete (2006), however, found evidence against the maturational development. She 

found that these children had signifi cantly less accurate evaluation skills on number 

system knowledge and procedural calculation than younger children with comparable 

mathematical performance scores. Based on these fi ndings, Desoete (2006) stated that 

we cannot expect metacognition to develop spontaneously as children grow older 

or as they have more experience with math. Differences in fi ndings can be caused 

by differences in participants (age, mathematical disabilities) and/or by differences in 

assessing metacognition (thinking aloud during task performance vs. interviews prior to 

and after task performance. 

 Despite fi nding signifi cant results, there might be some limitations of the study. 

The small number of participants in each group may be considered as a limitation of the 

generalizability of the results. The same applies for the fact that all participants came 

from only two schools. Although both schools were highly representative of secondary 

schools in the Netherlands, yet some confi rmation of results from a broader population 

of schools is needed. Furthermore, it would be interesting for future research to replicate 

this study with more participants in a longitudinal study over a longer period of time. 

Special attention should be paid to the developmental trajectory of specifi c components 

of metacognitive skillfulness, especially their relation with math performance. At 

present, studies with multi-method designs are scarcely available in the literature on 

metacognition. Therefore, it would be worthwhile to have more studies with a multi-

method design in order to compare off-line and on-line methods of assessment (Van 

Hout-Wolters, 2000; Veenman, 2005).

 Although metacognitive skills in math seem to develop (partly) as a result of 

maturation, there are substantial individual differences in the level of metacognitive 

skillfulness during the developmental trajectory. An important issue in the educational 

context is, therefore, how the development of metacognitive skills in math can be 

enhanced. In the past, various instructional methods to enhance metacognitive 

skillfulness in math have been developed and used with success. Mevarech and Kramarski 

(1997) developed a training program called IMPROVE. With this program, students are 

taught to use a series of metacognitive questions during math tasks. Veenman (1998) 

formulated the WWW&H rule for training metacognition, referring to instructions about 
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What metacognitive activities should be executed When, Why, and How. Van Luit and 

Naglieri (1999) developed a program (MASTER) for teaching math to children in special 

education. Results with these training methods show that children, varying substantially 

in intellectual and metacognitive abilities, can benefi t from training their metacognitive 

competencies in math. Training metacognitive skillfulness in math could be very useful 

as a supplement to the spontaneous development, especially if the right component is 

trained at the right moment in the developmental trajectory. 




