
Estimation and Optimization of the Performance of Polyhedral Process
Networks
Haastregt, S. van

Citation
Haastregt, S. van. (2013, December 17). Estimation and Optimization of the Performance of
Polyhedral Process Networks. Retrieved from https://hdl.handle.net/1887/22911

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22911

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22911

Cover Page

The handle http://hdl.handle.net/1887/22911 holds various files of this Leiden University
dissertation.

Author: Haastregt, Sven Joseph Johannes van
Title: Estimation and optimization of the performance of polyhedral process networks
Issue Date: 2013-12-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22911
https://openaccess.leidenuniv.nl/handle/1887/1�

CHAPTER 6
INDUSTRIAL CASE STUDY

In this chapter, we study the design process of an industrially relevant sphere de-

coder application used in wireless mobile communications. We take a sequential

C specification of this application as a starting point. Our goal is to automatically

obtain an RTL implementation in VHDL or Verilog from the sequential C specifi-

cation. We compare two tool flows to achieve this goal: the commercial AutoESL

high-level synthesis tool [Xil11] 1 and the open-source Daedalus system-level design

tool flow [Lei08]. AutoESL is a state-of-the-art high-level synthesis environment

that combines heuristics with designer input to obtain design points that satisfy de-

sign constraints. We want to compare the Daedalus-based approach discussed in this

dissertation with the AutoESL approach to gain insight in the effectiveness of our

approach.

We introduce the application in Section 6.1. We review a reference implementation

of the application in Section 6.2. We describe an implementation using AutoESL

in Section 6.3, and describe an implementation using Daedalus in Section 6.4. We

compare the different implementations in Section 6.5 and conclude in Section 6.6.

6.1 Sphere Decoding

The application that we study in this chapter implements part of the WiMAX stan-

dard [FK08]. WiMAX (Worldwide Interoperability for Microwave Access), based

on the IEEE 802.16e-2005 standard, refers to a new generation of (mobile) wire-

less broadband access networks. WiMAX employs Multiple Input, Multiple Output

1AutoESL is currently known as Xilinx Vivado HLS [Xil13].

130 Chapter 6. Industrial Case Study

Transmitter Receiver
Sphere

Decoding... ...m n

Figure 6.1: An m × n MIMO system that uses sphere decoding to reconstruct the

transmitted symbols.

(MIMO) antenna configurations, meaning that both the transmitter and the receiver

use multiple antennas, as illustrated in Figure 6.1. All transmitter antennas transmit

at the same frequency, but each antenna transmits data from a different data stream.

This results in multiple parallel data streams that share the same frequency channel,

referred to as spatial multiplexing. Spatial multiplexing increases bandwidth effi-

ciency, but comes at the cost of increased computational demands at the receiver

side, where advanced techniques are required to separate the different data streams.

Different techniques exist to separate data streams at the receiver side. Decod-

ing the data from the different antennas using a Maximum Likelihood (ML) detector

yields the optimal Bit Error Rate (BER) performance [BBW+05]. However, the com-

putional complexity of an ML detector grows exponentially with the number of an-

tennas and the choice of modulation scheme, making an ML detector implementation

cost-prohibitive for high-data rate systems with large numbers of antennas. Alterna-

tively, channel decoding can be realized using a sphere decoder, whose implementa-

tion is less expensive while still achieving a BER performance comparable to that of

an ML detector [ACDR09]. The actual sphere decoding step is preceded by a chan-

nel preprocessing step, which prepares a channel matrix that characterizes the MIMO

antenna system. In this chapter, we focus on the channel preprocessor of the sphere

decoder system that was described in [DTD+09]. The considered sphere decoder sys-

tem implements a receiver for the most demanding case of the IEEE 802.16e-2005

standard, namely a 64-QAM system with 4 transmitter and 4 receiver antennas.

In Figure 6.2, we show the block diagram of the sphere decoder system that we

consider. Before the actual sphere detecting takes place, the channel matrix prepro-

cessor prepares the channel matrix. Inside the channel matrix preprocessor, channel

estimation [BSE04] is used to determine the complex-valued 4×4 channel matrix.

To improve BER performance, channel reordering is applied to this matrix. The

resulting matrix is reorganized into an 8×8 real-valued matrix by the Modified Real-

Valued Decomposition (M-RVD) block. This real-valued matrix is then converted to

an upper-triangular matrix using QR Decomposition (QRD). Next, the sphere detec-

tor is applied to produce a stream of detected QAM symbols. Subsequent decoding

6.2. Reference Implementation 131

Channel matrix preprocessor

Modified

real value

decomp.

(M-RVD)

Real valued

QR

decomp.

(QRD)

Sphere

detector

Channel

matrix

estimation

Detected

symbols

Receive vector
M-RVD QRDChannel

reordering

Matrix

Multiply

Matrix

Inverse

N x N MMI block

...

H

2x2 calc.

3x3 calc.

4x4 calc.

Figure 6.2: Sphere decoder block diagram.

of these symbols then yields the original transmitted bits.

In this chapter, we focus on the Modified Real Value Decomposition (M-RVD) and

QR Decomposition (QRD) blocks of the sphere decoder. These two blocks are com-

bined into a single block that we refer to as the M-RVD QRD block. Implementing

these blocks to meet the application throughput requirements, while minimizing re-

source usage and latency through the receiver is a challenging design task because of

the presence of recurrences in the application.

6.2 Reference Implementation

As a reference implementation, we consider the sphere detector described by Dick

et al. [DTD+09]. This reference implementation has been implemented in Xilinx

System Generator which is a high-level block-based design tool. The reference im-

plementation is essentially a manually built structural RTL design, containing explicit

instantiation of memory and computation primitives and explicit control structures.

The reference implementation targets a mid-speed grade Xilinx Virtex-5 FPGA with

a clock frequency of 225 MHz. To conform to the WiMAX throughput targets, the

design processes 360 data subcarriers in 102.9 µs. The channel matrix is recomputed

for every data subcarrier, which implies the channel matrix preprocessor needs to

process a new matrix every

102.9 µs / 360

1/225 MHz
≈ 64 clock cycles. (6.1)

132 Chapter 6. Industrial Case Study

1 for (j=0; j<8; j++)

2 for (m=0; m<8; m++)

3 for (t=0; t<15; t++) {

4 X[j][0][t] = diagonal(X[j][0][t], ...);

5 for (n=1; n<8; n++) {

6 if (n < 7-m)

7 R[m][n-1][t] = offdiagonal(R[m][n][t], ...);

8 }

9 }

Figure 6.3: Top-level structure of the 8×8 M-RVD QRD C code. Additional code for

the time division multiplexing refactoring is underlined.

To meet this high throughput requirement, all blocks in Figure 6.2 operate in a

pipeline fashion, which is common for wireless receiver applications. The matrix

elements are represented using 18-bit fixed point data types throughout the design.

Data is communicated from one block to the next using FIFO buffers and double

buffered and dual-ported memories, implementing a streaming system [NV08]. Each

block operates on only a few kilobytes of data at a time, which means the sizes of

the communication memories are relatively small. Therefore, all memories are im-

plemented using on-chip block memory primitives, that is, no external memory is

required for inter-block communication.

The QR decompositions used in the M-RVD QRD block are based on Givens Rota-

tions [SM93]. This method consists of two stages, which we refer to as the diagonal

and off-diagonal cells. The diagonal cell computes an angle such that the leading

matrix element is rotated to zero. That angle is subsequently used by the off-diagonal

cells to apply the rotation to the remaining nonzero elements of the same matrix row.

The top-level structure of the M-RVD QRD C code is shown in Figure 6.3.

6.3 AutoESL

In this section, we describe implementing the M-RVD QRD block of the sphere de-

coder using the AutoESL tool. AutoESL (formerly known as AutoPilot) has been

developed since 2006 by AutoESL Design Technologies, Inc. as a commercial-

ization of the xPilot tool from UCLA [CFH+06], and was acquired by Xilinx in

2011 [Xil11]. AutoESL accepts code written in a synthesizable subset of the C,

C++, or SystemC language as input. We focus on C++ design entry, with the goal

of leveraging C++ template classes to represent arbitrary precision integer types and

template functions to represent parameterized components. For the remainder of this

6.3. AutoESL 133

HLSVerify

Functionally

correct? Meets throughput &

area constraints? Meets timing,

fits device?

HLS

C

Final

RTL
RTL
Synt.Satisfied? Result

OK?

Func.

C
(AutoESL) (Xilinx ISE)

Transform/
annotate

seconds minutes/hours

Figure 6.4: High-Level Synthesis design flow.

section, we refer to the high-level language code as “C code” without elaborating on

these details.

6.3.1 Design Flow

The overall design process we have followed is shown in Figure 6.4. We start from

a functional specification in the C language and a corresponding test bench. The C

specification is a reimplementation of the MATLAB model that was used for the ref-

erence implementation made with System Generator. By using the test bench and a

representative set of test vectors, the C specification is then repeatedly refactored to

reflect the desired architecture, while preserving the functionality. This refactoring

process makes use of two different interpretations of the C specification. The func-

tional interpretation represents the conventional semantics of the C code, describing

the sequential and functional behavior. The architectural interpretation represents

the HLS semantics of the C code, describing the RTL architecture at a high level.

The designer makes sure that the functional interpretation of the refactored C code

is still identical to that of the original C code, while the architectural interpretation

is changed to satisfy non-functional requirements like resource cost and throughput.

Manipulation of the architectural interpretation focuses on the coarse-grained archi-

tectural aspects, such as memory porting, parallelism, and resource sharing. Fine-

grained architectural aspects, such as RTL pipelining details, are handled automat-

ically by the HLS tool by means of predefined characterization data of the target

FPGA device.

The throughput resulting from the architectural interpretation can be analyzed stat-

ically or dynamically as an output of the HLS compilation. Resource cost estimates

are reported after HLS compilation as well. If the various cost and performance met-

rics satisfy the design requirements, the resulting RTL is synthesized using platform-

specific low level synthesis tools. Since HLS tools do not have precise knowledge

about e.g. routing delays, metrics reported by the HLS tool typically differ to some

134 Chapter 6. Industrial Case Study

extent from the actual timing characteristics and resource costs obtained after RTL

synthesis.

At all times in the development process, the source code of the design is fully func-

tional and can be verified using the C test bench using a regular C compiler and

debugger. This is very different from a traditional RTL design flow, where a fully

functional version of the design source code becomes available only after weeks or

even months of labor. This RTL source code is developed independently of the orig-

inal reference code, thereby requiring an extensive validation phase. In contrast,

obtaining functionally correct design source code that successfully passes through

the HLS tool is only a matter of days or even hours. This means an early function-

ally correct RTL implementation can be obtained quickly, although it is unlikely to

already meet resource cost and throughput constraints.

6.3.2 Design Entry

Modern HLS tools like AutoESL and PICO (semi-)automatically leverage a wide

range of compiler optimization techniques such as common subexpression elimina-

tion and loop unrolling, and computer architecture techniques such as pipelining and

resource sharing to improve cost and performance aspects of a design. For some of

these techniques, the effectiveness is highly dependent on the structure of the appli-

cation. Therefore, the decision when and how to apply a particular technique often

has to be made by the designer. Some techniques can be applied or controlled with a

tool pragma, while other techniques must be reflected in the way the algorithm is de-

scribed. In this section we describe the techniques applied for the M-RVD QRD block

of the sphere decoder application. In particular, we have applied a combination of

time division multiplexing, loop unrolling, array partitioning, and case-specific opti-

mizations. All of these techniques have been applied by modifying C code only such

that a different architectural interpretation is obtained, while the functional interpre-

tation is preserved.

Time Division Multiplexing

For designs without feedback, an HLS tool is generally able to instantiate regis-

ters freely to increase clock frequency and throughput. However, in pipelines that

are part of a feedback loop, registers cannot be inserted freely without introduc-

ing pipeline stalls. Hence, feedback loops, also known as recurrences, in a design

are the key limiter of throughput [Pap91]. For example, Figure 6.3 shows the high

level structure of the 8×8 M-RVD QRD loop nest. Although there are several recur-

rences in the application, the critical recurrence in this code occurs when the result

6.3. AutoESL 135

X[j][0] of the diagonal function call is used as an argument to the next diagonal

call. Synthesis of the diagonal function results in a 14-stage pipeline. As a result,

each diagonal call has to wait 14 cycles until the result of the previous call be-

comes available, which means the pipeline is highly underutilized. To accommodate

the recurrence without introducing pipeline stalls, we use the wait cycles to process

independent data streams, by applying Time Division Multiplexing (TDM) over 15

datasets. The underlined parts in Figure 6.3 explicitly reflect time division multiplex-

ing or c-slowing [LRS93] over separate datasets through the inner t-loop.

We observe several characteristics of this design. First, the code accurately reflects

the order in which data is processed in the reference design. Second, the TDM refac-

toring is expressed entirely at the C code level. This means it can be seamlessly ported

to any HLS tool that supports the used C constructs, such as multi-dimensional ar-

rays. Third, the number of datasets to iterate over, that is, the TDM depth, cannot be

determined without knowing the sizes of the critical recurrences. Although AutoESL

does not compute the number of datasets automatically, the HLS process does an-

alyze the source code for recurrences and reports to the designer where recurrences

are not satisfied. The designer can use this information in a subsequent AutoESL run.

In the sphere decoder application, since 360 independent data subcarriers have to be

processed for each frame, TDM is a straightforward way to handle the critical recur-

rence while incurring small increases in resource cost and latency. The resource cost

increase stems from additional buffering for the fifteen time multiplexed data subcar-

riers. The processing latency of the M-RVD QRD block for a single data subcarrier is

945 clock cycles, or 4.2µs.

Loop Unrolling

Application throughput constraints translate directly or indirectly into parallelism re-

quirements on the RTL architecture. For example, the code in Figure 6.3 processes

a block of 15 subcarriers. As shown in Equation (6.1), every 64 cycles a new sub-

carrier must be processed to meet application throughput requirements. As a result,

the loop nest in Figure 6.3 must start executing a new block of 15 subcarriers every

15×64 = 960 cycles. Because the outer loops together comprise 960 iterations, this

implies that the body of the t loop must be pipelined with an initiation interval II t of

1. As a result, the inner n loop must be unrolled to perform all off-diagonal computa-

tions in parallel, which is possible in this application since the calls to offdiagonal

in the inner loop are independent. We specify the pipelining and unrolling as pragma

directives to AutoESL, thereby minimizing rewriting of the code and preserving code

readability and maintainability. These pragmas are shown in Figure 6.5. AutoESL

currently requires unrolled loops to have constant loop bounds, hence the need to ex-

136 Chapter 6. Industrial Case Study

1 #pragma AP ARRAY PARTITION variable=R complete dim=2 partition

2 for (j=0; j<8; j++)

3 for (m=0; m<8; m++)

4 for (t=0; t<15; t++) {

5 #pragma AP PIPELINE ii=1

6 X[j][0][t] = diagonal(X[j][0][t], ...);

7 for (n=1; n<8; n++) {

8 #pragma AP UNROLL

9 if (n < 7-m)

10 R[m][n-1][t] = offdiagonal(R[m][n][t], ...);

11 }

12 }

Figure 6.5: Applying loop unrolling (line 8), pipelining (line 5), and array partition-

ing (line 1) to the M-RVD QRD C code.

plicitly move the conditional statement into the loop body. During the HLS process,

AutoESL automatically attempts to compute the number of cycles the loop nest takes

to execute, taking into account constant loop bounds and pipeline latencies. This

enables a designer to quickly interpret the achieved throughput.

Array Partitioning

After unrolling, the seven off-diagonal cells need to be fed with new data every clock

cycle. One of the data sources is a three-dimensional array R that is mapped onto

a block memory primitive of the FPGA. These block memory primitives have only

two memory access ports, which means at most two accesses to array R can take

place every clock cycle. However, every clock cycle seven different elements need

to be read from R, since the loop iterator n of the unrolled loop appears in the array

index expression. This means shortage of memory ports now limits throughput. To

overcome this problem, we apply array partitioning to partition the array into sub-

arrays [CJLZ09], again directed by pragma directives. We show such a pragma on

line 1 of Figure 6.5 to partition the second dimension of array R. Each subarray is then

mapped onto a separate block memory primitive, effectively providing two memory

ports dedicated to each subarray and thereby solving the array bandwidth limitation.

Again, memory port limitations are analyzed during the HLS process and AutoESL

reports when shortage of memory ports prevents achieving the requested pipelining.

6.3. AutoESL 137

1 template <int Wa, int Wb, int Wc>

2 ap_int<Wa+Wb> MADD(ap_int<Wa> a, ap_int<Wb> b, ap_int<Wc> c) {

3 #pragma AP INLINE self off

4 #pragma AP LATENCY max=3

5 #pragma AP INTERFACE ap_none port=return register

6 return a*b+c;

7 }

Figure 6.6: C++ code for the MADD function.

Case-specific Optimizations

As an example of a case-specific optimization we consider a non-obvious source of

multiplications in the C language, namely multi-dimensional array accesses. Since an

array is eventually mapped to a memory with a single-dimensional address space, the

multi-dimensional array index has to be converted into a linear address. For exam-

ple, consider an M×N array defined in C as a[M][N]. The address of array element

a[i][j] is computed with the expression i · N + j. The cost of evaluating this ex-

pression varies greatly with the value of N . For example, when M = 8 ∧ N = 15,

computing the address requires a multiplication by fifteen, which cannot be imple-

mented using only a single shift operation because it is not a power of two. When

the array dimensions are interchanged, thus M = 15 ∧ N = 8, the multiplication

by fifteen is replaced by a multiplication by eight which can be implemented using a

single shift operation.

Function and Class Templates

The M-RVD QRD block is specified entirely in the C++ language. To illustrate how

function and class templates from C++ can be used, we show the code of the Mul-

tiply/Add (MADD) function which is part of a library used by the diagonal cells of

the M-RVD QRD block. We provide the C++ code of this function in Figure 6.6.

Throughout the design we use arbitrary precision integer (ap_int) data types. To

allow effective use of library functions, we have designed these functions to sup-

port different argument bit widths using C++ templates, as illustrated in line 1 of

Figure 6.6 for the MADD function.

Resource Sharing

In many embedded signal processing applications, maximizing throughput is often

not as important as minimizing resource usage for a given throughput. In these cases,

138 Chapter 6. Industrial Case Study

effective resource sharing is an important design goal. Some resource sharing is

implicit when a loop is pipelined rather than unrolled, since consecutive iterations of

the loop execute on the same datapath generated from the body of the loop. In this

section, we focus on achieving additional resource sharing.

AutoESL employs heuristics to decide which function calls are inlined. The MADD

in Figure 6.6 was inlined in our design study. When an inlined function is called in

two different places, the entire implementation of this function appears twice in the

RTL. To enable sharing of resources in such cases by AutoESL, we disable inlining

using the pragma in line 3 of Figure 6.6.

User-Influence on the Generated RTL

AutoESL provides means to influence aspects of the RTL at the source code level.

The use of such means turned out to be inevitable to obtain a design competitive with

hand-written RTL for the M-RVD QRD block. Because AutoESL’s default timing

characterization prevented timing closure of RTL resulting from multiplications in

the C code, we have enforced the correct characterization by means of the pragmas

shown in lines 4 and 5 in Figure 6.6. Line 4 enforces a latency of three clock cycles

and line 5 enforces an output register of the MADD RTL block. Such pragmas allow

a designer to “correct” suboptimal decisions of the HLS tool for a particular part of

the design. The need for such manual corrections should diminish over time as HLS

tools are further improved.

6.3.3 Design Productivity

To compare design times of the HLS and reference implementations, we have re-

constructed the approximate amount of working time on the designs. Design times

for the reference implementation have been estimated by the original implemen-

tors [DTD+09] as 4.5 weeks. Design times for the HLS implementation have been

extracted from source code version control logs as 5 weeks. We observe that the de-

sign times to reach an optimized implementation are approximately the same for the

HLS implementation and the reference implementation. However, the RTL design

flow yields only a single design point, while the HLS design flow yields many design

points with different performance and cost tradeoffs.

The effects of the refactoring-based design process for the M-RVD QRD block can be

seen in Figure 6.7. On the left vertical axis, we show the overall application through-

put determined from static clock cycle count analysis of AutoESL, combined with

post-place and route timing closure information. On the right vertical axis, we show

the corresponding post-place and route LUT and flipflop usage. For comparison, the

6.3. AutoESL 139

10
4

10
5

10
6

10
7

10
8

 0 5 10 15 20 25
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

P
ro

c
e
s
s
in

g
 t

im
e
 f

o
r

3
6
0
 d

a
ta

 s
u

b
-c

a
rr

ie
rs

 (
n

s
)

P
o
s
t-

P
A

R
 r

e
s
o
u
rc

e
 u

s
a

g
e

 (
#

L
U

T
s
,
#

F
F

s
)

Effort (days)

Execution time
FF usage

LUT usage
Ref. ex. time

Ref. FF usage
Ref. LUT usage

Figure 6.7: Performance and resource usage of the M-RVD QRD block plotted as a

function of development time.

horizontal lines represent the target application throughput and resource usage of the

reference implementation. After obtaining a “clean” algorithmic C model, it took

about a day to get the code through AutoESL for the first time. This required rewrit-

ing of several nonsynthesizable constructs such as non-analyzable pointers. This first

implementation exploits little parallelism as it executes almost entirely sequentially.

By performing continual refactoring, the throughput and cost are improved with full

functional verification at each refactoring step. The bulk of the architectural refac-

toring was completed in about ten working days. The remaining time has been spent

tuning the design to reduce resource usage and to improve timing closure in place

and route. Below we summarize the design process for the M-RVD QRD block.

• Day 1: The C code is accepted by the HLS tool, and a functional hardware

implementation is already available. However, the total processing time is off

by two orders of magnitude.

• Day 3: After becoming more familiar with the tool and applying basic refac-

toring techniques such as enabling pipelining using a single C preprocessor

pragma, the processing time is reduced significantly.

• Day 6: Because of code restructuring such as loop unrolling, the resource us-

age increases considerably. This limits the achievable clock frequency, effec-

tively increasing the processing time again. However, the design source code

140 Chapter 6. Industrial Case Study

is now in a shape that enables further optimizations.

• Day 11: C integer data types are replaced by fixed point data types and opti-

mized primitive blocks (e.g., the MADD function) are introduced in the design.

This significantly reduces resource usage. A pipeline II of one is now feasible.

However, during RTL synthesis the design does not achieve timing closure,

which means throughput constraints can still not be met.

• Day 17: By optimizing the code of the data paths (e.g., by applying the case-

specific optimization described in Section 6.3.2), latencies and resource usage

are further reduced. As a result, the RTL now achieves timing closure, so at

this point an implementation meeting throughput requirements is available.

• Day 25: Further optimizations including algorithmic optimizations have been

applied to reduce the resource usage of the design.

In this work we had the advantage that the reference implementation was already

available to us. Thus, we knew the high-level application architecture that had to be

constructed to meet throughput requirements. Hence, we have been fully concentrat-

ing on getting a similar architecture out of the HLS tool initially. After obtaining a

design point meeting throughput requirements, the goal was changed to reducing re-

source cost to the level of the reference implementation. Again, we had the advantage

of knowing detailed resource cost statistics for the reference implementation, thus by

comparing with the HLS implementation we knew what parts could be optimized fur-

ther. Many different design points can be implemented using HLS in a short amount

of time, as each design point in Figure 6.7 is a fully functional design with different

performance and cost aspects. On the other hand, the RTL design process has yielded

only one design point in approximately the same amount of time.

6.4 Daedalus

We have implemented the M-RVD QRD block of the sphere decoder also using the

Daedalus tool flow. We have followed the same refactoring-based design process as

with the AutoESL design, with the only difference that the “HLS” step of Figure 6.4

now consists of running Daedalus instead of AutoESL. We have started from the

same C code that was also used as starting point for the AutoESL design. Obtaining

an RTL implementation from C code consists of two steps, as depicted in Figure 1.1.

The first step is to convert the M-RVD QRD C code into a PPN specification using

PNGEN, which we describe in Section 6.4.1. The second step is to synthesize an

RTL implementation from the PPN specification using ESPAM, which we describe in

Section 6.4.2.

6.4. Daedalus 141

6.4.1 Design Entry

We distinguish between two classes of refactorings in a Daedalus design flow. Refac-

torings of the first class transform the source code into a form suitable for Daedalus.

Refactorings of second class are similar to the architectural refactorings in the Au-

toESL design flow. That is, they serve to alter the architectural interpretation of the

source code. The first two refactorings discussed below are of the first class, whereas

the remaining refactorings are of the second class.

Compatibility Restructurings

PNGEN requires that the sequential C code is a static affine nested loop program (cf.

Section 2.3). The sequential C code for the M-RVD QRD block already conforms to

this requirement, such that meeting the SANLP requirement requires no effort. To

ease integration of IP cores in LAURA, we rewrite the sequential code such that be-

sides for- and if-statements, only function calls and plain copy assignment statements

are exposed in the top level function given to PNGEN. This means other statements

containing arithmetic operations have to be embedded into function calls. For exam-

ple, the following statement

in_diag = -mat_im[i];

is rewritten as

negate(mat_im[i], &in_diag);

with negate being a new function that writes the negation of its first argument to its

second argument.

Introduction of Source and Sink Processes

Each PPN should have at least one source and one sink process that represent the

input and output interfaces of the system. In a physical implementation, these source

and sink processes exclusively communicate with the environment. For example, a

source process may represent a video capture device, whereas a sink process may rep-

resent a display device. The remaining non-source and non-sink processes perform

the actual data processing.

In the current implementation of PNGEN, source and sink processes have to be ex-

plicitly specified in the C input, using function calls that have only output arguments

and only input arguments, respectively. Any arguments to the top level function,

such as im on line 1 of Figure 6.8, are currently ignored by PNGEN. The M-RVD

QRD reference code communicates input and output data via array arguments of the

142 Chapter 6. Industrial Case Study

1 void mrvdqrd(int im[4][4][15], ...) {

2 #pragma AP ARRAY_PARTITION variable=im complete dim=1 partition

3 ...

4 }

Figure 6.8: Input arguments to the top-level M-RVD QRD function.

init
mat

off-
diag

diag

zero

neg-
ate

sink

...
init
vec

Figure 6.9: Initial PPN for the M-RVD QRD block.

top level function, as shown in Figure 6.8. This means we have to translate the top

level function argument list into source and sink processes. For every input argument,

we introduce a function and a loop nest such that all elements of the array are written

exactly once. We illustrate this for the im input argument in Figure 6.11. The input

argument is removed from the function header and defined as a local variable. The

order in which the elements are written should match the order in which the elements

are read for the first time by any subsequent processes. This ensures communication

can be implemented using regular FIFO channels instead of more expensive reorder-

ing buffers. In a similar way, for every output argument, we introduce a function and

a loop nest such that all elements of the array are read exactly once.

We are able to reuse the original test bench by making additional modifications to

the C code. First, we modify the test bench to read and write test vectors from and to

global variables. Next, we make the source and sink processes stateful by introducing

an internal counter that is incremented upon every invocation of the particular func-

tion. Using this counter, the corresponding array elements are read from or written to

the global test vectors. Although these changes assist us in verifying the functional-

ity after each C code transformation, they have no implications for the final hardware

implementation, since the source and sink processes are typically replaced by the

interfaces they represent.

6.4. Daedalus 143

 0

 15

Diag

 0

 11

 0 2000 4000 6000 8000 10000

Off-diag

Time (cycles)

Figure 6.10: Flat execution profiles of diagonal and off-diagonal cell resources.

Initial PPN

After the source code refactorings discussed so far, a first PPN can be obtained using

PNGEN, which is shown in Figure 6.9 This initial PPN contains one diagonal cell

and one off-diagonal cell, since the diagonal and off-diagonal cell calls appear only

once in the C code of Figure 6.3. An architecture with only one off-diagonal cell

cannot achieve the throughput demanded by the application requirements. This can

be observed using the flat execution profiles shown in Figure 6.10 obtained using

cprof. The execution time for a single execution of the PPN is about 10000 clock

cycles, which is more than ten times the desired execution time of 960 clock cycles.

Splitting

The AutoESL and reference implementations contain one diagonal cell and eight off-

diagonal cells to meet the throughput requirements of the sphere decoder application.

We have applied loop unrolling to the innermost loop to obtain eight off-diagonal

cells in the AutoESL design. HLS tools such as AutoESL provide a pragma to unroll

a loop while keeping the code compact and maintainable. To obtain the same archi-

tecture, we apply a plane cutting transformation to the PPN with a factor 8 on the

innermost dimension n of the offdiagonal process, specified as:

planecut(offdiagonal, n, 8)

This results in eight offdiagonal processes, which resembles the architecture of the

reference implementation.

After splitting the off-diagonal cell, the source processes also have to be split to

ensure all eight off-diagonal cells receive data at a fast enough rate. This is similar to

partitioning an input array in the HLS context, effectively increasing the bandwidth of

that array. For example, for an input array im, representing the imaginary components

of the complex-valued channel matrix, we apply a pragma in AutoESL to partition

this array. This is shown by the pragma in Figure 6.8. The pragma splits im into four

distinct subarrays im_0[4][15], im_1[4][15], im_2[4][15], and im_3[4][15]. We

have removed the input and output arguments to the top-level function by introducing

144 Chapter 6. Industrial Case Study

1 void mrvdqrd() {

2 int im[4][4][15];

3 for (j=0; j<4; j++)

4 for (m=0; m<4; m++)

5 for (c=0; c<15; c++)

6 initmatrix(&im[j][m][c]);

7 }

Figure 6.11: Source process for input argument im of Figure 6.8.

source and sink processes as discussed above. The code in Figure 6.11 implements

a source process for input matrix im. After splitting the off-diagonal cell, we need

to split the initmatrix process as well to make sure data from mat_im is delivered

at a fast enough rate. This is done by applying a plane cutting transformation with a

factor 4 on the j dimension of initmatrix. As a result, we obtain four initmatrix

processes that deliver data to four out of eight off-diagonal cells. The other four

off-diagonal cells require the real components of the complex-valued channel matrix,

which is stored in an array re. We apply the same plane cutting transformation to the

source process for this array.

A similar relation exists between sink process splitting in PPNs and output array

partitioning in HLS, to ensure that data produced by the off-diagonal cells is con-

sumed at a fast enough rate.

After the splitting transformations, we again use cprof to evaluate the performance

of the new PPN. The technique described in Section 4.6.6 allows us to evaluate the

splitting transformations at the sequential code level, without the need to apply the

transformations to the sequential code. The resulting flat execution profiles are shown

in Figure 6.12. The execution time is now reduced to about 960 clock cycles, which

means the PPN meets the application throughput requirements.

Process Merging

Similar to the AutoESL and the reference implementations, the PPN implementa-

tion now consists of one processing resource for the diagonal and eight processing

resources for the off-diagonal cell computations. This allows the PPN to meet the

throughput demands of the application. We now ask ourselves if we can reduce the

resource cost of the implementation while satisfying the throughput constraints. For

this purpose, we analyze the utilization of the eight off-diagonal cell LAURA pro-

cessors using the flat execution profiles obtained by cprof. The number of simul-

taneously active iterations on each off-diagonal cell LAURA processor over time is

6.4. Daedalus 145

 0

 11

 OD 1

 0

 11

 OD 2

 0

 11

 OD 3

 0

 11

 OD 4

 0

 11

 OD 5

 0

 11

 OD 6

 0

 11

 OD 7

 0

 11

 0 200 400 600 800 1000

 OD 8

Time (cycles)

Figure 6.12: Flat execution profiles of off-diagonal cell resources after splitting by a

factor eight.

146 Chapter 6. Industrial Case Study

1 for (n=1; n<8; n++) {

2 if (n < 7-m) {

3 if (n == 1) pr$ = 1;

4 if (n == 2) pr$ = 2;

5 if (n == 3 || n == 8) pr$ = 3;

6 if (n == 4 || n == 7) pr$ = 4;

7 if (n == 5 || n == 6) pr$ = 5;

8

9 // Offdiagonal cell profiling instrumentation ...

10 }

11 }

Figure 6.13: Evaluating merging transformations using cprof.

shown in Figure 6.12. The maximum number of simultaneously active iterations on

a processor is given by the processor’s pipeline depth, which is 11 cycles. From Fig-

ure 6.12, we observe that the utilization of the first off-diagonal cell processor (OD 1)

is almost 100%, because the pipeline is fully occupied by eleven iterations for most

of the time. On the other hand, the last off-diagonal cell processor (OD 8) is active

for only 1
8 of the time, which means the utilization is approximately 12%.

Our goal is to merge the processors with low utilization, such that resource cost is

reduced while throughput is not affected. Off-diagonal cell 1 determines the overall

throughput, as it has the longest execution time according to Figure 6.12. By looking

at this figure, we expect that merging off-diagonal cells 3 and 8 should lead to a

combined execution time that is still shorter than the execution time of OD 1. A

similar expection holds for merging OD 4 and 7, and OD 5 and 6. This would lead to

an implementation with only five off-diagonal cell processors instead of eight.

To evaluate whether this merging transformation is beneficial, we consider the two

conditions for a merging transformation described in Section 5.2.2. The first condi-

tion is that the processes that are merged execute the same function. This condition

is met, since each process executes the same off-diagonal cell function. The second

condition is that the overall throughput should not be affected by the merging. We

use cprof to assess if this condition is met. We leverage the technique of Section 4.6.6

to evaluate the merging transformation at the sequential code level. Recall that this

technique employs a variable pr$ which selects the processing resource on which an

iteration executes. We assign iterations of the n-loop to pr$ according to the merg-

ing transformation, as shown in Figure 6.13. For example, off-diagonal cell 1 is not

merged with any other off-diagonal cell, and is therefore assigned exclusively to pro-

cessing resource 1 on line 3. Offdiagonal cells 3 and 8 are merged, and are therefore

both assigned to processing resource 3 on line 5. The resulting flat execution profiles

6.4. Daedalus 147

 0

 11

 OD 1

 0

 11

 OD 2

 0

 11

 OD 38

 0

 11

 OD 47

 0

 11

 0 200 400 600 800 1000

 OD 56

Time (cycles)

Figure 6.14: Flat execution profiles of off-diagonal cell resources after merging cells

3 & 8, 4 & 7, and 5 & 6.

are shown in Figure 6.14. The total execution time of the merged version is identical

to the execution time of the unmerged version. We therefore conclude that the pro-

posed merging transformation would be worthwhile to apply for further evaluation at

the implementation level.

6.4.2 Synthesis

After obtaining a process network with the desired throughput characteristics, we

generate an RTL implementation using the ESPAM tool. Because the Daedalus tool

flow does not provide means to synthesize data paths, we have reused the IP cores

for the diagonal and off-diagonal cell functions from the AutoESL implementation.

These IP cores can easily be integrated into the execute units of the generated LAURA

processors that implement the processes. Since the source and sink processes repre-

sent interfaces of the application, we do not synthesize LAURA processors for these

processes. The interface to the PPN consists of the FIFO buffers that connect the

interior processes of the PPN to the source and sink processes.

To achieve the highest clock frequency currently possible for LAURA processors,

we have used the optimization described in Section 3.5.1. Despite this optimization,

the RTL for the eight-off-diagonal-cell implementation achieves a clock frequency of

176 MHz, whereas 225 MHz is required to meet the application throughput demands.

The alternative implementation with only five off-diagonal cells was not imple-

mentable by ESPAM, because merging of LAURA processors is not supported in the

general case as explained in Section 5.1.2. An alternative with seven off-diagonal

148 Chapter 6. Industrial Case Study

Design LUT FF DSP BRAM Fmax

SysGen [DTD+09] 5082 5699 30 19 225

AutoESL [CLN+11, NNH+11] 3862 4931 30 19 225

Daedalus-8OD 6506 5235 30 38 176

Daedalus-7OD 6672 5309 27 70 172

Daedalus-5OD 21

Table 6.1: M-RVD QRD post-place-and-route implementation statistics.

cells, obtained by merging the last two off-diagonal cells, was implementable, be-

cause the compound process has a convex polyhedral set as its domain.

6.5 Comparison

In Table 6.5, we compare resource usage statistics for the M-RVD QRD block of a

reference RTL design [DTD+09], the AutoESL design, and the Daedalus design. To

obtain accurate comparisons, we have reimplemented the reference design using the

Xilinx ISE 12.1 tools targeting a Virtex-5 VLX110T-2 FPGA. The AutoESL design

has been developed using AutoESL AutoPilot 2010.07.ft and has also been imple-

mented using ISE 12.1 targeting the same FPGA. The Daedalus designs have been

developed using PNGEN 0.10-93-g73a41d1 and ESPAM 2011.10, and have been im-

plemented using ISE 12.1 targeting the same FPGA. Verification of the RTL was

performed using a manually written testbench in VHDL that used the same test vec-

tors as the testbench for the SysGen and AutoESL designs.

The SysGen, AutoESL, and Daedalus-8OD designs all employ the same architec-

ture containing one diagonal and eight off-diagonal cells. This is reflected in the DSP

resource cost, which is the same for all three designs. The AutoESL design has lower

LUT and FF cost mainly because the off-diagonal cell was more optimized than the

off-diagonal cell of the SysGen design. The Daedalus-8OD design has higher LUT

cost than the SysGen design because of the logic implementing the LAURA proces-

sors and channels. The Daedalus-8OD design has lower FF cost than the SysGen

design, because the Daedalus-8OD design was not optimized for the target clock fre-

quency of 225 MHz, and thus lacks careful insertion of more FF primitives to meet

the target clock frequency. The Daedalus-8OD design requires twice the amount of

block memory (BRAM) primitives as the SysGen and AutoESL design, to allow suf-

ficiently large channel sizes that do not degrade the throughput. The Daedalus-7OD

design contains only seven off-diagonal cells, which is reflected in a saving of three

6.6. Conclusion and Summary 149

DSP primitives. This comes at the expense of slightly higher LUT and FF cost, and

almost a doubling in BRAM cost. The increase in BRAM cost is caused by larger

buffer sizes needed to avoid blocking writes that degrade throughput. The Daedalus-

5OD design was not implementable, as explained in Section 6.4.2. We know that an

off-diagonal cell requires three DSP primitives. Eliminating three off-diagonal cells

thus leads to a reduction of nine DSP primitives. Estimating the other cost character-

istics of the Daedalus-5OD is not trivial, because these characteristics depend on the

interplay of many factors. Therefore, these characteristics are left empty in Table 6.5.

We did not succeed in obtaining an architecture with less than eight off-diagonal

cells using AutoESL. Attempts to express such architectures in the C code resulted

in implementations that did not satisfy the throughput requirements.

In Section 6.3.3, we have compared the design times of the SysGen and AutoESL

designs. Comparing the design times of the Daedalus and AutoESL designs is dif-

ficult for the following three reasons. First, the AutoESL design time includes time

needed to study the application and the SysGen reference design. Second, the blocks

implementing the diagonal and off-diagonal cells were already available during the

Daedalus design, whereas these had to be developed and optimized during the Au-

toESL design. Third, we needed to debug and adapt the Daedalus tools, as the appli-

cation revealed corner cases that were not correctly handled by the tools. A design

time estimate would thus be blurred because of these three reasons. Making an ed-

ucated guess nonetheless, we expect that we could reproduce the architecture of the

SysGen and AutoESL designs using Daedalus in about two weeks.

6.6 Conclusion and Summary

We were able to achieve an RTL implementation from sequential C code for an in-

dustrially relevant application using both the commercial AutoESL and academic

Daedalus tools. The AutoESL design was competitive to the manually built ref-

erence implementation. The architecture employed by the AutoESL and reference

designs could be replicated using Daedalus, although the Daedalus design did exhibit

higher resource cost and a lower clock frequency. We attribute this to Daedalus be-

ing a primarily a research environment, in which the limited development power is

invested in research aspects rather than competition with commercial products. We

expect that more competitive designs can be obtained using Daedalus with additional

engineering effort, as we do not see fundamental limitations.

The use of synthesis techniques and optimizations presented in Chapter 3, the cprof

analysis technique presented in Chapter 4, and the transformations presented in Chap-

ter 5 proved essential in obtaining the architecture of the sphere decoder reference

150 Chapter 6. Industrial Case Study

design. Moreover, the cprof technique allowed us to quickly evaluate performance

of alternative application instances at the sequential code level. We therefore con-

clude that the work presented in this dissertation are essential contributions to handle

industrially relevant applications in Daedalus.

