
Estimation and Optimization of the Performance of Polyhedral Process
Networks
Haastregt, S. van

Citation
Haastregt, S. van. (2013, December 17). Estimation and Optimization of the Performance of
Polyhedral Process Networks. Retrieved from https://hdl.handle.net/1887/22911
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22911
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22911


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/22911 holds various files of this Leiden University 
dissertation. 
 
Author: Haastregt, Sven Joseph Johannes van 
Title: Estimation and optimization of the performance of polyhedral process networks 
Issue Date: 2013-12-17 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22911
https://openaccess.leidenuniv.nl/handle/1887/1�


CHAPTER 7
CONCLUSIONS

In this dissertation, we presented techniques that allow a designer to implement MP-

SoCs using the Daedalus system-level design methodology, while taking into account

design constraints on system performance. The techniques presented in this disser-

tation leverage the Daedalus methodology to provide a forward synthesis flow that

bridges the specification and implementation gaps. However, the Daedalus method-

ology did not yet provide a satisfactory solution to satisfy the performance constraints

of a designer. In the conventional forward synthesis flow, the designer knows only

after a time-consuming forward synthesis step if performance constraints are met. In-

stead, the designer should obtain feedback faster, possibly at the expense of reduced

accuracy, allowing him to avoid a time-consuming forward synthesis step if he knows

a design will not satisfy his constraints. We identified three central research problems

in Section 1.2. We presented techniques to address these three central problems in

Chapters 3, 4, and 5.

The first central problem we addressed was the synthesis problem. We found that the

current forward synthesis flow lacked support for RTL implementations for particu-

lar classes of input programs and application characteristics that the PNGEN compiler

could already process. Our solution to this problem in Chapter 3 consists of four con-

tributions. The first contribution is a characterization of function implementations,

which allows us to reason about performance of systems. The second contribution

incorporates novel optimizations that were performed by the PNGEN tool, but which

were not yet incorporated in the generated RTL architecture, into ESPAM. This al-

lows us to handle a broader class of input programs. The third contribution comprises

optimizations for the LAURA processor model’s evaluation logic blocks. These op-

timizations involve pipelining of expression data paths and storage of compile-time



152 Chapter 7. Conclusions

evaluated expressions in ROMs. Pipelining of the evaluation logic blocks enables

a LAURA processor to run at a higher clock frequency, which may be required to

meet application design constraints. The use of ROMs enables a LAURA processor

to handle more complex domains that may result from transformations. The fourth

contribution consists of a novel reordering buffer design. This allows Daedalus to

generate RTL implementations for applications that exhibit out-of-order communi-

cation. The reordering buffer was designed such that replacing a regular FIFO with a

reordering buffer does not increase the latency in cycles of read and write operations

to the buffer. As a result, transformations that introduce out-of-order communica-

tion no longer cause an increased communication latency. The reordering buffer thus

enables performance gains of such transformations.

The second central problem we addressed was the performance estimation problem.

We found that no applicable performance estimation methods existed that could han-

dle polyhedral process networks implemented using LAURA processors. Estimating

the performance of pipelined execution of process iterations was lacking. Such per-

formance estimations are essential to reason about design constraints on system per-

formance. We have investigated and presented performance estimation techniques at

four different levels in the Daedalus design flow in Chapter 4. The first performance

estimation technique is RTL simulation, which works on the RTL implementation

that is the final output of Daedalus. Instead of prototyping this RTL implementation

on an FPGA, we simulate the RTL that implements the system. We found that RTL

simulation is not feasible for systems containing programmable processors, because

of long simulation times. The second performance estimation technique is SystemC

simulation, which works at the mapped model of the system. SystemC simulation

is faster than RTL simulation, but less accurate. The third performance estimation

technique is MCM analysis, which works on the parallel model of the application.

The MCM analysis technique is analytical, which has the advantage that estimation

time does not depend on the application workload. This leads to performance esti-

mation times that are shorter than SystemC or RTL simulation times. However, we

cannot define tight bounds on the inaccuracy of the MCM method, nor whether the

method overestimates or underestimates the actual throughput. This model is theoret-

ically attractive and gives insight in the behavior of a PPN, but is impractical because

of the lack of accuracy bounds. The fourth performance estimation technique is a

novel profiling-based approach for PPNs, named cprof, which works directly on the

sequential code. This allows one to obtain accurate results, often in less than one

second, without deriving a PPN.

The third central problem we addressed was the transformation problem. We found

that it is not trivial for a designer to select a set of transformations and transforma-

tion parameters such that a design constraint on performance is met. We have pre-



153

sented four PPN transformations (i.e., splitting, merging, stream multiplexing, and

scheduling) in Chapter 5. For each transformation, we analyzed factors that affect

the efficacy of the transformation. This aids the designer to select the appropriate

transformations needed to satisfy performance constraints. The first transformation

is splitting, which duplicates a process such that throughput may be increased at the

expense of increased resource cost. We have proposed analytical and profiling-based

strategies to select the splitting factor. The second transformation is merging, which

combines multiple processes such that resource cost is reduced, potentially at the ex-

pense of decreased throughput. We have identified a special case in which merging of

LAURA processors can reduce resource cost while not affecting throughput. The third

transformation is stream multiplexing, which increases throughput of multiple PPN

executions. We have identified criteria to assess when a stream multiplexing transfor-

mation is beneficial, and have presented how to select the stream multiplexing factor

such that the latency of a single PPN execution is not affected. The fourth trans-

formation is scheduling, which reorders iterations of a process to increase pipeline

utilization. We have identified criteria to assess when a scheduling transformation

can be applied to achieve improved pipeline utilization and, consequently, higher

throughput.

To validate our solutions to the three central problems, we have conducted a case

study using an industrially relevant application used in wireless communication re-

ceivers. We compare the extended Daedalus tool flow with the commercial AutoESL

high-level synthesis tool in Chapter 6. Specifically, we have focused on a channel

matrix preprocessor subblock of a sphere decoder. A manually crafted RTL refer-

ence design was available to us. Using a continuous refactoring-based design flow,

we were able to replicate the architecture of the reference design using both Au-

toESL and Daedalus. Refactorings in the AutoESL flow consist primarily of pragma

annotations. Refactorings in the Daedalus flow consist primarily of source code re-

structurings and transformations discussed in Chapter 5. We were able to meet the

tight performance design constraint using AutoESL, but not using Daedalus as low-

level clock frequency aspects have not been engineered out in the Daedalus tools.

Nonetheless, we were able to replicate the architecture of the reference design using

Daedalus, which means Daedalus can handle industrially relevant applications. The

cprof technique and transformations presented in this dissertation proved essential

to obtain the desired architecture of the application in the Daedalus design flow in a

short amount of time. Moreover, the cprof technique allowed evaluating alternative

design points at the sequential code level.

By addressing the three research problems, we have established a powerful system-

level design flow capable of solving industrially relevant design problems, as the

designer knows if his design will satisfy his performance constraints. This makes



154 Chapter 7. Conclusions

it worthwhile to explore various transformations of the system, still at the sequen-

tial code level. When finding a satisfactory design point, the designer commits to

the time-consuming forward synthesis flow, knowing that the design will satisfy his

performance constraints.


